1
|
Wang X, Liang Y, Zhang B, He L, Li W, Zhang W, Li C, Luo L, Umar T, Feng H, Qiu C. 2'-Hydroxychalcone Induces Autophagy and Apoptosis in Breast Cancer Cells via the Inhibition of the NF-κB Signaling Pathway: In Vitro and In Vivo Studies. Nutrients 2024; 16:514. [PMID: 38398837 PMCID: PMC10892069 DOI: 10.3390/nu16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
2'-Hydroxychalcone is a hydroxyl derivative of chalcones, which are biosynthetic precursors of flavonoids and rich in the human diet. The anticancer activity of 2'-hydroxychalcone has been reported in several cancers but remains to be investigated in breast cancer. In the current study, 2'-hydroxychalcone showed significant cytotoxicity against breast cancer cell lines MCF-7 and CMT-1211. It could inhibit breast cancer cell proliferation, migration, and invasion in vitro and suppress tumor growth and metastasis in vivo. Mechanistic investigation revealed that the NF-κB pathway was significantly inhibited by 2'-hydroxychalcone treatment accompanied by an excessive intracellular accumulation of reactive oxygen species, induction of endoplasmic reticulum stress, and activation of JNK/MAPK. In addition, 2'-hydroxychalcone elevated the autophagic levels in breast cancer cells equipped with increasing numbers of autophagy vesicles and complete autophagic flux. Finally, autophagy-dependent apoptosis was observed in 2'-hydroxychalcone-induced cell death. In conclusion, 2'-hydroxychalcone enhances the autophagic levels and induces apoptosis in breast cancer cells, which could be contributed to the inhibition of the pro-survival NF-κB signaling, indicating a promising potential for 2'-hydroxychalcone in future anticancer drug development.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongjie Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Bohan Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Lixin He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenxuan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenwen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengzong Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihong Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huili Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Physiology and Molecular Biology, College of Animal Husbandry Engineering, Henan Vocational College of Agriculture, Zhengzhou 451450, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
3
|
Zhang YY, Feng PP, Wang HF, Zhang H, Liang T, Hao XS, Wang FZ, Fei HR. Licochalcone B induces DNA damage, cell cycle arrest, apoptosis, and enhances TRAIL sensitivity in hepatocellular carcinoma cells. Chem Biol Interact 2022; 365:110076. [DOI: 10.1016/j.cbi.2022.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
|
4
|
Tuli HS, Joshi R, Aggarwal D, Kaur G, Kaur J, Kumar M, Parashar NC, Khan MA, Sak K. Molecular mechanisms underlying chemopreventive potential of butein: Current trends and future perspectives. Chem Biol Interact 2021; 350:109699. [PMID: 34648814 DOI: 10.1016/j.cbi.2021.109699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 01/07/2023]
Abstract
Despite extensive efforts, cancer is still often considered as an incurable disease and initiation of novel drug development programs is crucial to improve the prognosis and clinical outcome of patients. One of the major approaches in designing the novel cancer drugs has historically comprised studies of natural agents with diverse anticancer properties. As only a marginal part of natural compounds has been investigated, this approach still represents an attractive source of new potential antitumor molecules. In this review article, different anticancer effects of plant-derived chalcone, butein, are discussed, including its growth inhibitory action, proapoptotic, antiangiogenic and antimetastatic activities in a variety of cancer cells. The molecular mechanisms underlying these effects are presented in detail, revealing interactions of butein with multiple cellular targets (Bcl-2/Bax, caspases, STAT3, cyclins, NF-κB, COX-2, MMP-9, VEGF/R etc.) and regulation of a wide range of intracellular signal transduction pathways. These data altogether allow a good basis for initiating further in vivo studies as well as clinical trials. Along with the efforts to overcome low bioavailability issues generally characteristic to plant metabolites, butein can be considered as a potential lead compound for safe and more efficient cancer drugs in the future.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Ruchira Joshi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, 56, Maharashtra, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, 56, Maharashtra, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, 134007, Haryana, India
| | | | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | | |
Collapse
|
5
|
Morais PAB, Francisco CS, de Paula H, Ribeiro R, Eloy MA, Javarini CL, Neto ÁC, Júnior VL. Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, medicinal chemistry has been concerned with the approach of organic
chemistry for new drug synthesis. Considering the fruitful collections of new molecular entities,
the dedicated efforts for medicinal chemistry are rewarding. Planning and search for new
and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since
the 19th century, notoriously applying isolated and characterized plant-derived compounds in
modern drug discovery and various stages of clinical development highlight its viability and
significance. Natural products influence a broad range of biological processes, covering transcription,
translation, and post-translational modification, being effective modulators of most
basic cellular processes. The research of new chemical entities through “click chemistry”
continuously opens up a map for the remarkable exploration of chemical space towards leading
natural products optimization by structure-activity relationship. Finally, in this review, we expect to gather a
broad knowledge involving triazolic natural product derivatives, synthetic routes, structures, and their biological activities.
Collapse
Affiliation(s)
- Pedro Alves Bezerra Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Carla Santana Francisco
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Rayssa Ribeiro
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Mariana Alves Eloy
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Clara Lirian Javarini
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Álvaro Cunha Neto
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Valdemar Lacerda Júnior
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| |
Collapse
|
6
|
The Newly Synthetized Chalcone L1 Is Involved in the Cell Growth Inhibition, Induction of Apoptosis and Suppression of Epithelial-to-Mesenchymal Transition of HeLa Cells. Molecules 2021; 26:molecules26051356. [PMID: 33802621 PMCID: PMC7961543 DOI: 10.3390/molecules26051356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, natural products have emerged as promising agents with multiple biological activities. Many studies suggest the antioxidant, antiangiogenic, antiproliferative and anticancer effects of chalcones and their derivatives. Based on these findings, we decided to evaluate the effects of the newly synthetized chalcone L1 in a human cervical carcinoma cell (HeLa) model. Presented results were obtained by western blot and flow cytometric analyses, live cell imaging and antimigratory potential of L1 in HeLa cells was demonstrated by scratch assay. In the present study, we proved the role of L1 as an effective agent with antiproliferative activity supported by G2/M cell cycle arrest and apoptosis. Moreover, we proved that L1 is involved in modulating Transforming Growth Factor-β1 (TGF-β) signal transduction through Smad proteins and it also modulates other signalling pathways including Akt, JNK, p38 MAPK, and Erk1/2. The involvement of L1 in epithelial-to-mesenchymal transition was demonstrated by the regulation of N-cadherin, E-cadherin, and MMP-9 levels. Here, we also evaluated the effect of conditioned medium from BJ-5ta human foreskin fibroblasts in HeLa cell cultures with subsequent L1 treatment. Taken together, these data suggest the potential role of newly synthesized chalcone L1 as an anticancer-tumour microenvironment modulating agent.
Collapse
|
7
|
Oxidative Stress-Induced DNA Damage and Apoptosis in Clove Buds-Treated MCF-7 Cells. Biomolecules 2020; 10:biom10010139. [PMID: 31947708 PMCID: PMC7022383 DOI: 10.3390/biom10010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, several spices have been studied for their potential in the prevention and treatment of cancer. It is documented that spices have antioxidant, anti-inflammatory, immunomodulatory, and anticancer effects. The main mechanisms of spices action included apoptosis induction, proliferation, migration and invasion of tumour inhibition, and sensitization of tumours to radiotherapy and chemotherapy. In this study, the ability of clove buds extract (CBE) to induce oxidative stress, DNA damage, and stress/survival/apoptotic pathways modulation were analysed in MCF-7 cells. We demonstrated that CBE treatment induced intrinsic caspase-dependent cell death associated with increased oxidative stress mediated by oxygen and nitrogen radicals. We showed also the CBE-mediated release of mitochondrial pro-apoptotic factors, signalling of oxidative stress-mediated DNA damage with modulation of cell antioxidant SOD (superoxide dismutase) system, and modulation activity of the Akt, p38 MAPK, JNK and Erk 1/2 pathways.
