1
|
Wang Y, Vandewalle N, De Veirman K, Vanderkerken K, Menu E, De Bruyne E. Targeting mTOR signaling pathways in multiple myeloma: biology and implication for therapy. Cell Commun Signal 2024; 22:320. [PMID: 38862983 PMCID: PMC11165851 DOI: 10.1186/s12964-024-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple Myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most prevalent hematological malignancy and is incurable due to the inevitable development of drug resistance. Intense protein synthesis is a distinctive trait of MM cells, supporting the massive production of clonal immunoglobulins or free light chains. The mammalian target of rapamycin (mTOR) kinase is appreciated as a master regulator of vital cellular processes, including regulation of metabolism and protein synthesis, and can be found in two multiprotein complexes, mTORC1 and mTORC2. Dysregulation of these complexes is implicated in several types of cancer, including MM. Since mTOR has been shown to be aberrantly activated in a large portion of MM patients and to play a role in stimulating MM cell survival and resistance to several existing therapies, understanding the regulation and functions of the mTOR complexes is vital for the development of more effective therapeutic strategies. This review provides a general overview of the mTOR pathway, discussing key discoveries and recent insights related to the structure and regulation of mTOR complexes. Additionally, we highlight findings on the mechanisms by which mTOR is involved in protein synthesis and delve into mTOR-mediated processes occurring in MM. Finally, we summarize the progress and current challenges of drugs targeting mTOR complexes in MM.
Collapse
Affiliation(s)
- Yanmeng Wang
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Niels Vandewalle
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| |
Collapse
|
2
|
Kozalak G, Koşar A. Autophagy-related mechanisms for treatment of multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:838-857. [PMID: 38239705 PMCID: PMC10792488 DOI: 10.20517/cdr.2023.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Multiple myeloma (MM) is a type of hematological cancer that occurs when B cells become malignant. Various drugs such as proteasome inhibitors, immunomodulators, and compounds that cause DNA damage can be used in the treatment of MM. Autophagy, a type 2 cell death mechanism, plays a crucial role in determining the fate of B cells, either promoting their survival or inducing cell death. Therefore, autophagy can either facilitate the progression or hinder the treatment of MM disease. In this review, autophagy mechanisms that may be effective in MM cells were covered and evaluated within the contexts of unfolded protein response (UPR), bone marrow microenvironment (BMME), drug resistance, hypoxia, DNA repair and transcriptional regulation, and apoptosis. The genes that are effective in each mechanism and research efforts on this subject were discussed in detail. Signaling pathways targeted by new drugs to benefit from autophagy in MM disease were covered. The efficacy of drugs that regulate autophagy in MM was examined, and clinical trials on this subject were included. Consequently, among the autophagy mechanisms that are effective in MM, the most suitable ones to be used in the treatment were expressed. The importance of 3D models and microfluidic systems for the discovery of new drugs for autophagy and personalized treatment was emphasized. Ultimately, this review aims to provide a comprehensive overview of MM disease, encompassing autophagy mechanisms, drugs, clinical studies, and further studies.
Collapse
Affiliation(s)
- Gül Kozalak
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
3
|
Zhou X, Wang X, Li N, Guo Y, Yang X, Lei Y. Therapy resistance in neuroblastoma: Mechanisms and reversal strategies. Front Pharmacol 2023; 14:1114295. [PMID: 36874032 PMCID: PMC9978534 DOI: 10.3389/fphar.2023.1114295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Neuroblastoma is one of the most common pediatric solid tumors that threaten the health of children, accounting for about 15% of childhood cancer-related mortality in the United States. Currently, multiple therapies have been developed and applied in clinic to treat neuroblastoma including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, the resistance to therapies is inevitable following long-term treatment, leading to treatment failure and cancer relapse. Hence, to understand the mechanisms of therapy resistance and discover reversal strategies have become an urgent task. Recent studies have demonstrated numerous genetic alterations and dysfunctional pathways related to neuroblastoma resistance. These molecular signatures may be potential targets to combat refractory neuroblastoma. A number of novel interventions for neuroblastoma patients have been developed based on these targets. In this review, we focus on the complicated mechanisms of therapy resistance and the potential targets such as ATP-binding cassette transporters, long non-coding RNAs, microRNAs, autophagy, cancer stem cells, and extracellular vesicles. On this basis, we summarized recent studies on the reversal strategies to overcome therapy resistance of neuroblastoma such as targeting ATP-binding cassette transporters, MYCN gene, cancer stem cells, hypoxia, and autophagy. This review aims to provide novel insight in how to improve the therapy efficacy against resistant neuroblastoma, which may shed light on the future directions that would enhance the treatment outcomes and prolong the survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Xia Zhou
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China.,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaolin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
4
|
