1
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 inhibition represses melanoma cell growth and BRAF inhibitor resistance via upregulating SPARC expression. NAR Cancer 2024; 6:zcae018. [PMID: 38650694 PMCID: PMC11034028 DOI: 10.1093/narcan/zcae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), a conserved secreted glycoprotein, plays crucial roles in regulating various biological processes. SPARC is highly expressed and has profound implications in several cancer types, including melanoma. Understanding the mechanisms that govern SPARC expression in cancers has the potential to lead to improved cancer diagnosis, prognosis, treatment strategies, and patient outcomes. Here, we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression in melanoma cells. Depletion or inhibition of HDAC10 upregulates SPARC expression, whereas overexpression of HDAC10 downregulates it. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the state of acetylation of histone H3 at lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby fine-tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth primarily by activating AMPK signaling and inducing autophagy. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitization of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through indirect histone modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC.
Collapse
Affiliation(s)
- Hongbo Ling
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Yixuan Li
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Changmin Peng
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State Cancer Institute, The Penn State University, 400 University Drive, Hershey, PA 17033, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
2
|
Ottaiano A, Iacovino ML, Santorsola M, Facchini S, Iervolino D, Perri F, Nasti G, Quagliariello V, Maurea N, Ronchi A, Facchini BA, Bignucolo A, Berretta M. Circulating vitamin D level before initiating chemotherapy impacts on the time-to-outcome in metastatic colorectal cancer patients: systematic review and meta-analysis. J Transl Med 2024; 22:119. [PMID: 38291479 PMCID: PMC10826188 DOI: 10.1186/s12967-024-04889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Vitamin D (VD) is implicated in various health conditions, including colorectal cancer (CRC). To investigate potential relationships between pre-chemotherapy VD levels and the time-to-outcome in metastatic CRC patients, we conducted a systematic review and meta-analysis. METHODS Following the PRISMA 2020 guidelines, we performed thorough searches in PubMed/MEDLINE and Scopus/ELSEVIER databases (covering the years 2002 to 2022). Inclusion criteria mandated studies to report on individuals aged 18 years and above with histologically confirmed stage IV CRC. Additionally, studies needed to provide data on VD levels before chemotherapy, along with hazard ratios (HR) and 95% confidence intervals (CIs) for overall survival (OS) and/or progression-free survival (PFS). Five articles were identified with the aim of establishing a combined risk estimate for death and progression based on pre-chemotherapy VD levels. Heterogeneity among studies and publication bias were evaluated using Tau2, I2 statistics, and a Funnel plot. RESULTS Although no significant heterogeneity was observed in time-to-outcome among the selected studies, variations in technical assessments and serum VD concentration measurements were noted. The pooled analysis, involving 1712 patients for OS and 1264 patients for PFS, revealed a 47% increased risk of death (HR: 1.47, 95% CI: 1.21-1.79) and a 38% increased risk of progression (HR: 1.38, 95% CI: 1.13-1.70) for patients with lower VD levels, as indicated by fixed-effects models. CONCLUSIONS Our results emphasize the adverse effects of low VD concentration on the time-to-outcome in metastatic CRC patients. This underscores the importance of investigating VD supplementation as an innovative approach in this clinical setting to enhance patient outcomes.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", 80131, Naples, Italy
| | - Maria Lucia Iacovino
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | | | - Sergio Facchini
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Domenico Iervolino
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", 80131, Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", 80131, Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", 80131, Naples, Italy
| | | | - Nicola Maurea
- Division of Cardiology, IRCCS "G. Pascale", 80131, Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, Department of Mental Health and Physic and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Bianca Arianna Facchini
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Alessia Bignucolo
- Integrative Medicine Research Group (IMRG), Noceto, 43015, Parma, Italy
| | - Massimiliano Berretta
- Integrative Medicine Research Group (IMRG), Noceto, 43015, Parma, Italy.
- Department of Clinical and Experimental Medicine, University of Messina, 98122, Messina, Italy.
| |
Collapse
|
3
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 blockade upregulates SPARC expression thereby repressing melanoma cell growth and BRAF inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570182. [PMID: 38106051 PMCID: PMC10723323 DOI: 10.1101/2023.12.05.570182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC), a highly conserved secreted glycoprotein, is crucial for various bioprocesses. Here we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression. HDAC10 depletion or inhibition upregulates, while overexpression of HDAC10 downregulates, SPARC expression. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the acetylation state of histone H3 lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth, primarily by induction of autophagy via activation of AMPK signaling. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitivity of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through epigenetic modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC. Highlights HDAC10 is the primary HDAC member that tightly controls SPARC expression. HDAC10 coordinates with p300 in modulating the H3K27ac state at SPARC regulatory elements and the recruitment of BRD4 to these regions. HDAC10 depletion and resultant SPARC upregulation inhibit melanoma cell growth by inducing autophagy via activation of AMPK signaling.SPARC upregulation as a result of HDAC10 depletion resensitizes resistant cells to BRAF inhibitors.