Collapse
|
8
|
Bordoloi D, Monisha J, Roy NK, Padmavathi G, Banik K, Harsha C, Wang H, Kumar AP, Arfuso F, Kunnumakkara AB. An Investigation on the Therapeutic Potential of Butein, A Tretrahydroxychalcone Against Human Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2019; 20:3437-3446. [PMID: 31759370 PMCID: PMC7063020 DOI: 10.31557/apjcp.2019.20.11.3437] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most predominant cancers in India. With advances in the field of oncology, a number of therapies have emerged; however, they are minimally effective. Consequently, there is a need to develop safe and effective regimens for the treatment of OSCC. Butein, a tetrahydroxychalcone has been found to exhibit potent antioxidant, anti-inflammatory, and also anti-tumor effects against several cancer types. However, its effect on OSCC is not studied yet. Methods: The effect of butein on the viability, apoptosis, migration and invasion of OSCC cells was evaluated using MTT, colony formation, PI/FACS, live and dead, scratch wound healing, and matrigel invasion assays. Further Western blot analysis was done to evaluate the expression of different proteins involved in the regulation of cancer hallmarks. Results: This is the first report exemplifying the anti-cancer effect of butein against OSCC. Our results showed that butein exhibited potent anti-proliferative, cytotoxic, anti-migratory, and anti-invasive effects in OSCC cells. It suppressed the expression of NF-κB and NF-κB-regulated gene products such as COX-2, survivin and MMP-9 which are involved in the regulation of different processes like proliferation, survival, invasion, and metastasis of OSCC cells. Conclusion Collectively, these results suggest that butein has immense potential in the management of OSCC. Nonetheless, in vivo validation is critical before moving to clinical trials.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Javadi Monisha
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Choudhary Harsha
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Hong Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | | |
Collapse
|
9
|
Zhang C, Zong X, Han Y. Effect of butein and glucose on oxidative stress and p38 activation marker in non-small cell lung cancer cell. Hum Exp Toxicol 2019; 38:1155-1167. [PMID: 31215238 DOI: 10.1177/0960327119851250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Tumor microenvironment is known to alter the anticancer drug efficiency. One of the factors that get altered in cancer microenvironment is glucose concentration. Butein, an active principle from plant, known to have anticancer effect against different types of tumor. The objective of the study is to determine the effect of butein on glucose exposed non-small cell lung cancer cells (NSCLCCs). METHODS The current study deals with the effect of butein (6.25-50μM) on NSCLCCs treated with different concentrations (0-40 mM) of glucose. RESULTS AND DISCUSSION Glucose concentration, 0 mM and 40 mM, was found to be lethal at 72 h. Viable cell numbers were statistically increased in 5-mM, 10-mM, and 20-mM glucose-treated cells. Butein at 12.5 µM inhibits (p < 0.05) glucose-induced cell proliferation. Butein inhibits glucose-induced proliferation through DNA damage and oxidative stress. Mitochondrial reactive oxygen species (ROS) level was elevated in 20-mM glucose-treated cells when compared to 5-mM glucose-treated cells, whereas butein treatment further increases glucose-induced mitochondrial ROS. Pharmacological inhibitor of glycolysis, such as 2-deoxy glucose (2-DG), was found to inhibit (p < 0.05) glucose-induced cells proliferation. Furthermore, 2-DG and butein showed synergistic anticancer effect. Butein treatment increases p38 phosphorylation. Inhibition of p38 phosphorylation and antioxidant pretreatment partially revert the glucose-induced cell proliferation. However, inhibition of p38 phosphorylation combined with antioxidant pretreatment completely reverts the anticancer effect of butein. The present study concludes through the evidence that butein could serve as a potential anticancer compound in tumor microenvironment.
Collapse
Affiliation(s)
- C Zhang
- 1 Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, China
| | - X Zong
- 2 Department of Gastroenterology, People's Hospital of Jiaxiang, Jiaxiang, China
| | - Y Han
- 3 Department of Ultrasound, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
10
|
Di S, Fan C, Ma Z, Li M, Guo K, Han D, Li X, Mu D, Yan X. PERK/eIF-2α/CHOP Pathway Dependent ROS Generation Mediates Butein-induced Non-small-cell Lung Cancer Apoptosis and G2/M Phase Arrest. Int J Biol Sci 2019; 15:1637-1653. [PMID: 31360107 PMCID: PMC6643215 DOI: 10.7150/ijbs.33790] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/04/2019] [Indexed: 12/12/2022] Open
Abstract
Butein, a member of the chalcone family, is a potent anticarcinogen against multiple cancers, but its specific anti-NSCLC mechanism remains unknown. The present study examined the effects of butein treatment on NSCLC cell lines and NSCLC xenografts. Butein markedly decreased NSCLC cell viability; inhibited cell adhesion, migration, invasion, and colony forming ability; and induced cell apoptosis and G2/M phase arrest in NSCLC cells. Moreover, butein significantly inhibited PC-9 xenograft growth. Both in vivo and in vitro studies verified that butein exerted anti-NSCLC effect through activating endoplasmic reticulum (ER) stress-dependent reactive oxygen species (ROS) generation. These pro-apoptotic effects were reversed by the use of 4- phenylbutyric acid (4-PBA), CHOP siRNA, N-acetyl-L-cysteine (NAC) and Z-VAD-FMK (z-VAD) in vitro. Moreover, inhibition of ER stress markedly reduced ROS generation. In addition, in vivo studies further confirmed that inhibition of ER stress or oxidative stress partially abolished the butein-induced inhibition of tumor growth. Therefore, butein is a potential therapeutic agent for NSCLC, and its anticarcinogenic action might be mediated by ER stress-dependent ROS generation and the apoptosis pathway.
Collapse
Affiliation(s)
- Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Chongxi Fan
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Mingyang Li
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Kai Guo
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Deguang Mu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou Medicine College, 158 Shangtang Road, Hangzhou 310014, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| |
Collapse
|
11
|
Elucidation for modulation of death receptor (DR) 5 to strengthen apoptotic signals in cancer cells. Arch Pharm Res 2019; 42:88-100. [DOI: 10.1007/s12272-018-01103-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
|
12
|
Guesmi F, Ben Hmed M, Prasad S, Tyagi AK, Landoulsi A. In vivo pathogenesis of colon carcinoma and its suppression by hydrophilic fractions of Clematis flammula via activation of TRAIL death machinery (DRs) expression. Biomed Pharmacother 2018; 109:2182-2191. [PMID: 30551475 DOI: 10.1016/j.biopha.2018.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023] Open
Abstract
This work focused on characterizing hydrophilic fractions of Clematis flammula (CFl). The data here clearly demonstrated that hydrolate fractions act as a free radical scavengers and inhibited proliferation of different cell lines in a time- and concentration-dependent manner, transwell, and with a significant cytotoxic effect. Treating cells with CFl had the effect of suppressing cell growth attenuated by ROS generation in colonic carcinoma. Moreover, CFl in HCT116 cells suppressed survival, proliferation, invasion, angiogenesis and metastasis in vitro by inhibiting gene expression. Following CFl treatment, caspases and PARP cleavage were detected. The up- and down-regulated genes obtained from the WBA of the effect of CFl showed that several biological processes were associated with apoptosis and induction of G1 cell cycle arrest. CFl synergizes the effect of TRAIL by down-regulating the expression of cell survival proteins involved in apoptosis compared to cells treated with CFl or TRAIL alone. Our findings showed that CFl sensitizes apoptosis in TRAIL-resistant cells by activating MAPKs, SP1, and CHOP, that induced DR5 expression. Overall, our data showed that CFl is a promising antitumor agent through kinases and transcription factor induction, both of which are required to activate TRAIL receptors. Colon inflammation induced by LPS was inhibited by CFl hydrolate.
Collapse
Affiliation(s)
- Fatma Guesmi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA; Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunisia.
| | - Marwa Ben Hmed
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Tunisia
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Amit K Tyagi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
13
|
Yang PY, Hu DN, Kao YH, Lin IC, Liu FS. Butein induces apoptotic cell death of human cervical cancer cells. Oncol Lett 2018; 16:6615-6623. [PMID: 30344763 PMCID: PMC6176361 DOI: 10.3892/ol.2018.9426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/31/2018] [Indexed: 12/16/2022] Open
Abstract
Butein is a chalcone, a flavonoid that is widely biosynthesized in plants. Butein has been identified to possess varied pharmacological activity and is extractable from traditional Chinese medicinal herbs, therefore applicable for disease treatment. Recently, in vitro and in vivo studies have shown that butein may induce apoptotic cell death in various human cancer cells. In this study we investigated the apoptotic effect of butein and the underlying mechanisms in human cervical cancer cells. Two cell lines, C-33A and SiHa cells, were treated with butein at different dosages for different durations. The effect of butein on cell viability was assessed by MTT assay, which revealed that butein exerted cytotoxicity in both cervical cancer cells in a dose- and time-dependent fashion. Apoptotic pathway-related factors in the butein-treated cervical cancer cells were then examined. JC-1 flow cytometry, cytochrome c assay, and caspase activity assays demonstrated that butein disturbed mitochondrial transmembrane potential, and increased cytosolic cytochrome c levels and caspase activities in both cervical cancer cells. Western blot analysis revealed that butein downregulated anti-apoptotic protein Bcl-xL and led to proteolytic cleavage of poly (ADP-ribose) polymerase. In addition, butein decreased expressions of the inhibitor of apoptosis (IAP) proteins, including X-linked IAP, survivin, and cellular IAP-1. The findings of this study suggest that butein can decrease cervical cancer cell viability via a pro-apoptotic effect, which involves inhibition of the IAP proteins and activation of both extrinsic and intrinsic pro-apoptotic pathways. Therefore, butein may be applicable for cervical cancer treatment.
