1
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Köksaldı S, Kayabaşı M, Emre S, Saatci AO. Ixabepilone related angiographically silent macular edema. Eur J Ophthalmol 2024; 34:NP97-NP100. [PMID: 38699790 DOI: 10.1177/11206721241237306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
INTRODUCTION We present a single-eyed case with a previous diagnosis of breast cancer who had intraretinal cystoid changes associated with the systemic administration of ixabepilone in her only seeing eye. To our best knowledge, this is the first reported case describing this phenomenon related to the ixabepilone administration. CASE DESCRIPTION A 54-year-old woman with a history of breast cancer was examined due to visual deterioration in her only good left eye. The patient had undergone cataract surgery and lens implantation in her right eye following a childhood accident, but subsequently had developed a refractory glaucoma and lost her right vision. Six cycles of 40 mg/m2 systemic ixabepilone (3-hly intravenous infusion once every 3 weeks) had been administered within the past six months. Her visual decline started two weeks following the last treatment session. She was offered intravitreal anti-vascular endothelial growth factor injection elsewhere. Fluorescein angiogram showed no dye leakage whereas spectral-domain optical coherence tomography demonstrated parafoveal intraretinal cystoid changes. En-face optical coherence tomography revealed petaloid type roundish hyporeflective areas at the level of superficial and deep vascular plexus. Ixabepilone-associated cystoid maculopathy was suspected as she received only ixabepilone for the chemotherapy in the last six months. We thus recommended her not to continue ixabepilone therapy. Ten weeks after the ixabepilone cessation, intraretinal cystoid changes had resolved completely. CONCLUSION Angiographically silent intraretinal cystoid changes may develop in association with the use of ixabepilone. Referral to an ophthalmologist should be considered for the patients experiencing visual complaints as ixabepilone cessation may lead to visual improvement and avoid unnecessary treatment.
Collapse
Affiliation(s)
- Seher Köksaldı
- Department of Ophthalmology, Dokuz Eylul University, Izmir, Turkey
| | - Mustafa Kayabaşı
- Department of Ophthalmology, Dokuz Eylul University, Izmir, Turkey
| | - Sinan Emre
- Department of Ophthalmology, Batıgöz Private Hospital, Izmir, Turkey
| | - Ali Osman Saatci
- Department of Ophthalmology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
3
|
Lafanechère L. The microtubule cytoskeleton: An old validated target for novel therapeutic drugs. Front Pharmacol 2022; 13:969183. [PMID: 36188585 PMCID: PMC9521402 DOI: 10.3389/fphar.2022.969183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Compounds targeting microtubules are widely used in cancer therapy with a proven efficacy. However, because they also target non-cancerous cells, their administration leads to numerous adverse effects. With the advancement of knowledge on the structure of tubulin, the regulation of microtubule dynamics and their deregulation in pathological processes, new therapeutic strategies are emerging, both for the treatment of cancer and for other diseases, such as neuronal or even heart diseases and parasite infections. In addition, a better understanding of the mechanism of action of well-known drugs such as colchicine or certain kinase inhibitors contributes to the development of these new therapeutic approaches. Nowadays, chemists and biologists are working jointly to select drugs which target the microtubule cytoskeleton and have improved properties. On the basis of a few examples this review attempts to depict the panorama of these recent advances.
Collapse
|
4
|
Elkaeed EB, Salam HAAE, Sabt A, Al-Ansary GH, Eldehna WM. Recent Advancements in the Development of Anti-Breast Cancer Synthetic Small Molecules. Molecules 2021; 26:7611. [PMID: 34946704 PMCID: PMC8709016 DOI: 10.3390/molecules26247611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Among all cancer types, breast cancer (BC) still stands as one of the most serious diseases responsible for a large number of cancer-associated deaths among women worldwide, and diagnosed cases are increasing year by year worldwide. For a very long time, hormonal therapy, surgery, chemotherapy, and radiotherapy were used for breast cancer treatment. However, these treatment approaches are becoming progressively futile because of multidrug resistance and serious side effects. Consequently, there is a pressing demand to develop more efficient and safer agents that can fight breast cancer belligerence and inhibit cancer cell proliferation, invasion and metastasis. Currently, there is an avalanche of newly designed and synthesized molecular entities targeting multiple types of breast cancer. This review highlights several important synthesized compounds with promising anti-BC activity that are categorized according to their chemical structures.
Collapse
Affiliation(s)
- Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia;
| | | | - Ahmed Sabt
- Chemistry of Natural Compounds Department, National Research Center, Dokki, Cairo 12622, Egypt;
| | - Ghada H. Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
5
|
βIII-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochim Biophys Acta Rev Cancer 2021; 1876:188607. [PMID: 34364992 DOI: 10.1016/j.bbcan.2021.188607] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022]
Abstract
Class III β-tubulin (βIII-tubulin) is frequently overexpressed in human tumors and is associated with resistance to microtubule-targeting agents, tumor aggressiveness, and poor patient outcome. Understanding the mechanisms regulating βIII-tubulin expression and the varied functions βIII-tubulin may have in different cancers is vital to assess the prognostic value of this protein and to develop strategies to enhance therapeutic benefits in βIII-tubulin overexpressing tumors. Here we gather all the available evidence regarding the clinical implications of βIII-tubulin overexpression in cancer, describe factors that regulate βIII-tubulin expression, and discuss current understanding of the mechanisms underlying βIII-tubulin-mediated resistance to microtubule-targeting agents and tumor aggressiveness. Finally, we provide an overview of emerging therapeutic strategies to target tumors that overexpress βIII-tubulin.
Collapse
|
6
|
Zottel A, Jovčevska I, Šamec N, Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit Rev Oncol Hematol 2021; 160:103283. [PMID: 33667657 DOI: 10.1016/j.critrevonc.2021.103283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma, the most common primary brain malignancy, is an exceptionally fatal cancer. Lack of suitable biomarkers and efficient treatment largely contribute to the therapy failure. Cytoskeletal proteins are crucial proteins in glioblastoma pathogenesis and can potentially serve as biomarkers and therapeutic targets. Among them, GFAP, has gained most attention as potential diagnostic biomarker, while vimentin and microtubules are considered as prospective therapeutic targets. Microtubules represent one of the best anti-cancer targets due to their critical role in cell proliferation. Despite testing in clinical trials, the efficiency of taxanes, epothilones, vinca-domain binding drugs, colchicine-domain binding drugs and γ-tubulin binding drugs remains to be confirmed. Moreover, tumor treating field that disrupts microtubules draw attention because of its high efficiency and is called "the fourth cancer treatment modality". Thereby, because of the involvement of cytoskeleton in key physiological and pathological processes, its therapeutic potential in glioblastoma is currently extensively investigated.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
8
|
Tubulin heterogeneity regulates functions and dynamics of microtubules and plays a role in the development of drug resistance in cancer. Biochem J 2019; 476:1359-1376. [DOI: 10.1042/bcj20190123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Microtubules, composed of αβ-tubulin heterodimers, exhibit diverse structural and functional properties in different cell types. The diversity in the microtubule structure originates from tubulin heterogeneities, namely tubulin isotypes and their post-translational modifications (PTMs). These heterogeneities confer differential stability to microtubules and provide spatial cues for the functioning of the cell. Furthermore, the altered expressions of tubulin isotypes and PTMs are prominent factors for the development of resistance against some cancer drugs. In this review, we summarize our current knowledge of the tubulin isotypes and PTMs and how, together, they control the cellular functions of the microtubules. We also describe how cancer cells use this tubulin heterogeneity to acquire resistance against clinical agents and discuss existing attempts to counter the developed resistance.
