1
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
2
|
Hussain A, Bourguet-Kondracki ML, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 2022; 62:2580-2605. [DOI: 10.1080/10408398.2020.1855413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - Farhad Hussain
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pukhtanuk (KP), Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Punjab, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
3
|
Beshel JA, Beshel FN, Nwangwa JN, Okon IA, Ejim CI, Owu DU. Cardioprotective Role of Theobroma cacao against Isoproterenol-Induced Acute Myocardial Injury. Cardiovasc Hematol Agents Med Chem 2022; 20:75-80. [PMID: 32940189 DOI: 10.2174/1871525718999200917114954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antioxidants are beneficial in myocardial infarction (MI). It is suggestive that Theobroma cacao (TC) with rich antioxidant properties can be of health benefits in myocardial injury. AIM The study investigated the effect of Theobroma cacao on cardioprotection in isoproterenol-induced myocardial infarction in rats. MATERIAL AND METHODS Male Wistar rats divided into four groups of 6 rats were used for the study. In group 1, 0.9% normal saline placebo was administered via oral gavage to the control. Group 2 was the MI induced group that was given 100 mg/kg body weight isoproterenol subcutaneously twice at an interval of 24 hours. Group 3 was administered TC for 2 weeks at 100 mg/kg bodyweight via the oral route. Group 4 was pretreated with TC (100 mg/kg) via oral route for 2 weeks, immediately followed by the administration of 100 mg/kg body weight isoproterenol subcutaneously twice at an interval of 24 hours. The rats were sacrificed using chloroform anesthesia, and blood samples collected via cardiac puncture. The serum was analyzed for troponin level, lactate dehydrogenase (LDH), and malondialdehyde (MDA) level. RESULTS The serum troponin, LDH, and MDA levels were found to be significantly (p<0.01) increased in the MI group compared with the control. Pretreatment with TC before MI induction significantly (p<0.01) prevented increased serum troponin, LDH, and MDA levels when compared with the MI group. There was also a significant (p<0.01) decrease in MDA in the TC group compared with the control. CONCLUSION These results suggest that Theobroma cacao protects against isoproterenol-induced myocardial injury, possibly by preventing oxidative stress and consequent lipid peroxidation.
Collapse
Affiliation(s)
- Justin Atiang Beshel
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar - Nigeria.,Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka - Bushenyi District, Uganda
| | - Favour Nyoh Beshel
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar - Nigeria.,Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka - Bushenyi District, Uganda
| | - Justina Nwandimma Nwangwa
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar - Nigeria
| | - Idara Asuquo Okon
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar - Nigeria
| | - Clement Ikani Ejim
- Department of Physiology, Faculty of Basic Medical Sciences, Abia State University, Uturu - Nigeria
| | - Daniel Udofia Owu
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka - Bushenyi District, Uganda
| |
Collapse
|
4
|
Qi Q, Chu M, Yu X, Xie Y, Li Y, Du Y, Liu X, Zhang Z, Shi J, Yan N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qianqian Qi
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meijun Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiuting Yu
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanning Xie
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yali Li
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongmei Du
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xinmin Liu
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhongfeng Zhang
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - John Shi
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
5
|
Hu M, Yang X, Chang X. Bioactive phenolic components and potential health effects of chestnut shell: A review. J Food Biochem 2021; 45:e13696. [PMID: 33751612 DOI: 10.1111/jfbc.13696] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 12/18/2022]
Abstract
Chestnut kernels are often used for direct consumption; or processed to produce marron glacé, chestnut purée, and gluten-free products, while chestnut by-products (inner shell and outer shell) are treated as waste residues. Many in vivo and in vitro studies have proved how chestnut shell extract functions as an antioxidant and exhibits anticancer, anti-inflammatory, antidiabetic, and anti-obesity activities. This review introduces the main components of phenolic compounds in chestnut shells, traditional and modern extraction methods, and reported potential health effects. The aim is to have a better understanding of the functional active ingredients in chestnut shells and their value-added uses, to increase understanding of future applications of this agricultural and sideline product in the food, pharmaceutical, and cosmetic industries. PRACTICAL APPLICATIONS: In recent years, chestnut shells have become a hot research topic because of their rich bioactive ingredients. Due to the large amount of phenolic compounds in chestnut shells and their potential health functions (antioxidant, anticancer, antibacterial, anti-inflammatory, hypoglycemic, and treatment of obesity), extracts of chestnut shells have high biological value in the treatment of diseases. Therefore, this review introduces the main components of phenolic compounds in chestnut shells, traditional and modern extraction methods, and the potential health effects of these compounds. The aim of this review is to better understand the functional, active ingredients in chestnut shells and their value-added uses, and to increase understanding of future applications of this agricultural and sideline product in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Meiyi Hu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
| | - Xiaokuan Yang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
| | - Xuedong Chang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
| |
Collapse
|
6
|
Lavorgna M, Pacifico S, Nugnes R, Russo C, Orlo E, Piccolella S, Isidori M. Theobromacacao Criollo var. Beans: Biological Properties and Chemical Profile. Foods 2021; 10:foods10030571. [PMID: 33803449 PMCID: PMC8001065 DOI: 10.3390/foods10030571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Theobroma cacao provides precious products such as polyphenol-rich beans that are useful for nutraceutical purposes. The geographical area may influence the chemical composition of raw cocoa beans in terms of the polyphenols and biological qualities of the products. This work aimed to investigate the biological properties and the chemical composition of two different samples of Criollo var. cocoa raw beans coming from two areas (Indonesia; Peru). Beans underwent biphasic extraction obtaining lipophilic and hydroalcoholic extracts. The extracts were tested for antiradical, antimutagenic, and antigenotoxic effects. Cell viability inhibition toward breast, gastric/esophageal colorectal adenocarcinoma, and hepatoblastoma human cell lines was evaluated. Extracts were chemically investigated through UV-Vis spectroscopy and ultra-high-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QqTOF MS/MS). Results showed that the Indonesian bean hydroalcoholic extracts were able to scavenge 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) cation radical better than the Peruvian hydroalcoholic extracts (ECs50: 72.63 vs. 322.20 μg/mL). Extracts showed antimutagenic and antigenotoxic activity. The viability inhibitory effect on breast and hepatic cancer cells was reached only for the Indonesian hydroalcoholic extracts at hundreds of μg/mL. Phenylpropenoyl-L-amino acids, hydroxycinnamoyl aminoacids conjugates, and procyanidin compounds were found mainly in the hydroalcoholic extracts, whereas fatty acids and lyso-phospholipids were found mainly in lipophilic fractions. Fatty acid and (epi)catechins appeared to be affected by different environmental conditions of the geographical areas.