Collapse
Affiliation(s)
- Pei-Yu Yang
- Department of Laboratory, Show Chwan Memorial Hospital, Changhua 50049, Taiwan R.O.C
| | - Dan-Ning Hu
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung 82445, Taiwan R.O.C
| | - I-Ching Lin
- Department of Family Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan R.O.C.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan R.O.C.,Faculty of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan R.O.C
| | - Fu-Shing Liu
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 50049, Taiwan R.O.C
| |
Collapse
|
14
|
Sun Q, Lu NN, Feng L. Apigetrin inhibits gastric cancer progression through inducing apoptosis and regulating ROS-modulated STAT3/JAK2 pathway. Biochem Biophys Res Commun 2018; 498:164-170. [PMID: 29408335 DOI: 10.1016/j.bbrc.2018.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022]
Abstract
Apigetrin (APG), as a flavonoid, has many cellular bioactivities, including regulation of oxidative stress, and induction of apoptosis. However, the means by which APG suppresses human gastric cancer are still little to be understood. In the present study, the anti-cancer effects of APG on human gastric cancer cells were investigated. The results indicated that APG could suppress the proliferation and induce apoptosis in gastric cancer cells. Its role in apoptosis induction was through reducing Bcl-2, and enhancing Bax, Caspase-9/-3 and poly ADP-ribose polymerase (PARP) cleavage. In addition, APG incubation resulted in the generation of intracellular reactive oxygen species (ROS) in cells. Meanwhile, APG suppressed constitutive and interleukin-6 (IL-6)-stimulated signal transducer and activator of transcription 3 (STAT3), Janus kinase 2 gene (JAK2) and Src activation. However, ROS scavenger, N-acety-l-cysteine (NAC), diminished apoptosis induced by APG. And APG-triggered de-phosphorylation of STAT3/JAK2 was rescued by NAC pre-treatment. In vivo, APG administration significantly inhibited the gastric cancer cell xenograft tumorigenesis through inducing apoptosis and inhibiting STAT3/JAK2 pathways. Taken together, the findings above illustrated that APG might be used as a promising candidate against human gastric cancer progression.
Collapse
Affiliation(s)
- Qian Sun
- Pharmacy Intravenous Admixture Service Centre, Affiliated Hospital of Jining Medical University, Jining 272029, China
| | - Na-Na Lu
- Department of Neonatology, Jining No.1 People's Hospital, Jining 272029, China
| | - Lei Feng
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining 272029, China.
| |
Collapse
|
15
|
Jayasooriya RGPT, Molagoda IMN, Park C, Jeong JW, Choi YH, Moon DO, Kim MO, Kim GY. Molecular chemotherapeutic potential of butein: A concise review. Food Chem Toxicol 2017; 112:1-10. [PMID: 29258953 DOI: 10.1016/j.fct.2017.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Butein is a biologically active flavonoid isolated from the bark of Rhus verniciflua Stokes, which is known to have therapeutic potential against various cancers. Notably, butein inhibits cancer cell growth by inducing G2/M phase arrest and apoptosis. Butein-induced G2/M phase arrest is associated with increased phosphorylation of ataxia telangiectasia mutated (ATM) and Chk1/2, and consequently, with reduced cdc25C levels. In addition, butein-induced apoptosis is mediated through the activation of caspase-3, which is associated with changes in the expression of Bcl-2 and Bax proteins. Intriguingly, butein sensitizes cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via ERK-mediated Sp1 activation, which promotes the transcription of specific death receptor 5. Butein also inhibits the migration and invasion of human cancer cells by suppressing nuclear factor-κB- and extracellular signal-regulated kinases 1/2-mediated expression of matrix metalloproteinase-9 and vascular endothelial growth factor. Additionally, butein downregulates the expression of human telomerase reverse transcriptase and causes a concomitant decrease in telomerase activity. These findings provide the basis for the pharmaceutical development of butein. The aim of this review is to provide an update on the mechanisms underlying the anticancer activity of butein, with a special focus on its effects on different cellular signaling cascades.
Collapse
Affiliation(s)
- Rajapaksha Gedara Prasad Tharanga Jayasooriya
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Department of Biological Sciences, Faculty of Applied Science, University of Rajarata, Mihintale 50300, Sri Lanka
| | | | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 67340, Republic of Korea
| | - Jin-Woo Jeong
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Jillyang, Gyeongsan, Gyeonsangbuk-do 38453, Republic of Korea
| | - Mun-Ock Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungcheongbuk-do 28116, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
16
|
Dilshara MG, Jayasooriya RGPT, Molagoda IMN, Jeong JW, Lee S, Park SR, Kim GY, Choi YH. Silibinin sensitizes TRAIL-mediated apoptosis by upregulating DR5 through ROS-induced endoplasmic reticulum stress-Ca 2+-CaMKII-Sp1 pathway. Oncotarget 2017. [PMID: 29535810 PMCID: PMC5828202 DOI: 10.18632/oncotarget.23129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study, we addressed how silibinin enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in various cancer cells. Combined treatment with silibinin and TRAIL (silibinin/TRAIL) induced apoptosis accompanied by the activation of caspase-3, caspase-8, caspase-9, and Bax, and cytosolic accumulation of cytochrome c. Anti-apoptotic proteins such as Bcl-2, IAP-1, and IAP-2 were inhibited as well. Silibinin also triggered TRAIL-induced apoptosis in A549 cells through upregulation of death receptor 5 (DR5). Pretreatment with DR5/Fc chimeric protein and DR5-targeted small interfering RNA (siRNA) significantly blocked silibinin/TRAIL-mediated apoptosis in A549 cells. Furthermore, silibinin increased the production of reactive oxygen species (ROS), which led to the induction of TRAIL-mediated apoptosis through DR5 upregulation. Antioxidants such as N-acetyl-L-cysteine and glutathione reversed the apoptosis-inducing effects of TRAIL. Silibinin further induced endoplasmic reticulum (ER) stress as was indicated by the increase in ER marker proteins such as PERK, eIF2α, and ATF-4, which stimulate the expression of CCAAT/enhancer binding protein homologous protein (CHOP). CHOP-targeted siRNA eliminated the induction of DR5 and resulted in a significant decrease in silibinin/TRAIL-mediated apoptosis. We also found that silibinin/TRAIL-induced apoptosis was accompanied with intracellular influx of Ca2+, which was stimulated by ER stress and the Ca2+ chelator, ethylene glycol tetraacetic acid (EGTA). Ca2+/calmodulin-dependent protein kinase (CaMKII) inhibitor, K252a, blocked silibinin/TRAIL-induced DR5 expression along with TRAIL-mediated apoptosis. Accordingly, we showed that ROS/ER stress-induced CaMKII activated Sp1, which is an important transcription factor for DR5 expression. Our results showed that silibinin enhanced TRAIL-induced apoptosis by upregulating DR5 expression through the ROS-ER stress-CaMKII-Sp1 axis.
