1
|
Abohassan M, Al Shahrani MM, AlOuda SK, Rajagopalan P. Dual targeting of CXC chemokine receptor 4 and multidrug resistance protein 1 by ZIN056 effectively combat daunorubicin resistance in acute myeloid leukemia cells. Med Oncol 2025; 42:106. [PMID: 40080290 DOI: 10.1007/s12032-025-02656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Drug resistance, associated with the overexpression of CXC chemokine receptor CXCR4 and multidrug resistance protein 1 (MDR1) remains a significant barrier to effective therapy in Acute Myeloid Leukemia (AML). Targeting both CXCR4 and MDR1 could potentially enhance treatment efficacy in resistance. In silico computational screening of the Zinc natural product library using Discovery Studio Visualizer, Protein-Ligand Interaction Profiler, GROMACS, and GMX_MMPBSA techniques were used. THP-1, and SKM-1 cells were used for in vitro analysis. Flow cytometry was employed for target analysis and apoptosis enumerations. The virtual screening identified ZIN056 with favorable binding affinities of - 10.6 kcal/mol and - 9.1 kcal/mol for CXCR4 and MDR1, respectively. MD simulations demonstrated stable binding interactions, with Root Mean Square Deviation values around 0.2 nm for both proteins. The ΔG binding calculations further confirmed values of - 30.09 kcal/mol for CXCR4 and - 34.47 kcal/mol for MDR1, indicating energetically favorable binding. The compound inhibited the THP-1 and SKM-1 cell proliferation with GI50 values of 250.6 nM, and 346.7 nM, respectively. ZIN056 decreased CXCR-4 expression and MDR1-induced positive population (MDR1+) in THP-1 and SKM-1 cells. ZIN056 inhibited the proliferation of the regular and MDR1+ AML cells, while Daunorubicin exhibited a tenfold resistance in controlling MDR1+ AML cell proliferation. ZIN056-induced apoptosis in MDR1 + AML cells, whereas Daunorubicin failed to promote apoptosis in these cells. The findings suggest that dual targeting of CXCR4 and MDR1 using ZIN056 may offer a promising strategy to overcome drug resistance in AML and provide a foundation for further development of dual inhibitors for AML patients.
Collapse
MESH Headings
- Humans
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Drug Resistance, Neoplasm/drug effects
- Daunorubicin/pharmacology
- Apoptosis/drug effects
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- Cell Line, Tumor
- Molecular Docking Simulation
- Antibiotics, Antineoplastic/pharmacology
- Molecular Dynamics Simulation
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Health and Medical Research Centre, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mesfer Mohammad Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sarah Khaled AlOuda
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
2
|
Easwaran VB, Pai KMS, Pai KSR. Mesenchymal Stem Cell-Derived Exosomes in Cancer Resistance Against Therapeutics. Cancers (Basel) 2025; 17:831. [PMID: 40075675 PMCID: PMC11898417 DOI: 10.3390/cancers17050831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are specialized cells that can differentiate into various types of cells. MSCs can be utilized to treat cancer. However, a MSC is considered a double-edged sword, because it can promote tumor progression and support cancer cell growth. Likewise, MSC-derived exosomes (MSC-Exos) carry various intracellular materials and transfer them to other cells. MSC-Exos could also cause tumor progression, including brain cancer, breast cancer, hepatic cancer, lung cancer, and colorectal cancer, and develop resistance against therapies, mainly chemotherapy, radiotherapy, and immunotherapy. An MSC-Exo promotes tumor development and causes drug resistance in various cancer types. The mechanisms involved in cancer drug resistance vary depending on the cancer cell heterogeneity and complexity. In this article, we have explained the various biomarkers and mechanisms involved in the tumor and resistance development through MSC-Exos in different cancer types.
Collapse
Affiliation(s)
- Vignesh Balaji Easwaran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - K Maya S Pai
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - K. Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|
3
|
Rivera-Lazarín AL, Calvillo-Rodríguez KM, Izaguirre-Rodríguez M, Vázquez-Guillén JM, Martínez-Torres AC, Rodríguez-Padilla C. Synergistic Enhancement of Chemotherapy-Induced Cell Death and Antitumor Efficacy against Tumoral T-Cell Lymphoblasts by IMMUNEPOTENT CRP. Int J Mol Sci 2024; 25:7938. [PMID: 39063180 PMCID: PMC11276711 DOI: 10.3390/ijms25147938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
T-cell malignancies, including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL), present significant challenges to treatment due to their aggressive nature and chemoresistance. Chemotherapies remain a mainstay for their management, but the aggressiveness of these cancers and their associated toxicities pose limitations. Immunepotent CRP (ICRP), a bovine dialyzable leukocyte extract, has shown promise in inducing cytotoxicity against various cancer types, including hematological cancers. In this study, we investigated the combined effect of ICRP with a panel of chemotherapies on cell line models of T-ALL and T-LBL (CEM and L5178Y-R cells, respectively) and its impact on immune system cells (peripheral blood mononuclear cells, splenic and bone marrow cells). Our findings demonstrate that combining ICRP with chemotherapies enhances cytotoxicity against tumoral T-cell lymphoblasts. ICRP + Cyclophosphamide (CTX) cytotoxicity is induced through a caspase-, reactive oxygen species (ROS)-, and calcium-dependent mechanism involving the loss of mitochondrial membrane potential, an increase in ROS production, and caspase activation. Low doses of ICRP in combination with CTX spare non-tumoral immune cells, overcome the bone marrow-induced resistance to CTX cell death, and improves the CTX antitumor effect in vivo in syngeneic Balb/c mice challenged with L5178Y-R. This led to a reduction in tumor volume and a decrease in Ki-67 proliferation marker expression and the granulocyte/lymphocyte ratio. These results set the basis for further research into the clinical application of ICRP in combination with chemotherapeutic regimens for improving outcomes in T-cell malignancies.
Collapse
Affiliation(s)
- Ana Luisa Rivera-Lazarín
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Mizael Izaguirre-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - José Manuel Vázquez-Guillén
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
- LONGEVEDEN S.A. De C.V., Guadalupe 67199, Mexico
| |
Collapse
|
4
|
Miller AB, Rodriguez FH, Langenbucher A, Lin L, Bray C, Duquette S, Zhang Y, Goulet D, Lane AA, Weinstock DM, Hemann MT, Manalis SR. Leukemia circulation kinetics revealed through blood exchange method. Commun Biol 2024; 7:483. [PMID: 38643279 PMCID: PMC11032325 DOI: 10.1038/s42003-024-06181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Leukemias and their bone marrow microenvironments undergo dynamic changes over the course of disease. However, little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of CLC dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: (i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and (ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.
Collapse
Affiliation(s)
- Alex B Miller
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia H Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Langenbucher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Duquette
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ye Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Goulet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Merck and Co., Rahway, NJ, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Miller AB, Langenbucher A, Rodriguez FH, Lin L, Bray C, Duquette S, Zhang Y, Goulet D, Lane AA, Weinstock DM, Hemann MT, Manalis SR. Leukemia circulation kinetics revealed through blood exchange method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556043. [PMID: 37732189 PMCID: PMC10508764 DOI: 10.1101/2023.09.03.556043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Leukemias and their bone marrow microenvironment are known to undergo dynamic changes over the course of disease. However, relatively little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of leukemia cell dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.
Collapse
Affiliation(s)
- Alex B Miller
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Langenbucher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia H Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Duquette
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ye Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Goulet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Zhao Y, Guo R, Cao X, Zhang Y, Sun R, Lu W, Zhao M. Role of chemokines in T-cell acute lymphoblastic Leukemia: From pathogenesis to therapeutic options. Int Immunopharmacol 2023; 121:110396. [PMID: 37295031 DOI: 10.1016/j.intimp.2023.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous and aggressive subtype of hematologic malignancy, with limited therapeutic options due to the complexity of its pathogenesis. Although high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation have improved outcomes for T-ALL patients, there remains an urgent need for novel treatments in cases of refractory or relapsed disease. Recent research has demonstrated the potential of targeted therapies aimed at specific molecular pathways to improve patient outcomes. Chemokine-related signals, both upstream and downstream, modulate the composition of distinct tumor microenvironments, thereby regulating a multitude of intricate cellular processes such as proliferation, migration, invasion and homing. Furthermore, the progress in research has made significant contributions to precision medicine by targeting chemokine-related pathways. This review article summarizes the crucial roles of chemokines and their receptors in T-ALL pathogenesis. Moreover, it explores the advantages and disadvantages of current and potential therapeutic options that target chemokine axes, including small molecule antagonists, monoclonal antibodies, and chimeric antigen receptor T-cells.
Collapse
Affiliation(s)
- YiFan Zhao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - RuiTing Guo
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - XinPing Cao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin 300192, China
| | - WenYi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - MingFeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
7
|
Bao S, Darvishi M, H Amin A, Al-Haideri MT, Patra I, Kashikova K, Ahmad I, Alsaikhan F, Al-Qaim ZH, Al-Gazally ME, Kiasari BA, Tavakoli-Far B, Sidikov AA, Mustafa YF, Akhavan-Sigari R. CXC chemokine receptor 4 (CXCR4) blockade in cancer treatment. J Cancer Res Clin Oncol 2023; 149:7945-7968. [PMID: 36905421 DOI: 10.1007/s00432-022-04444-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 03/12/2023]
Abstract
CXC chemokine receptor type 4 (CXCR4) is a member of the G protein-coupled receptors (GPCRs) superfamily and is specific for CXC chemokine ligand 12 (CXCL12, also known as SDF-1), which makes CXCL12/CXCR4 axis. CXCR4 interacts with its ligand, triggering downstream signaling pathways that influence cell proliferation chemotaxis, migration, and gene expression. The interaction also regulates physiological processes, including hematopoiesis, organogenesis, and tissue repair. Multiple evidence revealed that CXCL12/CXCR4 axis is implicated in several pathways involved in carcinogenesis and plays a key role in tumor growth, survival, angiogenesis, metastasis, and therapeutic resistance. Several CXCR4-targeting compounds have been discovered and used for preclinical and clinical cancer therapy, most of which have shown promising anti-tumor activity. In this review, we summarized the physiological signaling of the CXCL12/CXCR4 axis and described the role of this axis in tumor progression, and focused on the potential therapeutic options and strategies to block CXCR4.