Collapse
|
7
|
Toro-Uribe S, Herrero M, Decker EA, López-Giraldo LJ, Ibáñez E. Preparative Separation of Procyanidins from Cocoa Polyphenolic Extract: Comparative Study of Different Fractionation Techniques. Molecules 2020; 25:molecules25122842. [PMID: 32575615 PMCID: PMC7356151 DOI: 10.3390/molecules25122842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
To provide further insight into the antioxidant potential of procyanidins (PCs) from cocoa beans, PC extract was fractionated by several methodologies, including solid phase extraction, Sephadex LH-20 gel permeation, and preparative HPLC using C18 and diol stationary phases. All the isolated fractions were analyzed by UHPLC-QTOF-MS to determine their relative composition. According to our results, classical techniques allowed good separation of alkaloids, catechins, dimers, and trimers, but were inefficient for oligomeric PCs. Preparative C18-HPLC method allowed the attainment of high relative composition of fractions enriched with alkaloids, catechins, and PCs with degree of polymerization (DP) < 4. However, the best results were obtained by preparative diol-HPLC, providing a separation according to the increasing DP. According to the mass spectrometry fragmentation pattern, the nine isolated fractions (Fractions II–X) consisted of exclusively individual PCs and their corresponding isomers (same DP). In summary, an efficient, robust, and fast method using a preparative diol column for the isolation of PCs is proposed. Regarding DPPH• and ABTS•+ scavenging activity, it increases according to the DP; therefore, the highest activity was for cocoa extract > PCs > monomers. Thereby, cocoa procyanidins might be of interest to be used as alternative antioxidants.
Collapse
Affiliation(s)
- Said Toro-Uribe
- School of Chemical Engineering, Food Science & Technology Research Center (CICTA), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 68002, Colombia; (S.T.-U.); (L.J.L.-G.)
| | - Miguel Herrero
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Eric A. Decker
- Chenoweth Laboratory, Department of Food Science, University of Massachusetts, 100 Holdsworth Way, Amherst, MA 01003, USA;
| | - Luis Javier López-Giraldo
- School of Chemical Engineering, Food Science & Technology Research Center (CICTA), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 68002, Colombia; (S.T.-U.); (L.J.L.-G.)
| | - Elena Ibáñez
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-001-7956; Fax: +34-91-001-7905
| |
Collapse
|
8
|
Ohnuma T, Sakamoto K, Shinoda A, Takagi C, Ohno S, Nishiyama T, Ogura K, Hiratsuka A. Procyanidins from Cinnamomi Cortex promote proteasome-independent degradation of nuclear Nrf2 through phosphorylation of insulin-like growth factor-1 receptor in A549 cells. Arch Biochem Biophys 2017; 635:66-73. [DOI: 10.1016/j.abb.2017.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/22/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022]
|
9
|
Navarro M, Zamora W, Quesada S, Azofeifa G, Alvarado D, Monagas M. Fractioning of Proanthocyanidins of Uncaria tomentosa. Composition and Structure-Bioactivity Relationship. Antioxidants (Basel) 2017; 6:antiox6030060. [PMID: 28788071 PMCID: PMC5618088 DOI: 10.3390/antiox6030060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/13/2023] Open
Abstract
In a previous study, the detailed low-molecular weight polyphenolic profile of the different plant parts (leaves, stem, bark and wood) of Uncaria tomentosa was reported, the leaves being the plant part with the highest phenolic content and presenting the most heterogenous proanthocyanidin composition. Further, cytotoxicity of leaves extracts in two cancer cell lines was also found to be higher than in the remaining parts of the plant. In the present study, fractioning of U. tomentosa leaves polyphenolic extracts was performed using Diaion® HP-20 resin and a detailed characterization and quantification of fractions (n = 5) was achieved using advanced analytical techniques such as Ultra-Performance Liquid Chromatography coupled with Electrospray Ionization and Triple Quadrupole (TQD) Tandem Mass Spectrometry (UPLC/TQ-ESI-MS) and 13C-NMR. Oxygen Radical Absorbance Capacity (ORAC) and cytotoxicity on gastric adenocarcinoma AGS and colon adenocarcinoma SW20 cell lines were also determined in the different fractions. Results showed selective distribution of 32 non-flavonoid and flavonoid phenolics among the different fractions. ORAC varied between 3.2 and 11.8 μmol TE/mg in the different fractions, whereas IC50 of cytotoxicity on gastric adenocarcinoma AGS and colon adenocarcinoma SW20 cell lines best values were between 71.4 and 75.6 µg/mL. Fractions rich in proanthocyanidins also showed the highest bioactivity. In fact, significant positive correlation was found between total proanthocyanidins (TP) quantified by UPLC-DAD and ORAC (R2 = 0.970), whereas significant negative correlation was found between TP and cytotoxicity towards AGS (R2 = 0.820) and SW620 (R2 = 0.843) adenocarcinoma cell lines. Among proanthocyanidins, propelargonidin dimers were of particular interest, showing significant correlation with cytotoxic selectivity on both gastric AGS (R2 = 0.848) and colon SW620 (R2 = 0.883) adenocarcinoma cell lines. These results show further evidence of the bioactivity of U. tomentosa proanthocyanidin extracts and their potential health effects.