Collapse
Affiliation(s)
| | | | | | - Jin-Woo Jeong
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Seungheon Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Sang Rul Park
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| |
Collapse
|
17
|
Padmavathi G, Roy NK, Bordoloi D, Arfuso F, Mishra S, Sethi G, Bishayee A, Kunnumakkara AB. Butein in health and disease: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 25:118-127. [PMID: 28190465 DOI: 10.1016/j.phymed.2016.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/03/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The risk of suffering from many chronic diseases seems to have made no improvement despite the advancement in medications available in the modern world. Moreover, the use of synthetic chemicals as medications has proved to worsen the scenario due to the various adverse side effects associated with them. PURPOSE Extensive research on natural medicines provides ample evidence on the safety and efficacy of phytochemicals and nutraceuticals against diverse chronic ailments. Therefore, it is advisable to use natural products in the management of such diseases. This article aims to present a comprehensive and critical review of known pharmacological and biological effects of butein, an important chalcone polyphenol first isolated from Rhus verniciflua Stokes, implicated in the prevention and treatment of various chronic disease conditions. METHODS An extensive literature search was conducted using PubMed, ScienceDirect, Scopus and Web of ScienceTM core collections using key words followed by evaluation of the bibliographies of relevant articles. RESULTS Butein has been preclinically proven to be effective against several chronic diseases because it possesses a wide range of biological properties, including antioxidant, anti-inflammatory, anticancer, antidiabetic, hypotensive and neuroprotective effects. Furthermore, it has been shown to affect multiple molecular targets, including the master transcription factor nuclear factor-κB and its downstream molecules. Moreover, since it acts on multiple pathways, the chances of non-responsiveness and resistance development is reduced, supporting the use of butein as a preferred treatment option. CONCLUSION Based on numerous preclinical studies, butein shows significant therapeutic potential against various diseases. Nevertheless, well-designed clinical studies are urgently needed to validate the preclinical findings.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, West Australia 6009, Australia
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL 33169, USA.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India.
| |
Collapse
|
18
|
Evangelista FCG, Bandeira MO, Silva GD, Silva MG, Andrade SN, Marques DR, Silva LM, Castro WV, Santos FV, Viana GHR, Villar JAFP, Sabino AP, Varotti FP. Synthesis and in vitro evaluation of novel triazole/azide chalcones. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1705-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Padmavathi G, Rathnakaram SR, Monisha J, Bordoloi D, Roy NK, Kunnumakkara AB. Potential of butein, a tetrahydroxychalcone to obliterate cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1163-1171. [PMID: 26598915 DOI: 10.1016/j.phymed.2015.08.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/15/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Despite the major advances made in the field of cancer biology, it still remains one of the most fatal diseases in the world. It is now well established that natural products are safe and efficacious and have high potential in the prevention and treatment of different diseases including cancer. Butein is one such compound which is now found to have anti-cancer properties against various malignancies. PURPOSE To thoroughly review the literature available on the anti-cancer properties of butein against different cancers and its molecular targets. METHODS A thorough literature search has been done in PubMed for butein, its biological activities especially cancer and its molecular targets. RESULTS Our search retrieved several reports on the various biological activities of butein in which around 43 articles reported that butein shows potential anti-proliferative effect against a wide range of neoplasms and the molecular target varies with cancer types. Most often it targets NF-κB and its downstream pathways. In addition, butein induces the expression of genes which mediate the cell death and apoptosis in cancer cells. It also inhibits tumor angiogenesis, invasion and metastasis in prostate, liver and bladder cancers through the inhibition of MMPs, VEGF etc. Moreover, it inhibits the overexpression of several proteins and enzymes such as STAT3, ERK, CXCR4, COX-2, Akt, EGFR, Ras etc. involved in tumorigenesis. CONCLUSION Collectively, all these findings suggest the enormous potential and efficacy of butein as a multitargeted chemotherapeutic, chemopreventive and chemosensitizing agent against a wide range of cancers with minimal or no adverse side effects.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sivakumar Raju Rathnakaram
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Javadi Monisha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India .
| |
Collapse
|
20
|
Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). Mar Drugs 2015; 13:6884-909. [PMID: 26580630 PMCID: PMC4663558 DOI: 10.3390/md13116884] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells.
Collapse
|
21
|
Dai X, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp Biol Med (Maywood) 2015; 240:760-73. [PMID: 25854879 DOI: 10.1177/1535370215579167] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to selectively induce apoptotic cell death in various tumor cells by engaging its death-inducing receptors (TRAIL-R1 and TRAIL-R2). This property has led to the development of a number of TRAIL-receptor agonists such as the soluble recombinant TRAIL and agonistic antibodies, which have shown promising anticancer activity in preclinical studies. However, besides activating caspase-dependent apoptosis in several cancer cells, TRAIL may also activate nonapoptotic signal transduction pathways such as nuclear factor-kappa B, mitogen-activated protein kinases, AKT, and signal transducers and activators of transcription 3, which may contribute to TRAIL resistance that is being now frequently encountered in various cancers. TRAIL resistance can be overcome by the application of efficient TRAIL-sensitizing pharmacological agents. Natural compounds have shown a great potential in sensitizing cells to TRAIL treatment through suppression of distinct survival pathways. In this review, we have summarized both apoptotic and nonapoptotic pathways activated by TRAIL, as well as recent advances in developing TRAIL-receptor agonists for cancer therapy. We also briefly discuss combination therapies that have shown great potential in overcoming TRAIL resistance in various tumors.
Collapse
Affiliation(s)
- Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Frank Arfuso
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - M E Zayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Jayasooriya RGPT, Choi YH, Hyun JW, Kim GY. Camptothecin sensitizes human hepatoma Hep3B cells to TRAIL-mediated apoptosis via ROS-dependent death receptor 5 upregulation with the involvement of MAPKs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:959-67. [PMID: 25461556 DOI: 10.1016/j.etap.2014.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 05/26/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various types of malignant cancer cells, but several cancers have acquired potent resistance to TRAIL-induced cell death by unknown mechanisms. Camptothecin (CPT) is a quinolone alkaloid that induces cytotoxicity in a variety of cancer cell lines. However, it is not known whether CPT triggers TRAIL-induced cell death. In this study, we found that combined treatment with subtoxic doses of CPT and TRAIL (CPT-TRAIL) potentially enhanced apoptosis in a caspase-dependent manner. CPT-TRAIL effectively induced the expression of death receptor (DR) 5, which is a specific receptor of TRAIL, and treatment with a chimeric blocking antibody for DR5 reduced CPT-TRAIL-induced cell death, indicating that CPT functionally triggers DR5-mediated cell death in response to TRAIL. CPT-induced generation of reactive oxygen species (ROS) also preceded the upregulation of DR5 in response to TRAIL. The involvement of ROS in DR5 upregulation confirmed that pretreatment with antioxidants, including N-acetyl-L-cysteine and glutathione, significantly inhibits CPT-TRAIL-induced cell death by suppressing DR5 expression. The specific inhibitors of ERK and p38 also decreased CPT-TRAIL-induced cell death by blocking DR5 expression. In conclusion, our results suggest that CPT sensitizes cancer cells to TRAIL-mediated apoptosis via ROS and ERK/p38-dependent DR5 upregulation.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 614-050, Republic of Korea
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
23
|
van Roosmalen IAM, Quax WJ, Kruyt FAE. Two death-inducing human TRAIL receptors to target in cancer: similar or distinct regulation and function? Biochem Pharmacol 2014; 91:447-56. [PMID: 25150214 DOI: 10.1016/j.bcp.2014.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022]
Abstract
The emergence during evolution of two tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, receptor-1/DR4 and -2/DR5, able to induce apoptosis has raised the question whether they differ in function and regulation, which is of key importance for selecting either DR4 or DR5 selective pro-apoptotic agents for cancer treatment. In this review we found practically no information regarding possible differences in DR4 and DR5 function based on structural differences. On the other hand, a panel of different DR4 or DR5 selective pro-apoptotic agonists have been developed that were explored for efficacy in different tumour types in a large number of studies. Leukemic cells appear mainly sensitive for DR4-induced apoptosis, contrasting the situation in other tumour types that show heterogeneity in receptor preference and, in some cases, a slight overall preference for DR5. Both receptors were found to mediate intracellular stress-induced apoptosis, although this is most frequently reported for DR5. Interestingly, DR5 was also found to transmit non-apoptotic signalling in resistant tumour cells and recently nuclear localization and a role in microRNA maturation has been described. DR4 expression is most heavily regulated by promoter methylation, intracellular trafficking and post-translational modifications. DR5 expression is predominantly regulated at the transcriptional level, which may reflect its ability to respond to cellular stressors. It will be important to further increase our understanding of the mechanisms determining TRAIL receptor preference in order to select the appropriate TRAIL receptor selective agonists for therapy, and to develop novel strategies to enhance apoptosis activation in tumours.