Collapse
Affiliation(s)
- Shunshun Bao
- The First Clinical Medical College, Xuzhou Medical University, 221000, Xuzhou, China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Maysoon T Al-Haideri
- Department of Physiotherapy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Indrajit Patra
- An Independent Researcher, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Akmal A Sidikov
- Rector, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
8
|
Nevárez-Ramírez AJ, Guzmán-Ortiz AL, Cortes-Reynosa P, Perez-Salazar E, Jaimes-Ortega GA, Valle-Rios R, Marín-Hernández Á, Rodríguez-Zavala JS, Ruiz-May E, Castrejón-Flores JL, Quezada H. Shotgun Proteomics of Co-Cultured Leukemic and Bone Marrow Stromal Cells from Different Species as a Preliminary Approach to Detect Intercellular Protein Transfer. Proteomes 2023; 11:proteomes11020015. [PMID: 37092456 PMCID: PMC10123657 DOI: 10.3390/proteomes11020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Cellular interactions within the bone marrow microenvironment modulate the properties of subsets of leukemic cells leading to the development of drug-resistant phenotypes. The intercellular transfer of proteins and organelles contributes to this process but the set of transferred proteins and their effects in the receiving cells remain unclear. This study aimed to detect the intercellular protein transfer from mouse bone marrow stromal cells (OP9 cell line) to human T-lymphoblasts (CCRF-CEM cell line) using nanoLC-MS/MS-based shotgun proteomics in a 3D co-culture system. After 24 h of co-culture, 1513 and 67 proteins from human and mouse origin, respectively, were identified in CCRF-CEM cells. The presence of mouse proteins in the human cell line, detected by analyzing the differences in amino acid sequences of orthologous peptides, was interpreted as the result of intercellular transfer. The transferred proteins might have contributed to the observed resistance to vincristine, methotrexate, and hydrogen peroxide in the co-cultured leukemic cells. Our results suggest that shotgun proteomic analyses of co-cultured cells from different species could be a simple option to get a preliminary survey of the proteins exchanged among interacting cells.
Collapse
Affiliation(s)
- Abraham Josué Nevárez-Ramírez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Doctores, Mexico City 06720, Mexico
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna, Mexico City 07340, Mexico
| | - Ana Laura Guzmán-Ortiz
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Doctores, Mexico City 06720, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biología Celular, CINVESTAV-IPN, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Eduardo Perez-Salazar
- Departamento de Biología Celular, CINVESTAV-IPN, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Gustavo Alberto Jaimes-Ortega
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Doctores, Mexico City 06720, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Circuito interior, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Ricardo Valle-Rios
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Doctores, Mexico City 06720, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Circuito interior, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Belisario Domínguez—Sección XVI, Mexico City 14080, Mexico
| | - José S. Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Belisario Domínguez—Sección XVI, Mexico City 14080, Mexico
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Mexico
| | - José Luis Castrejón-Flores
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna, Mexico City 07340, Mexico
| | - Héctor Quezada
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Doctores, Mexico City 06720, Mexico
| |
Collapse
|
9
|
The magnitude of CXCR4 signaling regulates resistance to quizartinib in FLT3/ITD + cells via RUNX1. Leuk Res 2023; 124:106983. [PMID: 36473282 DOI: 10.1016/j.leukres.2022.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022]
Abstract
CXCR4 antagonists sensitize FLT3/ITD+ AML cells to FLT3 inhibitors; however, CXCR4 signaling can induce apoptosis in AML cells, raising the question of whether CXCR4 signaling exerts divergent effects on FLT3/ITD+ cells. The present study investigated the paradoxical function of CXCR4 in resistance to FLT3 inhibitors. The FLT3 inhibitor quizartinib significantly decreased the number of FLT3/ITD+ Ba/F3 cells, whereas 1 ng/ml CXCL12 showed a significant protective effect against quizartinib. In contrast, CXCL12 over 100 ng/ml significantly decreased FLT3/ITD+ cell viability with concomitant downregulation of Runx1. Moreover, the survival of FLT3/ITD+ Ba/F3 or MOLM13 cells with low surface CXCR4 expression incubated with quizartinib was significantly enhanced by 100 ng/ml CXCL12; however, this protective effect of CXCL12 against quizartinib was barely detected in cells with high surface CXCR4 expression. Although silencing Runx1 downregulated CXCR4 expression, RUNX1 expression levels were significantly higher in CXCR4LOW FLT3/ITD+ Ba/F3 cells incubated with 100 ng/ml CXCL12 than in CXCR4HIGH cells, coincident with an increase in FLT3 phosphorylation. Silencing RUNX1 partially abrogated resistance to quizartinib in CXCR4LOW cells incubated with CXCL12, whereas ectopic RUNX1 significantly restored resistance in CXCR4HIGH cells. These results indicate that CXCR4 signaling of different magnitudes paradoxically regulates resistance to quizartinib in FLT3/ITD+ cells via RUNX1.
Collapse
|
10
|
Mun SJ, Cho E, Kim JS, Yang CS. Pathogen-derived peptides in drug targeting and its therapeutic approach. J Control Release 2022; 350:716-733. [PMID: 36030988 DOI: 10.1016/j.jconrel.2022.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 02/06/2023]
Abstract
Peptides, short stretches of amino acids or small proteins that occupy a strategic position between proteins and amino acids, are readily accessible by chemical and biological methods. With ideal properties for forming high-affinity and specific interactions with host target proteins, they have established an important niche in the drug development spectrum complementing small molecule and biological therapeutics. Among the most successful biomedicines in use today, peptide-based drugs show great promise. This, coupled with recent advances in synthetic and nanochemical biology, has led to the creation of tailor-made peptide therapeutics for improved biocompatibility. This review presents an overview of the latest research on pathogen-derived, host-cell-interacting peptides. It also highlights strategies for using peptide-based therapeutics that address cellular transport challenges through the introduction of nanoparticles that serve as platforms to facilitate the delivery of peptide biologics and therapeutics for treating various inflammatory diseases. Finally, this paper describes future perspectives, specific pathogen-based peptides that can enhance specificity, efficiency, and capacity in functional peptide-based therapeutics, which are in the spotlight as new treatment alternatives for various diseases, and also presents verified sequences and targets that can increase chemical and pharmacological value.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Institute of Natural Science & Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea; Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
11
|
Vilaplana-Lopera N, Cuminetti V, Almaghrabi R, Papatzikas G, Rout AK, Jeeves M, González E, Alyahyawi Y, Cunningham A, Erdem A, Schnütgen F, Raghavan M, Potluri S, Cazier JB, Schuringa JJ, Reed MAC, Arranz L, Günther UL, Garcia P. Crosstalk between AML and stromal cells triggers acetate secretion through the metabolic rewiring of stromal cells. eLife 2022; 11:e75908. [PMID: 36052997 PMCID: PMC9477493 DOI: 10.7554/elife.75908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukaemia (AML) cells interact and modulate components of their surrounding microenvironment into their own benefit. Stromal cells have been shown to support AML survival and progression through various mechanisms. Nonetheless, whether AML cells could establish beneficial metabolic interactions with stromal cells is underexplored. By using a combination of human AML cell lines and AML patient samples together with mouse stromal cells and a MLL-AF9 mouse model, here we identify a novel metabolic crosstalk between AML and stromal cells where AML cells prompt stromal cells to secrete acetate for their own consumption to feed the tricarboxylic acid cycle (TCA) and lipid biosynthesis. By performing transcriptome analysis and tracer-based metabolic NMR analysis, we observe that stromal cells present a higher rate of glycolysis when co-cultured with AML cells. We also find that acetate in stromal cells is derived from pyruvate via chemical conversion under the influence of reactive oxygen species (ROS) following ROS transfer from AML to stromal cells via gap junctions. Overall, we present a unique metabolic communication between AML and stromal cells and propose two different molecular targets, ACSS2 and gap junctions, that could potentially be exploited for adjuvant therapy.
Collapse
Affiliation(s)
- Nuria Vilaplana-Lopera
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Vincent Cuminetti
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of NorwayTromsoNorway
| | - Ruba Almaghrabi
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
- Department of Laboratory Medicine (hematology), Faculty of Applied Medical Sciences. Albaha University, Kingdom of Saudi ArabiaAl BahahSaudi Arabia
| | - Grigorios Papatzikas
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
- Centre for Computational Biology, University of BirminghamBirminghamUnited Kingdom
| | - Ashok Kumar Rout
- Institute of Chemistry and Metabolomics, University of LübeckLübeckGermany
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Elena González
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Yara Alyahyawi
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan UniversityJazanSaudi Arabia
| | - Alan Cunningham
- Department of Experimental Hematology, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Ayşegül Erdem
- Department of Experimental Hematology, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University FrankfurtFrankfurtGermany
- Frankfurt Cancer Institute, Goethe University FrankfurtFrankfurtGermany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical CentreBirminghamUnited Kingdom
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical CentreBirminghamUnited Kingdom
| | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
- Centre for Computational Biology, University of BirminghamBirminghamUnited Kingdom
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Michelle AC Reed
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Lorena Arranz
- Stem Cells, Ageing and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of NorwayTromsoNorway
| | - Ulrich L Günther
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
- Institute of Chemistry and Metabolomics, University of LübeckLübeckGermany
| | - Paloma Garcia
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
12
|
Rezayatmand H, Razmkhah M, Razeghian-Jahromi I. Drug resistance in cancer therapy: the Pandora's Box of cancer stem cells. Stem Cell Res Ther 2022; 13:181. [PMID: 35505363 PMCID: PMC9066908 DOI: 10.1186/s13287-022-02856-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
Drug resistance is the main culprit of failure in cancer therapy that may lead to cancer relapse. This resistance mostly originates from rare, but impactful presence of cancer stem cells (CSCs). Ability to self-renewal and differentiation into heterogeneous cancer cells, and harboring morphologically and phenotypically distinct cells are prominent features of CSCs. Also, CSCs substantially contribute to metastatic dissemination. They possess several mechanisms that help them to survive even after exposure to chemotherapy drugs. Although chemotherapy is able to destroy the bulk of tumor cells, CSCs are left almost intact, and make tumor entity resistant to treatment. Eradication of a tumor mass needs complete removal of tumor cells as well as CSCs. Therefore, it is important to elucidate key features underlying drug resistance raised by CSCs in order to apply effective treatment strategies. However, the challenging point that threatens safety and specificity of chemotherapy is the common characteristics between CSCs and normal peers such as signaling pathways and markers. In the present study, we tried to present a comprehensive appraisal on CSCs, mechanisms of their drug resistance, and recent therapeutic methods targeting this type of noxious cells.