Collapse
Affiliation(s)
- Mirtha Navarro
- Department of Chemistry, University of Costa Rica (UCR), Sede Rodrigo Facio, San Pedro de Montes de Oca, San José 2060, Costa Rica.
| | - William Zamora
- Department of Chemistry, University of Costa Rica (UCR), Sede Rodrigo Facio, San Pedro de Montes de Oca, San José 2060, Costa Rica.
| | - Silvia Quesada
- Department of Biochemistry, Faculty of Medicine, University of Costa Rica (UCR), Sede Rodrigo Facio, San Pedro de Montes de Oca, San Jose 2060, Costa Rica.
| | - Gabriela Azofeifa
- Department of Biochemistry, Faculty of Medicine, University of Costa Rica (UCR), Sede Rodrigo Facio, San Pedro de Montes de Oca, San Jose 2060, Costa Rica.
| | - Diego Alvarado
- Department of Biology, University of Costa Rica (UCR), Sede Rodrigo Facio, San Pedro de Montes de Oca, San Jose 2060, Costa Rica.
| | - Maria Monagas
- Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC-UAM), C/Nicolás Cabrera 9, Madrid 28049, Spain.
| |
Collapse
|
10
|
Galloylation of polyphenols alters their biological activity. Food Chem Toxicol 2017; 105:223-240. [DOI: 10.1016/j.fct.2017.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
|
11
|
Pedan V, Fischer N, Rohn S. An online NP-HPLC-DPPH method for the determination of the antioxidant activity of condensed polyphenols in cocoa. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Mirali M, Purves RW, Stonehouse R, Song R, Bett K, Vandenberg A. Genetics and Biochemistry of Zero-Tannin Lentils. PLoS One 2016; 11:e0164624. [PMID: 27788158 PMCID: PMC5082924 DOI: 10.1371/journal.pone.0164624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
The zero-tannin trait in lentil is controlled by a single recessive gene (tan) that results in a phenotype characterized by green stems, white flowers, and thin, transparent, or translucent seed coats. Genes that result in zero-tannin characteristics are useful for studies of seed coat pigmentation and biochemical characters because they have altered pigmentation. In this study, one of the major groups of plant pigments, phenolic compounds, was compared among zero-tannin and normal phenotypes and genotypes of lentil. Biochemical data were obtained by liquid chromatography-mass spectrometry (LC-MS). Genomic sequencing was used to identify a candidate gene for the tan locus. Phenolic compound profiling revealed that myricetin, dihydromyricetin, flavan-3-ols, and proanthocyanidins are only detected in normal lentil phenotypes and not in zero-tannin types. The molecular analysis showed that the tan gene encodes a bHLH transcription factor, homologous to the A gene in pea. The results of this study suggest that tan as a bHLH transcription factor interacts with the regulatory genes in the biochemical pathway of phenolic compounds starting from flavonoid-3',5'-hydroxylase (F3'5'H) and dihydroflavonol reductase (DFR).
Collapse
Affiliation(s)
- Mahla Mirali
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Randy W. Purves
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rob Stonehouse
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rui Song
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kirstin Bett
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Albert Vandenberg
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Nam KH, Kim P, Wood DK, Kwon S, Provenzano PP, Kim DH. Multiscale Cues Drive Collective Cell Migration. Sci Rep 2016; 6:29749. [PMID: 27460294 PMCID: PMC4962098 DOI: 10.1038/srep29749] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.
Collapse
Affiliation(s)
- Ki-Hwan Nam
- Department of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742, Korea
- Division of Scientific Instrumentation, Optical Instrumentation Development Team, The Korea Basic Science Institute, Daejeon 34133, Korea
| | - Peter Kim
- Department of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742, Korea
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 151-744, South Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul National University hospital, Seoul 110-744, South Korea
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Deok-Ho Kim
- Department of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Rana S, Bhushan S. Apple phenolics as nutraceuticals: assessment, analysis and application. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:1727-38. [PMID: 27413201 PMCID: PMC4926896 DOI: 10.1007/s13197-015-2093-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/20/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023]
Abstract
Humankind is presently engulfed by convenience quench, modern life style and urbanized diet system leading to progression in array of health disorders. The past decade confronted cardiometabolic disorder (21.8 %), lower respiratory and chronic obstructive lung disease (12.5 %) as the major causes of death world over. In anticipation, scientific communities' have demonstrated the role of healthy diets, especially those rich in fruits and vegetables, for management of such health related issues. These horticultural crops are considered as a good source of polyphenols such as dihydrochalcones, flavanols, flavonols, anthocyanins and phenolic acids. The present article reviews the efforts made to assess the potential of apple phenolic compounds present in fresh fruits, leaves, bark and pomace as dietary polyphenols. Considering the positive impact of such phytochemicals on human health, various nutraceuticals, dietary supplements and phenolic-rich food products are presently available on market shelves. On analytical front, improved instrumentation based on liquid chromatography (HPLC, UPLC, LC/MS/MS) have made the assessment of phenolics more rapid and reliable. Thus, owing to the emergent interest in natural compounds, it is pertinent to discuss the latest significant research findings on therapeutic aspects along with probable metabolic mechanisms of dietary polyphenols found in apples and their implications on human health.
Collapse
Affiliation(s)
- Shalika Rana
- />Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
- />Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
| | - Shashi Bhushan
- />Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
- />Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
| |
Collapse
|
15
|
Antioxidant Activity and Cytotoxicity Effect of Cocoa Beans Subjected to Different Processing Conditions in Human Lung Carcinoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7428515. [PMID: 27034742 PMCID: PMC4808553 DOI: 10.1155/2016/7428515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
Lung cancer is a common malignancy in men and the second leading cause of cancer-related mortality in men in the western world. Phenolic cocoa ingredients have a strong antioxidative activity and the potential to have a protective effect against cancer. In the present study, we have evaluated the influence of cocoa beans subjected to different processing conditions on cell viability and apoptosis of human lung cancer cells (A549). We measured the viability of lung cells treated with cocoa beans, unroasted slates (US), roasted slates (RS), unroasted well fermented (UWF) cocoa, and roasted well fermented (RWF) cocoa for 24 h. Using an MTT assay, we observed a decrease in the viability of A549 cells after treatment with cocoa bean extracts. Flow cytometer analysis revealed that cocoa beans increased the percentage of cells in sub-G1 phase and promoted up to twofold increase of apoptotic cells when compared to the control group. Taken together, the present study suggests that cocoa beans may have a protective effect against lung cancer.