Collapse
Affiliation(s)
- Ingrid A M van Roosmalen
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J Quax
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
24
|
Prasad S, Kim JH, Gupta SC, Aggarwal BB. Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol Sci 2014; 35:520-36. [PMID: 25128958 DOI: 10.1016/j.tips.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Selective killing of cancer cells is one of the major goals of cancer therapy. Although chemotherapeutic agents are being used for cancer treatment, they lack selectivity toward tumor cells. Among the six different death receptors (DRs) identified to date, DR4 and DR5 are selectively expressed on cancer cells. Therefore, unlike chemotherapeutic agents, these receptors can potentially mediate selective killing of tumor cells. In this review we outline various nutraceuticals derived from 'Mother Nature' that can upregulate DRs and thus potentiate apoptosis. These nutraceuticals increase tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of cancer cells through different mechanisms. First, nutraceuticals have been found to induce DRs through the upregulation of various signaling molecules. Second, nutraceuticals can downregulate tumor cell-survival pathways. Third, nutraceuticals alone have been found to activate cell-death pathways. Although both TRAIL and agonistic antibodies against DR4 and DR5 are in clinical trials, combination with nutraceuticals is likely to boost their anticancer potential.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Subramaniam A, Loo SY, Rajendran P, Manu KA, Perumal E, Li F, Shanmugam MK, Siveen KS, Park JI, Ahn KS, Hui KM, Kumar AP, Sethi G. An anthraquinone derivative, emodin sensitizes hepatocellular carcinoma cells to TRAIL induced apoptosis through the induction of death receptors and downregulation of cell survival proteins. Apoptosis 2014; 18:1175-87. [PMID: 23700228 DOI: 10.1007/s10495-013-0851-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is currently under clinical trials for cancer, however many tumor cells, including hepatocellular carcinoma (HCC) develop resistance to TRAIL-induced apoptosis. Hence, novel agents that can alleviate TRAIL-induced resistance are urgently needed. In the present report, we investigated the potential of emodin to enhance apoptosis induced by TRAIL in HCC cells. As observed by MTT cytotoxicity assay and the externalization of the membrane phospholipid phosphatidylserine, we found that emodin can significantly potentiate TRAIL-induced apoptosis in HCC cells. When investigated for the mechanism(s), we observed that emodin can downregulate the expression of various cell survival proteins, and induce the cell surface expression of both TRAIL receptors, death receptors (DR) 4 as well as 5. In addition, emodin increased the expression of C/EBP homologous protein (CHOP) in a time-dependent manner. Knockdown of CHOP by siRNA decreased the induction of emodin-induced DR5 expression and apoptosis. Emodin-induced induction of DR5 was mediated through the generation of reactive oxygen species (ROS), as N-acetylcysteine blocked the induction of DR5 and the induction of apoptosis. Also, the knockdown of X-linked inhibitor of apoptosis protein by siRNA significantly reduced the sensitization effect of emodin on TRAIL-induced apoptosis. Overall, our experimental results clearly indicate that emodin can indeed potentiate TRAIL-induced apoptosis through the downregulation of antiapoptotic proteins, increased expression of apoptotic proteins, and ROS mediated upregulation of DR in HCC cells.
Collapse
Affiliation(s)
- Aruljothi Subramaniam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
TRAIL combinations: The new 'trail' for cancer therapy (Review). Oncol Lett 2014; 7:1327-1332. [PMID: 24765133 PMCID: PMC3997674 DOI: 10.3892/ol.2014.1922] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/21/2014] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy is anticipated to be one of the most effective cancer treatments. However, resistance to TRAIL therapy remains a challenge facing the development of anticancer strategies. To circumvent this problem, TRAIL combinations have been experimented with for over ten years to induce synergism or sensitize resistant cancer cells. By analyzing the signaling pathways triggered by these combinations, this review has defined a set of core targets for novel combinatorial treatments. The review suggests specific pathways to be targeted together with TRAIL for more efficient treatment, including cellular FLICE inhibitory protein and its downstream survival factors, the Bcl-2 family and other prominent targets. The suggested pathways provide new avenues for more effective TRAIL-based cancer therapy.
Collapse
|
27
|
Halim TA, Farooqi AA, Zaman F. Nip the HPV encoded evil in the cancer bud: HPV reshapes TRAILs and signaling landscapes. Cancer Cell Int 2013; 13:61. [PMID: 23773282 PMCID: PMC3691735 DOI: 10.1186/1475-2867-13-61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/17/2013] [Indexed: 12/18/2022] Open
Abstract
HPV encoded proteins can elicit ectopic protein–protein interactions that re-wire signaling pathways, in a mode that promotes malignancy. Moreover, accumulating data related to HPV is now providing compelling substantiation of a central role played by HPV in escaping immunosurveillance and impairment of apoptotic response. What emerges is an intricate network of Wnt, TGF, Notch signaling cascades that forms higher-order ligand–receptor complexes routing downstream signaling in HPV infected cells. These HPV infected cells are regulated both extracellularly by ligand receptor axis and intracellularly by HPV encoded proteins and impair TRAIL mediated apoptosis. We divide this review into different sections addressing how linear signaling pathways integrate to facilitate carcinogenesis and compounds that directly or indirectly reverse these aberrant interactions offer new possibilities for therapy in cancer. Although HPV encoded proteins mediated misrepresentation of pathways is difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can target dysregulated pathways in HPV infected cervical cancer cells, thus setting the stage for preclinical models and clinical trials.
Collapse
Affiliation(s)
- Talha Abdul Halim
- Laboratory for Translational oncology and Personalized Medicine, RLMC, 35 Km Ferozepur Road, Lahore, Pakistan.
| | | | | |
Collapse
|
28
|
Kapoor S. Butein and its emerging anti-proliferative and pro-apoptotic effects in systemic malignancies. Curr Eye Res 2013; 38:810. [PMID: 23621171 DOI: 10.3109/02713683.2013.785571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Yang L, Su L, Cao C, Xu L, Zhong D, Xu L, Liu X. The chalcone 2′-hydroxy-4′,5′-dimethoxychalcone activates death receptor 5 pathway and leads to apoptosis in human nonsmall cell lung cancer cells. IUBMB Life 2013; 65:533-43. [DOI: 10.1002/iub.1161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 12/12/2022]
|
30
|
Verrucarin A enhances TRAIL-induced apoptosis via NF-κB-mediated Fas overexpression. Food Chem Toxicol 2013; 55:1-7. [PMID: 23306790 DOI: 10.1016/j.fct.2012.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/22/2012] [Accepted: 12/27/2012] [Indexed: 01/13/2023]
Abstract
We investigated whether verrucarin A (VA) sensitizes HepG2 hepatoma cells to tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis. We found that VA alone induces little apoptosis, but when combined with TRAIL (VA/TRAIL), it triggered significant apoptosis, causing little or no toxicity in normal mouse splenocytes. VA/TRAIL-induced cell death is involved in the loss of mitochondrial transmembrane potential and the consequent activation of caspases. Because nuclear factor (NF)-κB inhibition has been known as a critical target in TRAIL-mediated apoptosis, we also investigated the role of NF-κB in VA/TRAIL treatment. We found that VA upregulated the DNA binding activity of NF-κB, but that the antioxidants glutathione and N-acetyl-l-cysteine, as well as NF-κB inhibitor MG132, and mutant-IκB (m-IκB) transfection, significantly downregulated VA/TRAIL-induced cell death by inhibiting caspase-3 and NF-κB activities. Transfection of mutant-eIF2α also resulted in a decrease in VA/TRAIL-induced cell death by inhibiting of caspase-3, but not NF-κB activity. Although VA/TRAIL treatment led to an increase of DR5 expression, transfection of m-IκB had no influence on the DR5 expressional level. Finally, we showed that NF-κB-mediated Fas expression is critical to VA/TRAIL-induced apoptosis. Taken together, these results indicate that VA/TRAIL sensitizes HepG2 cells to apoptosis via NF-κB-mediated overexpression of Fas.