Collapse
|
4
|
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, Zhang LC, Li L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 2023. [PMID: 36645225 DOI: 10.1002/cam4.5594] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with high morbidity and fatality. Chemotherapy, as traditional therapy for CRC, has exerted well antitumor effect and greatly improved the survival of CRC patients. Nevertheless, chemoresistance is one of the major problems during chemotherapy for CRC and significantly limits the efficacy of the treatment and influences the prognosis of patients. To overcome chemoresistance in CRC, many strategies are being investigated. Here, we review the common and novel measures to combat the resistance, including drug repurposing (nonsteroidal anti-inflammatory drugs, metformin, dichloroacetate, enalapril, ivermectin, bazedoxifene, melatonin, and S-adenosylmethionine), gene therapy (ribozymes, RNAi, CRISPR/Cas9, epigenetic therapy, antisense oligonucleotides, and noncoding RNAs), protein inhibitor (EFGR inhibitor, S1PR2 inhibitor, and DNA methyltransferase inhibitor), natural herbal compounds (polyphenols, terpenoids, quinones, alkaloids, and sterols), new drug delivery system (nanocarriers, liposomes, exosomes, and hydrogels), and combination therapy. These common or novel strategies for the reversal of chemoresistance promise to improve the treatment of CRC.
Collapse
Affiliation(s)
- Shu-Chang Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ming-Xing Miao
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ye-Min Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Jiang M, Li S, Wu J, Li W, Wen XA, Liang H, Yang F. Designing biotin-human serum albumin nanoparticles to enhance the targeting ability of binuclear ruthenium(III) compound. J Inorg Biochem 2020; 215:111318. [PMID: 33301985 DOI: 10.1016/j.jinorgbio.2020.111318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
On the one hand, to obtain a novel next-generation anticancer metal agent; on the other hand, to improve the targeting ability and decrease side effects of metal agent, we proposed to design active-targeting human serum albumin (HSA) nanoparticles (NPs) to achieve the end. Thus, we not only designed and synthesized two ruthenium (Ru) thiosemicarbazone compounds (C1 and C2) but also succeeded in constructing active Biotin-HSA NPs for Ru(III) compounds. Importantly, Biotin-HSA-C2 NPs not only possessed a stronger capacity for killing MCF-7 cells and inhibiting their migration versusC2 alone but also increased accumulation compared to non-malignant WI-38 cells. Additionally, C2 and Biotin-HSA-C2 NPs act against MCF-7 cells by the following potential mechanism: 1) arresting the cell cycle in the S phase by regulating cyclin and cyclin-dependent kinases; 2) inducing apoptosis by releasing cytochrome c to activate caspase-9/3; 3) inhibiting the expression of p-EGFR and regulating its neighboring cellular pathways, followed by the inactivation of PI3K/Akt and activation of p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China; School of food and biochemical engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi, China
| | - Shanhe Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Junmiao Wu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Wenjuan Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Xiao-An Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
6
|
Krasanakis T, Nikolouzakis TK, Sgantzos M, Mariolis-Sapsakos T, Souglakos J, Spandidos DA, Tsitsimpikou C, Tsatsakis A, Tsiaoussis J. Role of anabolic agents in colorectal carcinogenesis: Myths and realities (Review). Oncol Rep 2019; 42:2228-2244. [PMID: 31578582 PMCID: PMC6826302 DOI: 10.3892/or.2019.7351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the four leading causes of cancer‑related mortality worldwide. Even though over the past few decades the global scientific community has made tremendous efforts to understand this entity, many questions remain to be raised on this issue and even more to be answered. Epidemiological findings have unveiled numerous environmental and genetic risk factors, each one contributing to a certain degree to the final account of new CRC cases. Moreover, different trends have been revealed regarding the age of onset of CRC between the two sexes. That, in addition to newly introduced therapeutic approaches for various diseases based on androgens, anti‑androgens and anabolic hormones has raised some concerns regarding their possible carcinogenic effects or their synergistic potential with other substances/risk factors, predisposing the individual to CRC. Notably, despite the intense research on experimental settings and population studies, the conclusions regarding the majority of anabolic substances are ambiguous. Some of these indicate the carcinogenic properties of testosterone, dihydrotestosterone (DHT), growth hormone and insulin‑like growth factor (IGF) and others, demonstrating their neutral nature or even their protective one, as in the case of vitamin D. Thus, the synergistic nature of anabolic substances with other CRC risk factors (such as type 2 diabetes mellitus, metabolic syndrome and smoking) has emerged, suggesting a more holistic approach.
Collapse
Affiliation(s)
- Theodore Krasanakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| | | | - Markos Sgantzos
- Faculty of Medicine, Department of Anatomy, Faculty of Medicine, University of Thessaly, 41221 Larissa, Greece
| | - Theodore Mariolis-Sapsakos
- National and Kapodistrian University of Athens, Agioi Anargyroi General and Oncologic Hospital of Kifisia, 14564 Athens, Greece
| | - John Souglakos
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
7
|
Kurtul N, Eroglu C, Unal D, Tasdemir EA, Orhan O, Zararsiz G, Baran M, Kaplan B, Kontas O. Prognostic value of SPARC expression in unresectable NSCLC treated with concurrent chemoradiotherapy. Asian Pac J Cancer Prev 2015; 15:8911-6. [PMID: 25374228 DOI: 10.7314/apjcp.2014.15.20.8911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of the present study was to determine the predictive/prognostic value of the secreted protein, acidic and rich in cysteine (SPARC) in cases of unresectable, locally advanced, non-small cell lung cancer. MATERIALS AND METHODS The study included 84 patients with Stage IIIA-B non-small cell lung cancer, undergoing simultaneous chemoradiotherapy including radiotherapy at a dose of 66 Gy and weekly docataxel (20 mg/m2) and cisplatin (20 mg/m2). SPARC expression was studied in biopsy material by immunohistochemical methods and correlations with treatment responses or survival were evaluated. RESULTS Median overall survival was 16±2.73 (11.55-20.46) months for low expression vs 7±1.79 months (7.92-16.08) months for high expression (p=0.039), while median local control was 13±2.31 (8.48-17.5) months for low expression vs 6±0.85 (4.34-7.66) months for high expression (p=0.045) and median progression-free survival was 10±2.31 (5.48-14.5) months for low expression vs 6±1.10 (3.85-8.15) months for high expression (p=0.022). In both univariate and multivariate analyses, high SPARC expression was associated with significantly shorter overall survival (p=0.003, p=0.007, respectively), local control (p=0.008, p=0.036) and progression-free survival (p=0.004, p=0.029) when compared to low SPARC expression. No significant difference was detected between high and low SPARC expression groups regarding age, sex, T stage, N stage, histopathology and stage-related patient characteristics. CONCLUSIONS High SPARC expression was identified as a poor prognostic factor in cases with locally advanced NSCLC treated with concurrent chemoradiotherapy.