Collapse
|
16
|
Baharum Z, Akim AM, Hin TYY, Hamid RA, Kasran R. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds. Trop Life Sci Res 2016; 27:21-42. [PMID: 27019680 PMCID: PMC4807961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery.
Collapse
Affiliation(s)
- Zainal Baharum
- Department of Biomedical Science, Faculty of Medicine and Health Sciences
- Division of Biotechnology, Cocoa Innovation and Technology Centre, Malaysian Cocoa Board, Lot Pt 1261, Nilai Industrial Park, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences
| | - Taufiq Yap Yun Hin
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Rosmin Kasran
- Division of Biotechnology, Centre for Cocoa Biotechnology Research, Malaysian Cocoa Board, Kota Kinabalu Industrial Park, 88460 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
17
|
Impact of in vitro simulated digestion on the potential health benefits of proanthocyanidins from Choerospondias axillaris peels. Food Res Int 2015; 78:378-387. [DOI: 10.1016/j.foodres.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/05/2015] [Indexed: 11/20/2022]
|
18
|
Ohnuma T, Anzai E, Suzuki Y, Shimoda M, Saito S, Nishiyama T, Ogura K, Hiratsuka A. Selective antagonization of activated Nrf2 and inhibition of cancer cell proliferation by procyanidins from Cinnamomi Cortex extract. Arch Biochem Biophys 2015; 585:17-24. [DOI: 10.1016/j.abb.2015.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 01/01/2023]
|
19
|
Lee H, Dam DHM, Ha JW, Yue J, Odom TW. Enhanced Human Epidermal Growth Factor Receptor 2 Degradation in Breast Cancer Cells by Lysosome-Targeting Gold Nanoconstructs. ACS NANO 2015; 9:9859-67. [PMID: 26335372 PMCID: PMC5279887 DOI: 10.1021/acsnano.5b05138] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This paper describes how gold nanoparticle nanoconstructs can enhance anticancer effects of lysosomal targeting aptamers in breast cancer cells. Nanoconstructs consisting of anti-HER2 aptamer (human epidermal growth factor receptor 2, HApt) densely grafted on gold nanostars (AuNS) first targeted HER2 and then were internalized via HER2-mediated endocytosis. As incubation time increased, the nanoconstruct complexes were found in vesicular structures, starting from early endosomes to lysosomes as visualized by confocal fluorescence and differential interference contrast microscopy. Within the target organelle, lysosomes, HER2 was degraded by enzymes at low pH, which resulted in apoptosis. At specific time points related to the doubling time of the cancer cells, we found that accumulation of HER2-HApt-AuNS complexes in lysosomes, lysosomal activity, and lysosomal degradation of HER2 were positively correlated. Increased HER2 degradation by HApt-AuNS triggered cell death and cell cycle arrest in the G0/G1 phase inhibition of cell proliferation. This work shows how a perceived disadvantage of nanoparticle-based therapeutics-the inability of nanoconstructs to escape from vesicles and thus induce a biological response-can be overcome by both targeting lysosomes and exploiting lysosomal degradation of the biomarkers.
Collapse
Affiliation(s)
| | - Duncan Hieu M Dam
- Department of Dermatology, Northwestern University , 676 N. St. Clair Street, Chicago, Illinois 60611, United States
| | | | | | | |
Collapse
|
20
|
Goto M, Wakagi M, Shoji T, Takano-Ishikawa Y. Oligomeric Procyanidins Interfere with Glycolysis of Activated T Cells. A Novel Mechanism for Inhibition of T Cell Function. Molecules 2015; 20:19014-26. [PMID: 26492229 PMCID: PMC6332502 DOI: 10.3390/molecules201019014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/03/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022] Open
Abstract
Procyanidins, which are flavonoids that are found in a variety of plant species, reduce or prevent immune disorders, such as allergy and autoimmune diseases, through an unknown mechanism. In the present study, we investigated the effects of procyanidins on the T cell receptor (TCR)-mediated responses of CD4+ T cells in vitro. Apple procyanidins strongly suppressed the proliferation of splenic CD4+ T cells that were stimulated by an anti-CD3ε antibody, as well as splenocytes stimulated by antigen, but did not alter interleukin (IL)-2 secretion from these cells. Furthermore, we found that oligomeric procyanidins strongly suppressed, in a degree of polymerization dependent manner, the proliferation of activated CD4+ T cells, as well as their production of effector cytokines, including glycolysis associated-cytokines, without affecting IL-2 secretion. Additionally, we investigated the inhibitory effects of oligomeric procyanidins on the glycolytic activity of activated CD4+ T cells. We show that pentameric procyanidin suppressed L-lactate production and glucose uptake in activated CD4+ T cells. These results suggest that oligomeric procyanidins suppress the functions of activated CD4+ T cells by interfering with glycolysis.
Collapse
Affiliation(s)
- Masao Goto
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Manabu Wakagi
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | - Toshihiko Shoji
- Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan.
| | - Yuko Takano-Ishikawa
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
21
|
Mirzayans R, Andrais B, Scott A, Wang YW, Weiss RH, Murray D. Spontaneous γH2AX Foci in Human Solid Tumor-Derived Cell Lines in Relation to p21WAF1 and WIP1 Expression. Int J Mol Sci 2015; 16:11609-28. [PMID: 26006237 PMCID: PMC4463719 DOI: 10.3390/ijms160511609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/26/2022] Open
Abstract
Phosphorylation of H2AX on Ser139 (γH2AX) after exposure to ionizing radiation produces nuclear foci that are detectable by immunofluorescence microscopy. These so-called γH2AX foci have been adopted as quantitative markers for DNA double-strand breaks. High numbers of spontaneous γH2AX foci have also been reported for some human solid tumor-derived cell lines, but the molecular mechanism(s) for this response remains elusive. Here we show that cancer cells (e.g., HCT116; MCF7) that constitutively express detectable levels of p21WAF1 (p21) exhibit low numbers of γH2AX foci (<3/nucleus), whereas p21 knockout cells (HCT116p21−/−) and constitutively low p21-expressing cells (e.g., MDA-MB-231) exhibit high numbers of foci (e.g., >50/nucleus), and that these foci are not associated with apoptosis. The majority (>95%) of cells within HCT116p21−/− and MDA-MB-231 cultures contain high levels of phosphorylated p53, which is localized in the nucleus. We further show an inverse relationship between γH2AX foci and nuclear accumulation of WIP1, an oncogenic phosphatase. Our studies suggest that: (i) p21 deficiency might provide a selective pressure for the emergence of apoptosis-resistant progeny exhibiting genomic instability, manifested as spontaneous γH2AX foci coupled with phosphorylation and nuclear accumulation of p53; and (ii) p21 might contribute to positive regulation of WIP1, resulting in dephosphorylation of γH2AX.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Bonnie Andrais
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - April Scott
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Ying W Wang
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Robert H Weiss
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA 95616, USA.