Collapse
Affiliation(s)
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Razeghian-Jahromi
- Cardiovascular Research Center, Shiraz University of Medical Sciences, 3rd Floor, Mohammad Rasoolallah Research Tower, Namazi Hospital, Shiraz, Iran.
| |
Collapse
|
13
|
A fragment integrational approach to GPCR inhibition: Identification of a high affinity small molecule CXCR4 antagonist. Eur J Med Chem 2022; 231:114150. [DOI: 10.1016/j.ejmech.2022.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
14
|
Zhang F, Guo J, Zhang Z, Qian Y, Wang G, Duan M, Zhao H, Yang Z, Jiang X. Mesenchymal stem cell-derived exosome: A tumor regulator and carrier for targeted tumor therapy. Cancer Lett 2021; 526:29-40. [PMID: 34800567 DOI: 10.1016/j.canlet.2021.11.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that have the ability to differentiate into multiple cell types. Several studies have shown that exosomes secreted by MSCs (MSCs-Exo) play an important role in tumor growth, angiogenesis, invasion, and drug resistance. However, contradictory results have suggested that MSCs-Exo can also suppress tumors through specific mechanisms, such as regulating immune responses and intercellular signaling. Consequently, the relationship between MSCs-Exo and tumors remains controversial. However, it is undeniable that exosomes, as natural vesicles, can be excellent drug carriers and show promise for application in targeted tumor therapy. Here, we review the current knowledge regarding the involvement of MSCs-Exo in tumor progression and their potential as drug delivery systems in targeted therapy. We argue that MSCs-Exo can be used as safe carriers of antitumor drugs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinshuai Guo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhenghou Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yiping Qian
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Guang Wang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meiqi Duan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaofeng Jiang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
15
|
Huselton E, Rettig MP, Campbell K, Cashen AF, DiPersio JF, Gao F, Jacoby MA, Pusic I, Romee R, Schroeder MA, Uy GL, Marcus S, Westervelt P. Combination of dociparstat sodium (DSTAT), a CXCL12/CXCR4 inhibitor, with azacitidine for the treatment of hypomethylating agent refractory AML and MDS. Leuk Res 2021; 110:106713. [PMID: 34619434 PMCID: PMC10424463 DOI: 10.1016/j.leukres.2021.106713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022]
Abstract
Leukemia stem cells utilize cell adhesion molecules like CXCR4/CXCL12 to home to bone marrow stromal niches where they are maintained in a dormant, protected state. Dociparstat sodium (DSTAT, CX-01) is a low anticoagulant heparin with multiple mechanisms of action, including inhibition of the CXCR4/CXCL12 axis, blocking HMGB1, and binding platelet factor 4 (PF-4). We conducted a pilot study adding DSTAT to azacitidine for patients with AML or MDS unresponsive to or relapsed after prior hypomethylating agent therapy, hypothesizing that DSTAT may improve response rates. Twenty patients were enrolled, with a median of 2 prior lines of therapy and 6 cycles of prior hypomethylating agents. Among fifteen patients evaluable for response, there was 1 complete remission, and 3 marrow complete remissions, for a response rate of 27 % among evaluable patients (20 % overall). Hematologic improvement was observed in 5 additional patients. The median overall survival for all enrolled patients was 205 days (95 % CI 119-302). While cytopenias and infections were common, these were not out of proportion to what would be expected in this population of patients undergoing treatment with azacitidine alone. In summary, this trial demonstrated the feasibility of combining DSTAT with azacitidine, with several responses observed, suggesting this combination warrants further study.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Anticoagulants/therapeutic use
- Antimetabolites, Antineoplastic/therapeutic use
- Azacitidine/therapeutic use
- Biomarkers, Tumor
- Chemokine CXCL12/antagonists & inhibitors
- DNA Methylation
- Drug Resistance, Neoplasm/drug effects
- Drug Therapy, Combination
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic/drug effects
- Heparin/therapeutic use
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Pilot Projects
- Prognosis
- Receptors, CXCR4/antagonists & inhibitors
- Survival Rate
Collapse
Affiliation(s)
- Eric Huselton
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States; University of Rochester Medical Center, Rochester, NY, United States
| | - Michael P Rettig
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Kirsten Campbell
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Amanda F Cashen
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - John F DiPersio
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, United States
| | - Meagan A Jacoby
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Iskra Pusic
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Rizwan Romee
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States; Division of Hematologic Malignancies, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Mark A Schroeder
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | | | - Peter Westervelt
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
16
|
Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance? Cancers (Basel) 2021; 13:cancers13215319. [PMID: 34771483 PMCID: PMC8582363 DOI: 10.3390/cancers13215319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite high rates of remission obtained with conventional chemotherapy, the persistence of leukemic cells after treatments, eventually exiting in disease relapse, remains the main challenge in acute myeloid leukemia (AML). Increasing evidence indicates that, besides AML cell mutations, stromal and immune cells, as leukemic microenvironment components, may protect AML cells from therapies. Here, we will recapitulate emerging bone marrow (BM) microenvironment-dependent mechanisms of therapy resistance. The understanding of these processes will help find new drug combinations and conceive novel and more effective treatments. Abstract Acute myeloid leukemia (AML) has been considered for a long time exclusively driven by critical mutations in hematopoietic stem cells. Recently, the contribution of further players, such as stromal and immune bone marrow (BM) microenvironment components, to AML onset and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the activation status of immune cells in the BM leukemic microenvironment may vary by influencing their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing evidence on the contribution of stromal and immune cells in response to therapy underscores the need to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions will help provide novel applications for drugs already under experimentation and open a wide array of opportunities for new drug discovery.
Collapse
|
17
|
Su L, Hu Z, Yang YG. Role of CXCR4 in the progression and therapy of acute leukaemia. Cell Prolif 2021; 54:e13076. [PMID: 34050566 PMCID: PMC8249790 DOI: 10.1111/cpr.13076] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
CXCR4 is expressed on leukaemia cells and haematopoietic stem cells (HSCs), and its ligand stromal-derived factor 1 (SDF-1) is produced abundantly by stromal cells in the bone marrow (BM). The SDF-1/CXCR4 axis plays important roles in homing to and retention in the protective BM microenvironment of malignant leukaemia cells and normal HSCs. CXCR4 expression is regulated by multiple mechanisms and the level of CXCR4 expression on leukaemia cells has prognostic indications in patients with acute leukaemia. CXCR4 antagonists can mobilize leukaemia cells from BM to circulation, which render them effectively eradicated by chemotherapeutic agents, small molecular inhibitors or hypomethylating agents. Therefore, such combinational therapies have been tested in clinical trials. However, new evidence emerged that drug-resistant leukaemia cells were not affected by CXCR4 antagonists, and the migration of certain leukaemia cells to the leukaemia niche was independent of SDF-1/CXCR4 axis. In this review, we summarize the role of CXCR4 in progression and treatment of acute leukaemia, with a focus on the potential of CXCR4 as a therapeutic target for acute leukaemia. We also discuss the potential value of using CXCR4 antagonists as chemosensitizer for conditioning regimens and immunosensitizer for graft-vs-leukaemia effects of allogeneic haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Long Su
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China.,Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
18
|
Zhang H, Zhang R, Zheng X, Sun M, Fan J, Fang C, Tian X, Zheng H. BACH2-mediated FOS confers cytarabine resistance via stromal microenvironment alterations in pediatric ALL. Cancer Sci 2021; 112:1235-1250. [PMID: 33393145 PMCID: PMC7935781 DOI: 10.1111/cas.14792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive hematological cancer that mainly affects children. Relapse and chemoresistance result in treatment failure, underlining the need for improved therapies. BTB and CNC homology 2 (BACH2) is a lymphoid-specific transcription repressor recognized as a tumor suppressor in lymphomas, but little is known about its function and regulatory network in pediatric ALL (p-ALL). Herein, we found aberrant BACH2 expression at new diagnosis not only facilitated risk stratification of p-ALL but also served as a sensitive predictor of early treatment response and clinical outcome. Silencing BACH2 in ALL cells increased cell proliferation and accelerated cell cycle progression. BACH2 blockade also promoted cell adhesion to bone marrow stromal cells and conferred cytarabine (Ara-C)-resistant properties to leukemia cells by altering stromal microenvironment. Strikingly, we identified FOS, a transcriptional activator competing with BACH2, as a novel downstream target repressed by BACH2. Blocking FOS by chemical compounds enhanced the effect of Ara-C treatment in both primary p-ALL cells and pre-B-ALL-driven leukemia xenografts and prolonged the survival of tumor-bearing mice. These data highlight an interconnected network of BACH2-FOS, disruption of which could render current chemotherapies more effective and offer a promising therapeutic strategy to overcome Ara-C resistance in p-ALL.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Ruidong Zhang
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children’s HospitalNational Center for Children’s HealthCapital Medical UniversityBeijingChina
| | - Xueling Zheng
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children’s HospitalNational Center for Children’s HealthCapital Medical UniversityBeijingChina
| | - Ming Sun
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Jia Fan
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children’s HospitalNational Center for Children’s HealthCapital Medical UniversityBeijingChina
| | - Chunlian Fang
- Department of Hematology and OncologyKunming Children’s Hospital (Children’s Hospital of Kunming Medical University, Yunnan Children’s Medical Center)KunmingChina
| | - Xin Tian
- Department of Hematology and OncologyKunming Children’s Hospital (Children’s Hospital of Kunming Medical University, Yunnan Children’s Medical Center)KunmingChina
| | - Huyong Zheng
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children’s HospitalNational Center for Children’s HealthCapital Medical UniversityBeijingChina
| |
Collapse
|
19
|
Huselton E, Rettig MP, Fletcher T, Ritchey J, Gehrs L, McFarland K, Christ S, Eades WC, Trinkaus K, Romee R, Kulkarni S, Ghobadi A, Abboud C, Cashen AF, Stockerl-Goldstein K, Uy GL, Vij R, Westervelt P, DiPersio JF, Schroeder MA. A phase I trial evaluating the effects of plerixafor, G-CSF, and azacitidine for the treatment of myelodysplastic syndromes. Leuk Lymphoma 2021; 62:1441-1449. [PMID: 33467957 DOI: 10.1080/10428194.2021.1872068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Interactions between the bone marrow microenvironment and MDS tumor clones play a role in pathogenesis and response to treatment. We hypothesized G-CSF and plerixafor may enhance sensitivity to azacitidine in MDS. Twenty-eight patients with MDS were treated with plerixafor, G-CSF and azacitidine with a standard 3 + 3 design. Subjects received G-CSF 10 mcg/kg D1-D8, plerixafor D4-D8, and azacitidine 75 mg/m2 D4-D8, but the trial was amended to reduce G-CSF dose to 5 mcg/kg for 5 days after 2 patients had significant leukocytosis. Plerixafor was dose escalated to 560 mcg/kg/day without dose limiting toxicity. Two complete responses and 6 marrow responses were seen for an overall response rate (ORR) of 36% in evaluable patients, and ORR of 53% in patients receiving the triplet. Evidence of mobilization correlated with a higher ORR, 60% vs. 17%. Plerixafor, G-CSF and azacitidine appears tolerable when given over 5 days and has encouraging response rates.KEY POINTSPlerixafor and G-CSF can be safely combined with azacitidine for 5 days in patients with MDS.The overall response rate of 53% for evaluable patients with this regimen is higher than expected and more responses were seen in patients with blast mobilization.