Patra T, Meyer K, Ray RB, Kanda T, Ray R. Akt inhibitor augments anti-proliferative efficacy of a dual mTORC1/2 inhibitor by FOXO3a activation in p53 mutated hepatocarcinoma cells. Cell Death Dis 2021; 12:1073. [PMID: 34759291 PMCID: PMC8580964 DOI: 10.1038/s41419-021-04371-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancy-related deaths. p53 mutation in HCC associates with worse clinicopathologic features including therapeutic limitation. A combination of targeted therapy may have some advantages. Akt/mTOR signaling contributes to the regulation of cell proliferation and cell death. Akt inhibitor (AZD5363) and mTORC1/2 dual inhibitor (AZD8055) are in a clinical trial for HCC and other cancers. In this study, we examined whether these inhibitors successfully induce antiproliferative activity in p53 mutant HCC cells, and the underlying mechanisms. We observed that a combination of AZD5363 and AZD8055 treatment synergizes antiproliferative activity on p53 mutated or wild-type HCC cell lines and induces apoptotic cell death. Mechanistic insights indicate that a combination of AZD5363 and AZD8055 activated FOXO3a to induce Bim-associated apoptosis in p53 mutated HCC cells, whereas cells retaining functional p53 enhanced Bax. siRNA-mediated knock-down of Bim or Bax prevented apoptosis in inhibitor-treated cells. We further observed a combination of treatment inhibits phosphorylation of FOXO3a and protects FOXO3a from MDM2 mediated degradation by preventing the phosphorylation of Akt and SGK1. FOXO3a accumulates in the nucleus under these conditions and induces Bim transcription in p53 mutant HCC cells. Combination treatment in the HCC cells expressing wild-type p53 causes interference of FOXO3a function for direct interaction with functional p53 and unable to induce Bim-associated cell death. On the other hand, Bim-associated cell death occurs in p53 mutant cells due to uninterrupted FOXO3a function. Overall, our findings suggested that a combined regimen of dual mTORC1/2 and Akt inhibitors may be an effective therapeutic strategy for HCC patients harboring p53 mutation.
Collapse
Affiliation(s)
- Tapas Patra
- Department of Internal Medicine, Saint Louis University, Missouri, MO, USA.
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, Missouri, MO, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, Missouri, MO, USA
| | - Tatsuo Kanda
- Department of Medicine, Nihon University, Tokyo, Japan
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri, MO, USA. .,Department of Molecular Microbiology & Immunology, Saint Louis University, Missouri, MO, USA.
| |
Collapse
|
5
|
Mehdizadeh M, Farhadihosseinabadi B, Nikoonezhad M, Sankanian G, Soleimani M, Sayad A. Phosphatidylinositol 3-kinase signaling inhibitors for treatment of multiple myeloma: From small molecules to microRNAs. J Oncol Pharm Pract 2021; 28:149-158. [PMID: 34612744 DOI: 10.1177/10781552211035369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is one of the most hard-to-treat cancers among blood malignancies due to the high rate of drug resistance and relapse. The researchers are trying to find more effective drugs for treatment of the disease. Hence, the use of drugs targeting signaling pathways has become a powerful weapon. Overactivation of phosphatidylinositol 3-kinase signaling pathways is frequently observed in multiple myeloma cancer cells, which increases survival, proliferation, and even drug resistance in such cells. In recent years, drugs that inhibit the mediators involved in this biological pathway have shown promising results in the treatment of multiple myeloma. In the present study, we aimed to introduce phosphatidylinositol 3-kinase signaling inhibitors which include small molecules, herbal compounds, and microRNAs.
Collapse
Affiliation(s)
- Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, 556492Shahid Beheshti University of Medical Sciences, Iran
| | | | - Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, 556492Shahid Beheshti University of Medical Sciences, Iran
| | - Ghazaleh Sankanian
- Hematopoietic Stem Cell Research Center, 556492Shahid Beheshti University of Medical Sciences, Iran
| | - Masoud Soleimani
- Hematopoietic Stem Cell Research Center, 556492Shahid Beheshti University of Medical Sciences, Iran
| | - Arezou Sayad
- Hematopoietic Stem Cell Research Center, 556492Shahid Beheshti University of Medical Sciences, Iran
| |
Collapse
|
6
|
Ikeda S, Abe F, Matsuda Y, Kitadate A, Takahashi N, Tagawa H. Hypoxia-inducible hexokinase-2 enhances anti-apoptotic function via activating autophagy in multiple myeloma. Cancer Sci 2020; 111:4088-4101. [PMID: 32790954 PMCID: PMC7648043 DOI: 10.1111/cas.14614] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma (MM) is an incurable hematopoietic neoplasm derived from plasma cells, and existing in the bone marrow. Recent developments in the field of myeloma onco-biology have enabled the use of proteasome inhibitors (PIs) as key drugs for MM. PIs can increase cell sensitivity to endoplasmic reticulum stress, leading to apoptosis of myeloma cells. PI cannot kill all myeloma cells, however; one reason of this might be activation of autophagy via hypoxic stress in the bone marrow microenvironment. Hypoxia-inducible gene(s) that regulate autophagy may be novel therapeutic target(s) for PI-resistant myeloma cells. Here, a hypoxia-inducible glycolytic enzyme hexokinase-2 (HK2) was demonstrated to contribute by autophagy activation to the acquisition of an anti-apoptotic phenotype in myeloma cells. We found that hypoxic stress led to autophagy activation accompanied by HK2 upregulation in myeloma cells. Under hypoxic conditions, HK2 knockdown inhibited glycolysis and impaired autophagy, inducing apoptosis. The cooperative effects of a PI (bortezomib) against immunodeficient mice inoculated with HK2-knocked down myeloma cells were examined and significant tumor reduction was observed. An HK2 inhibitor, 3-bromopyruvate (3-BrPA), also induced apoptosis under hypoxic rather than normoxic conditions. Further examination of the cooperative effects between 3-BrPA and bortezomib on myeloma cells revealed a significant increase in apoptotic myeloma cells. These results strongly suggested that HK2 regulates the activation of autophagy in hypoxic myeloma cells. Cooperative treatment using PI against a dominant fraction, and HK2 inhibitor against a minor fraction, adapted to the bone marrow microenvironment, may lead to deeper remission for refractory MM.