- Department of Medicine, Mather VA Medical Center, Sacramento, CA 95655, USA.
| | - David Murray
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
22
|
Duan Y, Ke J, Zhang H, He Y, Sun G, Sun X. Autophagic cell death of human hepatoma G2 cells mediated by procyanidins from Castanea mollissima Bl. Shell-induced reactive oxygen species generation. Chem Biol Interact 2014; 224:13-23. [DOI: 10.1016/j.cbi.2014.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/31/2014] [Accepted: 09/23/2014] [Indexed: 12/09/2022]
|
23
|
Baharum Z, Akim AM, Taufiq-Yap YH, Hamid RA, Kasran R. In vitro antioxidant and antiproliferative activities of methanolic plant part extracts of Theobroma cacao. Molecules 2014; 19:18317-31. [PMID: 25389662 PMCID: PMC6271502 DOI: 10.3390/molecules191118317] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 01/16/2023] Open
Abstract
The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH), thiobarbituric acid-reactive substances (TBARS), and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50) was 358.3±7.0 µg/mL and total phenolic content was 22.0±1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4%±1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50)=41.4±3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.
Collapse
Affiliation(s)
- Zainal Baharum
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Abdah Md Akim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Yun Hin Taufiq-Yap
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Roslida Abdul Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Rosmin Kasran
- Division of Biotechnology, Centre for Cocoa Biotechnology Research, Malaysian Cocoa Board, Commercial Zone 1, North KKIP, Norowot Road, 88460 Kota Kinabalu Industrial Park, Sabah, Malaysia.
| |
Collapse
|
24
|
In Vitro Studies on the Antioxidant Property and Inhibition of α-Amylase, α-Glucosidase, and Angiotensin I-Converting Enzyme by Polyphenol-Rich Extracts from Cocoa (Theobroma cacao) Bean. PATHOLOGY RESEARCH INTERNATIONAL 2014; 2014:549287. [PMID: 25295218 PMCID: PMC4175390 DOI: 10.1155/2014/549287] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/09/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension.
Collapse
|
25
|
Zhao T, He J, Wang X, Ma B, Wang X, Zhang L, Li P, Liu N, Lu J, Zhang X. Rapid detection and characterization of major phenolic compounds in Radix Actinidia chinensis Planch by ultra-performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2014; 98:311-20. [PMID: 24975212 DOI: 10.1016/j.jpba.2014.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 11/15/2022]
Abstract
Radix Actinidia chinensis Planch is a traditional Chinese herb, and its decotion had been widely used clinically to treat several types of cancer. In our study, the phenolic compounds constituting the major water soluble components of Radix A. chinensis were profiled and characterized by ultraperformance liquid chromatography electrospray ionization tandem mass spectrometry. A total of 50 compounds were identified or tentatively characterized, including caffeic acid, p-coumaric acid, 29 catechin derivatives, 12 quinic acid derivatives and 7 coumarin derivatives. Most of the identified compounds were firstly reported from A. chinensis. Among them, scopoletin, scoplin, isofraxoside and quinic acid derivatives have not ever been reported from genus Actinidia previously. These phenolic compounds might be responsible for the antitumor activity of the water extract of radix A. chinensis, and the established analytical method could be applied to further study of quality evaluation and active components of Radix A. chinensis.
Collapse
Affiliation(s)
- Tie Zhao
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, China
| | - Jun He
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxue Wang
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, China
| | - Bingzhi Ma
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxing Wang
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, China
| | - Lei Zhang
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ning Liu
- Institute Of Microbiology, Chinese Academy of Sciences, China
| | - Jin Lu
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, China
| | - Xianglin Zhang
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
26
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
27
|
|
28
|
Connor CA, Adriaens M, Pierini R, Johnson IT, Belshaw NJ. Procyanidin induces apoptosis of esophageal adenocarcinoma cells via JNK activation of c-Jun. Nutr Cancer 2014; 66:335-41. [PMID: 24471892 DOI: 10.1080/01635581.2014.868914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Procyanidins are polymeric flavanols found in fruits and vegetables and have shown anticarcinogenic/chemopreventive properties. We previously showed that oligomeric procyanidin extracted from apples induced cell cycle arrest and apoptosis in esophageal adenocarcinoma (OA) cells. To understand the mechanism of action, we determined transcriptomic changes induced by procyanidin in OA cells. Pathway analysis implicated mitogen-activated protein kinase signaling pathways in eliciting these responses. Procyanidin induced the activation of JNK and p38 and the phosphorylation and expression of c-Jun. Inhibition of JNK but not p38 kinase activity prevented the procyanidin-induced phosphorylation and expression of c-Jun. Knockdown of the expression of JNK1, JNK2, or JUN diminished procyanidin-induced effects on cell proliferation and apoptosis. c-Jun is a component of the transcription factor AP-1 and AP-1 binding sites are overrepresented in the promoters of procyanidin-induced genes. This indicates that JNK activation of c-Jun by procyanidin leads to the induction of apoptosis of OA cells and suggests a role for a c-Jun-mediated transcriptional program. These data provide a mechanistic understanding of how procyanidin specifically targets a distinct pathway involved in the induction of apoptosis in OA cells and will inform future studies investigating its use as a chemopreventive/therapeutic agent.