Collapse
Affiliation(s)
- Eric Huselton
- University of Rochester Medical Center, Rochester, NY, USA
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Theresa Fletcher
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Julie Ritchey
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Leah Gehrs
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Kyle McFarland
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Stephanie Christ
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - William C Eades
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Kathryn Trinkaus
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Rizwan Romee
- Division of Hematologic Malignancies, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Shashikant Kulkarni
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Armin Ghobadi
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Camille Abboud
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Amanda F Cashen
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Keith Stockerl-Goldstein
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Geoffrey L Uy
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Ravi Vij
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Peter Westervelt
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Mark A Schroeder
- Division of Oncology, Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
20
|
Aloj L, Attili B, Lau D, Caraco C, Lechermann LM, Mendichovszky IA, Harper I, Cheow H, Casey RT, Sala E, Gilbert FJ, Gallagher FA. The emerging role of cell surface receptor and protein binding radiopharmaceuticals in cancer diagnostics and therapy. Nucl Med Biol 2021; 92:53-64. [PMID: 32563612 DOI: 10.1016/j.nucmedbio.2020.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Abstract
Targeting specific cell membrane markers for both diagnostic imaging and radionuclide therapy is a rapidly evolving field in cancer research. Some of these applications have now found a role in routine clinical practice and have been shown to have a significant impact on patient management. Several molecular targets are being investigated in ongoing clinical trials and show promise for future implementation. Advancements in molecular biology have facilitated the identification of new cancer-specific targets for radiopharmaceutical development.
Collapse
Affiliation(s)
- Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom.
| | - Bala Attili
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Doreen Lau
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Corradina Caraco
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Laura M Lechermann
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Iosif A Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Ines Harper
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Heok Cheow
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| |
Collapse
|
21
|
Spyrou N, Papapetrou EP. Studying leukemia stem cell properties and vulnerabilities with human iPSCs. Stem Cell Res 2020; 50:102117. [PMID: 33388708 PMCID: PMC8190184 DOI: 10.1016/j.scr.2020.102117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The reprogramming of cancer cells into induced pluripotent stem cells (iPSCs) can capture entire cancer genomes, and thus create genetically faithful models of human cancers. By providing stringent genetically clonal conditions, iPSC modeling can also unveil non-genetic sources of cancer heterogeneity and provide a unique opportunity to study them separately from genetic sources, as we recently showed in an iPSC-based model of acute myeloid leukemia (AML). Genetically clonal iPSCs, derived from a patient with AML, reproduce, upon hematopoietic differentiation, phenotypic and functional heterogeneity with all the hallmarks of a leukemia stem cell (LSC) hierarchy. Here we discuss the lessons that can be learned about the LSC state, its plasticity, stability and genetic and epigenetic determinants from iPSC modeling. We also discuss the practical and translational implications of exploiting AML-iPSCs to prospectively isolate large numbers of iLSCs for large-scale experiments, such as screens, and for discovery of new therapeutic targets specific to AML LSCs.
Collapse
Affiliation(s)
- Nikolaos Spyrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Yuan B, El Dana F, Ly S, Yan Y, Ruvolo V, Shpall EJ, Konopleva M, Andreeff M, Battula VL. Bone marrow stromal cells induce an ALDH+ stem cell-like phenotype and enhance therapy resistance in AML through a TGF-β-p38-ALDH2 pathway. PLoS One 2020; 15:e0242809. [PMID: 33253299 PMCID: PMC7703975 DOI: 10.1371/journal.pone.0242809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The bone marrow microenvironment (BME) in acute myeloid leukemia (AML) consists of various cell types that support the growth of AML cells and protect them from chemotherapy. Mesenchymal stromal cells (MSCs) in the BME have been shown to contribute immensely to leukemogenesis and chemotherapy resistance in AML cells. However, the mechanism of stroma-induced chemotherapy resistance is not known. Here, we hypothesized that stromal cells promote a stem-like phenotype in AML cells, thereby inducing tumorigenecity and therapy resistance. To test our hypothesis, we co-cultured AML cell lines and patient samples with BM-derived MSCs and determined aldehyde dehydrogenase (ALDH) activity and performed gene expression profiling by RNA sequencing. We found that the percentage of ALDH+ cells increased dramatically when AML cells were co-cultured with MSCs. However, among the 19 ALDH isoforms, ALDH2 and ALDH1L2 were the only two that were significantly upregulated in AML cells co-cultured with stromal cells compared to cells cultured alone. Mechanistic studies revealed that the transforming growth factor-β1 (TGF-β1)-regulated gene signature is activated in AML cells co-cultured with MSCs. Knockdown of TGF-β1 in BM-MSCs inhibited stroma-induced ALDH activity and ALDH2 expression in AML cells, whereas treatment with recombinant TGF-β1 induced the ALDH+ phenotype in AML cells. We also found that TGF-β1-induced ALDH2 expression in AML cells is mediated by the non-canonical pathway through the activation of p38. Interestingly, inhibition of ALDH2 with diadzin and CVT-10216 significantly inhibited MSC-induced ALDH activity in AML cells and sensitized them to chemotherapy, even in the presence of MSCs. Collectively, BM stroma induces ALDH2 activity in AML cells through the non-canonical TGF-β pathway. Inhibition of ALDH2 sensitizes AML cells to chemotherapy.
Collapse
Affiliation(s)
- Bin Yuan
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Fouad El Dana
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Stanley Ly
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yuanqing Yan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Vivian Ruvolo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Marina Konopleva
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Venkata Lokesh Battula
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
23
|
López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol 2020; 13:136. [PMID: 33059744 PMCID: PMC7559894 DOI: 10.1186/s13045-020-00966-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) represent a tumor subpopulation responsible for tumor metastasis and resistance to chemo- and radiotherapy, ultimately leading to tumor relapse. As a consequence, the detection and eradication of this cell subpopulation represent a current challenge in oncology medicine. CSC phenotype is dependent on the tumor microenvironment (TME), which involves stem and differentiated tumor cells, as well as different cell types, such as mesenchymal stem cells, endothelial cells, fibroblasts and cells of the immune system, in addition to the extracellular matrix (ECM), different in composition to the ECM in healthy tissues. CSCs regulate multiple cancer hallmarks through the interaction with cells and ECM in their environment by secreting extracellular vesicles including exosomes, and soluble factors such as interleukins, cytokines, growth factors and other metabolites to the TME. Through these factors, CSCs generate and activate their own tumor niche by recruiting stromal cells and modulate angiogenesis, metastasis, resistance to antitumor treatments and their own maintenance by the secretion of different factors such as IL-6, VEGF and TGF-ß. Due to the strong influence of the CSC secretome on disease development, the new antitumor therapies focus on targeting these communication networks to eradicate the tumor and prevent metastasis, tumor relapse and drug resistance. This review summarizes for the first time the main components of the CSC secretome and how they mediate different tumor processes. Lastly, the relevance of the CSC secretome in the development of more precise and personalized antitumor therapies is discussed.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Health Sciences, University of Jaén, 23071, Jaén, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
24
|
Cucchi DGJ, Groen RWJ, Janssen JJWM, Cloos J. Ex vivo cultures and drug testing of primary acute myeloid leukemia samples: Current techniques and implications for experimental design and outcome. Drug Resist Updat 2020; 53:100730. [PMID: 33096284 DOI: 10.1016/j.drup.2020.100730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
New treatment options of acute myeloid leukemia (AML) are rapidly emerging. Pre-clinical models such as ex vivo cultures are extensively used towards the development of novel drugs and to study synergistic drug combinations, as well as to discover biomarkers for both drug response and anti-cancer drug resistance. Although these approaches empower efficient investigation of multiple drugs in a multitude of primary AML samples, their translational value and reproducibility are hampered by the lack of standardized methodologies and by culture system-specific behavior of AML cells and chemotherapeutic drugs. Moreover, distinct research questions require specific methods which rely on specific technical knowledge and skills. To address these aspects, we herein review commonly used culture techniques in light of diverse research questions. In addition, culture-dependent effects on drug resistance towards commonly used drugs in the treatment of AML are summarized including several pitfalls that may arise because of culture technique artifacts. The primary aim of the current review is to provide practical guidelines for ex vivo primary AML culture experimental design.
Collapse
Affiliation(s)
- D G J Cucchi
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - R W J Groen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J J W M Janssen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Combined inhibition of Notch and FLT3 produces synergistic cytotoxic effects in FLT3/ITD + acute myeloid leukemia. Signal Transduct Target Ther 2020; 5:21. [PMID: 32296014 PMCID: PMC7067872 DOI: 10.1038/s41392-020-0108-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/10/2019] [Accepted: 12/08/2019] [Indexed: 12/30/2022] Open
Abstract
Internal tandem duplication (ITD) mutations of FMS-like tyrosine kinase-3 (FLT3) are the most frequent genetic alterations in acute myeloid leukemia (AML) and predict a poor prognosis. FLT3 tyrosine kinase inhibitors (TKIs) provide short-term clinical responses, but the long-term prognosis of FLT3/ITD+ AML patients remains poor. Notch signaling is important in numerous types of tumors. However, the role of Notch signaling in FLT3/ITD+ AML remains to be elucidated. In the current study, we found that Notch signaling was activated upon FLT3-TKI treatment in FLT3/ITD+ cell lines and primary cells. As Notch signaling can be blocked by γ-secretase inhibitors (GSIs), we examined the combinatorial antitumor efficacy of FLT3-TKIs and GSIs against FLT3/ITD+ AML and explored the underlying molecular mechanisms. As a result, we observed synergistic cytotoxic effects, and the treatment preferentially reduced cell proliferation and induced apoptosis in FLT3/ITD+ AML cell lines and in primary AML cells. Furthermore, the combination of FLT3-TKI and GSI eradicated leukemic cells and prolonged survival in an FLT3/ITD+ patient-derived xenograft AML model. Mechanistically, differential expression analysis suggested that CXCR3 may be partially responsible for the observed synergy, possibly through ERK signaling. Our findings suggest that combined therapies of FLT3-TKIs with GSI may be exploited as a potential therapeutic strategy to treat FLT3/ITD+ AML.