Collapse
|
31
|
Kim EY, Yu JS, Yang M, Kim AK. Sub-toxic dose of apigenin sensitizes HepG2 cells to TRAIL through ERK-dependent up-regulation of TRAIL receptor DR5. Mol Cells 2013; 35:32-40. [PMID: 23224239 PMCID: PMC3887848 DOI: 10.1007/s10059-013-2175-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/29/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising candidate for anticancer therapy due to its selective toxicity to cancer cells. Nevertheless, because of TRAIL resistance in some cancer cells, combined treatment with sensitizing agents is required to enhance the anticancer potential of TRAIL. In this study, we investigated the underlying mechanism of apigenin-induced sensitization of HepG2 cells to TRAIL-induced cell death. Synergistic induction of apoptosis by combination was confirmed by examining the typical morphology changes of apoptosis, PARP-cleavage, and activation of effector caspases. Z-VAD-fmk, a pan-caspase inhibitor, inhibited the enhanced cell death by combined treatment of apigenin and TRAIL, demonstrating that a caspase-dependent pathway is involved in apigenin/TRAIL-mediated apoptosis. In addition, we found that apigenin/ TRAIL co-treatment up-regulates DR5 cell surface expression. The synergistic induction of cell death by the apigenin/ TRAIL combination was significantly attenuated by DR5 blocking chimera antibody. Next, using pharmacological inhibitors, we found that ERK activation is involved in the induction of DR5 expression. Inhibition of ERK1/2 by U0126 significantly decreased the apigenin/TRAIL-induced DR5 expression and apoptosis. Taken together, our results indicate that apigenin can enhance the apoptotic effect of TRAIL via ERK-induced up-regulation of DR5.
Collapse
Affiliation(s)
- Eun Young Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Ji Sun Yu
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Mihi Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - An Keun Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
32
|
Szliszka E, Jaworska D, Ksek M, Czuba ZP, Król W. Targeting death receptor TRAIL-R2 by chalcones for TRAIL-induced apoptosis in cancer cells. Int J Mol Sci 2012. [PMID: 23203129 PMCID: PMC3509645 DOI: 10.3390/ijms131115343] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important role in immune surveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL mediated death, it is important to search for and develop new strategies to overcome this resistance. Chalcones can sensitize cancer cells to TRAIL-induced apoptosis. We examined the cytotoxic and apoptotic effects of TRAIL in combination with four chalcones: chalcone, isobavachalcone, licochalcone A and xanthohumol on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor expression was analyzed using flow cytometry. The decreased expression of death receptors in cancer cells may be the cause of TRAIL-resistance. Chalcones enhance TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2. Our study has indicated that chalcones augment the antitumor activity of TRAIL and confirm their cancer chemopreventive properties.
Collapse
Affiliation(s)
- Ewelina Szliszka
- Chair and Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | | | | | | | | |
Collapse
|
33
|
Jang JH, Yang ES, Min KJ, Kwon TK. Inhibitory effect of butein on tumor necrosis factor-α-induced expression of cell adhesion molecules in human lung epithelial cells via inhibition of reactive oxygen species generation, NF-κB activation and Akt phosphorylation. Int J Mol Med 2012; 30:1357-64. [PMID: 23064245 DOI: 10.3892/ijmm.2012.1158] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/28/2012] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules play an important role in inflammatory response, angiogenesis and tumor progression. Butein (tetrahydroxychalcone) is a small molecule from natural sources, known to be a potential therapeutic drug with anti-inflammatory, anticancer and antioxidant activities. In the present study, we investigated the inhibitory effect of butein on tumor necrosis factor (TNF)-α-induced adhesion molecule expression and its molecular mechanism of action. Butein significantly decreased TNF-α-induced monocyte (U937) cell adhesion to lung epithelial cells in a dose-dependent manner. Butein also inhibited the protein and mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-stimulated A549 human lung epithelial cells in a dose-dependent manner. Butein inhibited TNF-α-induced reactive oxygen species (ROS) generation and nuclear factor-κB (NF-κB) activation in A549 cells; it also inhibited the phosphorylation of MAPKs and Akt, suggesting that the MAPK/Akt signaling pathway may be involved in the butein-mediated inhibition of TNF-α-induced leukocyte adhesion to A549 cells. Collectively, our results suggest that butein affects cell adhesion through the inhibition of TNF-α-induced ICAM-1 and VCAM-1 expression by inhibiting the NF-κB/MAPK/Akt signaling pathway and ROS generation, thereby, elucidating the role of butein in the anti-inflammatory response.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Lee SJ, Kim EA, Song KS, Kim MJ, Lee DH, Kwon TK, Lee TJ. Antimycin A sensitizes cells to TRAIL-induced apoptosis through upregulation of DR5 and downregulation of c-FLIP and Bcl-2. Int J Oncol 2012; 41:1425-30. [PMID: 22842544 DOI: 10.3892/ijo.2012.1575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/02/2012] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been the focus as a potential anticancer drug, because it induces apoptosis in a wide variety of cancer cells but not in most normal human cell types. In this study, we showed that combination treatment with sub-toxic doses of antimycin A (AMA), an inhibitor of electron transport, plus TRAIL induced apoptosis in human renal cancer cells, but not in normal tubular kidney cells. Treatment of Caki cells with AMA upregulated the death receptor 5 (DR5) protein and downregulated c-FLIP and Bcl-2 proteins in a dose-dependent manner. AMA-induced decrease of c-FLIPL and c-FLIPs protein levels which were caused by increased protein instability, which was confirmed by the result showing that treatment with a protein biosynthesis inhibitor, CHX, accelerated degradation of c-FLIPL and c-FLIPs proteins caused by AMA treatment. We also found that AMA induced upregulation of DR5 and downregulation of Bcl-2 at the transcriptional level. Pretreatment with N-acetyl-l-cysteine (NAC) partly recovered the expression levels of c-FLIPL and c-FLIPs proteins were downregulated by the AMA treatment, suggesting that AMA appears to be partially dependent on the generation of ROS for downregulation of c-FLIPL and c-FLIPs. Collectively, this study demonstrates that AMA enhances TRAIL-induced apoptosis in human renal cancer cells by upregulation of DR5 as well as downregulation of c-FLIP and Bcl-2. Furthermore, this study shows that AMA markedly increases sensitivity to cisplatin in Caki human renal cancer cells.
Collapse
Affiliation(s)
- Sung-Jun Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Khan N, Adhami VM, Afaq F, Mukhtar H. Butein induces apoptosis and inhibits prostate tumor growth in vitro and in vivo. Antioxid Redox Signal 2012; 16:1195-204. [PMID: 22114764 PMCID: PMC3324811 DOI: 10.1089/ars.2011.4162] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIM Prostate cancer (PCa) is one of the most common cancers in men in the United States with similar trends worldwide. For several reasons, it is an ideal candidate disease for intervention with dietary botanical antioxidants. Indeed, many botanical antioxidants are showing promise for chemoprevention of PCa. Here, we determined the effect of an antioxidant butein (3,4,2',4'-tetrahydroxychalone) on cell growth, apoptosis, and signaling pathways in human PCa cells in-vitro and on tumor growth in athymic nude mice. RESULTS Treatment with butein (10-30 μM; 48 h) caused a decrease in viability of PCa cells but had only a minimal effect on normal prostate epithelial cells. In butein-treated cells, there was a marked decrease in the protein expression of cyclins D1, D2, and E and cdks 2, 4, and 6 with concomitant induction of WAF1/p21 and KIP1/p27. Treatment of cells with butein caused inhibition of (i) phosphatidylinositol 3-kinase (p85 and p110), (ii) phosphorylation of Akt at both Ser(473) and Thr(308), (iii) nuclear factor-kappa B (NF-κB) and IκB kinaseα, (iv) degradation and phosphorylation of IκBα, (v) NF-κB DNA-binding activity, (vi) induction of apoptosis, and (vii) Poly (ADP-ribose) polymerase cleavage with activation of caspases-3, -8, and -9. Pretreatment of cells with caspase inhibitor (Z-VAD-FMK) blocked butein-induced activation of caspases. In athymic nude mice implanted with human PCa cells, butein caused a significant inhibition of tumor growth with a decrease in the serum prostate-specific antigen levels. INNOVATION For the first time, we have shown that butein caused inhibition of prostate tumor growth in-vivo. CONCLUSION We suggest that butein could be developed as an agent against PCa. Antioxid. Redox Signal. 16, 1195-1204.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
36
|
Sun J, Han J, Zhao Y, Zhu Q, Hu J. Curcumin induces apoptosis in tumor necrosis factor-alpha-treated HaCaT cells. Int Immunopharmacol 2012; 13:170-4. [DOI: 10.1016/j.intimp.2012.03.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/15/2012] [Accepted: 03/27/2012] [Indexed: 02/02/2023]