Collapse
|
29
|
Messaoudi M, Bisson JF, Nejdi A, Rozan P, Javelot H. Antidepressant-like effects of a cocoa polyphenolic extract in Wistar–Unilever rats. Nutr Neurosci 2013; 11:269-76. [DOI: 10.1179/147683008x344165] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Pucciarelli DL. Cocoa and heart health: a historical review of the science. Nutrients 2013; 5:3854-70. [PMID: 24077240 PMCID: PMC3820048 DOI: 10.3390/nu5103854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 11/16/2022] Open
Abstract
The medicinal use of cocoa has a long history dating back almost five hundred years when Hernán Cortés’s first experienced the drink in Mesoamerica. Doctors in Europe recommended the beverage to patients in the 1700s, and later American physicians followed suit and prescribed the drink in early America―ca. 1800s. This article delineates the historic trajectory of cocoa consumption, the linkage between cocoa’s bioactive-mechanistic properties, paying special attention to nitric oxides role in vasodilation of the arteries, to the current indicators purporting the benefits of cocoa and cardiovascular health.
Collapse
Affiliation(s)
- Deanna L Pucciarelli
- Department of Family and Consumer Sciences, Ball State University, Muncie, IN 47304, USA.
| |
Collapse
|
31
|
Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem Toxicol 2013; 56:336-51. [DOI: 10.1016/j.fct.2013.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/20/2022]
|
32
|
Kalili KM, de Villiers A. Systematic optimisation and evaluation of on-line, off-line and stop-flow comprehensive hydrophilic interaction chromatography×reversed phase liquid chromatographic analysis of procyanidins. Part II: Application to cocoa procyanidins. J Chromatogr A 2013; 1289:69-79. [DOI: 10.1016/j.chroma.2013.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/13/2013] [Accepted: 03/08/2013] [Indexed: 12/13/2022]
|
33
|
Smrke S, Vovk I. Comprehensive thin-layer chromatography mass spectrometry of flavanols from Juniperus communis L. and Punica granatum L. J Chromatogr A 2013; 1289:119-26. [DOI: 10.1016/j.chroma.2013.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/25/2013] [Accepted: 03/10/2013] [Indexed: 11/30/2022]
|
34
|
Avelar MM, Gouvêa CMCP. Procyanidin b2 cytotoxicity to mcf-7 human breast adenocarcinoma cells. Indian J Pharm Sci 2013; 74:351-5. [PMID: 23626391 PMCID: PMC3630731 DOI: 10.4103/0250-474x.107070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 07/31/2012] [Accepted: 08/04/2012] [Indexed: 01/26/2023] Open
Abstract
Procyanidins have attracted some attention due to their demonstrated chemopreventive action, a relatively new and promising strategy to prevent cancer. Breast cancer is one of the leading causes of death in women worldwide and its treatment needs improvements. The aim of this work was to verify the procyanidin dimmer B2 cytotoxic effect to MCF-7 human breast cancer cells. MCF-7 cells were cultured in RPMI medium, containing 20% fetal bovine serum and antibiotics in a CO2 chamber. The cells were treated with different concentrations of B2 and its cytotoxic potential was assessed by the sulforhodamine B assay, morphologically through haematoxylin-eosin staining and by DNA fragmentation analysis. The significance of differences between experimental conditions was determined using the ANOVA test, followed by the Tukey test when P<0.05. Cell proliferation decreased in a concentration and time-dependent manner upon procyanidin dimmer B2 treatment, being 19.20 μM the IC50. Procyanidin dimmer B2 treatment displayed concentration and time-dependent decline in MCF-7 cells compared to control and also induced morphological alterations compatible with cell-death induction. Cell condensation and cell diameter decreased (3.5 folds compared to control cells), after 48 h cell-exposure to 50 μM procyanidin dimmer B2, but the DNA ladder formation was not observed. In conclusion, our results demonstrated that procyanidin dimmer B2 exhibits cytotoxic activity to MCF-7 cells and it could be a potential antineoplastic agent. Further studies are necessary to clarify the procyanidin dimmer B2 mechanism of action. The evaluation of biological efficacy of individual components is an important step towards drug discovery and development.
Collapse
Affiliation(s)
- Monalisa M Avelar
- Laboratório de Cultura de Células, Instituto de Ciências da Natureza, Unifal-MG, Alfenas, Minas Gerais 37130-000, Brazil
| | | |
Collapse
|
35
|
Romagnolo DF, Milner JA. Opportunities and challenges for nutritional proteomics in cancer prevention. J Nutr 2012; 142:1360S-9S. [PMID: 22649262 DOI: 10.3945/jn.111.151803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Knowledge gaps persist about the efficacy of cancer prevention strategies based on dietary food components. Adaptations to nutrient supply are executed through tuning of multiple protein networks that include transcription factors, histones, modifying enzymes, translation factors, membrane and nuclear receptors, and secreted proteins. However, the simultaneous quantitative and qualitative measurement of all proteins that regulate cancer processes is not practical using traditional protein methodologies. Proteomics offers an attractive opportunity to fill this knowledge gap and unravel the effects of dietary components on protein networks that impinge on cancer. The articles presented in this supplement are from talks proffered in the "Nutrition Proteomics and Cancer Prevention" session at the American Institute for Cancer Research Annual Research Conference on Food, Nutrition, Physical Activity and Cancer held in Washington, DC on October 21 and 22, 2010. Recent advances in MS technologies suggest that studies in nutrition and cancer prevention may benefit from the adoption of proteomic tools to elucidate the impact on biological processes that govern the transition from normal to malignant phenotype; to identify protein changes that determine both positive and negative responses to food components; to assess how protein networks mediate dose-, time-, and tissue-dependent responses to food components; and, finally, for predicting responders and nonresponders. However, both the limited accessibility to proteomic technologies and research funding appear to be hampering the routine adoption of proteomic tools in nutrition and cancer prevention research.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences and The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA.