Collapse
|
9
|
Tang Y, Rodríguez-Salarichs J, Zhao Y, Cai P, Estévez-Gallego J, Balaguer-Pérez F, Redondo Horcajo M, Lucena-Agell D, Barasoain I, Díaz JF, Fang WS. Modification of C-seco taxoids through ring tethering and substituent replacement leading to effective agents against tumor drug resistance mediated by βIII-Tubulin and P-glycoprotein (P-gp) overexpressions. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Wang W, Zhang H, Wang X, Patterson J, Winter P, Graham K, Ghosh S, Lee JC, Katsetos CD, Mackey JR, Tuszynski JA, Wong GKS, Ludueña RF. Novel mutations involving βI-, βIIA-, or βIVB-tubulin isotypes with functional resemblance to βIII-tubulin in breast cancer. PROTOPLASMA 2017; 254:1163-1173. [PMID: 27943021 DOI: 10.1007/s00709-016-1060-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Tubulin is the target for very widely used anti-tumor drugs, including Vinca alkaloids, taxanes, and epothilones, which are an important component of chemotherapy in breast cancer and other malignancies. Paclitaxel and other tubulin-targeting drugs bind to the β subunit of tubulin, which is a heterodimer of α and β subunits. β-Tubulin exists in the form of multiple isotypes, which are differentially expressed in normal and neoplastic cells and differ in their ability to bind to drugs. Among them, the βIII isotype is overexpressed in many aggressive and metastatic cancers and may serve as a prognostic marker in certain types of cancer. The underpinning mechanisms accounting for the overexpression of this isotype in cancer cells are unclear. To better understand the role of β-tubulin isotypes in cancer, we analyzed over 1000 clones from 90 breast cancer patients, sequencing their β-tubulin isotypes, in search of novel mutations. We have elucidated two putative emerging molecular subgroups of invasive breast cancer, each of which involve mutations in the βI-, βIIA-, or βIVB isotypes of tubulin that increase their structural, and possibly functional, resemblance to the βIII isotype. A unifying feature of the first of the two subgroups is the mutation of the highly reactive C239 residue of βI- or βIVB-tubulin to L239, R239, Y239, or P239, culminating in probable conversion of these isotypes from ROS-sensitive to ROS-resistant species. In the second subgroup, βI, βIIA, and βIVB have up to seven mutations to the corresponding residues in βIII-tubulin. Given that βIII-tubulin has emerged as a pro-survival factor, overexpression of this isotype may confer survival advantages to certain cancer cell types. In this mini-review, we bring attention to a novel mechanism by which cancer cells may undergo adaptive mutational changes involving alternate β-tubulin isotypes to make them acquire some of the pro-survival properties of βIII-tubulin. These "hybrid" tubulins, combining the sequences and/or properties of two wild-type tubulins (βIII and either βI, βIIA, or βIVB), are novel isotypes expressed solely in cancer cells and may contribute to the molecular understanding and stratification of invasive breast cancer and provide novel molecular targets for rational drug development.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Hangxiao Zhang
- Beijing Institute of Genomics, Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xumin Wang
- Beijing Institute of Genomics, Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jordan Patterson
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Philip Winter
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Kathryn Graham
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Sunita Ghosh
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - John C Lee
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Christos D Katsetos
- Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, 19134, USA
- Department of Pathology and Laboratory Medicine, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, 19134, USA
| | - John R Mackey
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Gane Ka-Shu Wong
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Richard F Ludueña
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
11
|
Datta S, Choudhury D, Das A, Das Mukherjee D, Das N, Roy SS, Chakrabarti G. Paclitaxel resistance development is associated with biphasic changes in reactive oxygen species, mitochondrial membrane potential and autophagy with elevated energy production capacity in lung cancer cells: A chronological study. Tumour Biol 2017; 39:1010428317694314. [DOI: 10.1177/1010428317694314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Paclitaxel (Tx) is one of the first-line chemotherapeutic drugs used against lung cancer, but acquired resistance to this drug is a major challenge against successful chemotherapy. In this work, we have focused on the chronological changes of various cellular parameters and associated effect on Tx (10 nM) resistance development in A549 cell line. It was observed, at initial stage, the cell death percentage due to drug treatment had increased up to 20 days, and thereafter, it started declining and became completely resistant by 40 days. Expressions of βIII tubulin and drug efflux pumps also increased over the period of resistance development. Changes in cellular autophagy and reactive oxygen species generation showed a biphasic pattern and increased gradually over the course of upto 20 days, thereafter declined gradually; however, their levels remained higher than untreated cells when resistance was acquired. Increase in extracellular acidification rates and oxygen consumption rates was found to be directly correlated with acquisition of resistance. The depolarisation of mitochondrial membrane potential was also biphasic; first, it increased with increase of cell death up to 20 days, thereafter, it gradually decreased to normal level along with resistance development. Increase in activity of catalase, glutathione peroxidase and glutathione content over these periods may attribute in bringing down the reactive oxygen species levels and normalisation of mitochondrial membrane potential in spite of comparatively higher reactive oxygen species production by the Tx-resistant cells.
Collapse
Affiliation(s)
- Satabdi Datta
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| | - Diptiman Choudhury
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology University, Patiala, India
| | - Amlan Das
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| | - Dipanwita Das Mukherjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| | - Nabanita Das
- Cell Biology & Physiology Division, CSIR – Indian Institute of Chemical Biology, Kolkata, India
| | - Sib Sankar Roy
- Cell Biology & Physiology Division, CSIR – Indian Institute of Chemical Biology, Kolkata, India
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| |
Collapse
|
12
|
Trigili C, Barasoain I, Sánchez-Murcia PA, Bargsten K, Redondo-Horcajo M, Nogales A, Gardner NM, Meyer A, Naylor GJ, Gómez-Rubio E, Gago F, Steinmetz MO, Paterson I, Prota AE, Díaz JF. Structural Determinants of the Dictyostatin Chemotype for Tubulin Binding Affinity and Antitumor Activity Against Taxane- and Epothilone-Resistant Cancer Cells. ACS OMEGA 2016; 1:1192-1204. [PMID: 30023505 PMCID: PMC6044705 DOI: 10.1021/acsomega.6b00317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 05/21/2023]
Abstract
A combined biochemical, structural, and cell biology characterization of dictyostatin is described, which enables an improved understanding of the structural determinants responsible for the high-affinity binding of this anticancer agent to the taxane site in microtubules (MTs). The study reveals that this macrolide is highly optimized for MT binding and that only a few of the structural modifications featured in a library of synthetic analogues resulted in small gains in binding affinity. The high efficiency of the dictyostatin chemotype in overcoming various kinds of clinically relevant resistance mechanisms highlights its potential for therapeutic development for the treatment of drug-resistant tumors. A structural explanation is advanced to account for the synergy observed between dictyostatin and taxanes on the basis of their differential effects on the MT lattice. The X-ray crystal structure of a tubulin-dictyostatin complex and additional molecular modeling have allowed the rationalization of the structure-activity relationships for a set of synthetic dictyostatin analogues, including the highly active hybrid 12 with discodermolide. Altogether, the work reported here is anticipated to facilitate the improved design and synthesis of more efficacious dictyostatin analogues and hybrids with other MT-stabilizing agents.
Collapse
Affiliation(s)
- Chiara Trigili
- Chemical
and Physical Biology, Centro de Investigaciones
Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Isabel Barasoain
- Chemical
and Physical Biology, Centro de Investigaciones
Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
- E-mail: (J.F.D.)
| | - Pedro A. Sánchez-Murcia
- Área
de Farmacología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, Unidad Asociada al IQM (CSIC), Alcalá de Henares, E-28871 Madrid, Spain
| | - Katja Bargsten
- Department
of Biology and Chemistry Laboratory of Biomolecular Research, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Mariano Redondo-Horcajo
- Chemical
and Physical Biology, Centro de Investigaciones
Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Aurora Nogales
- Instituto
de Estructura de la Materia, Consejo Superior
de Investigaciones Científicas IEM-CSIC, Serrano 121, E-28006 Madrid, Spain
| | - Nicola M. Gardner
- University
Chemical Laboratory, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Arndt Meyer
- University
Chemical Laboratory, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Guy J. Naylor
- University
Chemical Laboratory, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Elena Gómez-Rubio
- Área
de Farmacología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, Unidad Asociada al IQM (CSIC), Alcalá de Henares, E-28871 Madrid, Spain
| | - Federico Gago
- Área
de Farmacología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, Unidad Asociada al IQM (CSIC), Alcalá de Henares, E-28871 Madrid, Spain
| | - Michel O. Steinmetz
- Department
of Biology and Chemistry Laboratory of Biomolecular Research, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Ian Paterson
- University
Chemical Laboratory, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Andrea E. Prota
- Department
of Biology and Chemistry Laboratory of Biomolecular Research, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - J. Fernando Díaz
- Chemical
and Physical Biology, Centro de Investigaciones
Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
- E-mail: (I.B.)
| |
Collapse
|
13
|
Abstract
Through years of evolutionary selection pressures, organisms have developed potent toxins that coincidentally have marked antineoplastic activity. These natural products have been vital for the development of multiagent treatment regimens currently employed in cancer chemotherapy, and are used in the treatment of a variety of malignancies. Therefore, this review catalogs recent advances in natural product-based drug discovery via the examination of mechanisms of action and available clinical data to highlight the utility of these novel compounds in the burgeoning age of precision medicine. The review also highlights the recent development of antibody-drug conjugates and other immunotoxins, which are capable of delivering highly cytotoxic agents previously deemed too toxic to elicit therapeutic benefit preferentially to neoplastic cells. Finally, the review examines natural products not currently used in the clinic that have novel mechanisms of action, and may serve to supplement current chemotherapeutic protocols.