Collapse
|
26
|
Hira VV, Van Noorden CJ, Molenaar RJ. CXCR4 Antagonists as Stem Cell Mobilizers and Therapy Sensitizers for Acute Myeloid Leukemia and Glioblastoma? BIOLOGY 2020; 9:biology9020031. [PMID: 32079173 PMCID: PMC7168055 DOI: 10.3390/biology9020031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma is the most aggressive and malignant primary brain tumor in adults and has a poor patient survival of only 20 months after diagnosis. This poor patient survival is at least partly caused by glioblastoma stem cells (GSCs), which are slowly-dividing and therefore therapy-resistant. GSCs are localized in protective hypoxic peri-arteriolar niches where these aforementioned stemness properties are maintained. We previously showed that hypoxic peri-arteriolar GSC niches in human glioblastoma are functionally similar to hypoxic peri-arteriolar hematopoietic stem cell (HSC) niches in human bone marrow. GSCs and HSCs express the receptor C-X-C receptor type 4 (CXCR4), which binds to the chemoattractant stromal-derived factor-1α (SDF-1α), which is highly expressed in GSC niches in glioblastoma and HSC niches in bone marrow. This receptor–ligand interaction retains the GSCs/HSCs in their niches and thereby maintains their slowly-dividing state. In acute myeloid leukemia (AML), leukemic cells use the SDF-1α–CXCR4 interaction to migrate to HSC niches and become slowly-dividing and therapy-resistant leukemic stem cells (LSCs). In this communication, we aim to elucidate how disruption of the SDF-1α–CXCR4 interaction using the FDA-approved CXCR4 inhibitor plerixafor (AMD3100) may be used to force slowly-dividing cancer stem cells out of their niches in glioblastoma and AML. Ultimately, this strategy aims to induce GSC and LSC differentiation and their sensitization to therapy.
Collapse
Affiliation(s)
- Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia (R.J.M.)
- Correspondence:
| | - Cornelis J.F. Van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia (R.J.M.)
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia (R.J.M.)
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
27
|
Evangelisti C, Chiarini F, Cappellini A, Paganelli F, Fini M, Santi S, Martelli AM, Neri LM, Evangelisti C. Targeting Wnt/β-catenin and PI3K/Akt/mTOR pathways in T-cell acute lymphoblastic leukemia. J Cell Physiol 2020; 235:5413-5428. [PMID: 31904116 DOI: 10.1002/jcp.29429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disorder that results from the clonal transformation of T-cell precursors. Phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) and canonical Wnt/β-catenin signaling pathways play a crucial role in T-cell development and in self-renewal of healthy and leukemic stem cells. Notably, β-catenin is a transcriptional regulator of several genes involved in cancer cell proliferation and survival. In this way, aberrations of components belonging to the aforementioned networks contribute to T-ALL pathogenesis. For this reason, inhibition of both pathways could represent an innovative strategy in this hematological malignancy. Here, we show that combined targeting of Wnt/β-catenin pathway through ICG-001, a CBP/β-catenin transcription inhibitor, and of the PI3K/Akt/mTOR axis through ZSTK-474, a PI3K inhibitor, downregulated proliferation, survival, and clonogenic activity of T-ALL cells. ICG-001 and ZSTK-474 displayed cytotoxic effects, and, when combined together, induced a significant increase in apoptotic cells. This induction of apoptosis was associated with the downregulation of Wnt/β-catenin and PI3K/Akt/mTOR pathways. All these findings were confirmed under hypoxic conditions that mimic the bone marrow niche where leukemic stem cells are believed to reside. Taken together, our findings highlight potentially promising treatment consisting of cotargeting Wnt/β-catenin and PI3K/Akt/mTOR pathways in T-ALL settings.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Cappellini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Spartaco Santi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
28
|
Ciciarello M, Corradi G, Loscocco F, Visani G, Monaco F, Cavo M, Curti A, Isidori A. The Yin and Yang of the Bone Marrow Microenvironment: Pros and Cons of Mesenchymal Stromal Cells in Acute Myeloid Leukemia. Front Oncol 2019; 9:1135. [PMID: 31709192 PMCID: PMC6823864 DOI: 10.3389/fonc.2019.01135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have, for a long time, been recognized as pivotal contributors in the set up and maintenance of the hematopoietic stem cell (HSC) niche, as well as in the development and differentiation of the lympho-hematopoietic system. MSCs also have a unique immunomodulatory capacity, which makes them able to affect, both in vitro and in vivo, the function of immune cells. These features, namely the facilitation of stem cell engraftment and the inhibition of lymphocyte responses, have both proven essential for successful allogeneic stem cell transplantation (allo-SCT), which remains the only curative option for several hematologic malignancies. For example, in steroid-refractory acute graft-vs. host disease developing after allo-SCT, MSCs have produced significant results and are now considered a treatment option. However, more recently, the other side of the MSC coin has been unveiled, because of their emerging role in creating a protective and immune-tolerant microenvironment able to support the survival of leukemic cells and affect the response to therapies. In this light, it has been proposed that the failure of current treatments to efficiently override the stroma-mediated protection of leukemic cells accounts for the high rate of relapse in acute myeloid leukemia, at least in part. In this review, we will focus on emerging microenvironment-driven mechanisms conferring a survival advantage to leukemic cells overt physiological HSCs. This body of evidence increasingly highlights the opportunity to consider tumor-microenvironment interactions when designing new therapeutic strategies.
Collapse
Affiliation(s)
- Marilena Ciciarello
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. & A. Seràgnoli", University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giulia Corradi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. & A. Seràgnoli", University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Federica Loscocco
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Federica Monaco
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. & A. Seràgnoli", University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy.,Department of Hematology and Oncology, Institute of Hematology "L. and A. Seràgnoli", University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Antonio Curti
- Department of Hematology and Oncology, Institute of Hematology "L. and A. Seràgnoli", University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Alessandro Isidori
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| |
Collapse
|
29
|
Houshmand M, Blanco TM, Circosta P, Yazdi N, Kazemi A, Saglio G, Zarif MN. Bone marrow microenvironment: The guardian of leukemia stem cells. World J Stem Cells 2019; 11:476-490. [PMID: 31523368 PMCID: PMC6716085 DOI: 10.4252/wjsc.v11.i8.476] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Bone marrow microenvironment (BMM) is the main sanctuary of leukemic stem cells (LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the close connection between LSCs and the BMM. The elimination of LSCs is of high importance, since they follow cancer stem cell theory as a part of this population. Based on cancer stem cell theory, a cell with stem cell-like features stands at the apex of the hierarchy and produces a heterogeneous population and governs the disease. Secretion of cytokines, chemokines, and extracellular vesicles, whether through autocrine or paracrine mechanisms by activation of downstream signaling pathways in LSCs, favors their persistence and makes the BMM less hospitable for normal stem cells. While all details about the interactions of the BMM and LSCs remain to be elucidated, some clinical trials have been designed to limit these reciprocal interactions to cure leukemia more effectively. In this review, we focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their milieu in the bone marrow, how to segregate them from the normal compartment, and finally the possible ways to eliminate these cells.
Collapse
Affiliation(s)
- Mohammad Houshmand
- Department of Clinical and Biological Sciences, University of Turin, Turin 10126, Italy
| | - Teresa Mortera Blanco
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm 14183, Sweden
| | - Paola Circosta
- Department of Clinical and Biological Sciences, University of Turin, Turin 10126, Italy
| | - Narjes Yazdi
- Department of Molecular Genetics, Tehran Medical Branch, Islamic Azad University, Tehran 1916893813, Iran
| | - Alireza Kazemi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Turin 10126, Italy
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran 146651157, Iran
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm 14183, Sweden
| |
Collapse
|
30
|
Altered expression and functional role of ion channels in leukemia: bench to bedside. Clin Transl Oncol 2019; 22:283-293. [PMID: 31280433 DOI: 10.1007/s12094-019-02147-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/26/2019] [Indexed: 12/21/2022]
Abstract
Leukemic cells' (LCs) survival, proliferation, activation, differentiation, and invasiveness/migration can be mediated through the function of cation and anion channels that are involved in volume regulation, polarization, cytoskeleton, and extracellular matrix reorganization. This study will review the expression of ion channels in LCs and their possible function in leukemia progression. We searched relevant literature by a PubMed (2002-2019) of English-language literature using the terms "ion channels", "leukemia", "proliferation", "differentiation", "apoptosis", and "migration". Altered expression and dysfunction of ion channels can have a strong impact on hematopoietic cell and LCs physiology and signaling, which contributes to the vital processes such as proliferation, differentiation, and apoptosis. Indeed, it can be stated that changing expression of ion channels can affect the onset and progression as well as clinical features and therapeutic responses of leukemia via inducing the maintenance of LCs. Since ion channels are membrane proteins, they can be easily accessible in LCs for understanding their influence on leukemia progression. On the other hand, ion channels can be new potential targets for chemotherapeutic agents, which may open a novel clinical and pharmaceutical field in leukemia therapy.
Collapse
|
31
|
Cao T, Ye Y, Liao H, Shuai X, Jin Y, Su J, Zheng Q. Relationship between CXC chemokine receptor 4 expression and prognostic significance in acute myeloid leukemia. Medicine (Baltimore) 2019; 98:e15948. [PMID: 31169718 PMCID: PMC6571391 DOI: 10.1097/md.0000000000015948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CXC chemokine receptor 4 (CXCR4) expression on acute myeloid leukemia (AML) cells correlated with stromal cell derived factor-1α (SDF-1α) and retained hematopoietic progenitors and leukemia cells within the bone marrow microenvironment. Here, we examined CXCR4 expression in 134 de novo AML and 21 controls by flow cytometry, evaluated the relationship between CXCR4 expression and clinical characteristics, and elucidated the prognostic significance of CXCR4 expression in AML prospectively. We found that the CXCR4 expression was significantly higher in AML patients than controls (P = .000). One hundred thirty four cases of de novo AML patients were divided into 2 groups according to the median of CXCR4 relative fluorescence intensity (RFI). CXCR4 high group (RFI >4.23) had markedly shorter overall survival (OS) and disease-free survival (DFS) than CXCR4 low group (RFI ≤4.23) in 106 AML patients who received chemotherapy (P = .002; .026, respectively). Furthermore, in the 87 non-M3 patients who received induction therapy, there was a significant decrease for OS but not for DFS in the CXCR4 high group (P = .047 and .178, respectively). Moreover, high levels of CXCR4 expression independently increased the risk of relapse in both all AML and non-M3 patients who achieved complete remission (CR) after chemotherapy (odds ratio = 1.090, P = .010; odds ratio = 1.068, P = .048, respectively). Collectively, our data suggest that CXCR4 overexpression was an independent prognostic factor for disease relapse and poorer OS in both all AML and non-M3 patients. CXCR4 expression levels can be determined at disease presentation by the flow rapidly and easily. As such, CXCR4 could be used as a potential therapeutic target in AML patients with poor prognosis.