Collapse
Affiliation(s)
- Sho Ikeda
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Fumito Abe
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuka Matsuda
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita, Japan
| | - Akihiro Kitadate
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tagawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
7
|
Lind J, Czernilofsky F, Vallet S, Podar K. Emerging protein kinase inhibitors for the treatment of multiple myeloma. Expert Opin Emerg Drugs 2019; 24:133-152. [PMID: 31327278 DOI: 10.1080/14728214.2019.1647165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Significant advances have been made during the last two decades in terms of new therapeutic options but also of innovative approaches to diagnosis and management of multiple myeloma (MM). While patient survival has been significantly prolonged, most patients relapse. Including the milestone approval of the first kinase inhibitor imatinib mesylate for CML in 2001, 48 small molecule protein kinase (PK) inhibitors have entered clinical practice until now. However, no PK inhibitor has been approved for MM therapy yet. Areas covered: This review article summarizes up-to-date knowledge on the pathophysiologic role of PKs in MM. Derived small molecules targeting receptor tyrosine kinases (RTKs), the Ras/Raf/MEK/MAPK- pathway, the PI3K/Akt/mTOR- pathway as well as Bruton tyrosine kinase (BTK), Aurora kinases (AURK), and cyclin-dependent kinases (CDKs) are most promising. Preclinical as well as early clinical data focusing on these molecules will be presented and critically reviewed. Expert opinion: Current MM therapy is directed against general vulnerabilities. Novel therapeutic strategies, inhibition of PKs in particular, are directed to target tumor-specific driver aberrations such as genetic abnormalities and microenvironment-driven deregulations. Results of ongoing Precision Medicine trials with PK inhibitors alone or in combination with other agents are eagerly awaited and hold the promise of once more improving MM patient outcome.
Collapse
Affiliation(s)
- Judith Lind
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Felix Czernilofsky
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Sonia Vallet
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences , Krems an der Donau , Austria
| |
Collapse
|
8
|
Deng J, Jiang P, Yang T, Huang M, Qi W, Zhou T, Yang Z, Zou Y, Gao G, Yang X. Targeting β3-adrenergic receptor signaling inhibits neuroblastoma cell growth via suppressing the mTOR pathway. Biochem Biophys Res Commun 2019; 514:295-300. [PMID: 31030945 DOI: 10.1016/j.bbrc.2019.04.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Abstract
Neuroblastoma (NB), the most common extracranial solid tumor in childhood, always leads to an unfavorable prognosis. β3-adrenergic receptor (β3-AR) signaling plays an important role in lipid metabolism. Although previous studies have focused mainly on the role of β2-AR in tumor cells; there are few studies about the cancer-related function of β3-AR. Herein, we showed that β3-AR expression was significantly increased in clinical NB tissue compared with that in the less malignant ganglioneuroma (GN) and ganglioneuroblastoma (GNB) tissues. Further cellular assays demonstrated that treatment of NB cells with SR59230A (a specific β3-AR antagonist) suppressed NB cells growth and colony formation, and siRNA knockdown of β3-AR expression also inhibited NB cell proliferation. The mechanistic study revealed that β3-AR knockdown and SR59230A inhibited the phosphorylation and thereby the activation of the mTOR/p70S6K pathway. Activation of the mTOR pathway with the activator MHY1485 reversed the inhibitory effect of SR59230A on NB cell growth. Above all, our study clarifies a novel regulatory role of β3-AR in NB cell growth and provides a potent therapeutic strategy for this disease by specific targeting of the β3-AR pathway.