Collapse
|
14
|
Kim YR, Park MS, Eum KH, Kim J, Lee JW, Bae T, Lee DH, Choi JW. Transcriptome analysis indicates TFEB1 and YEATS4 as regulatory transcription factors for drug resistance of ovarian cancer. Oncotarget 2016; 6:31030-8. [PMID: 26307679 PMCID: PMC4741586 DOI: 10.18632/oncotarget.5208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/08/2015] [Indexed: 01/24/2023] Open
Abstract
Ovarian cancer is an intractable disease because patients with ovarian cancer frequently develop drug resistance after long-term chemotherapy. Despite the availability of cumulative information on drug-resistant patients, strategies to reverse drug resistance have still not been established. In this study, we analyzed drug resistance-associated transcription factors (TFs) in ovarian cancer. Gene expression profiles of 15 drug-resistant and 11 drug-sensitive patients with ovarian cancer were compared. Our results showed that TFs TFEB1 and YEATS4 regulated the expression of downstream target genes. These 2 TFs have already been implicated in tumorigenesis or metastasis. To our knowledge, this is the first study to evaluate the involvement of these TFs in drug resistance of ovarian cancer. Interestingly, 70% knockdown of each of these TFs with siRNAs resulted in approximately 20%∼30% recovery of drug sensitivity. Further, combination treatment of ovarian cancer cells with TFEB1 and YEATS4 siRNAs resulted in 35% reversal of drug resistance. The effect of these TFs on chemoresistance seemed to be associated with intrinsic apoptosis-related pathways, such as p53 activation, and not with the suppression of drug transport. Thus, we suggest a novel approach to reverse chemoresistance of ovarian cancer by suppressing TFEB1 and YEATS4.
Collapse
Affiliation(s)
- Yi Rang Kim
- Department of Hemato-Oncology, Yuseong Sun Hospital, Daejeon, Republic of Korea
| | - Mi Sung Park
- Institute for Metabolic Disease, School of Medicine, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Ki Hwan Eum
- Wonkwang Institute of Interfused Biomedical Science and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Juhee Kim
- Wonkwang Institute of Interfused Biomedical Science and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Jeong Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Taejeong Bae
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Dae Ho Lee
- Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Iksan, Jeonbuk, Republic of Korea
| | - Jin Woo Choi
- Wonkwang Institute of Interfused Biomedical Science and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk, Republic of Korea.,Advanced Institute of Convergence Technology, Seoul National University Suwon Gyeonggi-do, Korea
| |
Collapse
|
15
|
Affiliation(s)
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cellular and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
16
|
De Luca A, D'Alessio A, Maiello MR, Gallo M, Chicchinelli N, Pergameno M, Piccirilli MS, Normanno N. Evaluation of the pharmacokinetics of ixabepilone for the treatment of breast cancer. Expert Opin Drug Metab Toxicol 2016; 11:1177-85. [PMID: 26073581 DOI: 10.1517/17425255.2015.1057497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chemotherapeutic agents, such as anthracyclines, taxanes and fluoropyrimidines, have significantly improved the outcome of breast cancer patients. However, mechanisms of resistance limit the effectiveness of these drugs. The microtubule-stabilizing agent ixabepilone has been approved for treatment of metastatic breast cancer (MBC) patients resistant or refractory to taxanes, anthracycline and capecitabine. AREAS COVERED In this review, we summarized data on pharmacodynamics, pharmacokinetics, preclinical and clinical studies of ixabepilone in breast cancer. This article was compiled through searches on ixabepilone up to March 2015 in the PubMed and the clinicaltrials.gov databases; the FDA and European Medicine Agency (EMA) websites; and the ASCO and AACR proceedings. EXPERT OPINION Ixabepilone is a well-tolerated and effective drug in MBC at the approved dose. The most important challenges that ongoing clinical trials are still addressing are: the optimal dosing schedule that might improve the risk/benefit ratio, the clinical efficacy of ixabepilone in early breast cancer, the efficacy in triple-negative breast cancer (TNBC) patients and the identification of biomarkers predictive of response.
Collapse
Affiliation(s)
- Antonella De Luca
- Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Cell Biology and Biotherapy Unit , Naples , Italy +39 081 5903826 ; +39 081 5903826 ; ;
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tanei T, Choi DS, Rodriguez AA, Liang DH, Dobrolecki L, Ghosh M, Landis MD, Chang JC. Antitumor activity of Cetuximab in combination with Ixabepilone on triple negative breast cancer stem cells. Breast Cancer Res 2016; 18:6. [PMID: 26757880 PMCID: PMC4711100 DOI: 10.1186/s13058-015-0662-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
Background Developing novel strategies against treatment-resistant triple negative breast cancer (TNBC) cells remains a significant challenge. The ErbB family, including epidermal growth factor receptor (EGFR), plays key roles in metastasis, tumorigenesis, cell proliferation, and drug resistance. Recently, these characteristics have been linked to a small subpopulation of cells classified as cancer stem cells (CSC) which are believed to be responsible for tumor initiation and maintenance. Ixabepilone is a new generation microtubule-stabilizing agent, which has been expected to be more efficacious than conventional taxanes. Here we aim to investigate whether the EGFR monoclonal antibody Cetuximab, in combination with Ixabepilone, is more effective in eliminating CSC populations compared to chemotherapy alone in TNBC. Methods Representative TNBC cell lines (MDA-MB-231 and SUM159) were used to evaluate breast CSC populations. We used fluorescence-activated cell sorter analysis (CD44+ and CD24-/low, or Aldefluor+) and a self-renewal assay called mammosphere formation efficiency (MSFE) to measure CSC population size after treatment with Cetuximab, or Cetuximab plus Ixabepilone in vitro. Results Although there was no significant decrease in cell viability, Cetuximab reduced MSFE and the CSC population in breast cancer cells in vitro and in vivo through inhibition of autophagy. Also, SUM159 and MDA-MB-231 orthotopic tumors demonstrated partial response to Centuximab or Ixabepilone monotherapy; however, the effect of the combination treatment was significant only in SUM159 tumors (p <0.0001), when compared to Ixabepilone alone. Conclusions Overall, our findings demonstrate that EGFR-targeted therapy by Cetuximab effectively reduces the CSC population in TNBC tumors. However, combination therapy with Ixabepilone may be effective only in a small subset of TNBCs, warranting further investigation of alternative approaches to target multiple pathways for TNBC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0662-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomonori Tanei
- Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, P21-34, Houston, TX, 77030, USA.
| | - Dong Soon Choi
- Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, P21-34, Houston, TX, 77030, USA.
| | - Angel A Rodriguez
- Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, P21-34, Houston, TX, 77030, USA.
| | - Diana Hwang Liang
- Department of Surgery, Houston Methodist Hospital, Houston, TX, 77030, USA.
| | - Lacey Dobrolecki
- Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, P21-34, Houston, TX, 77030, USA.
| | - Madhumita Ghosh
- Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, P21-34, Houston, TX, 77030, USA.
| | - Melissa D Landis
- Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, P21-34, Houston, TX, 77030, USA.
| | - Jenny C Chang
- Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, P21-34, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Yeh LCC, Banerjee A, Prasad V, Tuszynski JA, Weis AL, Bakos T, Yeh IT, Ludueña RF, Lee JC. Effect of CH-35, a novel anti-tumor colchicine analogue, on breast cancer cells overexpressing the βIII isotype of tubulin. Invest New Drugs 2015; 34:129-37. [PMID: 26686345 DOI: 10.1007/s10637-015-0315-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
The subunit protein of microtubules is tubulin, which has been the target for some of the most successful and widely used anti-tumor drugs. Most of the drugs that target tubulin bind to the β subunit. There are many isotypes of β-tubulin and their distributions differ among different tissues. The βIII isotype is over-expressed in many tumors, particularly those that are aggressive, metastatic, and drug resistant. We have previously reported the design and synthesis of a series of compounds to fit the colchicine site on βIII but not on the other isotypes. In the current study, we tested the toxicity and the anti-tumor activity of one of these compounds, CH-35, on the human breast tumor MDA-MB-231 over-expressing βIII in a xenogeneic mouse model. We found that CH-35 was as toxic as Taxol® in vivo. Although the βIII-over-expressing cells developed into very fast-growing tumors, CH-35 was more effective against this tumor than was Taxol. Our results suggest that CH-35 is a promising candidate for future drug development.