Collapse
Affiliation(s)
- Neslihan Kurtul
- Department of Radiation Oncology, Sutcu Imam University Medical Faculty, Kahramanmaras, Turkey E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ribeiro N, Sousa SR, Brekken RA, Monteiro FJ. Role of SPARC in bone remodeling and cancer-related bone metastasis. J Cell Biochem 2014; 115:17-26. [PMID: 24038053 DOI: 10.1002/jcb.24649] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/13/2013] [Indexed: 12/23/2022]
Abstract
There is a growing socioeconomic recognition that clinical bone diseases such as bone infections, bone tumors and osteoporotic bone loss mainly associated with ageing, are major issues in today's society. SPARC (secreted protein, acidic and rich in cysteine), a matricellular glycoprotein, may be a promising therapeutic target for preventing or treating bone-related diseases. In fact, SPARC is associated with tissue remodeling, repair, development, cell turnover, bone mineralization and may also participate in growth and progression of tumors, namely cancer-related bone metastasis. Yet, the function of SPARC in such biological processes is poorly understood and controversial. The main objective of this work is to review the current knowledge related to the activity of SPARC in bone remodeling, tumorigenesis, and bone metastasis. Progress in understanding SPARC biology may provide novel strategies for bone regeneration and the development of anti-angiogenic, anti-proliferative, or counter-adhesive treatments specifically against bone metastasis.
Collapse
Affiliation(s)
- Nilza Ribeiro
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal; Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia (FEUP), Universidade do Porto, Rua Roberto Frias, s/n, 4200-465, Porto, Portugal
| | | | | | | |
Collapse
|
9
|
Ma YS, Hsu SC, Weng SW, Yu CC, Yang JS, Lai KC, Lin JP, Lin JG, Chung JG. Crude extract of Rheum palmatum L induced cell death in LS1034 human colon cancer cells acts through the caspase-dependent and -independent pathways. ENVIRONMENTAL TOXICOLOGY 2014; 29:969-980. [PMID: 23315830 DOI: 10.1002/tox.21827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/17/2012] [Accepted: 10/20/2012] [Indexed: 06/01/2023]
Abstract
Crude extract of Rheum palmatum L (CERP) has been used to treat different diseases in the Chinese population for decades. In this study, we investigated the effects of CERP on LS1034 human colorectal cancer cells in vitro and also examined possible mechanisms of cell death. Flow cytometric assays were used to measure the percentage of viable cells, cell cycle distribution including the sub-G1 phase (apoptosis), the activities of caspase-8, -9, and -3, reactive oxygen species (ROS) and Ca(2+) levels, and mitochondrial membrane potential (ΔΨm). DNA damage, nuclei condensation, protein expression, and translocation were examined by Comet assay, 4'-6-diamidino-2-phenylindole (DAPI) staining, Western blotting, and confocal laser system microscope, respectively. CERP induced apoptosis as seen by DNA fragmentation and DAPI staining in a concentration- and time-dependent manner in cancer cells. CERP was associated with an increase in the Bax/Bcl-2 protein ratio and CERP promoted the activities of caspase-8, -9, and -3. Both ROS and Ca(2+) levels were increased by CERP but the compound decreased levels of ΔΨm in LS1034 cells. Laser confocal microscope also confirmed that CERP promoted the expressions of AIF, Endo G, cytochrome c, and GADD153 to induce apoptosis through mitochondrial-dependent pathway.
Collapse
Affiliation(s)
- Yi-Shih Ma
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Chinese Medicine, Changhua Hospital, Department of Health, Executive Yuan, Changhua 513, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Is carcinoma a mesenchymal disease? The role of the stromal microenvironment in carcinogenesis. Pathology 2013; 45:371-81. [PMID: 23594691 DOI: 10.1097/pat.0b013e328360b600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most research into the biology of carcinoma has focused on the epithelial cells therein; the inherent assumption has been that the tumour arises from epithelial cells 'gone bad', and that the surrounding stroma is simply an 'innocent bystander'. However, there is increasing evidence that there is a complex interplay between tumour cells and their surrounding microenvironment, and that the latter may be just as important in determining the development and clinical behaviour of a given tumour. Similarly, traditional oncological practice has been predominantly aimed at a perceived ideal goal of killing all the tumour epithelial cells, with only a few recently developed therapies seeking to affect other components (such as tumour vasculature); but identifying stromal factors involved in tumour growth and survival may well lead to the development of novel therapies. This review examines current understanding of the interplay between tumour epithelial cells and their microenvironment, and enumerates various stromal factors which appear to play a role in tumour progression and/or metastasis.