Collapse
Affiliation(s)
- Jing Deng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ping Jiang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Tianyou Yang
- Program of Molecular Medicine, Department of Internal Medicine, Affiliated Guangzhou Women and Childrens' Medical Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Mao Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yan Zou
- Program of Molecular Medicine, Department of Internal Medicine, Affiliated Guangzhou Women and Childrens' Medical Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Guoquan Gao
- Program of Molecular Medicine, Department of Internal Medicine, Affiliated Guangzhou Women and Childrens' Medical Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Xia Yang
- Program of Molecular Medicine, Department of Internal Medicine, Affiliated Guangzhou Women and Childrens' Medical Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products (Sun Yat-Sen University), Guangzhou, China.
| |
Collapse
|
9
|
Kong Y, Li B, Chang S, Gao L, Xu Z, He W, Yang G, Xie B, Chen G, Hu L, Lu K, Wang Y, Wu X, Zhu W, Shi J. DCZ0814 induces apoptosis and G0/G1 phase cell cycle arrest in myeloma by dual inhibition of mTORC1/2. Cancer Manag Res 2019; 11:4797-4808. [PMID: 31213901 PMCID: PMC6549748 DOI: 10.2147/cmar.s194202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/17/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: The present study investigates the effect of DCZ0814 in multiple myeloma (MM) cells, and determines the molecular mechanism of its antitumor activity against MM. Methods: The effects of DCZ0814 were evaluated in vitro using human MM cell lines (ARP1 and OCI-MY5) and in vivo in a murine xenograft MM model. Cell viability was measured with the CCK-8 assay and mitochondrial membrane potential (MMP) was assessed with the JC-1 dye. Apoptosis and cell cycle distribution were examined by flow cytometry. Inhibition of mTORC1 and mTORC2 was assessed by western blot analysis, and the synergistic effect of DCZ0814 and known MM drugs was assessed by calculating the combination index value, using the CalcuSyn software. Results: DCZ0814 effectively inhibited proliferation in MM cells, an effect that was associated with the induction of apoptosis, G0/G1 cell cycle arrest, MMP reduction and reactive oxygen species (ROS) generation. Meanwhile, DCZ0814 repressed the mTOR signaling via dual mTORC1/C2 inhibition and overcame the protective effect of the bone marrow (BM) microenvironment in myeloma cells. In addition, co-treatment with DCZ0814 and other anti-MM agents induced synergistic effects. Finally, the efficacy of the DCZ0814 treatment was confirmed in an MM xenograft mouse model. Conclusion: DCZ0814 exhibits potent anti-MM activity and abrogates the activation of the mTOR/Akt signaling pathway mediated by the BM stroma-derived cytokines. Our results provide a theoretical basis for the development of novel therapeutic strategies in MM using DCZ0814 as a natural product combination compound.
Collapse
Affiliation(s)
- Yuanyuan Kong
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Shuaikang Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Wan He
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Gege Chen
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Kang Lu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Yingcong Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| |
Collapse
|
10
|
Cross Talk Networks of Mammalian Target of Rapamycin Signaling With the Ubiquitin Proteasome System and Their Clinical Implications in Multiple Myeloma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:219-297. [PMID: 30712673 DOI: 10.1016/bs.ircmb.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and results from the clonal amplification of plasma cells. Despite recent advances in treatment, MM remains incurable with a median survival time of only 5-6years, thus necessitating further insights into MM biology and exploitation of novel therapeutic approaches. Both the ubiquitin proteasome system (UPS) and the PI3K/Akt/mTOR signaling pathways have been implicated in the pathogenesis, and treatment of MM and different lines of evidence suggest a close cross talk between these central cell-regulatory signaling networks. In this review, we outline the interplay between the UPS and mTOR pathways and discuss their implications for the pathophysiology and therapy of MM.
Collapse
|
11
|
Yang C, Huang X, Liu H, Xiao F, Wei J, You L, Qian W. PDK1 inhibitor GSK2334470 exerts antitumor activity in multiple myeloma and forms a novel multitargeted combination with dual mTORC1/C2 inhibitor PP242. Oncotarget 2018; 8:39185-39197. [PMID: 28402933 PMCID: PMC5503605 DOI: 10.18632/oncotarget.16642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
A deeper understanding of the complex pathogenesis of multiple myeloma (MM) continues to lead to novel therapeutic approaches. Prior studies suggest that 3-phosphoinositide-dependent kinase 1 (PDK1) is expressed and active, acting as a crucial regulator of molecules that are essential for myelomagenesis. In the present study, we show that GSK2334470 (GSK-470), a novel and highly specific inhibitor of PDK1, induces potent cytotoxicity in MM cell lines including Dexamethasone-resistant cell line, but not in human normal cells. Insulin-like growth factor-1 could not rescue GSK-470-induced cell death. Moreover, GSK-470 down-modulates phosphor-PDK1, thereby inhibiting downstream phosphor-AKT at Thr308 and mTOR complex 1 (mTORC1) activity. However, GSK-470 could not affect mTORC2 activity and phosphor-AKT at Ser473. RPMI 8226 and OPM-2 cells with low expression of PTEN show relative resistant to GSK-470. Knockout of PTEN by shRNA resulted in a partial reversion of GSK-470-mediated growth inhibition, whereas overexpression of PTEN enhanced myeloma cell sensitivity to GSK-470, suggesting that the sensitivity to GSK-470 is correlated with PTEN expression statue in MM cells. Combining PP242, a dual mTORC1/C2 inhibitor, with GSK-470, had greater antimyeloma activity than either one alone in vitro and in MM xenograft model established in immunodeficient mice. In particular, this combination was able to result in a complete inhibition of mTORC1/C2 and full activity of AKT. Together, these findings raise the possibility that combining PDK1 antagonist GSK-470 with mTORC1/C2 inhibitors may represent a novel strategy against MM including drug-resistant myeloma, regardless of PTEN expression status.