Collapse
Affiliation(s)
- Lee-Chuan C Yeh
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Asok Banerjee
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Veena Prasad
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jack A Tuszynski
- Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander L Weis
- Oncovista Innovative Therapies, Inc., 14785 Omicron Dr, San Antonio, TX, 78245, USA
| | - Tamas Bakos
- Oncovista Innovative Therapies, Inc., 14785 Omicron Dr, San Antonio, TX, 78245, USA
| | - I-Tien Yeh
- Pathology Department, Virginia Hospital Center, 1701 N George Mason Dr, Arlington, VA, 22205, USA
| | - Richard F Ludueña
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - John C Lee
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
19
|
Mechanism of action of ixabepilone and its interactions with the βIII-tubulin isotype. Cancer Chemother Pharmacol 2015; 76:1013-24. [PMID: 26416565 DOI: 10.1007/s00280-015-2863-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Ixabepilone (Ixempra, BMS-247550), a semisynthetic analog of epothilone B, is a microtubule-targeted drug in clinical use for treatment of metastatic or locally advanced breast cancer. Ixabepilone's binding and mechanism of action on microtubules and their dynamics, as well as its interactions with isotypically altered microtubules, both in vitro and in tumor cells, have not been described. Microtubules are dynamic polymers of the protein tubulin that function in mitosis, intracellular transport, cell proliferation, and migration. They continually undergo dynamic instability, periods of slow growth and rapid shortening that are crucial to these cell functions. We determined ixabepilone's microtubule binding and polymerization effects in vitro and also determined its effects on inhibition of dynamic instability in vitro and in cells, both with and without removal of the βIII isotype of tubulin. The βIII isotype of tubulin is associated with drug resistance and tumor aggressivity. We found that removal (in vitro) and knockdown (in cells) of βIII-tubulin led to increased inhibition of microtubule dynamic instability by ixabepilone. Depletion of βIII-tubulin from MCF7 human breast cancer cells also induced increased mitotic arrest by ixabepilone. Thus, βIII-tubulin expression suppresses the antitumor effects of ixabepilone, indicating that increased βIII-tubulin may be an important contributor to the development of resistance to ixabepilone.
Collapse
|
20
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
21
|
Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. EUKARYOTIC CELL 2014; 14:2-12. [PMID: 25380753 DOI: 10.1128/ec.00225-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes serious opportunistic infections, birth defects, and blindness in humans. Microtubules are critically important components of diverse structures that are used throughout the Toxoplasma life cycle. As in other eukaryotes, spindle microtubules are required for chromosome segregation during replication. Additionally, a set of membrane-associated microtubules is essential for the elongated shape of invasive "zoites," and motility follows a spiral trajectory that reflects the path of these microtubules. Toxoplasma zoites also construct an intricate, tubulin-based apical structure, termed the conoid, which is important for host cell invasion and associates with proteins typically found in the flagellar apparatus. Last, microgametes specifically construct a microtubule-containing flagellar axoneme in order to fertilize macrogametes, permitting genetic recombination. The specialized roles of these microtubule populations are mediated by distinct sets of associated proteins. This review summarizes our current understanding of the role of tubulin, microtubule populations, and associated proteins in Toxoplasma; these components are used for both novel and broadly conserved processes that are essential for parasite survival.
Collapse
|
22
|
Development of other microtubule-stabilizer families: the epothilones and their derivatives. Anticancer Drugs 2014; 25:599-609. [PMID: 24398663 DOI: 10.1097/cad.0000000000000071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapy is the mainstay of treatment for numerous cancer types, but resistance to chemotherapy remains a major clinical issue and is one of the driving influences underlying the development of new anticancer medications. One of the most important classes of chemotherapy agents is the taxanes, which target the cytoskeleton and spindle apparatus of tumor cells by binding to the microtubules, thereby disrupting key cellular mechanisms, including mitosis. Taxane resistance, however, limits treatment options and creates a major challenge for clinicians. Ongoing research has identified several newer classes of microtubule-targeting chemotherapies that may retain activity despite clinical resistance to taxanes. Among these classes, the epothilones have been studied most extensively in the clinical setting. Like taxanes, epothilones stabilize microtubulin turnover, and they have properties favoring their development as anticancer agents. The most clinically advanced epothilone analog is ixabepilone, which is currently the only approved epothilone derivative. Ixabepilone is indicated for the treatment of metastatic or locally advanced breast cancer in combination with capecitabine after failure of an anthracycline and a taxane, or as monotherapy after failure of an anthracycline, a taxane, and capecitabine. In phase II and III trials, ixabepilone showed efficacy in several patient subgroups and in various stages of breast cancer. Common adverse reactions include peripheral sensory neuropathy and asthenia. This paper will discuss the preclinical and clinical development of epothilones and their derivatives across a variety of cancer types.
Collapse
|
23
|
Feizabadi MS, Jun Y. Kinesin-1 translocation: Surprising differences between bovine brain and MCF7-derived microtubules. Biochem Biophys Res Commun 2014; 454:543-6. [DOI: 10.1016/j.bbrc.2014.10.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/21/2023]
|
24
|
Taxanes with high potency inducing tubulin assembly overcome tumoural cell resistances. Bioorg Med Chem 2014; 22:5078-90. [PMID: 25047938 DOI: 10.1016/j.bmc.2014.05.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/20/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
Abstract
We have found that four taxanes with chemical modifications at positions C10 and C13 were active against all types of taxane resistant cell lines, resistant by P-gp overexpression, by mutations in the β-tubulin binding site or by overexpression of the highly dynamic βIII-tubulin isotype. We have characterized the interaction of taxanes with high activity on chemotherapy resistant tumoural cells with microtubules, and also studied their cellular effects. The biochemical property enhanced in comparison with other taxanes is their potency at inducing tubulin assembly, despite the fact that their interactions with the microtubule binding sites (pore and luminal) are similar as studied by NMR and SAXS. A differential interaction with the S7-S9 loop (M-loop) is responsible for their enhanced assembly induction properties. The chemical changes in the structure also induce changes in the thermodynamic properties of the interaction, indicating a higher hydrophilicity and also explaining their properties on P-gp and βIII overexpressing cells and on mutant cells. The effect of the compounds on the microtubular network is different from those observed with the classical (docetaxel and paclitaxel) taxanes, inducing different bundling in cells with microtubules being very short, indicating a very fast nucleation effect and reflecting their high assembly induction power.
Collapse
|
25
|
Ren J, Wang R, Song H, Huang G, Chen L. Secreted frizzled related protein 1 modulates taxane resistance of human lung adenocarcinoma. Mol Med 2014; 20:164-78. [PMID: 24643460 DOI: 10.2119/molmed.2013.00149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/19/2014] [Indexed: 12/21/2022] Open
Abstract
Taxanes, such as docetaxel and taxol, have been used as firstline chemotherapies in advanced lung adenocarcinoma (LAD), but limited responses to chemotherapy remain a major impediment in the clinic. Treatment with 5-azacytidine increases the sensitivity of SPC-A1/DTX cell line to taxanes. The results of DNA methylation microarray and cDNA array analysis indicate that DNA methylation contributes to the downregulation of secreted frizzled related protein 1 (SFRP1) in SPC-A1/DTX cells. Overexpression of SFRP1 reverses the chemoresistance of taxane-resistant LAD cell lines and enhances the in vivo sensitivity of taxane-resistant LAD cells to taxanes. Meanwhile, short hairpin RNA (shRNA)-mediated SFRP1 knockdown decreases the sensitivity of parental LAD cell lines to taxanes. Furthermore, FH535, a reversible Wnt signaling inhibitor, enhances the sensitivity of taxane-resistant LAD cells to taxanes. The level of SFRP1 in tumors of nonresponding patients is significantly lower than that in tumors of responders. Taken together, our results provide the direct evidence that SFRP1 is a clinically important determinant of taxanes resistance in human LAD cells, suggesting that SFRP1 might be a novel therapeutic target for the treatment of taxane-resistant LAD patients.