| | | |
Collapse
|
36
|
Nakajima N, Horikawa K, Takekawa N, Hamada M, Kishimoto T. Condensation of Catechin and Epicatechin Incorporating a TBS-Protecting Group. HETEROCYCLES 2012. [DOI: 10.3987/com-11-s(p)58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Glavnik V, Simonovska B, Vovk I, Pavlović D, Ašperger D, Babić S. Quantification of (−)-epicatechin and procyanidin B2 in chocolates. JPC-J PLANAR CHROMAT 2011. [DOI: 10.1556/jpc.24.2011.6.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Komes D, Belščak-Cvitanović A, Horžić D, Drmić H, Škrabal S, Miličević B. Bioactive and Sensory Properties of Herbal Spirit Enriched with Cocoa (Theobroma cacao L.) Polyphenolics. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0630-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Soares R, Meireles M, Rocha A, Pirraco A, Obiol D, Alonso E, Joos G, Balogh G. Maitake (D Fraction) Mushroom Extract Induces Apoptosis in Breast Cancer Cells by BAK-1 Gene Activation. J Med Food 2011; 14:563-72. [DOI: 10.1089/jmf.2010.0095] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Manuela Meireles
- Department of Biochemistry, Faculty of Medicine, University of Porto Foundation, Porto, Portugal
| | - Ana Rocha
- Department of Biochemistry, Faculty of Medicine, University of Porto Foundation, Porto, Portugal
| | - Ana Pirraco
- Department of Biochemistry, Faculty of Medicine, University of Porto Foundation, Porto, Portugal
| | - Diego Obiol
- Center for Scientific and Technical Investigation, Cerzos-Conicet, Bahía Blanca, Argentina
| | - Eliana Alonso
- Center for Scientific and Technical Investigation, Cerzos-Conicet, Bahía Blanca, Argentina
| | - Gisela Joos
- Center for Scientific and Technical Investigation, Cerzos-Conicet, Bahía Blanca, Argentina
| | - Gabriela Balogh
- Center for Scientific and Technical Investigation, Cerzos-Conicet, Bahía Blanca, Argentina
| |
Collapse
|
40
|
Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, Xu A. Differential genome-wide profiling of tandem 3' UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 2011; 21:741-747. [PMID: 21474764 PMCID: PMC3083091 DOI: 10.1101/gr.115295.110] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/04/2011] [Indexed: 11/25/2022]
Abstract
Tandem 3' UTRs produced by alternative polyadenylation (APA) play an important role in gene expression by impacting mRNA stability, translation, and translocation in cells. Several studies have investigated APA site switching in various physiological states; nevertheless, they only focused on either the genes with two known APA sites or several candidate genes. Here, we developed a strategy to study APA sites in a genome-wide fashion with second-generation sequencing technology which could not only identify new polyadenylation sites but also analyze the APA site switching of all genes, especially those with more than two APA sites. We used this strategy to explore the profiling of APA sites in two human breast cancer cell lines, MCF7 and MB231, and one cultured mammary epithelial cell line, MCF10A. More than half of the identified polyadenylation sites are not included in human poly(A) databases. While MCF7 showed shortening 3' UTRs, more genes in MB231 switched to distal poly(A) sites. Several gene ontology (GO) terms and pathways were enriched in the list of genes with switched APA sites, including cell cycle, apoptosis, and metabolism. These results suggest a more complex regulation of APA sites in cancer cells than previously thought. In short, our novel unbiased method can be a powerful approach to cost-effectively investigate the complex mechanism of 3' UTR switching in a genome-wide fashion among various physiological processes and diseases.
Collapse
Affiliation(s)
- Yonggui Fu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Yu Sun
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Yuxin Li
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Jie Li
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Xingqiang Rao
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Chong Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| | - Anlong Xu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
| |
Collapse
|
41
|
Kalili KM, de Villiers A. Recent developments in the HPLC separation of phenolic compounds. J Sep Sci 2011; 34:854-76. [PMID: 21328694 DOI: 10.1002/jssc.201000811] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 11/17/2010] [Accepted: 12/29/2010] [Indexed: 01/27/2023]
Abstract
Phenolic compounds represent a class of highly complex naturally occurring molecules that possess a range of beneficial health properties. As a result, considerable attention has been devoted to the analysis of phenolics in a variety of samples. HPLC is the workhorse method for phenolic separation. However, conventional HPLC methods provide insufficient resolving power when faced with the complexity of real-world phenolic fractions. This limitation has been traditionally circumvented by extensive sample fractionation, multiple analysis methods and/or selective detection strategies. On the other hand, there is an increasing demand for improved throughput and resolving power from the chromatographic methods used for phenolic analyses. Fortunately, during the last decade, a number of important technological advances in LC have demonstrated significant gains in terms of both speed and resolution. These include ultra high-pressure liquid chromatography (UHPLC), high-temperature liquid chromatography (HTLC), multi-dimensional separations as well as various new stationary phase chemistries and morphologies. In recent years, these technologies have also found increasing application for phenolic analysis. This review seeks to provide an updated overview of the application of recent advances in HPLC to phenolic separation, with the emphasis on how these methodologies can contribute to improve performance in HPLC analysis of phenolics.
Collapse
Affiliation(s)
- Kathithileni M Kalili
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa
| | | |
Collapse
|
42
|
Sharma PK, He M, Romanczyk LJ, Schroeter H. Synthesis of [2-13C, 4-13C]-(2R,3S)-catechin and [2-13C, 4-13C]-(2R,3R)-epicatechin. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.1791] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
|
44
|
Quantification of theobromine and caffeine in saliva, plasma and urine via liquid chromatography–tandem mass spectrometry: A single analytical protocol applicable to cocoa intervention studies. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:409-16. [DOI: 10.1016/j.jchromb.2009.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/06/2009] [Accepted: 12/09/2009] [Indexed: 11/19/2022]
|
45
|
Maskarinec G. Cancer protective properties of cocoa: a review of the epidemiologic evidence. Nutr Cancer 2010; 61:573-9. [PMID: 19838930 DOI: 10.1080/01635580902825662] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Due to their high concentration of catechins and procyanidins, bioactive compounds with distinct properties, cocoa and chocolate products may have beneficial health effects against oxidative stress and chronic inflammation, risk factors for cancer and other chronic diseases. This review focuses on the epidemiologic evidence for protective effects against cancer and overall mortality. The very small number of observational epidemiologic studies offers weak support for a reduction in mortality and little data related to cancer, whereas several intervention studies, despite their short duration, have reported some favorable changes in biomarkers assessing antioxidant status but very few findings related to inflammatory markers. In moderation, cocoa products may offer strong antioxidant effects in combination with a pleasurable eating experience. The benign profile of its fatty acids in combination with the low content of sugar of dark chocolate should lessen concerns about the adverse effects of cocoa products. Future nutritional trials need to assess a larger number of biomarkers that may be relevant for cancer risk, whereas epidemiologic studies require valid dietary assessment methods to examine the association of cocoa products with cancer risk in larger populations and to distinguish possible cancer protective effects of cocoa products from those due to other polyphenolic compounds.