Collapse
Affiliation(s)
- Chunmei Yang
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Xianbo Huang
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Hui Liu
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Feng Xiao
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Jueying Wei
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Liangshun You
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Wenbin Qian
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| |
Collapse
|
12
|
Xu DQ, Toyoda H, Qi L, Morimoto M, Hanaki R, Iwamoto S, Komada Y, Hirayama M. Induction of MEK/ERK activity by AZD8055 confers acquired resistance in neuroblastoma. Biochem Biophys Res Commun 2018; 499:425-432. [PMID: 29571732 DOI: 10.1016/j.bbrc.2018.03.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
Mammalian target of rapamycin (mTOR) complex (mTORC) is frequently activated in diverse cancers. Although dual mTORC1/2 inhibitors are currently under development to treat various malignancies, the emergence of drug resistance has proven to be a major complication. AZD8055 is a novel, potent ATP-competitive and specific inhibitor of mTOR kinase activity, which blocks both mTORC1 and mTORC2 activation. In this study, we acquired AZD8055-resistant neuroblastoma (NB) cell sublines by using prolonged stepwise escalation of AZD8055 exposure (4-12 weeks). Here we demonstrate that the AZD8055-resistant sublines (TGW-R and SMS-KAN-R) exhibited marked resistance to AZD8055 compared to the parent cells (TGW and SMS-KAN). The cell cycle G1/S transition was advanced in resistant cells. In addition, the resistance against AZD8055 correlated with over-activation of MEK/ERK signaling pathway. Furthermore, combination of AZD8055 and MEK inhibitor U0126 enhanced the growth inhibition of resistant cells significantly in vitro and in vivo. In conclusion, these data show that targeting mTOR kinase and MEK/ERK signaling simultaneously might help to overcome AZD8055 resistance in NB.
Collapse
Affiliation(s)
- Dong-Qing Xu
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hidemi Toyoda
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Lei Qi
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Mari Morimoto
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Ryo Hanaki
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan.
| |
Collapse
|
13
|
Abstract
Mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. mTORC1 and mTORC2 play key physiological roles as they control anabolic and catabolic processes in response to external cues in a variety of tissues and organs. However, mTORC1 and mTORC2 activities are deregulated in widespread human diseases, including cancer. Cancer cells take advantage of mTOR oncogenic signaling to drive their proliferation, survival, metabolic transformation, and metastatic potential. Therefore, mTOR lends itself very well as a therapeutic target for innovative cancer treatment. mTOR was initially identified as the target of the antibiotic rapamycin that displayed remarkable antitumor activity in vitro Promising preclinical studies using rapamycin and its derivatives (rapalogs) demonstrated efficacy in many human cancer types, hence supporting the launch of numerous clinical trials aimed to evaluate the real effectiveness of mTOR-targeted therapies. However, rapamycin and rapalogs have shown very limited activity in most clinical contexts, also when combined with other drugs. Thus, novel classes of mTOR inhibitors with a stronger antineoplastic potency have been developed. Nevertheless, emerging clinical data suggest that also these novel mTOR-targeting drugs may have a weak antitumor activity. Here, we summarize the current status of available mTOR inhibitors and highlight the most relevant results from both preclinical and clinical studies that have provided valuable insights into both their efficacy and failure.
Collapse
|
14
|
Jin HG, Wu GZ, Wu GH, Bao YG. Combining the mammalian target of rapamycin inhibitor, rapamycin, with resveratrol has a synergistic effect in multiple myeloma. Oncol Lett 2018; 15:6257-6264. [PMID: 29731844 PMCID: PMC5920858 DOI: 10.3892/ol.2018.8178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
Rapamycin is known to inhibit the mammalian target of rapamycin complex (mTORC)1 signaling pathway, but it is unable to effectively inhibit mTORC2, resulting in activation of protein kinase B in multiple myeloma (MM) cell lines. Additionally, certain studies have suggested that resveratrol has an effect on human MM cells, and that rapamycin in combination with resveratrol may be useful in cancer therapy. The present study aimed to investigate the combined treatment effect of resveratrol and rapamycin on the MM MM1.S cell line. The results demonstrated that combined treatment with rapamycin and resveratrol effectively inhibited cell viability in the MM1.S cell line through inhibition of the mTORC1 and mTORC2 signaling pathways, compared with resveratrol or rapamycin monotherapy. In addition, cyclin D1 levels were decreased and the activation of caspase-3 and poly (ADP-ribose) polymerase was increased. These results suggested that downregulation of the mTOR signaling cascades is likely to be a crucial mediator in the impairment of viability and the induction of apoptosis resulting from combined therapy with resveratrol and rapamycin in MM1.S cells.