Collapse
|
11
|
De Mattia E, Dreussi E, Cecchin E, Toffoli G. Pharmacogenetics of the nuclear hormone receptors: the missing link between environment and drug effects? Pharmacogenomics 2013; 14:2035-54. [DOI: 10.2217/pgs.13.214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the last decade, genetic variations in ABC/SLC transporters and phase I/II enzymes have raised pharmacogenetic markers as being predictive to the attention of researchers in the field of personalized medicine in oncology. However, it is becoming evident that the sequence variations in these genes cannot address by themselves the sharp interindividual variability in drug effects. Recently, nuclear receptors (NRs), including pregnane X receptor, constitutive androstane receptor, retinoid X receptor, farnesoid X receptor, liver X receptor, vitamin D receptor, peroxisome proliferator-activated receptors and HNF4A, have demonstrated key roles in regulating transporter and metabolic gene expression in response to xeno/endobiotics, as well as antineoplastic drugs. These findings attracted interest to the genetics of the NRs for their possible role in influencing the metabolism and pharmacological profiles of chemotherapeutics. In this review, we aim to summarize the most recent findings in the innovative field of NR pharmacogenetics and findings in how they could integrate with more traditional markers in order to improve drug treatment personalization.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Eva Dreussi
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Erika Cecchin
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| |
Collapse
|
12
|
Wong JCT, Hasan MR, Rahman M, Yu AC, Chan SK, Schaeffer DF, Kennecke HF, Lim HJ, Owen D, Tai IT. Nucleophosmin 1, upregulated in adenomas and cancers of the colon, inhibits p53-mediated cellular senescence. Int J Cancer 2013; 133:1567-77. [PMID: 23536448 DOI: 10.1002/ijc.28180] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/07/2013] [Indexed: 01/06/2023]
Abstract
Dysregulation of nucleophosmin 1 (NPM1) has been found in numerous solid and hematological malignancies. Our previous meta-analysis of colorectal cancer (CRC) high throughput gene expression profiling studies identified it as a consistently reported up-regulated gene in the malignant state. Our aims were to compare NPM1 expression in normal colon, adenoma and CRC, to correlate their expressions with clinico-pathological parameters, and to assess the biological role of aberrant NPM1 expression in CRC cells. NPM1 transcript levels were studied in human CRC cell lines, whereas a tissue microarray of 57 normal human colon, 40 adenoma and 185 CRC samples were used to analyze NPM1 protein expression by immunohistochemistry. CRC cell lines were subjected to transient siRNA-mediated knockdown to study NPM1's roles on cell viability and senescence. NPM1 transcript levels were 7-11-folds higher in three different human CRC cell lines compared to normal colon cells. NPM1 protein expression was found to be progressively and significantly upregulated in CRC compared to adenomas and in adenomas compared to normal mucosa. Reducing NPM1 expression by siRNA had caused a significant decrease in cell viability, a concomitant increase in cellular senescence and cell cycle arrest. Cellular senescence induced under conditions of forced NPM1 suppression could be prevented by knocking down p53. The differential expression of NPM1 along the normal colon-adenoma-carcinoma progression and its involvement in resisting p53 related senescent growth arrest in CRC cell lines implicate its role in supporting CRC tumorigenesis.
Collapse
Affiliation(s)
- John C T Wong
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Inhibition of COX-2 in colon cancer modulates tumor growth and MDR-1 expression to enhance tumor regression in therapy-refractory cancers in vivo. Neoplasia 2013; 14:624-33. [PMID: 22904679 DOI: 10.1593/neo.12486] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 12/11/2022] Open
Abstract
Higher cyclooxygenase 2 (COX-2) expression is often observed in aggressive colorectal cancers (CRCs). Here, we attempt to examine the association between COX-2 expression in therapy-refractory CRC, how it affects chemosensitivity, and whether, in primary tumors, it is predictive of clinical outcomes. Our results revealed higher COX-2 expression in chemoresistant CRC cells and tumor xenografts. In vitro, the combination of either aspirin or celecoxib with 5-fluorouracil (5-FU) was capable of improving chemosensitivity in chemorefractory CRC cells, but a synergistic effect with 5-FU could only be demonstrated with celecoxib. To examine the potential clinical significance of these observations, in vivo studies were undertaken, which also showed that the greatest tumor regression was achieved in chemoresistant xenografts after chemotherapy in combination with celecoxib, but not aspirin. We also noted that these chemoresistant tumors with higher COX-2 expression had a more aggressive growth rate. Given the dramatic response to a combination of celecoxib + 5-FU, the possibility that celecoxib may modulate chemosensitivity as a result of its ability to inhibit MDR-1 was examined. In addition, assessment of a tissue microarray consisting of 130 cases of CRCs revealed that, in humans, higher COX-2 expression was associated with poorer survival with a 68% increased risk of mortality, indicating that COX-2 expression is a marker of poor clinical outcome. The findings of this study point to a potential benefit of combining COX-2 inhibitors with current regimens to achieve better response in the treatment of therapy-refractory CRC and in using COX-2 expression as a prognostic marker to help identify individuals who would benefit the greatest from closer follow-up and more aggressive therapy.