Collapse
Affiliation(s)
- Jin Ren
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Tsao AS, Roth JA. Novel and Emerging Agents in NSCLC. Lung Cancer 2014. [DOI: 10.1002/9781118468791.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Yang YL, Luo XP, Xian L. The prognostic role of the class III β-tubulin in non-small cell lung cancer (NSCLC) patients receiving the taxane/vinorebine-based chemotherapy: a meta-analysis. PLoS One 2014; 9:e93997. [PMID: 24705847 PMCID: PMC3976369 DOI: 10.1371/journal.pone.0093997] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 03/10/2014] [Indexed: 11/18/2022] Open
Abstract
Background A number of studies have examined the relationship between the expression of the class III β-tubulin (TUBB3) and the treatment responses to the taxane/vinorebine-based chemotherapy in patients with non-small cell lung cancer (NSCLC). However, the results of these studies were inconsistent and inconclusive. Therefore, we conducted an up-to-date meta-analysis to evaluate the prognostic role of TUBB3 in the taxane/vinorebine-based chemotherapy. Methods A literature search for relevant studies was conducted in PubMed, Embase, and CNKI. The inclusion criteria were the taxane/vinorebine-based chemotherapy in patients with NSCLC and the evaluation of the clinical outcomes in relation to the expression of TUBB3. The clinical outcomes analyzed in this study included the overall response rate (ORR), overall survival (OS), and event-free survival (EFS). Odds ratio (OR) or hazard ratio (HR) with 95% confidence interval (CI) were calculated to assess the risk associated with the TUBB3 expression in the taxane/vinorebine-based chemotherapy. Results A total of 28 studies with 2401 NSCLC patients were qualified for this meta-analysis. We found that the positive or high level of TUBB3 expression was associated with a poorer ORR (OR = 0.24, 95% CI = 0.16–0.36, p<0.001), an unfavorable OS (HR = 1.52, 95% CI = 1.27–1.82, p<0.001), and a worse EFS (HR = 1.47, 95% CI = 1.24–1.74, p<0.001) compared to the negative or low level of TUBB3 expression. The statistically significant associations between TUBB3 and chemotherapy responses were also observed in the stratified subgroup analysis, which included the analysis by ethnic subgroup (Asian and Caucasian), chemotherapy regimen (taxane-based and vinorebine-based), TUBB3 detection method (IHC and PCR), and treatment strategy (surgery plus adjuvant chemotherapy and palliative chemotherapy). Conclusions The expression level of TUBB3 may be a useful biomarker to predict the clinical outcomes of the taxane/vinorebine-based chemotherapy in patients with NSCLC.
Collapse
Affiliation(s)
- Yan-Long Yang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiu-Ping Luo
- Clinical Faculty of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lei Xian
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- * E-mail:
| |
Collapse
|
28
|
English DP, Roque DM, Santin AD. Class III b-tubulin overexpression in gynecologic tumors: implications for the choice of microtubule targeted agents? Expert Rev Anticancer Ther 2014; 13:63-74. [DOI: 10.1586/era.12.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
|
30
|
Powell S, Kaizer A, Koopmeiners JS, Iwamoto C, Klein M. High expression of class III β-tubulin in small cell lung carcinoma. Oncol Lett 2013; 7:405-410. [PMID: 24396456 PMCID: PMC3881941 DOI: 10.3892/ol.2013.1734] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/06/2013] [Indexed: 11/06/2022] Open
Abstract
Class III β-tubulin (TUBB3) is emerging as a biomarker in a number of cancers. TUBB3 has been shown to be a prognostic indicator of more aggressive disease and a predictor of resistance to taxanes and vinca alkaloids. To date, there is little data on TUBB3 expression in small cell lung carcinoma (SCLC). The primary objective of this study was to determine the expression of TUBB3 in SCLC. Immunohistochemical staining of SCLC tumor specimens was performed using standard procedures. Expression of TUBB3 was determined as a composite of the percentage of malignant cells staining positive and the intensity of staining. Clinical and tumor data for each patient was compared with the degree of TUBB3 expression. A total of 66 SCLCs were evaluable for TUBB3 expression. The majority of specimens (n=56, 85%) had high expression of TUBB3. Only 4.5% (n=3) had low expression of TUBB3. The mean distribution of positive staining for the specimens was 87.3±1.8% (mean ± SE). Specimens from core biopsies were significantly more likely to have high TUBB3 expression when compared with fine needle aspirates (P=0.004). There were no other significant findings when comparing clinical or tumor characteristics. Overall, we found that expression of TUBB3 in SCLC is higher than expected. Innate resistance to microtubule inhibitors, such as the taxanes and vinca alkaloids, may be associated with this finding. Attempts at microtubule inhibition with novel agents may be able to overcome this resistance mechanism. Further evaluation of TUBB3 as a biomarker in SCLC is warranted.
Collapse
Affiliation(s)
- Steven Powell
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55418, USA ; Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Healthcare System, Minneapolis, MN 55417, USA
| | - Alex Kaizer
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55418, USA
| | - Joseph S Koopmeiners
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55418, USA
| | - Carlos Iwamoto
- Department of Pathology, Minneapolis VA Healthcare System, Minneapolis, MN 55417, USA
| | - Mark Klein
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55418, USA ; Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Healthcare System, Minneapolis, MN 55417, USA
| |
Collapse
|
31
|
Pera B, Barasoain I, Pantazopoulou A, Canales A, Matesanz R, Rodriguez-Salarichs J, García-Fernandez LF, Moneo V, Jiménez-Barbero J, Galmarini CM, Cuevas C, Peñalva MA, Díaz JF, Andreu JM. New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. ACS Chem Biol 2013; 8:2084-94. [PMID: 23859655 DOI: 10.1021/cb400461j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have investigated the target and mechanism of action of a new family of cytotoxic small molecules of marine origin. PM050489 and its dechlorinated analogue PM060184 inhibit the growth of relevant cancer cell lines at subnanomolar concentrations. We found that they are highly potent microtubule inhibitors that impair mitosis with a distinct molecular mechanism. They bind with nanomolar affinity to unassembled αβ-tubulin dimers, and PM050489 binding is inhibited by known Vinca domain ligands. NMR TR-NOESY data indicated that a hydroxyl-containing analogue, PM060327, binds in an extended conformation, and STD results define its binding epitopes. Distinctly from vinblastine, these ligands only weakly induce tubulin self-association, in a manner more reminiscent of isohomohalichondrin B than of eribulin. PM050489, possibly acting like a hinge at the association interface between tubulin heterodimers, reshapes Mg(2+)-induced 42 S tubulin double rings into smaller 19 S single rings made of 7 ± 1 αβ-tubulin dimers. PM060184-resistant mutants of Aspergillus nidulans map to β-tubulin Asn100, suggesting a new binding site different from that of vinblastine at the associating β-tubulin end. Inhibition of assembly dynamics by a few ligand molecules at the microtubule plus end would explain the antitumor activity of these compounds, of which PM060184 is undergoing clinical trials.
Collapse
Affiliation(s)
- Benet Pera
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid,
Spain
| | - Isabel Barasoain
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid,
Spain
| | - Areti Pantazopoulou
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid,
Spain
| | - Angeles Canales
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid,
Spain
| | - Ruth Matesanz
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid,
Spain
| | | | - Luis F. García-Fernandez
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial
La Mina, Colmenar
Viejo, 28770 Madrid, Spain
| | - Victoria Moneo
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial
La Mina, Colmenar
Viejo, 28770 Madrid, Spain
| | | | - Carlos M. Galmarini
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial
La Mina, Colmenar
Viejo, 28770 Madrid, Spain
| | - Carmen Cuevas
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial
La Mina, Colmenar
Viejo, 28770 Madrid, Spain
| | - Miguel A. Peñalva
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid,
Spain
| | - J. Fernando Díaz
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid,
Spain
| | - José M. Andreu
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid,
Spain
| |
Collapse
|
32
|
Bush TL, Payton M, Heller S, Chung G, Hanestad K, Rottman JB, Loberg R, Friberg G, Kendall RL, Saffran D, Radinsky R. AMG 900, a small-molecule inhibitor of aurora kinases, potentiates the activity of microtubule-targeting agents in human metastatic breast cancer models. Mol Cancer Ther 2013; 12:2356-66. [PMID: 23990115 DOI: 10.1158/1535-7163.mct-12-1178] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most prevalent malignancy affecting women and ranks second in cancer-related deaths, in which death occurs primarily from metastatic disease. Triple-negative breast cancer (TNBC) is a more aggressive and metastatic subtype of breast cancer that is initially responsive to treatment of microtubule-targeting agents (MTA) such as taxanes. Recently, we reported the characterization of AMG 900, an orally bioavailable, potent, and highly selective pan-Aurora kinase inhibitor that is active in multidrug-resistant cell lines. In this report, we investigate the activity of AMG 900 alone and in combination with two distinct classes of MTAs (taxanes and epothilones) in multidrug-resistant TNBC cell lines and xenografts. In TNBC cells, AMG 900 inhibited phosphorylation of histone H3 on Ser(10), a proximal substrate of Aurora-B, and induced polyploidy and apoptosis. Furthermore, AMG 900 potentiated the antiproliferative effects of paclitaxel and ixabepilone at low nanomolar concentrations. In mice, AMG 900 significantly inhibited the growth of MDA-MB-231 (F(11); parental), MDA-MB-231 (F(11)) PTX-r (paclitaxel-resistant variant), and DU4475 xenografts. The combination of AMG 900 with docetaxel enhanced tumor inhibition in MDA-MB-231 (F(11)) xenografts compared with either monotherapy. Notably, combining AMG 900 with ixabepilone resulted in regressions of MDA-MB-231 (F(11)) PTX-r xenografts, in which more than 50% of the tumors failed to regrow 75 days after the cessation of drug treatment. These findings suggest that AMG 900, alone and in combination with MTAs, may be an effective intervention strategy for the treatment of metastatic breast cancer and provide potential therapeutic options for patients with multidrug-resistant tumors.