Collapse
Affiliation(s)
| | - Yuanxin Ye
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Hongyan Liao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | | | - Yongmei Jin
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jun Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Zheng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Zhang C, Huang LS, Zhu R, Meng Q, Zhu S, Xu Y, Zhang H, Fang X, Zhang X, Zhou J, Schooley RT, Yang X, Huang Z, An J. High affinity CXCR4 inhibitors generated by linking low affinity peptides. Eur J Med Chem 2019; 172:174-185. [PMID: 30978562 DOI: 10.1016/j.ejmech.2019.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 01/04/2023]
Abstract
G-protein coupled receptors (GPCRs) are implicated in many diseases and attractive targets for drug discovery. Peptide fragments derived from protein ligands of GPCRs are commonly used as probes of GPCR function and as leads for drug development. However, these peptide fragments lack the structural integrity of their parent full-length protein ligands and often show low receptor affinity, which limits their research and therapeutic values. It remains a challenge to efficiently generate high affinity peptide inhibitors of GPCRs. We have investigated a combinational approach involving the synthetic covalent linkage of two low affinity peptide fragments to determine if the strategy can yield high affinity GPCR inhibitors. We examined this design approach using the chemokine receptor CXCR4 as a model of GPCR system. Here, we provide a proof of concept demonstration by designing and synthesizing two peptides, AR5 and AR6, that combine a peptide fragment derived from two viral ligands of CXCR4, vMIP-II and HIV-1 envelope glycoprotein gp120. AR5 and AR6 display nanomolar binding affinity, in contrast to the weak micromolar CXCR4 binding of each peptide fragment alone, and inhibit HIV-1 entry via CXCR4. Further studies were carried out for the representative peptide AR6 using western blotting and site-directed mutagenesis in conjunction with molecular dynamic simulation and binding free energy calculation to determine how the peptide interacts with CXCR4 and inhibits its downstream signaling. These results demonstrate that this combinational approach is effective for generating nanomolar active inhibitors of CXCR4 and may be applicable to other GPCRs.
Collapse
Affiliation(s)
- Chaozai Zhang
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Lina S Huang
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; College of Arts and Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Ruohan Zhu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qian Meng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Siyu Zhu
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Xu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Huijun Zhang
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiong Fang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xingquan Zhang
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jiao Zhou
- Nobel Institute of Biomedicine, Zhuhai, Guangdong, China
| | - Robert T Schooley
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Xiaohong Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| | - Ziwei Huang
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
| | - Jing An
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
33
|
Cioccio J, Claxton D. Therapy of acute myeloid leukemia: therapeutic targeting of tyrosine kinases. Expert Opin Investig Drugs 2019; 28:337-349. [DOI: 10.1080/13543784.2019.1584610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Joseph Cioccio
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David Claxton
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
34
|
Repression of Mcl-1 expression by the CDC7/CDK9 inhibitor PHA-767491 overcomes bone marrow stroma-mediated drug resistance in AML. Sci Rep 2018; 8:15752. [PMID: 30361682 PMCID: PMC6202320 DOI: 10.1038/s41598-018-33982-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/03/2018] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive cancer with 50-75% of patients relapsing even after successful chemotherapy. The role of the bone marrow microenvironment (BMM) in protecting AML cells from chemotherapeutics and causing consequent relapse is increasingly recognised. However the role that the anti-apoptotic Bcl-2 proteins play as effectors of BMM-mediated drug resistance are less understood. Here we show that bone marrow mesenchymal stromal cells (BMSC) provide resistance to AML cells against BH3-mimetics, cytarabine and daunorubicin, but this is not mediated by Bcl-2 and/or Bcl-XL as previously thought. Instead, BMSCs induced Mcl-1 expression over Bcl-2 and/or Bcl-XL in AML cells and inhibition of Mcl-1 with a small-molecule inhibitor, A1210477, or repressing its expression with the CDC7/CDK9 dual-inhibitor, PHA-767491 restored sensitivity to BH3-mimetics. Furthermore, combined inhibition of Bcl-2/Bcl-XL and Mcl-1 could revert BMSC-mediated resistance against cytarabine + daunorubicin. Importantly, the CD34+/CD38- leukemic stem cell-encompassing population was equally sensitive to the combination of PHA-767491 and ABT-737. These results indicate that Bcl-2/Bcl-XL and Mcl-1 act in a redundant fashion as effectors of BMM-mediated AML drug resistance and highlight the potential of Mcl-1-repression to revert BMM-mediated drug resistance in the leukemic stem cell population, thus, prevent disease relapse and ultimately improve patient survival.
Collapse
|
35
|
Abstract
The fundamental foundation for precision medicine is accurate and specific targeting of cancer cells. Advances in the understanding of cancer biology, developments in diagnostic technologies, and expansion of therapeutic options have all contributed to the concept of personalized cancer care. Theranostics is the systematic integration of targeted diagnostics and therapeutics. The theranostic platform includes an imaging component that "sees" the lesions followed by administration of the companion therapy agent that "treats" the same lesions. This strategy leads to enhanced therapy efficacy, manageable adverse events, improved patient outcome, and lower overall costs. Radiotheranostics refers to the use of radionuclides for the paired imaging and therapy agents. Radioiodine is the classic radiotheranostic agent that has been used clinically in management of thyroid diseases for nearly 75 years. More recently there have been major exciting strides in radiotheranostics for neuroendocrine tumors and prostate cancer, among other conditions. Regulatory approval of a number of radiotheranostic pairs is anticipated in the near future. Continued support will be needed in research and development to keep pace with the current momentum in radiotheranostics innovations. Moreover, regulatory and reimbursement agencies need to streamline their requirements for seamless transfer of the radiotheranostic agents from the bench to the bedside. In this review, the concept, history, recent developments, current challenges, and outlook for radiotheranostics in the treatment of patients with cancer will be discussed. © RSNA, 2018.
Collapse
Affiliation(s)
- Hossein Jadvar
- From the Department of Radiology, Division of Nuclear Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar St, CSC/IGM 102, Los Angeles, CA 90033 (H.J.); Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Md (X.C.); Department of Radiology, University of Wisconsin-Madison, Madison, Wis (W.C.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (U.M.)
| | - Xiaoyuan Chen
- From the Department of Radiology, Division of Nuclear Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar St, CSC/IGM 102, Los Angeles, CA 90033 (H.J.); Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Md (X.C.); Department of Radiology, University of Wisconsin-Madison, Madison, Wis (W.C.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (U.M.)
| | - Weibo Cai
- From the Department of Radiology, Division of Nuclear Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar St, CSC/IGM 102, Los Angeles, CA 90033 (H.J.); Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Md (X.C.); Department of Radiology, University of Wisconsin-Madison, Madison, Wis (W.C.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (U.M.)
| | - Umar Mahmood
- From the Department of Radiology, Division of Nuclear Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar St, CSC/IGM 102, Los Angeles, CA 90033 (H.J.); Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Md (X.C.); Department of Radiology, University of Wisconsin-Madison, Madison, Wis (W.C.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (U.M.)
| |
Collapse
|
36
|
Tinsley SM, Sutton SK, Thapa R, Lancet J, McMillan SC. Treatment Choices: A Quality of Life Comparison in Acute Myeloid Leukemia and High-risk Myelodysplastic Syndrome. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 17S:S75-S79. [PMID: 28760305 DOI: 10.1016/j.clml.2017.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 02/28/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND In the present exploratory, observational study, we compared the effect of intensive versus nonintensive treatment on quality of life for patients aged ≥ 60 years diagnosed with acute myeloid leukemia or high-risk myelodysplastic syndrome at 1 month after treatment. PATIENTS AND METHODS A total of 73 patients with acute myeloid leukemia or high-risk myelodysplastic syndrome who had been treated at the inpatient and outpatient malignant hematology at Moffitt Cancer Center, a National Cancer Institute-designated comprehensive cancer center, were included. Two paired measurements of self-reported quality of life were used, 1 before treatment and 1 at 1 month after treatment to compare intensive versus nonintensive treatment. Patients completed the Functional Assessment of Cancer Therapy-Leukemia version for the quality-of-life measurement. Repeated measures analysis of variance was used to compare the effect of treatment and time and the interaction of treatment and time. The main research variables were intensive versus nonintensive treatment as the independent variable and quality of life measured using the Functional Assessment of Cancer Therapy-Leukemia version as the dependent variable. RESULTS Physical function and leukemia symptoms improved for patients treated with intensive chemotherapy. A trend was found for improved quality of life for the intensive treatment compared with nonintensive treatment, for which the quality of life was stable at 1 month. CONCLUSION The study participants treated with inpatient, induction chemotherapy experienced statistically significant improvement in their quality of life at 1 month. The outpatient, nonintensive study participants had stable quality of life at 1 month.
Collapse
Affiliation(s)
- Sara M Tinsley
- Moffitt Cancer Center (MCB)-Malignant Hematology and University of South Florida, Tampa, FL.
| | - Steven K Sutton
- Moffitt Cancer Center (MCB)-Malignant Hematology and University of South Florida, Tampa, FL
| | - Ram Thapa
- Moffitt Cancer Center (MCB)-Malignant Hematology and University of South Florida, Tampa, FL
| | - Jeffrey Lancet
- Moffitt Cancer Center (MCB)-Malignant Hematology and University of South Florida, Tampa, FL
| | - Susan C McMillan
- Moffitt Cancer Center (MCB)-Malignant Hematology and University of South Florida, Tampa, FL
| |
Collapse
|
37
|
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int 2018; 2018:5416923. [PMID: 29681949 PMCID: PMC5850899 DOI: 10.1155/2018/5416923] [Citation(s) in RCA: 618] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.
Collapse
Affiliation(s)
- Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ying-Gui Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Sang-Hyun Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Nayoung Jun
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
38
|
Meng W, Xue S, Chen Y. The role of CXCL12 in tumor microenvironment. Gene 2018; 641:105-110. [DOI: 10.1016/j.gene.2017.10.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/06/2017] [Indexed: 01/13/2023]
|
39
|
Inhibition of SDF-1-induced migration of oncogene-driven myeloid leukemia by the L-RNA aptamer (Spiegelmer), NOX-A12, and potentiation of tyrosine kinase inhibition. Oncotarget 2017; 8:109973-109984. [PMID: 29299123 PMCID: PMC5746358 DOI: 10.18632/oncotarget.22409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023] Open
Abstract
Resistance to targeted tyrosine kinase inhibitors (TKI) remains a challenge for the treatment of myeloid leukemias. Following treatment with TKIs, the bone marrow microenvironment has been found to harbor a small pool of surviving leukemic CD34+ progenitor cells. The long-term survival of these leukemic cells has been attributed, at least in part, to the protective effects of bone marrow stroma. We found that the NOX-A12 'Spiegelmer', an L-enantiomeric RNA oligonucleotide that inhibits SDF-1α, showed in vitro and in vivo activity against BCR-ABL- and FLT3-ITD-dependent leukemia cells. NOX-A12 was sufficient to suppress SDF-1-induced migration in vitro. The combination of NOX-A12 with TKIs reduced cell migration in the same in vitro model of SDF-1-induced chemotaxis to a greater extent than either drug alone, suggesting positive cooperativity as a result of the SDF-1 blocking function of NOX-A12 and cytotoxicity resulting from targeted oncogenic kinase inhibition. These results are consistent with our in vivo findings using a functional pre-clinical mouse model of chronic myeloid leukemia (CML), whereby we demonstrated the ability of NOX-A12, combined with the ABL kinase inhibitor, nilotinib, to reduce the leukemia burden in mice to a greater extent than either agent alone. Overall, the data support the idea of using SDF-1 inhibition in combination with targeted kinase inhibition to override drug resistance in oncogene-driven leukemia to significantly diminish or eradicate residual leukemic disease.