|
37
|
Cui Z, Song E, Hu DN, Chen M, Rosen R, McCormick SA. Butein induces apoptosis in human uveal melanoma cells through mitochondrial apoptosis pathway. Curr Eye Res 2012; 37:730-9. [PMID: 22578288 DOI: 10.3109/02713683.2012.671436] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To study the cytotoxic effects and related signaling pathways of butein on human uveal melanoma cells in vitro. MATERIALS AND METHODS Three human uveal melanoma cell lines (M17, SP6.5, and C918), retinal pigment epithelial (RPE) cells and scleral fibroblasts were treated with butein at different dosages. The effects of butein on cell viability were assessed by using the MTT assay. Cell apoptosis was determined using annexin V-FITC/ethidium homodimer III flow cytometry. Mitochondrial transmembrane potential changes were assessed by using the JC-1 fluorescent reader, cytosol cytochrome c levels, and the activities of caspase-3, -8, and -9 were measured by using an enzyme-linked immunosorbent assay or colorimetric assay. RESULTS Butein reduced the cell viability of cultured human uveal melanoma cells in a dose-dependent manner (10, 30, and 100 μM), with IC50 at 13.3 μM and 15.8 μM in SP6.5 and M17 cell lines, respectively. Similar effects were also found in a highly aggressive and metastatic C918 cell line (IC50 16.7 μM). Butein at lower concentrations (10-30 μM) selectively reduced the cell viability of uveal melanoma cells, without affecting cell viability of RPE cells and fibroblasts. Butein-induced apoptosis of melanoma cells, increased mitochondrial permeability and the level of cytosol cytochrome c, caspase-9 and -3 activities (but not caspase-8) in a dose-dependent manner. CONCLUSIONS Butein has selectively potent pro-apoptotic effects on cultured human uveal melanoma cells via the intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Zhihua Cui
- Department of Ophthalmology, The First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | |
Collapse
|
38
|
Yadav VR, Prasad S, Aggarwal BB. Cardamonin sensitizes tumour cells to TRAIL through ROS- and CHOP-mediated up-regulation of death receptors and down-regulation of survival proteins. Br J Pharmacol 2012; 165:741-53. [PMID: 21797841 DOI: 10.1111/j.1476-5381.2011.01603.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE TNF-related apoptosis-inducing ligand (TRAIL) is currently in clinical trials as a treatment for cancer, but development of resistance is a major drawback. Thus agents that can overcome resistance to TRAIL are urgently needed. Cardamonin (2',4'-dihydroxy-6'-methoxychalcone) has been shown to affect cell growth by modulating various cell signalling pathways. Hence, we investigated the effect of cardamonin on the actions of TRAIL. EXPERIMENTAL APPROACH The effect of cardamonin on TRAIL was measured by plasma membrane integrity, phosphatidylserine exposure, mitochondrial activity, and activation of caspase-8, caspase-9, and caspase-3 in human colon cancer cells. KEY RESULTS Cardamonin potentiated TRAIL-induced apoptosis and this correlated with up-regulation of both the TRAIL death receptor (DR) 4, 5 at mRNA and protein levels. TRAIL-decoy receptor DcR1 was down-regulated by cardamonin. Induction of DRs by cardamonin occurred in a variety of cell types. Gene silencing of the DRs by small interfering RNA (siRNA) abolished the effect of cardamonin on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the DR. Induction of the DR by cardamonin was p53-independent but required CCAAT/enhancer binding protein homologous protein (CHOP); cardamonin induced CHOP, and its silencing by siRNA eliminated the induction of DR5. Cardamonin increased the production of reactive oxygen species (ROS) and quenching ROS abolished its induction of receptors and enhancement of TRAIL-induced apoptosis. Cardamonin also decreased the expression of various cell survival proteins. CONCLUSIONS AND IMPLICATIONS Cardamonin potentiates TRAIL-induced apoptosis through ROS-CHOP-mediated up-regulation of DRs, decreased expression of decoy receptor and cell survival proteins. Thus, cardamonin has the potential to make TRAIL more effective as an anticancer therapy.
Collapse
Affiliation(s)
- Vivek R Yadav
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
39
|
A New Player in the Development of TRAIL Based Therapies for Hepatocarcinoma Treatment: ATM Kinase. Cancers (Basel) 2012; 4:354-78. [PMID: 24213315 PMCID: PMC3712690 DOI: 10.3390/cancers4020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/15/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. HCCs are genetically and phenotypically heterogeneous tumors characterized by very poor prognosis, mainly due to the lack, at present, of effective therapeutic options, as these tumors are rarely suitable for radiotherapy and often resistant to chemotherapy protocols. In the last years, agonists targeting the Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) death receptor, has been investigated as a valuable promise for cancer therapy, based on their selectivity for malignant cells and low toxicity for healthy cells. However, many cancer models display resistance to death receptor induced apoptosis, pointing to the requirement for the development of combined therapeutic approaches aimed to selectively sensitize cancer cells to TRAIL. Recently, we identified ATM kinase as a novel modulator of the ability of chemotherapeutic agents to enhance TRAIL sensitivity. Here, we review the biological determinants of HCC responsiveness to TRAIL and provide an exhaustive and updated analysis of the molecular mechanisms exploited for combined therapy in this context. The role of ATM kinase as potential novel predictive biomarker for combined therapeutic approaches based on TRAIL and chemotherapeutic drugs will be closely discussed.
Collapse
|
40
|
Hwang MK, Ryu BJ, Kim SH. AW00179 potentiates TRAIL-mediated death of human lung cancer H1299 cells through ROS-JNK-c-Jun-mediated up-regulation of DR5 and down-regulation of anti-apoptotic molecules. Amino Acids 2012; 43:1679-87. [PMID: 22354145 DOI: 10.1007/s00726-012-1249-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 02/09/2012] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in tumor cells, but when used alone, it is not effective at treating TRAIL-resistant tumors. This resistance is challenging for TRAIL-based anti-cancer therapies. In this study, we found that 1-(4-trifluoromethoxy-phenyl)-3-[4-(5-trifluoromethyl-2,5-dihydro-pyrazol-1-yl)-phenyl]-urea (AW00179) sensitized human lung cancer H1299 cells to TRAIL-mediated apoptosis. Even in the absence of TRAIL, AW00179 strongly induced DR5 expression and decreased the expression of anti-apoptotic proteins, suggesting that the sensitizing effect of AW00179 on TRAIL-mediated apoptosis is due to increased levels of DR5 protein and decreased anti-apoptotic molecules. AW00179 also induced the activation of c-Jun and ERK; however, a pharmacologic inhibition study revealed that JNK-c-Jun signaling is involved in the induction of DR5 expression. In addition, reactive oxygen species (ROS) appear to be involved in AW00179 activity. In conclusion, AW00179 has the potential to sensitize H1299 cells to TRAIL-mediated apoptosis through two distinct mechanisms: ROS-JNK-c-Jun-mediated up-regulation of DR5, and down-regulation of anti-apoptotic molecules.
Collapse
Affiliation(s)
- Mi-Kyung Hwang
- Laboratory of Chemical Genomics, Pharmacology Research Center, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon, 305-600, Korea
| | | | | |
Collapse
|
41
|
Identifying inhibitors of epithelial-mesenchymal transition by connectivity map-based systems approach. J Thorac Oncol 2012; 6:1784-92. [PMID: 21964532 DOI: 10.1097/jto.0b013e31822adfb0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Acquisition of mesenchymal phenotype by epithelial cells by means of epithelial-mesenchymal transition (EMT) is considered as an early event in the multistep process of tumor metastasis. Therefore, inhibition of EMT might be a rational strategy to prevent metastasis. METHODS Using the global gene expression profile from a cell culture model of transforming growth factor-β (TGF-β)-induced EMT, we identified potential EMT inhibitors. We used a publicly available database (www.broad.mit.edu/cmap) comprising gene expression profiles obtained from multiple different cell lines in response to various drugs to derive negative correlations to EMT gene expression profile using Connectivity Map, a pattern matching tool. RESULTS Experimental validation of the identified compounds showed rapamycin as a novel inhibitor of TGF-β signaling along with 17-AAG, a known modulator of TGF-β pathway. Both of these compounds completely blocked EMT and the associated migratory and invasive phenotype. The other identified compound, LY294002, demonstrated a selective inhibition of mesenchymal markers, cell migration and invasion, without affecting the loss of E-cadherin expression or Smad phosphorylation. CONCLUSIONS Our data reveal that rapamycin is a novel modulator of TGF-β signaling, and along with 17-AAG and LY294002, could be used as therapeutic agent for inhibiting EMT. This study demonstrates the potential of a systems approach in identifying novel modulators of a complex biological process.