Collapse
Affiliation(s)
- Tammy L Bush
- Corresponding Author: Tammy L. Bush, Amgen Inc., 360 Binney Street, Mailstop 7-G-12, Cambridge, MA 02142.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Anticancer drugs directed against the microtubule, including taxanes and vinca alkaloids, have been the backbone of many chemotherapy regimes for decades. These drugs have, however, significant limitations, which have prompted the development of novel microtubule targeting agents (MTAs). This article will discuss MTAs for anticancer therapies and recent debates regarding their mechanisms of action. Furthermore, the limitations of taxanes, including hypersensitivity reactions, neurotoxicity, drug resistance and lack of validated biomarkers to guide therapy will be discussed, all of which have driven the development of novel agents. The mechanisms of action and drug development of new generations of MTAs will also be outlined. Agents demonstrating utility in Phase III clinical trials, including eribulin, ixabepilone, cabazitaxel and trastuzumab-DM1 will be highlighted, as well as novel agents currently in development and future directions for MTAs.
Collapse
|
34
|
Park IH, Ro J. Research Highlights. Pharmacogenomics 2013. [DOI: 10.2217/pgs.13.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- In Hae Park
- Center for Breast Cancer, National Cancer Center, Korea
| | - Jungsil Ro
- Center for Breast Cancer, National Cancer Center, Korea
| |
Collapse
|
35
|
Saura C, Tseng LM, Chan S, Chacko RT, Campone M, Manikhas A, Nag SM, Leichman CG, Dasappa L, Fasching PA, Hurtado de Mendoza F, Symmans WF, Liu D, Mukhopadhyay P, Horak C, Xing G, Pusztai L. Neoadjuvant doxorubicin/cyclophosphamide followed by ixabepilone or paclitaxel in early stage breast cancer and evaluation of βIII-tubulin expression as a predictive marker. Oncologist 2013; 18:787-94. [PMID: 23853246 DOI: 10.1634/theoncologist.2013-0075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This randomized phase II trial was designed to compare the rate of pathologic complete response (pCR) induced by neoadjuvant cyclophosphamide plus doxorubicin (AC) followed by ixabepilone or paclitaxel in women with early stage breast cancer (BC). Expression of βIII-tubulin as a predictive marker was also evaluated. PATIENTS AND METHODS Women with untreated, histologically confirmed primary invasive breast adenocarcinoma received four cycles of AC followed by 1:1 randomization to either ixabepilone 40 mg/m2 (3-hour infusion) every 3 weeks for four cycles (n = 148) or weekly paclitaxel 80 mg/m2 (1-hour infusion) for 12 weeks (n = 147). All patients underwent a core needle biopsy of the primary cancer for molecular marker analysis prior to chemotherapy. βIII-Tubulin expression was assessed using immunohistochemistry. RESULTS There was no significant difference in the rate of pCR in the ixabepilone treatment arm (24.3%; 90% confidence interval [CI], 18.6-30.8) and the paclitaxel treatment arm (25.2%; 90% CI, 19.4-31.7). βIII-Tubulin-positive patients obtained higher pCR rates compared with βIII-tubulin-negative patients in both treatment arms; however, βIII-tubulin expression was not significantly associated with a differential response to ixabepilone or paclitaxel. The safety profiles of both regimens were generally similar, although neutropenia occurred more frequently in the ixabepilone arm (grade 3/4: 41.3% vs. 8.4%). The most common nonhematologic toxicity was peripheral neuropathy. CONCLUSIONS Neoadjuvant treatment of early stage BC with AC followed by ixabepilone every 3 weeks or weekly paclitaxel was well tolerated with no significant difference in efficacy. Higher response rates were observed among βIII-tubulin-positive patients.
Collapse
Affiliation(s)
- Cristina Saura
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shastry M, Yardley DA. Updates in the treatment of basal/triple-negative breast cancer. Curr Opin Obstet Gynecol 2013; 25:40-8. [PMID: 23222093 DOI: 10.1097/gco.0b013e32835c1633] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Triple-negative breast cancer (TNBC) is clinically characterized by the lack of expression of the estrogen receptor/progesterone receptor and the human epidermal growth factor receptor 2. It is highly heterogeneous and exhibits considerable overlap with basal-like and BRCA-related breast cancers. Constituting 15-20% of breast cancers, TNBC exhibits an aggressive phenotype with a poor prognosis. This review summarizes recent progress and studies in TNBC and discusses some of the ongoing clinical trials and emerging therapies for the treatment of TNBC. RECENT FINDINGS Conventional cytotoxic chemotherapy and DNA damaging agents continue to be the mainstay for treatment of this disease. The use of targeted agents such as bevacizumab, epidermal growth factor receptor and polyadenosine diphosphate-ribose polymerase inhibitors have led to conflicting results. However, recent research has prompted evaluation of additional drugs targeting multiple signaling pathways and epigenetic modifications for the treatment of this disease. SUMMARY TNBC remains a challenging disease to treat with recent trials having demonstrated only modest improvements in outcomes. Increased understanding of the heterogeneity of this complex subtype may help tailor therapies to specific patient subgroups.
Collapse
|
37
|
Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer 2013; 2013:137414. [PMID: 23864953 PMCID: PMC3707274 DOI: 10.1155/2013/137414] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/01/2013] [Indexed: 01/25/2023] Open
Abstract
Resistance to cancer chemotherapy is a common phenomenon especially in metastatic breast cancer (MBC), a setting in which patients typically have had exposure to multiple lines of prior therapy. The subsequent development of drug resistance can result in rapid disease progression during or shortly after completion of treatment. Moreover, cross-class multidrug resistance limits patient treatment choices, particularly in a setting where treatments options are few. One attempt to minimize the impact of drug resistance has been the concurrent use of two or more chemotherapy agents with unrelated mechanisms of action and differing modes of drug resistance, with the intent of blocking the development of multiple intracellular escape pathways essential for tumor survival. Within the past decade, an array of mechanistically diverse agents has augmented the list of combination regimens that may be both synergistic and efficacious in pretreated MBC. The aim of this paper is to review mechanisms of resistance to common chemotherapy agents and to consider current combination treatment options for heavily pretreated and/or drug-resistant patients with MBC.
Collapse
|
38
|
Edelman MJ, Schneider CP, Tsai CM, Kim HT, Quoix E, Luft AV, Kaleta R, Mukhopadhyay P, Trifan OC, Whitaker L, Reck M. Randomized phase II study of ixabepilone or paclitaxel plus carboplatin in patients with non-small-cell lung cancer prospectively stratified by beta-3 tubulin status. J Clin Oncol 2013; 31:1990-6. [PMID: 23589560 DOI: 10.1200/jco.2012.45.3282] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Retrospective studies have reported that tumor expression of the beta-3 tubulin (β3T) isoform is an unfavorable prognostic factor in non-small-cell lung cancer (NSCLC) treated with tubulin-inhibiting chemotherapy. Ixabepilone is a tubulin-inhibiting agent with low susceptibility to multiple resistance mechanisms including β3T isoform expression in several tumor models. This randomized phase II study evaluated ixabepilone-based chemotherapy in stage IIIb/IV NSCLC, compared with paclitaxel-based chemotherapy. Tumor specimens were prospectively evaluated for β3T expression. PATIENTS AND METHODS Patients were stratified by β3T status (positive v negative) and randomly assigned at a ratio of 1:1 to receive ixabepilone (32 mg/m(2)) and carboplatin (area under concentration-time curve [AUC], 6) or paclitaxel (200 mg/m(2)) and carboplatin (AUC, 6) for up to six cycles. The primary end point was progression-free survival (PFS) in the β3T-positive subgroup. RESULTS Ninety-five patients (β3T positive, 52; β3T negative, 43) received ixabepilone plus carboplatin; 96 patients (β3T positive, 49; β3T negative, 47) received paclitaxel plus carboplatin. No significant differences in median PFS were observed between arms for either subgroup (β3T positive, 4.3 months in both arms; β3T negative, 5.8 v 5.3 months). Ixabepilone did not significantly improve overall survival (OS) for the β3T-positive subset or the overall population. Adverse events were similar between the two arms and comparable with those in previous studies. CONCLUSION There was no predictive value of β3T in differentiating clinical activity of ixabepilone- or paclitaxel-containing regimens. Ixabepilone did not improve PFS or OS in patients with β3T-positive tumors. β3T-positive patients had worse PFS relative to β3T-negative patients, regardless of treatment; hence, β3T expression seems to be a negative prognostic factor, but not a predictive factor, in advanced NSCLC treated with either ixabepilone or paclitaxel platinum-based doublets.