Collapse
|
40
|
Jacamo R, Davis RE, Ling X, Sonnylal S, Wang Z, Ma W, Zhang M, Ruvolo P, Ruvolo V, Wang RY, McQueen T, Lowe S, Zuber J, Kornblau SM, Konopleva M, Andreeff M. Tumor Trp53 status and genotype affect the bone marrow microenvironment in acute myeloid leukemia. Oncotarget 2017; 8:83354-83369. [PMID: 29137349 PMCID: PMC5663521 DOI: 10.18632/oncotarget.19042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/03/2017] [Indexed: 02/06/2023] Open
Abstract
The genetic heterogeneity of acute myeloid leukemia (AML) and the variable responses of individual patients to therapy suggest that different AML genotypes may influence the bone marrow (BM) microenvironment in different ways. We performed gene expression profiling of bone marrow mesenchymal stromal cells (BM-MSC) isolated from normal C57BL/6 mice or mice inoculated with syngeneic murine leukemia cells carrying different human AML genotypes, developed in mice with Trp53 wild-type or nullgenetic backgrounds. We identified a set of genes whose expression in BM-MSC was modulated by all four AML genotypes tested. In addition, there were sets of differentially-expressed genes in AML-exposed BM-MSC that were unique to the particular AML genotype or Trp53 status. Our findings support the hypothesis that leukemia cells alter the transcriptome of surrounding BM stromal cells, in both common and genotype-specific ways. These changes are likely to be advantageous to AML cells, affecting disease progression and response to chemotherapy, and suggest opportunities for stroma-targeting therapy, including those based on AML genotype.
Collapse
Affiliation(s)
- Rodrigo Jacamo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R. Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoyang Ling
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonali Sonnylal
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wencai Ma
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Zhang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Ruvolo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian Ruvolo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rui-Yu Wang
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teresa McQueen
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Steven M. Kornblau
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Tsou LK, Huang YH, Song JS, Ke YY, Huang JK, Shia KS. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med Res Rev 2017; 38:1188-1234. [PMID: 28768055 DOI: 10.1002/med.21464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
Abstract
CXCR4 antagonists (e.g., PlerixaforTM ) have been successfully validated as stem cell mobilizers for peripheral blood stem cell transplantation. Applications of the CXCR4 antagonists have heralded the era of cell-based therapy and opened a potential therapeutic horizon for many unmet medical needs such as kidney injury, ischemic stroke, cancer, and myocardial infarction. In this review, we first introduce the central role of CXCR4 in diverse cellular signaling pathways and discuss its involvement in several disease progressions. We then highlight the molecular design and optimization strategies for targeting CXCR4 from a large number of case studies, concluding that polyamines are the preferred CXCR4-binding ligands compared to other structural options, presumably by mimicking the highly positively charged natural ligand CXCL12. These results could be further justified with computer-aided docking into the CXCR4 crystal structure wherein both major and minor subpockets of the binding cavity are considered functionally important. Finally, from the clinical point of view, CXCR4 antagonists could mobilize hematopoietic stem/progenitor cells with long-term repopulating capacity to the peripheral blood, promising to replace surgically obtained bone marrow cells as a preferred source for stem cell transplantation.
Collapse
Affiliation(s)
- Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | | | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Jing-Kai Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| |
Collapse
|
42
|
A novel CXCR4 antagonist IgG1 antibody (PF-06747143) for the treatment of hematologic malignancies. Blood Adv 2017; 1:1088-1100. [PMID: 29296751 DOI: 10.1182/bloodadvances.2016003921] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/09/2017] [Indexed: 12/24/2022] Open
Abstract
The chemokine receptor CXCR4 is highly expressed and associated with poor prognosis in multiple malignancies. Upon engagement by its ligand, CXCL12, CXCR4 triggers intracellular signaling pathways that control trafficking of cells to tissues where the ligand is expressed, such as the bone marrow (BM). In hematologic cancers, CXCR4-driven homing of malignant cells to the BM protective niche is a key mechanism driving disease and therapy resistance. We developed a humanized CXCR4 immunoglobulin G1 (IgG1) antibody (Ab), PF-06747143, which binds to CXCR4 and inhibits CXCL12-mediated signaling pathways, as well as cell migration. In in vivo preclinical studies, PF-06747143 monotherapy rapidly and transiently mobilized cells from the BM into the peripheral blood. In addition, PF-06747143 effectively induced tumor cell death via its Fc constant region-mediated effector function. This Fc-mediated cell killing mechanism not only enhanced antitumor efficacy, but also played a role in reducing the duration of cell mobilization, when compared with an IgG4 version of the Ab, which does not have Fc-effector function. PF-06747143 treatment showed strong antitumor effect in multiple hematologic tumor models including non-Hodgkin lymphoma (NHL), acute myeloid leukemia (AML), and multiple myeloma (MM). Importantly, PF-06747143 synergized with standard-of-care agents in a chemoresistant AML patient-derived xenograft model and in an MM model. These findings suggest that PF-06747143 is a potential best-in-class anti-CXCR4 antagonist for the treatment of hematologic malignancies, including in the resistant setting. PF-06747143 is currently in phase 1 clinical trial evaluation (registered at www.clinicaltrials.gov as #NCT02954653).
Collapse
|
43
|
Abstract
The dynamic interactions between leukemic cells and bone marrow (BM) cells in the leukemia BM microenvironment regulate leukemia stem cell (LSC) properties including localization, self-renewal, differentiation, and proliferation. Recent research of normal and leukemia BM microenvironments has revealed several key components of specific niches that provide a sanctuary where subpopulations of leukemia cells evade chemotherapy-induced death and acquire a drug-resistant phenotype, as well as the molecular pathways critical for microenvironment/leukemia interactions. Although the biology of LSCs shares many similarities with that of normal hematopoietic stem cells (HSCs), LSCs are able to outcompete HSCs and hijack BM niches. Increasing evidence indicates that these niches fuel the growth of leukemia cells and contribute to therapeutic resistance and the metastatic potential of leukemia cells by shielding LSCs. Not only "microenvironment-induced oncogenesis," but also a "malignancy-induced microenvironment" have been proposed. In this chapter, the key components and regulation of BM niches in leukemic BM is described. In addition, metabolic changes in LSCs, which are currently a subject of intense investigation, will also be discussed to understand LSC survival.
Collapse
|
44
|
Yanagisawa B, Ghiaur G, Smith BD, Jones RJ. Translating leukemia stem cells into the clinical setting: Harmonizing the heterogeneity. Exp Hematol 2016; 44:1130-1137. [PMID: 27693555 PMCID: PMC5110366 DOI: 10.1016/j.exphem.2016.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023]
Abstract
Considerable evidence suggests that rare leukemia cells with stem cell features, including self-renewal capacity and drug resistance, are primarily responsible for both disease maintenance and relapses. Traditionally, these so-called leukemia stem cells (LSCs) have been identified in the laboratory by their ability to engraft acute myeloid leukemia (AML) into immunocompromised mice. For many years, only those rare AML cells characterized by a hematopoietic stem cell (HSC) CD34+CD38- phenotype were believed capable of generating leukemia in immunocompromised mice. However, more recently, significant heterogeneity in the phenotypes of those AML cells that can engraft immunocompromised mice has been demonstrated. AML cells that engraft immunocompromised mice have also been shown to not necessarily represent either the founder clone or those cells responsible for relapse. A recent study found that the most immature phenotype present in an AML correlated with genetically defined risk groups and outcomes, but was heterogeneous. Patients with AML cells expressing a primitive HSC phenotype (CD34+CD38- with high aldehyde dehydrogenase activity) manifested significantly lower complete remission rates, as well as poorer event-free and overall survivals. Leukemias in which the most primitive cells displayed more mature phenotypes were associated with better outcomes. The strong clinical correlations suggest that the most immature phenotype detectable within a patient's AML might serve as a biomarker for "clinically relevant" LSCs.
Collapse
Affiliation(s)
- Breann Yanagisawa
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Gabriel Ghiaur
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - B Douglas Smith
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Richard J Jones
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
45
|
Abstract
Research in the last few years has revealed a sophisticated interaction network between multiple bone marrow cells that regulate different hematopoietic stem cell (HSC) properties such as proliferation, differentiation, localization, and self-renewal during homeostasis. These mechanisms are essential to keep the physiological HSC numbers in check and interfere with malignant progression. In addition to the identification of multiple mutations and chromosomal aberrations driving the progression of myeloid malignancies, alterations in the niche compartment recently gained attention for contributing to disease progression. Leukemic cells can remodel the niche into a permissive environment favoring leukemic stem cell expansion over normal HSC maintenance, and evidence is accumulating that certain niche alterations can even induce leukemic transformation. Relapse after chemotherapy is still a major challenge during treatment of myeloid malignancies, and cure is only rarely achieved. Recent progress in understanding the niche-imposed chemoresistance mechanisms will likely contribute to the improvement of current therapeutic strategies. This article discusses the role of different niche cells and their stage- and disease-specific roles during progression of myeloid malignancies and in response to chemotherapy.