Collapse
|
42
|
Chen YH, Yeh CW, Lo HC, Su SL, Hseu YC, Hsu LS. Generation of reactive oxygen species mediates butein-induced apoptosis in neuroblastoma cells. Oncol Rep 2012; 27:1233-7. [PMID: 22245810 PMCID: PMC3583478 DOI: 10.3892/or.2012.1632] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/28/2011] [Indexed: 12/16/2022] Open
Abstract
Flavonoids exhibit chemopreventive and chemotherapeutic effects. Butein, a bioactive flavonoid isolated from numerous native plants, has been shown to induce apoptosis in human cancer cells. In the current study, the molecular mechanisms of butein action on cell proliferation and apoptosis of neuroblastoma cells were evaluated. Treatment with butein decreased the viability of Neuro-2A neuroblastoma cells in a dose- and time-dependent manner. The dose-dependent nature of butein-induced apoptosis was characterized by an increase in the sub-G1 phase population. Treatment with butein significantly increased intracellular reactive oxygen species (ROS)levels and reduced the Bcl-2/Bax ratio, triggering the cleavage of pro-caspase 3 and poly-(ADP-ribose) polymerase (PARP). Pre-treatment with the antioxidant agent, N-acetyl cysteine (NAC), blocks butein-induced ROS generation and cell death. NAC also recovers butein-induced apoptosis-related protein alteration. In conclusion, butein-triggered neuroblastoma cells undergo apoptosis via generation of ROS, alteration of the Bcl-2/Bax ratio, and cleavage of pro-caspase 3 and PARP. Our results suggest that butein may serve as a potential therapeutic agent for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
43
|
Sun J, Han J, Zhu Q, Li Z, Hu J. Camptothecin Fails to Induce Apoptosis in Tumor Necrosis Factor-Alpha-Treated HaCaT Cells. Pharmacology 2012; 89:58-63. [DOI: 10.1159/000335370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/25/2011] [Indexed: 12/21/2022]
|
44
|
Hsu WH, Chen CN, Huang HI, Lai YL, Teng CY, Kuo WH. Urokinase induces stromal cell-derived factor-1 expression in human hepatocellular carcinoma cells. J Cell Physiol 2011; 227:697-704. [DOI: 10.1002/jcp.22777] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Hwang MK, Min YK, Kim SH. Kinesin Spindle Protein Inhibitor HR22C16 Sensitizes TRAIL-induced Apoptosis in Human Lung Cancer H1299 Cells. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.5.1737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Yadav VR, Prasad S, Sung B, Aggarwal BB. The role of chalcones in suppression of NF-κB-mediated inflammation and cancer. Int Immunopharmacol 2011; 11:295-309. [PMID: 21184860 PMCID: PMC3058688 DOI: 10.1016/j.intimp.2010.12.006] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/05/2010] [Indexed: 12/11/2022]
Abstract
Although consumption of fruits, vegetables, spices, cereals and pulses has been associated with lower incidence of cancer and other chronic diseases, how these dietary agents and their active ingredients minimize these diseases, is not fully understood. Whether it is oranges, kawa, hops, water-lilly, locorice, wax apple or mulberry, they are all connected by a group of aromatic ketones, called chalcones (1,3-diaryl-2-propen-1-ones). Some of the most significant chalcones identified from these plants include flavokawin, butein, xanthoangelol, 4-hydroxyderricin, cardamonin, 2',4'-dihydroxychalcone, isoliquiritigenin, isosalipurposide, and naringenin chalcone. These chalcones have been linked with immunomodulation, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, anticancer, and antidiabetic activities. The current review, however, deals with the role of various chalcones in inflammation that controls both the immune system and tumorigenesis. Inflammatory pathways have been shown to mediate the survival, proliferation, invasion, angiogenesis and metastasis of tumors. How these chalcones modulate inflammatory pathways, tumorigenesis and immune system is the focus of this review.
Collapse
Affiliation(s)
- Vivek R. Yadav
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas, USA
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas, USA
| | - Bokyung Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas, USA
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77030, Texas, USA
| |
Collapse
|
47
|
Gupta SC, Reuter S, Phromnoi K, Park B, Hema PS, Nair M, Aggarwal BB. Nimbolide sensitizes human colon cancer cells to TRAIL through reactive oxygen species- and ERK-dependent up-regulation of death receptors, p53, and Bax. J Biol Chem 2011; 286:1134-46. [PMID: 21078664 PMCID: PMC3020720 DOI: 10.1074/jbc.m110.191379] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/10/2010] [Indexed: 01/08/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) shows promise as a cancer treatment, but acquired tumor resistance to TRAIL is a roadblock. Here we investigated whether nimbolide, a limonoid, could sensitize human colon cancer cells to TRAIL. As indicated by assays that measure esterase activity, sub-G(1) fractions, mitochondrial activity, and activation of caspases, nimbolide potentiated the effect of TRAIL. This limonoid also enhanced expression of death receptors (DRs) DR5 and DR4 in cancer cells. Gene silencing of the receptors reduced the effect of limonoid on TRAIL-induced apoptosis. Using pharmacological inhibitors, we found that activation of ERK and p38 MAPK was required for DR up-regulation by nimbolide. Gene silencing of ERK abolished the enhancement of TRAIL-induced apoptosis. Moreover, our studies indicate that the limonoid induced reactive oxygen species production, which was required for ERK activation, up-regulation of DRs, and sensitization to TRAIL; these effects were mimicked by H(2)O(2). In addition, nimbolide down-regulated cell survival proteins, including I-FLICE, cIAP-1, cIAP-2, Bcl-2, Bcl-xL, survivin, and X-linked inhibitor of apoptosis protein, and up-regulated the pro-apoptotic proteins p53 and Bax. Interestingly, p53 and Bax up-regulation by nimbolide was required for sensitization to TRAIL but not for DR up-regulation. Overall, our results indicate that nimbolide can sensitize colon cancer cells to TRAIL-induced apoptosis through three distinct mechanisms: reactive oxygen species- and ERK-mediated up-regulation of DR5 and DR4, down-regulation of cell survival proteins, and up-regulation of p53 and Bax.
Collapse
Affiliation(s)
- Subash C. Gupta
- From the Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Simone Reuter
- From the Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Kanokkarn Phromnoi
- From the Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Byoungduck Park
- From the Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Padmanabhan S. Hema
- the Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, Kerala, 695 019 India
| | - Mangalam Nair
- the Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, Kerala, 695 019 India
| | - Bharat B. Aggarwal
- From the Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and
| |
Collapse
|
48
|
He Y, Liu F, Zhang L, Wu Y, Hu B, Zhang Y, Li Y, Liu H. Growth Inhibition and Apoptosis Induced by Lupeol, a Dietary Triterpene, in Human Hepatocellular Carcinoma Cells. Biol Pharm Bull 2011; 34:517-22. [DOI: 10.1248/bpb.34.517] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yan He
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University
| | - Fen Liu
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University
| | - Lurong Zhang
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University
- Suzhou Hospital of Traditional Chinese Medicine
| | - Yan Wu
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University
| | - Bo Hu
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University
| | - Yinsheng Zhang
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University
| | - Yunsen Li
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University
| | - Haiyan Liu
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University
| |
Collapse
|
49
|
Kang CH, Moon DO, Choi YH, Choi IW, Moon SK, Kim WJ, Kim GY. Piceatannol enhances TRAIL-induced apoptosis in human leukemia THP-1 cells through Sp1- and ERK-dependent DR5 up-regulation. Toxicol In Vitro 2010; 25:605-12. [PMID: 21167276 DOI: 10.1016/j.tiv.2010.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 12/05/2010] [Accepted: 12/09/2010] [Indexed: 11/27/2022]
Abstract
Although piceatannol (PIC) is known to mediate anti-cancer, anti-inflammatory, and anti-oxidant activities, little is known about the mechanism of PIC in terms of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. In this study, we examined whether combined treatment with PIC and TRAIL synergistically induces apoptosis in THP-1 leukemia cells. Results indicate that PIC substantially enhances TRAIL-induced cell death including DNA fragmentation and poly(ADP-ribose) polymerase cleavage. Consistent with TRAIL-induced apoptosis, PIC significantly increased the mRNA and protein expression levels of DR5, a death receptor of TRAIL. Further, PIC enhanced DR5 promoter activity via Sp1 activation. Interestingly, the DR5 chimera antibodies significantly suppressed PIC and TRAIL-mediated apoptosis. The inhibitor of ERK also decreased PIC and TRAIL-induced apoptosis by blocking DR5 expression. In conclusion, our results suggest that PIC sensitizes TRAIL-induced-apoptosis via Sp1- and ERK-dependent DR5 up-regulation.
Collapse
Affiliation(s)
- Chang-Hee Kang
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|