Collapse
|
14
|
Nagaraju GP, EI-Rayes BF. SPARC and DNA methylation: Possible diagnostic and therapeutic implications in gastrointestinal cancers. Cancer Lett 2013; 328:10-7. [DOI: 10.1016/j.canlet.2012.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/17/2012] [Accepted: 08/22/2012] [Indexed: 02/06/2023]
|
15
|
Huang Y, Zhang J, Zhao YY, Jiang W, Xue C, Xu F, Zhao HY, Zhang Y, Zhao LP, Hu ZH, Yao ZW, Liu QY, Zhang L. SPARC expression and prognostic value in non-small cell lung cancer. CHINESE JOURNAL OF CANCER 2012; 31:541-8. [PMID: 23114088 PMCID: PMC3777514 DOI: 10.5732/cjc.012.10212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Secreted protein, acidic and rich in cysteine (SPARC) is expressed in numerous types of tumors and is suggested to have prognostic value. Moreover, because of its strong affinity for albumin, and hence albumin-bound drugs, SPARC has increasingly become a focus for research. In this study, we aimed to determine SPARC expression in patients with non-small cell lung cancer (NSCLC) and investigate the association of SPARC with disease prognosis. Tissue microarrays were constructed with specimens from 105 patients with NSCLC treated at Sun Yat-sen University Cancer Center, and immunohistochemical analysis was performed on these tissue microarrays to assess SPARC expression. Our results showed that SPARC expression status did not significantly relate with age, gender, and tumor stage. However, SPARC was expressed more frequently in squamous cell carcinoma than in adenocarcinoma (75% vs. 43.5%, P = 0.004). Patients with smoking history had higher SPARC expression than non-smokers (68.2% vs. 33.3%, P = 0.002). In both univariate and multivariate analyses, SPARC was a prognostic factor of overall survival (HR = 0.32; 95% CI: 0.16-0.65) but not disease-free survival. Our study indicates that SPARC expression is higher in squamous cell carcinoma than in adenocarcinoma in NSCLC. Most notably, SPARC can be used as a prognostic factor for NSCLC.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Oncology in South China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schultz CR, Golembieski WA, King DA, Brown SL, Brodie C, Rempel SA. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival. Mol Cancer 2012; 11:20. [PMID: 22480225 PMCID: PMC3349587 DOI: 10.1186/1476-4598-11-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/05/2012] [Indexed: 12/18/2022] Open
Abstract
Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting pAKT. 4) Combined inhibition of HSP27 and pAKT is more effective than TMZ treatment alone. Conclusions We conclude that inhibition of HSP27 alone, or in combination with pAKT inhibitor IV, may be an effective therapeutic approach to inhibit SPARC-induced glioma cell invasion and survival in SPARC-positive/PTEN-wildtype and SPARC-positive/PTEN-null tumors, respectively.
Collapse
Affiliation(s)
- Chad R Schultz
- The Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The population-based association between low vitamin D status and increased cancer risk can be inconsistent, but it is now generally accepted. These relationships link low serum 25OHD (25-hydroxyvitamin D) levels to cancer, whereas cell-based studies show that the metabolite 1,25(OH)2D (1,25-dihydroxyvitamin D) is a biologically active metabolite that works through vitamin D receptor to regulate gene transcription. In the present review we discuss the literature relevant to the molecular events that may account for the beneficial impact of vitamin D on cancer prevention or treatment. These data show that although vitamin D-induced growth arrest and apoptosis of tumour cells or their non-neoplastic progenitors are plausible mechanisms, other chemoprotective mechanisms are also worthy of consideration. These alternative mechanisms include enhancing DNA repair, antioxidant protection and immunomodulation. In addition, other cell targets, such as the stromal cells, endothelial cells and cells of the immune system, may be regulated by 1,25(OH)2D and contribute to vitamin D-mediated cancer prevention.
Collapse
|
18
|
Rahman M, Chan APK, Tang M, Tai IT. A peptide of SPARC interferes with the interaction between caspase8 and Bcl2 to resensitize chemoresistant tumors and enhance their regression in vivo. PLoS One 2011; 6:e26390. [PMID: 22069448 PMCID: PMC3206029 DOI: 10.1371/journal.pone.0026390] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/26/2011] [Indexed: 12/13/2022] Open
Abstract
SPARC, a matricellular protein with tumor suppressor properties in certain human cancers, was initially identified in a genome-wide analysis of differentially expressed genes in chemotherapy resistance. Its exciting new role as a potential chemosensitizer arises from its ability to augment the apoptotic cascade, although the exact mechanisms are unclear. This study further examines the mechanism by which SPARC may be promoting apoptosis and identifies a smaller peptide analogue with greater chemosensitizing and tumor-regressing properties than the native protein. We examined the possibility that the apoptosis-enhancing activity of SPARC could reside within one of its three biological domains (N-terminus (NT), the follistatin-like (FS), or extracellular (EC) domains), and identified the N-terminus as the region with its chemosensitizing properties. These results were not only confirmed by studies utilizing stable cell lines overexpressing the different domains of SPARC, but as well, with a synthetic 51-aa peptide spanning the NT-domain. It revealed that the NT-domain induced a significantly greater reduction in cell viability than SPARC, and that it enhanced the apoptotic cascade via its activation of caspase 8. Moreover, in chemotherapy resistant human colon, breast and pancreatic cancer cells, its chemosensitizing properties also depended on its ability to dissociate Bcl2 from caspase 8. These observations translated to clinically significant findings in that, in-vivo, mouse tumor xenografts overexpressing the NT-domain of SPARC had significantly greater sensitivity to chemotherapy and tumor regression, even when compared to the highly-sensitive SPARC-overexpressing tumors. Our results identified an interplay between the NT-domain, Bcl2 and caspase 8 that helps augment apoptosis and as a consequence, a tumor's response to therapy. This NT-domain of SPARC and its 51-aa peptide are highly efficacious in modulating and enhancing apoptosis, thereby conferring greater chemosensitivity to resistant tumors. Our findings provide additional insight into mechanisms involved in chemotherapy resistance and a potential novel therapeutic that specifically targets this devastating phenomenon.