Collapse
Affiliation(s)
- Martin J Edelman
- Division of Hematology/Oncology, University of Maryland Greenebaum Cancer Center, Baltimore, MD21201-1595, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Karki R, Mariani M, Andreoli M, He S, Scambia G, Shahabi S, Ferlini C. βIII-Tubulin: biomarker of taxane resistance or drug target? Expert Opin Ther Targets 2013; 17:461-72. [PMID: 23379899 DOI: 10.1517/14728222.2013.766170] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION βIII-Tubulin (TUBB3) is predominantly expressed in neurons of the central and peripheral nervous systems, while in normal non-neoplastic tissues it is barely detectable. By contrast, this cytoskeletal protein is abundant in a wide range of tumors. βIII-Tubulin is linked to dynamic instability of microtubules (MTs), weakening the effects of agents interfering with MT polymerization. Based on this principle, early studies introduced the classical theory linking βIII-tubulin with a mechanism of counteracting taxane activity and accordingly, prompted its investigation as a predictive biomarker of taxane resistance. AREAS COVERED We reviewed 59 translational studies, including cohorts from lung, ovarian, breast, gastric, colorectal and various miscellaneous cancers subject to different chemotherapy regimens. EXPERT OPINION βIII-Tubulin functions more as a prognostic factor than as a predictor of response to chemotherapy. We believe this view can be explained by βIII-tubulin's association with prosurvival pathways in the early steps of the metastatic process. Its prognostic response increases if combined with additional biomarkers that regulate its expression, since βIII-tubulin can be expressed in conditions, such as estrogen exposure, unrelated to survival mechanisms and without any predictive activity. Additional avenues for therapeutic intervention could emerge if drugs are designed to directly target βIII-tubulin and its mechanism of regulation.
Collapse
Affiliation(s)
- Roshan Karki
- Reproductive Tumor Biology Research, Department of Obstetrics and Gynecology, Danbury Hospital, Biomedical Laboratory, Danbury, CT 06810, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Horak CE, Pusztai L, Xing G, Trifan OC, Saura C, Tseng LM, Chan S, Welcher R, Liu D. Biomarker analysis of neoadjuvant doxorubicin/cyclophosphamide followed by ixabepilone or Paclitaxel in early-stage breast cancer. Clin Cancer Res 2013; 19:1587-95. [PMID: 23340299 DOI: 10.1158/1078-0432.ccr-12-1359] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Predictive biomarkers offer the potential to improve the benefit:risk ratio of a therapeutic agent. Ixabepilone achieves comparable pathologic complete response (pCR) rates to other active drugs in the neoadjuvant setting. This phase II trial was designed to investigate potential biomarkers that differentiate response to this agent. EXPERIMENTAL DESIGN Women with untreated, histologically confirmed primary invasive breast adenocarcinoma received neoadjuvant doxorubicin/cyclophosphamide, followed by 1:1 randomization to ixabepilone (n = 148) or paclitaxel (n = 147). Rates of pCR were compared between treatment arms based on predefined biomarker sets: TUBB3, TACC3, and CAPG gene expression, a 20- and 26-gene expression model, MDR1 protein expression, and other potential markers of sensitivity. βIII-tubulin protein expression is reported separately but is referred to here for completeness. All patients underwent a core needle biopsy of the primary cancer for molecular marker analysis before chemotherapy. Gene expression profiling data were used for molecular subtyping. RESULTS There was no significant difference in the rate of pCR in both treatment arms in βIII-tubulin-positive patients. Higher pCR rates were observed among βIII-tubulin-positive patients than in βIII-tubulin-negative patients. Furthermore, no correlation was evident between TUBB3, TACC3, and CAPG gene expression, MDR1 protein expression, multi-gene expression models, and the efficacy of ixabepilone or paclitaxel, even within the estrogen receptor-negative subset. CONCLUSION These results indicate that βIII-tubulin protein and mRNA expression, MDR1 protein expression, TACC3 and CAPG gene expression, and multigene expression models (20- and 26-gene) are not predictive markers for differentiating treatment benefit between ixabepilone and paclitaxel in early-stage breast cancer.
Collapse
|
41
|
Abstract
The treatment of metastatic castrate-resistant prostate cancer has been historically challenging, with few therapeutic successes. Docetaxel was the first cytotoxic therapy associated with a survival benefit in castrate-resistant prostate cancer. Toxicity is typical of other cytotoxic agents, with myelosuppression being the dose-limiting toxicity and neurotoxicity also a notable side effect for some patients. Unfortunately, a significant proportion of men with castrate-resistant prostate cancer will not respond to docetaxel-based therapy and all patients will ultimately develop resistance. Because it is an effective therapy, docetaxel is likely to remain an important part of the treatment arsenal against metastatic prostate cancer for the foreseeable future, despite its toxicities and limitations. Overcoming docetaxel resistance has been a challenge since docetaxel was first established as front-line therapy for metastatic castrate-resistant prostate cancer. Recent studies have shown that several new drugs, including cabazitaxel and abiraterone, are effective after docetaxel failure, dramatically changing the therapeutic landscape for these patients. In addition, a greater understanding of the mechanisms underlying docetaxel resistance has led to several new treatment approaches which hold promise for the future. This review will discuss recent therapeutic advances in metastatic castrate-resistant prostate cancer as well as ongoing clinical trials.
Collapse
Affiliation(s)
- Clara Hwang
- Department of Internal Medicine, Division of Hematology/Oncology, and Josephine Ford Cancer Center, Henry Ford Hospital, CFP 559, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| |
Collapse
|
42
|
Valero V. Managing ixabepilone adverse events with dose reduction. Clin Breast Cancer 2012; 13:1-6. [PMID: 23098573 DOI: 10.1016/j.clbc.2012.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/31/2012] [Accepted: 09/13/2012] [Indexed: 11/15/2022]
Abstract
Ixabepilone is a synthetic analogue of epothilone B approved for the treatment of patients with metastatic or locally advanced breast cancer in combination with capecitabine for cancer resistant to an anthracycline and a taxane, and as monotherapy for cancer resistant or refractory to anthracyclines, taxanes, and capecitabine. The principal dose-limiting adverse events (AEs) of ixabepilone's standard dose (40 mg/m(2) administered by 3-hour infusion once every 3 weeks) are peripheral neuropathy, neutropenia, and fatigue. An effective strategy to manage ixabepilone-related AEs is dose reduction by 20% (from 40 to 32 to 25 mg/m(2)); this does not appear to affect treatment efficacy and enables continuation of treatment after recovery (grade 1 or resolved). When appropriate, treatment can be restarted with a 20% dose reduction (to 32 mg/m(2)). For heavily pretreated patients, especially those with a low performance status, 32 mg/m(2) is an appropriate initial dose; the dose of capecitabine should also be lowered by 20%. Weekly ixabepilone (15-20 mg/m(2) on days 1, 8, and 15 every 28 days) may have an improved tolerability profile, but prospective studies with a large number of patients are required to determine whether it has therapeutic benefit comparable with the current approved regimen. More information is required on dosage and scheduling of ixabepilone in combination with other agents, including novel targeted therapies.
Collapse
Affiliation(s)
- Vicente Valero
- Department of Breast Medical Oncology, Division of Cancer Medicine, the Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
43
|
Spigel DR, Anthony Greco F, Waterhouse DM, Shipley DL, Zubkus JD, Bury MJ, Webb CD, Hart LL, Gian VG, Infante JR, Burris HA, Hainsworth JD. Phase II trial of ixabepilone and carboplatin with or without bevacizumab in patients with previously untreated advanced non-small-cell lung cancer. Lung Cancer 2012; 78:70-5. [PMID: 22947511 DOI: 10.1016/j.lungcan.2012.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 06/12/2012] [Accepted: 06/17/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epothilones, a new class of cytotoxic agents, have demonstrated activity in non-small-cell lung cancer (NSCLC). This phase II study examined ixabepilone/carboplatin (cohort A) and ixabepilone/carboplatin/bevacizumab (cohort B) as first-line therapy for patients with advanced NSCLC. METHOD Patients were enrolled to either cohort A or B at physician discretion and when eligibility met. Eligible patients had newly diagnosed stage III/IV NSCLC, ECOG PS 0-1, adequate organ function, no active CNS metastases, and, in cohort B, bevacizumab treatment criteria. Both cohorts received ixabepilone 30 mg/m2 and carboplatin AUC=6 IV day 1 every 3-weeks for a maximum of 6 cycles. Patients assigned to cohort B also received bevacizumab 15 mg/kg IV day 1 of each cycle, and could continue single-agent bevacizumab for 6 additional cycles. RESULTS Eighty-two patients (median age, 63 years; majority stage IV and former smokers) were enrolled from 11/08 to 10/09 (A-42, B-40) and received medians of 4 and 6 cycles, respectively. The ORRs were 29% and 50%. After median follow up of 17.5 months (A) and 15.7 months (B), median progression free survivals were A-5.3 months (95% CI 2.8-8.6) and B-6.7 months (95% CI 5.1-8.4), with median overall survivals of 9.3 months (95% CI 6.4-16.6) 13.2 months (95% CI 8.9-upper limit not reached), respectively. Grade 3/4 toxicity included: anemia (A-10%, B-27%), neutropenia (A-31%, B-48%), thrombocytopenia (A-19%, B-20%), fatigue (A-10%, B-23%), infection (A-5%, B-20%), and hypersensitivity reaction (A-2%, B-5%). There was one treatment-related death, due to hemoptysis in a cohort B patient with squamous histology. CONCLUSIONS Ixabepilone can be safely combined with carboplatin in newly diagnosed patients with advanced NSCLC. The benefits of treatment appear consistent with those achieved with other modern platinum-doublet regimens. The addition of bevacizumab increases toxicities, however, these are largely expected and reversible. The high ORR and OS observed in the bevacizumab-cohort are encouraging, but would require validation in a larger randomized trial of cohort A versus B.