Collapse
|
46
|
Raja UM, Gopal G, Shirley S, Ramakrishnan AS, Rajkumar T. Immunohistochemical expression and localization of cytokines/chemokines/growth factors in gastric cancer. Cytokine 2016; 89:82-90. [PMID: 27793525 DOI: 10.1016/j.cyto.2016.08.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022]
Abstract
Our previous studies on gastric cancer tissue and patient plasma samples identified several cytokines/chemokines/growth factors to be differentially expressed, compared to normal samples. In this study our aim was to understand the localization patterns of the markers in gastric tissues. We investigated the expression of PDGFRB, CCL3, MMP3, CXCL8, CXCL10, CCL20, IGFBP3, CXCL9, SPP1, CCL18, TIMP1, CCL15, CXCL5 and CCL4 in gastric tissues using Immunohistochemistry (IHC) on Tissue Microarrays (TMA). The TMA comprised of 25 apparently normal (AN), 87 paired normal (PN) and 134 gastric cancer (T) tissues. The epithelial and stromal expression of markers and their correlation with patient characteristics and outcome were analyzed. Several of the markers [PDGFRB (p<0.001), CCL3 (p<0.001), MMP3 (p<0.001), CXCL8 (p<0.001), CXCL10 (p<0.001), CCL20 (p<0.001), CXCL9 (p<0.001), CCL18 (p<0.001), TIMP1 (p=0.025), CCL15 (p<0.001)] were elevated in the stromal compartment of gastric cancers compared to AN tissues, with some having intermediate levels of expression in PN tissues. Epithelial and stromal PDGFRB (p=0.030, p=0.018) expression was associated with diffuse type gastric cancer. Stromal IGFBP3 (p=0.039), CXCL8 (p=0.008), TIMP1 (p<0.001), CCL4 (p=0.003) and SPP1 (p=0.048) expression was associated with intestinal type gastric cancer. Kaplan-Meier analysis showed higher epithelial PDGFRB (p=0.005 and p=0.004), CXCL8 (p=0.009 and p=0.007) were associated with poor disease free and overall survival. In multivariate analysis, high epithelial PDGFRB (p=0.036 and p=0.02) and SPP1 (p=0.003 and p<0.001) were independent prognostic factors for DFS and OS in patients with gastric cancer. The expression of cytokine/chemokine/growth factor markers is higher in the gastric tumor stroma compared to the normal gastric stroma and PDGFRB and SPP1 may serve as potential prognostic factors in gastric cancer.
Collapse
Affiliation(s)
- Uthandaraman Mahalinga Raja
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Guindy, Chennai 600020, Tamil Nadu, India.
| | - Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Guindy, Chennai 600020, Tamil Nadu, India.
| | - Sundersingh Shirley
- Department of Oncopathology, Cancer Institute (WIA), 38, Sardar Patel Road, Guindy, Chennai 600020, Tamil Nadu, India.
| | - Ayloor Seshadri Ramakrishnan
- Department of Surgical Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Guindy, Chennai 600020, Tamil Nadu, India.
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Guindy, Chennai 600020, Tamil Nadu, India.
| |
Collapse
|
47
|
Lonetti A, Cappellini A, Bertaina A, Locatelli F, Pession A, Buontempo F, Evangelisti C, Evangelisti C, Orsini E, Zambonin L, Neri LM, Martelli AM, Chiarini F. Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. J Hematol Oncol 2016; 9:114. [PMID: 27776559 PMCID: PMC5075755 DOI: 10.1186/s13045-016-0344-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
Background Although in recent years, the introduction of novel chemotherapy protocols has improved the outcome of T cell acute lymphoblastic leukemia (T-ALL) patients, refractory and/or relapsing disease remains a foremost concern. In this context, a major contribution was provided by the introduction of the nucleoside analog nelarabine, approved for salvage treatment of T-ALL patients with refractory/relapsed disease. However, nelarabine could induce a life-threatening, dose-dependent neurotoxicity. To improve nelarabine efficacy, we have analyzed its molecular targets, testing selective inhibitors of such targets in combination with nelarabine. Methods The effectiveness of nelarabine as single agent or in combination with PI3K, Bcl2, and MEK inhibitors was evaluated on human T-ALL cell lines and primary T-ALL refractory/relapsed lymphoblasts. The efficacy of signal modulators in terms of cytotoxicity, induction of apoptosis, and changes in gene and protein expression was assessed by flow cytometry, western blotting, and quantitative real-time PCR in T-ALL settings. Results Treatment with nelarabine as a single agent identified two groups of T-ALL cell lines, one sensitive and one resistant to the drug. Whereas sensitive T-ALL cells showed a significant increase of apoptosis and a strong down-modulation of PI3K signaling, resistant T-ALL cells showed a hyperactivation of AKT and MEK/ERK1/2 signaling pathways, not caused by differences in the expression of nelarabine transporters or metabolic activators. We then studied the combination of nelarabine with the PI3K inhibitors (both pan and dual γ/δ inhibitors), with the Bcl2 specific inhibitor ABT199, and with the MEK inhibitor trametinib on both T-ALL cell lines and patient samples at relapse, which displayed constitutive activation of PI3K signaling and resistance to nelarabine alone. The combination with the pan PI3K inhibitor ZSTK-474 was the most effective in inhibiting the growth of T-ALL cells and was synergistic in decreasing cell survival and inducing apoptosis in nelarabine-resistant T-ALL cells. The drug combination caused AKT dephosphorylation and a downregulation of Bcl2, while nelarabine alone induced an increase in p-AKT and Bcl2 signaling in the resistant T-ALL cells and relapsed patient samples. Conclusions These findings indicate that nelarabine in combination with PI3K inhibitors may be a promising therapeutic strategy for the treatment of T-ALL relapsed patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0344-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Alice Bertaina
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Pession
- Department of Pediatrics, "Lalla Seràgnoli" Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, Rizzoli Orthopedic Institute, National Research Council, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Zambonin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luca Maria Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto Maria Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Francesca Chiarini
- Institute of Molecular Genetics, Rizzoli Orthopedic Institute, National Research Council, Bologna, Italy.
| |
Collapse
|
48
|
Zhou HS, Carter BZ, Andreeff M. Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang. Cancer Biol Med 2016; 13:248-59. [PMID: 27458532 PMCID: PMC4944541 DOI: 10.20892/j.issn.2095-3941.2016.0023] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of circulating immature blasts that exhibit uncontrolled growth, lack the ability to undergo normal differentiation, and have decreased sensitivity to apoptosis. Accumulating evidence shows the bone marrow (BM) niche is critical to the maintenance and retention of hematopoietic stem cells (HSC), including leukemia stem cells (LSC), and an increasing number of studies have demonstrated that crosstalk between LSC and the stromal cells associated with this niche greatly influences leukemia initiation, progression, and response to therapy. Undeniably, stromal cells in the BM niche provide a sanctuary in which LSC can acquire a drug-resistant phenotype and thereby evade chemotherapy-induced death. Yin and Yang, the ancient Chinese philosophical concept, vividly portrays the intricate and dynamic interactions between LSC and the BM niche. In fact, LSC-induced microenvironmental reprogramming contributes significantly to leukemogenesis. Thus, identifying the critical signaling pathways involved in these interactions will contribute to target optimization and combinatorial drug treatment strategies to overcome acquired drug resistance and prevent relapse following therapy. In this review, we describe some of the critical signaling pathways mediating BM niche-LSC interaction, including SDF1/CXCL12, Wnt/β-catenin, VCAM/VLA-4/NF-κB, CD44, and hypoxia as a newly-recognized physical determinant of resistance, and outline therapeutic strategies for overcoming these resistance factors.
Collapse
Affiliation(s)
- Hong-Sheng Zhou
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
49
|
Mishan MA, Ahmadiankia N, Bahrami AR. CXCR4 and CCR7: Two eligible targets in targeted cancer therapy. Cell Biol Int 2016; 40:955-67. [PMID: 27248053 DOI: 10.1002/cbin.10631] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Abstract
Cancer is one of the most common cause of death in the world with high negative emotional, economic, and social impacts. Conventional therapeutic methods, including chemotherapy and radiotherapy, have not proven satisfactory and relapse is common in most cases. Recent studies have focused on targeted therapy with more precise identification and targeted attacks to the cancer cells. For this purpose, chemokine receptors are proper targets and among them, CXCR4 and CCR7, with a crucial role in cancer metastasis, are being considered as desired candidates for investigation. In this review paper, the most important experimental results are highlighted on the potential targeted therapies based on CXCR4 and CCR7 chemokine receptors.
Collapse
Affiliation(s)
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | |
Collapse
|
50
|
Reinholdt L, Laursen MB, Schmitz A, Bødker JS, Jakobsen LH, Bøgsted M, Johnsen HE, Dybkær K. The CXCR4 antagonist plerixafor enhances the effect of rituximab in diffuse large B-cell lymphoma cell lines. Biomark Res 2016; 4:12. [PMID: 27307990 PMCID: PMC4908729 DOI: 10.1186/s40364-016-0067-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease with variable clinical outcome, accounting for at least 25-30 % of adult non-Hodgkin lymphomas. Approximately one third of DLBCL patients are not cured by the currently used treatment regimen, R-CHOP. Hence, new treatment strategies are needed. Antagonizing the CXCR4 receptor might be promising since the CXCR4-CXCL12 axis is implicated in several aspects of tumor pathogenesis as well as in protection from chemotherapeutic response. In Burkitt lymphoma, the CXCR4 antagonist plerixafor has already been shown to enhance the therapeutic effect of rituximab, the immunotherapeutic agent of R-CHOP; but this is yet to be confirmed for DLBCL. We, therefore, investigated the effect of plerixafor on DLBCL cellular response to rituximab. Methods In this in vitro study, human DLBCL cell lines were treated with rituximab and/or plerixafor, concomitantly or in sequence. The trypan blue exclusion method and MTS-based assays were used to evaluate cellular proliferation, whereas flow cytometry was used for assessment of apoptosis status and CXCR4 surface expression level. Linear mixed effects models were used to assess statistical significance. Results We observed that simultaneous addition of plerixafor and rituximab resulted in a significant decrease in DLBCL cellular proliferation, compared to monotherapeutic response. The effect was dose-dependent, and concomitant administration was observed to be superior to sequential drug administration. Accordingly, the fraction of apoptotic/dead cells significantly increased following addition of plerixafor to rituximab treatment. Furthermore, exposure of DLBCL cells to plerixafor resulted in a significant decrease in CXCR4 fluorescence intensity. Conclusions Based on our results, implying that the anti-proliferative/pro-apoptotic effect of rituximab on DLBCL cells can be synergistically enhanced by the CXCR4 antagonist plerixafor, addition of plerixafor to the R-CHOP regimen can be suggested to improve treatment outcome for DLBCL patients. Electronic supplementary material The online version of this article (doi:10.1186/s40364-016-0067-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linn Reinholdt
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Maria Bach Laursen
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Alexander Schmitz
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Clinical Cancer Research Center, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Julie Støve Bødker
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Clinical Cancer Research Center, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Lasse Hjort Jakobsen
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Department of Clinical Medicine, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Clinical Cancer Research Center, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Department of Clinical Medicine, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Hans Erik Johnsen
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Clinical Cancer Research Center, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Department of Clinical Medicine, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Karen Dybkær
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Clinical Cancer Research Center, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Department of Clinical Medicine, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| |
Collapse
|