Collapse
Affiliation(s)
- Hong-Guang Jin
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Guo-Zhen Wu
- Department of Cardiology, Tongliao Traditional Chinese Medicine Hospital, Tongliao, Inner Mongolia 028000, P.R. China
| | - Guo-Hua Wu
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Yong-Ge Bao
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| |
Collapse
|
15
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Ramakrishnan V, Kumar S. PI3K/AKT/mTOR pathway in multiple myeloma: from basic biology to clinical promise. Leuk Lymphoma 2018; 59:2524-2534. [PMID: 29322846 DOI: 10.1080/10428194.2017.1421760] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Multiple myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most common hematological malignancy. The disease is characterized by the accumulation of abnormal plasma cells in the bone marrow that remains in close association with other cells in the marrow microenvironment. In addition to the genomic alterations that commonly occur in MM, the interaction with cells in the marrow microenvironment promotes signaling events within the myeloma cells that enhances survival of MM cells. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is such a pathway that is aberrantly activated in a large proportion of MM patients through numerous mechanisms and can play a role in resistance to several existing therapies making this a central pathway in MM pathophysiology. Here, we review the pathway, its role in MM, promising preclinical results obtained thus far and the clinical promise that drugs targeting this pathway have in MM.
Collapse
Affiliation(s)
| | - Shaji Kumar
- a Division of Hematology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
17
|
Ramakrishnan V, D'Souza A. Signaling Pathways and Emerging Therapies in Multiple Myeloma. Curr Hematol Malig Rep 2017; 11:156-64. [PMID: 26922744 DOI: 10.1007/s11899-016-0315-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple myeloma (MM) is a devastating malignancy of antibody-producing plasma cells. In the absence of a single unifying genetic event contributing to disease manifestation, efforts have focused on understanding signaling events deregulated in myeloma plasma cells. MM cells are dependent on both cellular and non-cellular components of the tumor microenvironment such as bone marrow stromal cells, endothelial cells, and cytokines such as interleukin 6 (IL6), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF) for their growth and survival. The cumulative effect of such interactions is the aberrant activation of numerous signal transduction pathways within the MM plasma cells leading to uncontrolled growth and prevention of apoptosis. Here, we will review our current understanding of some of the key signal transduction pathways dysregulated in MM and emerging therapies targeting these pathways in MM.
Collapse
Affiliation(s)
- Vijay Ramakrishnan
- Division of Hematology, Mayo Clinic, 200, First Street SW, Rochester, MN, 55905, USA.
| | - Anita D'Souza
- Medical College of Wisconsin Milwaukee, Milwaukee, WI, 53226, USA.
| |
Collapse
|
18
|
Burwick N, Zhang MY, de la Puente P, Azab AK, Hyun TS, Ruiz-Gutierrez M, Sanchez-Bonilla M, Nakamura T, Delrow JJ, MacKay VL, Shimamura A. The eIF2-alpha kinase HRI is a novel therapeutic target in multiple myeloma. Leuk Res 2017; 55:23-32. [PMID: 28119225 DOI: 10.1016/j.leukres.2017.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/14/2016] [Accepted: 01/04/2017] [Indexed: 12/16/2022]
Abstract
Dexamethasone (dex) induces apoptosis in multiple myeloma (MM) cells and is a frontline treatment for this disease. However resistance to dex remains a major challenge and novel treatment approaches are needed. We hypothesized that dex utilizes translational pathways to promote apoptosis in MM and that specific targeting of these pathways could overcome dex-resistance. Global unbiased profiling of mRNA translational profiles in MM cells treated with or without dex revealed that dex significantly repressed eIF2 signaling, an important pathway for regulating ternary complex formation and protein synthesis. We demonstrate that dex induces the phosphorylation of eIF2α resulting in the translational upregulation of ATF4, a known eIF2 regulated mRNA. Pharmacologic induction of eIF2α phosphorylation via activation of the heme-regulated eIF2α kinase (HRI) induced apoptosis in MM cell lines and in primary MM cells from patients with dex-resistant disease. In addition, co-culture with marrow stroma failed to protect MM cells from apoptosis induced by targeting the eIF2 pathway. Combination therapy with rapamycin, an mTOR inhibitor, and BTdCPU, an activator of HRI, demonstrated additive effects on apoptosis in dex-resistant cells. Thus, specific activation of the eIF2α kinase HRI is a novel therapeutic target in MM that can augment current treatment strategies.