Collapse
Affiliation(s)
- David R Spigel
- Sarah Cannon Research Institute, Nashville, TN 37203, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Valero V, Vrdoljak E, Xu B, Thomas E, Gómez H, Manikhas A, Medina C, Li RK, Ro J, Bosserman L, Vahdat L, Mukhopadhyay P, Opatt D, Sparano JA. Maintenance of Clinical Efficacy After Dose Reduction of Ixabepilone Plus Capecitabine in Patients With Anthracycline- and Taxane-Resistant Metastatic Breast Cancer: A Retrospective Analysis of Pooled Data From 2 Phase III Randomized Clinical Trials. Clin Breast Cancer 2012; 12:240-6. [DOI: 10.1016/j.clbc.2012.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 11/16/2022]
|
45
|
Wang R, Huang J, Feng B, De W, Chen L. Identification of ING4 (inhibitor of growth 4) as a modulator of docetaxel sensitivity in human lung adenocarcinoma. Mol Med 2012; 18:874-86. [PMID: 22460125 DOI: 10.2119/molmed.2011.00230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 03/23/2012] [Indexed: 12/11/2022] Open
Abstract
Resistance to docetaxel (DTX) usually occurs in patients with lung adenocarcinoma. To better elucidate the underlying molecular mechanisms involved in resistance to DTX-based chemotherapy, we established a DTX-resistant lung adenocarcinoma cell line (SPC-A1/DTX). By gene array analysis, the expression of ING4 was found to be significantly downregulated in SPC-A1/DTX cells. Additionally, the decreased expression of the ING4 gene was induced upon DTX treatment of SPC-A1 cells. Overexpression of ING4 reverses DTX or paclitaxel resistance of DTX-resistant lung adenocarcinoma cells (SPC-A1/DTX or A549/Taxol) by inducing apoptosis enhancement and G₂/M arrest, and small interfering RNA-mediated ING4 knockdown renders DTX-sensitive lung adenocarcinoma cells more resistant to DTX or paclitaxel. Also, overexpression of ING4 could enhance the in vivo sensitivity of SPC-A1/DTX cells to DTX. The phenotypical changes of SPC-A1/DTX cells induced by overexpression of ING4 might be associated with the decreased ratio of Bcl-2/Bax, which resulted in the activation of caspase-3. The level of ING4 expression in tumors of nonresponding patients was significantly lower than that in those of responders, suggesting that the expression of ING4 was positively correlated with tumor response to DTX. Our results provide the first evidence that ING4 might be essential for DTX resistance in lung adenocarcinoma. Thus, ING4 will be a potential molecular target for overcoming resistance to DTX-based chemotherapies in lung adenocarcinoma.
Collapse
Affiliation(s)
- Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Lozynski M. Patupilone and Ixabepilone: The Effect of a Point Structural Change on the Exo–Endo Conformational Profile. J Phys Chem B 2012; 116:7605-17. [PMID: 22668078 DOI: 10.1021/jp212628v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marek Lozynski
- Institute of Chemical
Technology and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie
5, 60-965 Poznan, Poland
| |
Collapse
|
47
|
Moreno-Aspitia A. Neoadjuvant therapy in early-stage breast cancer. Crit Rev Oncol Hematol 2012; 82:187-99. [DOI: 10.1016/j.critrevonc.2011.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 11/30/2022] Open
|
48
|
Epothilones in Development for Non–Small-Cell Lung Cancer: Novel Anti-Tubulin Agents With the Potential to Overcome Taxane Resistance. Clin Lung Cancer 2012; 13:171-80. [DOI: 10.1016/j.cllc.2011.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/22/2011] [Indexed: 11/23/2022]
|
49
|
Yang HY, Kwon J, Park HR, Kwon SO, Park YK, Kim HS, Chung YJ, Chang YJ, Choi HI, Chung KJ, Lee DS, Park BJ, Jeong SH, Lee TH. Comparative proteomic analysis for the insoluble fractions of colorectal cancer patients. J Proteomics 2012; 75:3639-53. [PMID: 22564821 DOI: 10.1016/j.jprot.2012.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/24/2012] [Accepted: 04/15/2012] [Indexed: 12/30/2022]
Abstract
We used label-free quantitative proteomics with the insoluble fractions from colorectal cancer (CRC) patients to gain further insight into the utility of profiling altered protein expression as a potential biomarker for cancer. The insoluble fractions were prepared from paired tumor/normal biopsies from 13 patients diagnosed with CRC (stages I to IV). Fifty-six proteins identified in data pooled from the 13 cases were differentially expressed between the tumor and adjacent normal tissue. The connections between these proteins are involved in reciprocal networks related to tumorigenesis, cancer incidence based on genetic disorder, and skeletal and muscular disorders. To assess their potential utility as biomarkers, the relative expression levels of the proteins were validated using personal proteomics and a heat map to compare five individual CRC samples with five normal tissue samples. Further validation of a panel of proteins (KRT5, JUP, TUBB, and COL6A1) using western blotting confirmed the differential expression. These proteins gave specific network information for CRC, and yielded a panel of novel markers and potential targets for treatment. It is anticipated that the experimental approach described here will increase our understanding of the membrane environment in CRC, which may provide direction for making diagnoses and prognoses through molecular biomarker targeting.
Collapse
Affiliation(s)
- Hee-Young Yang
- Department of Oral Biochemistry, Dental Science Research Institute and the BK21 Project, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hartley RM, Peng J, Fest GA, Dakshanamurthy S, Frantz DE, Brown ML, Mooberry SL. Polygamain, a new microtubule depolymerizing agent that occupies a unique pharmacophore in the colchicine site. Mol Pharmacol 2012; 81:431-9. [PMID: 22169850 PMCID: PMC3286304 DOI: 10.1124/mol.111.075838] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/14/2011] [Indexed: 02/04/2023] Open
Abstract
Bioassay-guided fractionation was used to isolate the lignan polygamain as the microtubule-active constituent in the crude extract of the Mountain torchwood, Amyris madrensis. Similar to the effects of the crude plant extract, polygamain caused dose-dependent loss of cellular microtubules and the formation of aberrant mitotic spindles that led to G(2)/M arrest. Polygamain has potent antiproliferative activities against a wide range of cancer cell lines, with an average IC(50) of 52.7 nM. Clonogenic studies indicate that polygamain effectively inhibits PC-3 colony formation and has excellent cellular persistence after washout. In addition, polygamain is able to circumvent two clinically relevant mechanisms of drug resistance, the expression of P-glycoprotein and the βIII isotype of tubulin. Studies with purified tubulin show that polygamain inhibits the rate and extent of purified tubulin assembly and displaces colchicine, indicating a direct interaction of polygamain within the colchicine binding site on tubulin. Polygamain has structural similarities to podophyllotoxin, and molecular modeling simulations were conducted to identify the potential orientations of these compounds within the colchicine binding site. These studies suggest that the benzodioxole group of polygamain occupies space similar to the trimethoxyphenyl group of podophyllotoxin but with distinct interactions within the hydrophobic pocket. Our results identify polygamain as a new microtubule destabilizer that seems to occupy a unique pharmacophore within the colchicine site of tubulin. This new pharmacophore will be used to design new colchicine site compounds that might provide advantages over the current agents.
Collapse
Affiliation(s)
- R M Hartley
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|