Collapse
Affiliation(s)
- Mahbuba Rahman
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
19
|
Anti-cancer role of SPARC, an inhibitor of adipogenesis. Cancer Treat Rev 2011; 37:559-66. [PMID: 21237573 DOI: 10.1016/j.ctrv.2010.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/01/2010] [Accepted: 12/07/2010] [Indexed: 12/17/2022]
Abstract
SPARC (a secreted protein acidic and rich in cysteine) has a reputation for being potent anti-cancer and anti-obesity molecule. It is one of the first known matricellular protein that modulates interactions between cells and extracellular matrix (ECM) and is associated with the 'balance' of white adipose tissue (WAT) as well as lipogenesis and lipolysis during adipogenesis. Adipogenesis is an indication for the development of obesity and has been related to a wide variety of cancers including breast cancer, endometrial cancer, esophageal cancer, etc. Adipogenesis mainly involves ECM remodeling, changes in cell-ECM interactions, and cytoskeletal rearrangement. SPARC can also prevent hypertrophy of adipocytes and hyperplasia of adipocyte progenitors. In addition to SPARC's inhibitory role in adipogenesis, it has also been known to be involved in cell cycle, cell proliferation, cell invasion, adhesion, migration, angiogenesis and apoptosis. Molecular cancer biology and clinical biochemistry have significantly enhanced our understanding of the mechanisms that motivate the anti-cancer and anti-obesity action of SPARC. Recent studies elucidating the signaling pathways that are activated by SPARC can help develop the beneficial aspects of SPARC for cancer therapy and obesity prevention. This review focuses on the anti-cancer role of SPARC as it pertains to obesity.
Collapse
|
20
|
Markle B, May EJ, Majumdar APN. Do nutraceutics play a role in the prevention and treatment of colorectal cancer? Cancer Metastasis Rev 2010; 29:395-404. [PMID: 20717706 DOI: 10.1007/s10555-010-9234-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colorectal cancer is the third most common cancer worldwide with a 5-year survival of 50%. Current chemotherapeutic regimens used for advanced colorectal cancer provide an average survival of approximately 20 months. Non-toxic agents such as nutraceutics and supplements have been shown to aid in the prevention and adjuvant treatment of colorectal cancer. This article will discuss the epidemiology, progression, prevention, treatment, and recurrence of colorectal cancer and the role of nutraceutics and supplements in the treatment process.
Collapse
Affiliation(s)
- Brian Markle
- Department of Internal Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
21
|
Xu YZ, Heravi M, Thuraisingam T, Di Marco S, Muanza T, Radzioch D. Brg-1 mediates the constitutive and fenretinide-induced expression of SPARC in mammary carcinoma cells via its interaction with transcription factor Sp1. Mol Cancer 2010; 9:210. [PMID: 20687958 PMCID: PMC2924311 DOI: 10.1186/1476-4598-9-210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/05/2010] [Indexed: 02/08/2023] Open
Abstract
Background Secreted protein, acidic and rich in cysteine (SPARC) is a matricellular protein that mediates cell-matrix interactions. It has been shown, depending on the type of cancer, to possess either pro- or anti-tumorigenic properties. The transcriptional regulation of the SPARC gene expression has not been fully elucidated and the effects of anti-cancer drugs on this process have not been explored. Results In the present study, we demonstrated that chromatin remodeling factor Brg-1 is recruited to the proximal SPARC promoter region (-130/-56) through an interaction with transcription factor Sp1. We identified Brg-1 as a critical regulator for the constitutive expression levels of SPARC mRNA and protein in mammary carcinoma cell lines and for SPARC secretion into culture media. Furthermore, we found that Brg-1 cooperates with Sp1 to enhance SPARC promoter activity. Interestingly, fenretinide [N-4(hydroxyphenyl) retinamide, 4-HPR], a synthetic retinoid with anti-cancer properties, was found to up-regulate the transcription, expression and secretion of SPARC via induction of the Brg-1 in a dose-dependent manner. Finally, our results demonstrated that fenretinide-induced expression of SPARC contributes significantly to a decreased invasion of mammary carcinoma cells. Conclusions Overall, our results reveal a novel cooperative role of Brg-1 and Sp1 in mediating the constitutive and fenretinide-induced expression of SPARC, and provide new insights for the understanding of the anti-cancer effects of fenretinide.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
As a steroid hormone that regulates mineral homeostasis and bone metabolism, 1α, 25-dihydroxycholecalciferol (calcitriol) also has broad spectrum anti-tumor activities as supported by numerous epidemiological and experimental studies. Calcitriol potentiates the anti-tumor activities of multiple chemotherapeutics agents including DNA-damaging agents cisplatin, carboplatin and doxorubicin; antimetabolites 5-fluorouracil, cytarabine, hydroxyurea, cytarabine and gemcitabine; and microtubule-disturbing agents paclitaxel and docetaxel. Calcitriol elicits anti-tumor effects mainly through the induction of cancer cell apoptosis, cell cycle arrest, differentiation, angiogenesis and the inhibition of cell invasiveness by a number of mechanisms. Calcitriol enhances the cytotoxic effects of gamma irradiation and certain antioxidants and naturally derived compounds. Inhibition of calcitriol metabolism by 24-hydroxylase promotes growth inhibition effect of calcitriol. Calcitriol has been used in a number of clinical trials and it is important to note that sufficient dose and exposure to calcitriol is critical to achieve anti-tumor effect. Several trials have demonstrated that safe and feasible to administer high doses of calcitriol through intermittent regimen. Further well designed clinical trials should be conducted to better understand the role of calcitriol in cancer therapy.