Collapse
|
46
|
Wang CC, Huang PL, Liu TY, Jan TR. Highly oligomeric procyanidins from areca nut induce lymphocyte apoptosis via the depletion of intracellular thiols. Toxicol In Vitro 2009; 23:1234-41. [DOI: 10.1016/j.tiv.2009.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/30/2009] [Accepted: 07/30/2009] [Indexed: 11/25/2022]
|
47
|
Ma Y, Bai RK, Trieu R, Wong LJC. Mitochondrial dysfunction in human breast cancer cells and their transmitochondrial cybrids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:29-37. [PMID: 19647716 DOI: 10.1016/j.bbabio.2009.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/23/2009] [Accepted: 07/23/2009] [Indexed: 12/17/2022]
Abstract
Somatic mitochondrial DNA alterations have been found in all types of cancer. To better understand the role of mitochondria and their involvement in the pathogenic mechanisms of cancer development, the effects of cancer mitochondria were investigated in a defined nuclear background using a transmitochondrial cybrid system. Our results demonstrated that cancer mitochondria confer a significant reduction in cell growth when cells are metabolically stressed in a galactose medium. Activities of the respiratory chain complexes, cellular oxygen consumption, and ATP synthesis rates were found to be much lower in breast cancer cells, than those in normal breast epithelial cells of MCF-10A (10A). These results suggest that there is reduced mitochondrial function in the studied breast cancer cell lines. Similarly reduced mitochondrial function was observed in cybrids containing cancer mitochondria. Novel tRNA mutations were also identified in two breast cancer cell lines, possibly responsible for the observed mitochondrial dysfunction. We conclude that altered mitochondria in cancer cells may play a crucial role in tumor development.
Collapse
Affiliation(s)
- Yewei Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB2015, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
48
|
Belščak A, Komes D, Horžić D, Ganić KK, Karlović D. Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Res Int 2009. [DOI: 10.1016/j.foodres.2009.02.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Jenny M, Santer E, Klein A, Ledochowski M, Schennach H, Ueberall F, Fuchs D. Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:261-267. [PMID: 19330924 DOI: 10.1016/j.jep.2009.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Theobroma cacao L. (Sterculiaceae) have been used as food and a remedy for more than 4000 years. Today, about 100 therapeutic applications of cacao are described involving the gastrointestinal, nervous, cardiovascular and immune systems. Pro-inflammatory cytokine interferon-gamma and related biochemical pathways like tryptophan degradation by indoleamine 2,3-dioxygenase and neopterin formation are closely associated with the pathogenesis of such disorders. AIM OF THE STUDY To determine the anti-inflammatory effect of cacao extracts on interferon-gamma and biochemical consequences in immunocompetent cells. MATERIALS AND METHODS Effects of aqueous or ethanolic extracts of cacao were examined on mitogen-induced human peripheral blood mononuclear cells (PBMC) of healthy donors and on lipopolysaccharide-stimulated myelomonocytic THP-1 cells. Antioxidant activity of extracts was determined by oxygen radical absorption capacity (ORAC) assay. RESULTS In mitogen-stimulated PBMC, enhanced degradation of tryptophan, formation of neopterin and interferon-gamma were almost completely suppressed by the cacao extracts at doses of > or = 5 microg/mL. Cacao extracts had no effect on tryptophan degradation in lipopolysaccharide-stimulated THP-1 cells. CONCLUSIONS There is a significant suppressive effect of cacao extracts on pro-inflammatory pathways in activated T-cells. Particularly the influence on indoleamine 2,3-dioxygenase could relate to some of the beneficial health effects ascribed to cacao.
Collapse
Affiliation(s)
- M Jenny
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Str. 3, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
50
|
Pierini R, Kroon PA, Guyot S, Ivory K, Johnson IT, Belshaw NJ. Procyanidin effects on oesophageal adenocarcinoma cells strongly depend on flavan-3-ol degree of polymerization. Mol Nutr Food Res 2009; 52:1399-407. [PMID: 18683822 DOI: 10.1002/mnfr.200700513] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidemiological studies have shown that the risk of developing oesophageal adenocarcinoma (OA) is inversely correlated to consumption of fruits and vegetables. Flavan-3-ols are the most abundant subclass of flavonoids in these types of foods. Three apple-derived procyanidin fractions with different average degrees of polymerization (aDP) were characterized and the effects of these fractions and of pure flavan-3-ol monomers ((-)-epicatechin and (+)-catechin) and dimers (B1, B2) on two OA cell lines were investigated. Flavan-3-ol monomers and dimers had no effect on the two cell lines, while apple-derived flavan-3-ol oligomers and polymers induced a time-dependent reduction of cell viability. The reduction in the cell viability was due to the induction of caspase-mediated apoptosis and an arrest of the cell cycle in G0/G1. The magnitude of the reduction in cell viability and induction of apoptosis after exposure to flavan-3-ol oligomeric/polymeric fractions positively correlated with their aDP. These results indicate that only flavan-3-ol oligomers and polymers, but not monomers and dimers, have an effect on the proliferation of OA cells in vitro. As tested flavan-3-ol concentrations are achievable through diet, this study suggests that apple-derived PA may possess chemotherapeutic effects against OA.
Collapse
Affiliation(s)
- Roberto Pierini
- Institute of Food Research, Norwich Research Park, Colney, Norwich, UK
| | | | | | | | | | | |
Collapse
|