Collapse
Affiliation(s)
- Nicholas Burwick
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA; Department of Medicine, University of Washington Medical Center, 1705 NE Pacific St., Seattle, WA, USA.
| | - Michael Y Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Teresa S Hyun
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA; Department of Pathology, University of Washington Medical Center, 1705 NE Pacific St., Seattle, WA, USA
| | - Melisa Ruiz-Gutierrez
- Department of Pediatric Hematology/Oncology, Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA, USA; Department of Pediatrics, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - Marilyn Sanchez-Bonilla
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Tomoka Nakamura
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Jeffrey J Delrow
- Genomics Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Vivian L MacKay
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Akiko Shimamura
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA; Department of Pediatric Hematology/Oncology, Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA, USA; Department of Pediatrics, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| |
Collapse
|
19
|
Shi Y, Daniels-Wells TR, Frost P, Lee J, Finn RS, Bardeleben C, Penichet ML, Jung ME, Gera J, Lichtenstein A. Cytotoxic Properties of a DEPTOR-mTOR Inhibitor in Multiple Myeloma Cells. Cancer Res 2016; 76:5822-5831. [PMID: 27530328 DOI: 10.1158/0008-5472.can-16-1019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/15/2016] [Indexed: 11/16/2022]
Abstract
DEPTOR is a 48 kDa protein that binds to mTOR and inhibits this kinase in TORC1 and TORC2 complexes. Overexpression of DEPTOR specifically occurs in a model of multiple myeloma. Its silencing in multiple myeloma cells is sufficient to induce cytotoxicity, suggesting that DEPTOR is a potential therapeutic target. mTORC1 paralysis protects multiple myeloma cells against DEPTOR silencing, implicating mTORC1 in the critical role of DEPTOR in multiple myeloma cell viability. Building on this foundation, we interrogated a small-molecule library for compounds that prevent DEPTOR binding to mTOR in a yeast-two-hybrid assay. One compound was identified that also prevented DEPTOR-mTOR binding in human myeloma cells, with subsequent activation of mTORC1 and mTORC2. In a surface plasmon resonance (SPR) assay, the compound bound to recombinant DEPTOR but not to mTOR. The drug also prevented binding of recombinant DEPTOR to mTOR in the SPR assay. Remarkably, although activating TORC1 and TORC2, the compound induced apoptosis and cell-cycle arrest in multiple myeloma cell lines and prevented outgrowth of human multiple myeloma cells in immunodeficient mice. In vitro cytotoxicity against multiple myeloma cell lines was directly correlated with DEPTOR protein expression and was mediated, in part, by the activation of TORC1 and induction of p21 expression. Additional cytotoxicity was seen against primary multiple myeloma cells, whereas normal hematopoietic colony formation was unaffected. These results further support DEPTOR as a viable therapeutic target in multiple myeloma and suggest an effective strategy of preventing binding of DEPTOR to mTOR. Cancer Res; 76(19); 5822-31. ©2016 AACR.
Collapse
Affiliation(s)
- Yijiang Shi
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California
| | - Tracy R Daniels-Wells
- Department of Surgery, University of California at Los Angeles, Los Angeles, California
| | - Patrick Frost
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California
| | - Jihye Lee
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Richard S Finn
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California
| | - Carolyne Bardeleben
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California
| | - Manuel L Penichet
- Department of Surgery, University of California at Los Angeles, Los Angeles, California. Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Joseph Gera
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California
| | - Alan Lichtenstein
- Department of Hematology-Oncology, University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
20
|
Ghobrial IM, Siegel DS, Vij R, Berdeja JG, Richardson PG, Neuwirth R, Patel CG, Zohren F, Wolf JL. TAK-228 (formerly MLN0128), an investigational oral dual TORC1/2 inhibitor: A phase I dose escalation study in patients with relapsed or refractory multiple myeloma, non-Hodgkin lymphoma, or Waldenström's macroglobulinemia. Am J Hematol 2016; 91:400-5. [PMID: 26800393 DOI: 10.1002/ajh.24300] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
The PI3K/AKT/mTOR signaling pathways are frequently dysregulated in multiple human cancers, including multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and Waldenström's macroglobulinemia (WM). This was the first clinical study to evaluate the safety, tolerability, maximal-tolerated dose (MTD), dose-limiting toxicity (DLT), pharmacokinetics, and preliminary clinical activity of TAK-228, an oral TORC1/2 inhibitor, in patients with MM, NHL, or WM. Thirty-nine patients received TAK-228 once daily (QD) at 2, 4, 6, or 7 mg, or QD for 3 days on and 4 days off each week (QDx3d QW) at 9 or 12 mg, in 28-day cycles. The overall median age was 61.0 years (range 46-85); 31 patients had MM, four NHL, and four WM. Cycle 1 DLTs occurred in five QD patients (stomatitis, urticaria, blood creatinine elevation, fatigue, and nausea and vomiting) and four QDx3d QW patients (erythematous rash, fatigue, asthenia, mucosal inflammation, and thrombocytopenia). The MTDs were determined to be 4 mg QD and 9 mg QDx3d QW. Thirty-six patients (92%) reported at least one drug-related toxicity; the most common grade ≥3 drug-related toxicities were thrombocytopenia (15%), fatigue (10%), and neutropenia (5%). TAK-228 exhibited a dose-dependent increase in plasma exposure and no appreciable accumulation with repeat dosing; mean plasma elimination half-life was 6-8 hr. Of the 33 response-evaluable patients, one MM patient had a minimal response, one WM patient achieved partial response, one WM patient had a minor response, and 18 patients (14 MM, two NHL, and two WM) had stable disease. These findings encourage further studies including combination strategies.