Collapse
Affiliation(s)
- Yingyu Ma
- 1. Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
23
|
Arnold SA, Brekken RA. SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 2009; 3:255-73. [PMID: 19809893 PMCID: PMC2778590 DOI: 10.1007/s12079-009-0072-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/14/2009] [Indexed: 12/11/2022] Open
Abstract
Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature.
Collapse
Affiliation(s)
- Shanna A Arnold
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology and Departments of Surgery and Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-8593 USA
| | | |
Collapse
|
24
|
Podhajcer OL, Benedetti LG, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27:691-705. [PMID: 18542844 DOI: 10.1007/s10555-008-9146-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tumor growth is essentially the result of an evolving cross-talk between malignant and surrounding stromal cells (fibroblasts, endothelial cells and inflammatory cells). This heterogeneous mass of extracellular matrix and intermingled cells interact through cell-cell and cell-matrix contacts. Malignant cells also secrete soluble proteins that reach neighbor stromal cells, forcing them to provide the soil on which they will grow and metastasize. Different studies including expression array analysis identified the matricellular protein SPARC as a marker of poor prognosis in different cancer types. Further evidence demonstrated that high SPARC levels are often associated with the most aggressive and highly metastatic tumors. Here we describe the most recent evidence that links SPARC with human cancer progression, the controversy regarding its role in certain human cancers and the physiological processes in which SPARC is involved: epithelial-mesenchymal transition, immune surveillance and angiogenesis. Its relevance as a potential target in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Osvaldo L Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
25
|
Sangaletti S, Di Carlo E, Gariboldi S, Miotti S, Cappetti B, Parenza M, Rumio C, Brekken RA, Chiodoni C, Colombo MP. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 2008; 68:9050-9. [PMID: 18974151 DOI: 10.1158/0008-5472.can-08-1327] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Other than genetic imprinting and epithelial to mesenchymal transition, cancer cells need interaction with the nearby stroma toward metastasis. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein known to regulate extracellular matrix (ECM) deposition and cell-ECM interaction. Gene expression profiles associate SPARC to malignant progression. Using reciprocal bone marrow chimeras between SPARC knockout and wild-type mice, we show that SPARC produced by inflammatory cells is necessary for spontaneous, but not experimental, i.v. metastasis. Macrophage-derived SPARC induces cancer cell migration and enhances their migration to other ECM proteins at least through alpha(v)beta(5) integrin. Indeed, RNA interference knockdown of beta(5) integrin expression reduces cell migration in vitro and metastasis in vivo. Together these results show that macrophage-derived SPARC takes part in metastasis, acting at the step of integrin-mediated migration of invasive cells.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Department of Experimental Oncology, Immunotherapy and Gene Therapy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Universita degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat 2008; 11:231-46. [PMID: 18849185 DOI: 10.1016/j.drup.2008.08.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 02/06/2023]
Abstract
The ability to effectively target a tumor to achieve complete regression and cure is the ultimate goal that drives our need to better understand tumor biology. Recently, SPARC has generated considerable interest as a multi-faceted protein that belongs to a family of matricellular proteins. It functions not only to modulate cell-cell and cell-matrix interactions, but its de-adhesive and growth inhibitory properties in non-transformed cells have led to studies to assess its role in cancer. Its divergent actions reflect the complexity of this protein, because in certain types of cancers, such as melanomas and gliomas, SPARC is associated with a highly aggressive tumor phenotype, while in others, mainly ovarian, neuroblastomas and colorectal cancers, SPARC may function as a tumor suppressor. Recent studies have also demonstrated a role for SPARC in sensitizing therapy-resistant cancers. Here, the role of SPARC in cancer progression and its potential application in cancer therapy is discussed.
Collapse
|
27
|
Said NA, Elmarakby AA, Imig JD, Fulton DJ, Motamed K. SPARC ameliorates ovarian cancer-associated inflammation. Neoplasia 2008; 10:1092-104. [PMID: 18813349 PMCID: PMC2546586 DOI: 10.1593/neo.08672] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/06/2008] [Accepted: 07/08/2008] [Indexed: 02/04/2023]
Abstract
We have recently identified that the role of secreted protein acidic and rich in cysteine (SPARC) in amelioration of peritoneal ovarian carcinomatosis is mediated, at least in part, through mesothelial cell/lysophosphatidic acid-induced inflammatory response in ovarian cancer cells. The aim of this study was to elucidate the molecular mechanisms of the interactions between tumor cells and the cellular components of the ovarian cancer peritoneal microenvironment, specifically, mesothelial cells and macrophages. We found that SPARC not only significantly reduced macrophage chemoattractant protein-1 production and its macrophage chemotactic effect, but also attenuated the response of ovarian cancer cells to the mitogenic and proinvasive effects of macrophage chemo-attractant protein-1 and decreased macrophage-induced cancer cell invasiveness. Overexpression of SPARC in ovarian cancer cells significantly attenuated macrophage- and mesothelial cell-induced production and activity of interleukin-6, prostanoids (prostaglandins E2 and 8-isoprostanes) as well as matrix metalloproteinases and urokinase plasminogen activator. Moreover, the effects of SPARC overexpression in ovarian cancer cells were mediated, in part, through inhibition of nuclear factor-kappaB promoter activation. These results indicate, for the first time, that the effects of tumor SPARC as a negative regulator of ovarian cancer are mediated through decreased recruitment of macrophages and downregulation of the associated inflammation.
Collapse
Affiliation(s)
- Neveen A Said
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
| | - Ahmed A Elmarakby
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
| | - John D Imig
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
- Department of Pharmacology, Medical College of Georgia, Augusta, GA, USA
| | - Kouros Motamed
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Abraxis BioScience, Marina del Rey, CA, USA
| |
Collapse
|
28
|
Podhajcer OL, Benedetti L, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27:523-37. [PMID: 18459035 DOI: 10.1007/s10555-008-9135-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tumor growth is essentially the result of an evolving cross-talk between malignant and surrounding stromal cells (fibroblasts, endothelial cells and inflammatory cells). This heterogeneous mass of extracellular matrix and intermingled cells interact through cell-cell and cell-matrix contacts. Malignant cells also secrete soluble proteins that reach neighbor stromal cells, forcing them to provide the soil on which they will grow and metastasize. Different studies including expression array analysis identified the matricellular protein SPARC as a marker of poor prognosis in different cancer types. Further evidence demonstrated that high SPARC levels are often associated with the most aggressive and highly metastatic tumors. Here we describe the most recent evidence that links SPARC with human cancer progression, the controversy regarding its role in certain human cancers and the physiological processes in which SPARC is involved: epithelial-mesenchymal transition, immune surveillance and angiogenesis. Its relevance as a potential target in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Osvaldo L Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
29
|
Sangaletti S, Colombo MP. Matricellular proteins at the crossroad of inflammation and cancer. Cancer Lett 2008; 267:245-53. [PMID: 18471960 DOI: 10.1016/j.canlet.2008.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 02/26/2008] [Accepted: 03/20/2008] [Indexed: 01/08/2023]
Abstract
Some proteins of the extracellular matrix known as matricellular proteins have regulatory function in all aspects of physiological and pathological stroma rearrangement. Many aspects of their activity are related to inflammation and immune response suggesting their role in bridging inflammation and cancer.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Department of Experimental Oncology, Immunotherapy and Gene Therapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | | |
Collapse
|
30
|
SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2'deoxycytidine to increase SPARC expression and improve therapy response. Br J Cancer 2008; 98:1810-9. [PMID: 18458674 PMCID: PMC2410109 DOI: 10.1038/sj.bjc.6604377] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Poor clinical outcomes in cancer can often be attributed to inadequate response to chemotherapy. Strategies to overcome either primary or acquired chemoresistance may ultimately impact on patients' survival favourably. We previously showed that lower levels of SPARC were associated with therapy-refractory colorectal cancers (CRC), and that upregulating its expression enhances chemo-sensitivity resulting in greater tumour regression in vivo. Here, we examined aberrant hypermethylation of the SPARC promoter as a potential mechanism for repressing SPARC in CRCs and whether restoration of its expression with a demethylating agent 5-Aza-2′deoxycytidine (5-Aza) could enhance chemosensitivity. Initially, the methylation status of the SPARC promoter from primary human CRCs were assessed following isolation of genomic DNA from laser capture microdissected specimens by direct DNA sequencing. MIP101, RKO, HCT 116, and HT-29 CRC cell lines were also used to evaluate the effect of 5-Aza on: SPARC promoter methylation, SPARC expression, the interaction between DNMT1 and the SPARC promoter (ChIP assay), cell viability, apoptosis, and cell proliferation. Our results revealed global hypermethylation of the SPARC promoter in CRCs, and identified specific CpG sites that were consistently methylated in CRCs but not in normal colon. We also demonstrate that SPARC repression in CRC cell lines could be reversed following exposure to 5-Aza, which resulted in increased SPARC expression, leading to a significant reduction in cell viability (by an additional 39% in RKO cells) and greater apoptosis (an additional 18% in RKO cells), when combined with 5-FU in vitro (in comparison to 5-FU alone). Our exciting findings suggest potential diagnostic markers of CRCs based on specific methylated CpG sites. Moreover, the results reveal the therapeutic utility of employing demethylating agents to improve response through augmentation of SPARC expression.
Collapse
|
31
|
Tang MJ, Tai IT. A novel interaction between procaspase 8 and SPARC enhances apoptosis and potentiates chemotherapy sensitivity in colorectal cancers. J Biol Chem 2007; 282:34457-67. [PMID: 17897953 DOI: 10.1074/jbc.m704459200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chemotherapy resistance accounts for the high mortality rates in patients with advanced cancers. We previously used a genomics approach to determine novel genes associated with this phenomenon and identified secreted protein acidic and rich in cysteine (SPARC) as a chemosensitizer capable of reversing therapy resistance in colorectal cancer cells by enhancing apoptosis in vitro and tumor regression in vivo. Here, we examined the mechanisms by which SPARC enhances apoptosis in the presence of chemotherapy. We show that SPARC potentiates apoptosis by augmenting the signaling cascade in a caspase-8-dependent manner, because apoptosis can be abolished by caspase 8 small interfering RNA in the presence of SPARC. This occurs independently of death receptor activation and leads to downstream involvement of Bid and subsequent apoptosis. Interestingly, this results from an interaction between SPARC and the N terminus of the procaspase-8 DED-containing domain. These exciting findings provide an initial map of the apoptosis signaling events mediated by SPARC and how this can ultimately result in the reversal of chemotherapy resistance and enhanced tumor regression. This signaling cascade can be exploited therapeutically and may have potential clinical implications for patients with advanced and therapy-refractory cancers.
Collapse
Affiliation(s)
- Michelle J Tang
- Division of Gastroenterology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia, Canada
| | | |
Collapse
|