Collapse
Affiliation(s)
- Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston Massachusetts
| | - David S. Siegel
- John Theurer Cancer Center at Hackensack University Medical Center; Hackensack New Jersey
| | - Ravi Vij
- Division of Hematology and Oncology, Washington University School of Medicine; St. Louis Missouri
| | | | - Paul G. Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston Massachusetts
| | - Rachel Neuwirth
- Global Biostatistics, Millennium Pharmaceuticals, Inc, Cambridge, Massachusetts, USA, a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited
| | - Chirag G. Patel
- Clinical Pharmacology, Millennium Pharmaceuticals, Inc; Cambridge Massachusetts USA, a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited
| | - Fabian Zohren
- Oncology Clinical Research, Millennium Pharmaceuticals, Inc; Cambridge Massachusetts USA, a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited
| | - Jeffrey L. Wolf
- Department of Medicine; University of California San Francisco; San Francisco California
| |
Collapse
|
21
|
The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis? Future Med Chem 2016; 7:1137-47. [PMID: 26132523 DOI: 10.4155/fmc.15.55] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PI3K/Akt/mTOR signaling regulates diverse cellular processes. Abnormal PI3K/Akt/mTOR signaling is a characteristic feature of cancer. As such inhibition of PI3K/Akt/mTOR signaling using small molecule inhibitors has been a focus of recently developed anticancer drugs. Rheumatoid arthritis and psoriatic arthritis are autoimmune-mediated inflammatory diseases. PI3K signaling could now be targeted to determine its contribution to rheumatoid and psoriatic arthritis where deregulated proliferation and aberrant survival of activated immune cells, macrophages, monocytes, dendritic cells and synovial fibroblasts significantly overlap with abnormal growth of cancer cells. The results of some recent studies in psoriatic arthritis using PI3K signaling inhibitors suggests that small molecule inhibitor strategies directed at PI3K signaling may be a useful future therapy for immune-mediated arthritis.
Collapse
|
22
|
Eltschinger S, Loewith R. TOR Complexes and the Maintenance of Cellular Homeostasis. Trends Cell Biol 2015; 26:148-159. [PMID: 26546292 DOI: 10.1016/j.tcb.2015.10.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/30/2022]
Abstract
The Target of Rapamycin (TOR) is a conserved serine/threonine (ser/thr) kinase that functions in two, distinct, multiprotein complexes called TORC1 and TORC2. Each complex regulates different aspects of eukaryote growth: TORC1 regulates cell volume and/or mass by influencing protein synthesis and turnover, while TORC2, as detailed in this review, regulates cell surface area by influencing lipid production and intracellular turgor. TOR complexes function in feedback loops, implying that downstream effectors are also likely to be involved in upstream regulation. In this regard, the notion that TORCs function primarily as mediators of cellular and organismal homeostasis is fundamentally different from the current, predominate view of TOR as a direct transducer of extracellular biotic and abiotic signals.
Collapse
Affiliation(s)
- Sandra Eltschinger
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland; iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland; iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland; National Centre for Competence in Research in Chemical Biology, Geneva, Switzerland.
| |
Collapse
|
23
|
Mimura N, Hideshima T, Anderson KC. Novel therapeutic strategies for multiple myeloma. Exp Hematol 2015; 43:732-41. [PMID: 26118499 DOI: 10.1016/j.exphem.2015.04.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 12/23/2022]
Abstract
Multiple myeloma (MM) is a plasma-cell malignancy which remains incurable despite the recent emergence of multiple novel agents. Importantly, recent genetic and molecular analyses have revealed the complexity and heterogeneity of this disease, highlighting the need for therapeutic strategies to eliminate all clones. Moreover, the bone marrow microenvironment, including stromal cells and immune cells, plays a central role in MM pathogenesis, promoting tumor cell growth, survival, and drug resistance. New classes of agents including proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, and histone deacetylase inhibitors have shown remarkable efficacy; however, novel therapeutic approaches are still urgently needed to further improve patient outcomes. In this review, we discuss the recent advances and future strategies to ultimately develop MM therapies with curative potential.
Collapse
Affiliation(s)
- Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan.
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|