1
|
Li Y, Li C, Zhao C, Wu J, Zhu Y, Wang F, Zhong J, Yan Y, Jin Y, Dong W, Chen J, Yang X, Zhou J, Hu B. Coronavirus M protein promotes mitophagy over virophagy by recruiting PDPK1 to phosphorylate SQSTM1 at T138. Nat Commun 2024; 15:8927. [PMID: 39414765 PMCID: PMC11484861 DOI: 10.1038/s41467-024-53100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Autophagy plays a dual role in coronavirus infection, facilitating the elimination of either proviral components (virophagy) or antiviral factors such as mitochondria (mitophagy), leading to complex mechanisms of immune evasion. Understanding the mechanisms that govern the switch between the autophagic degradation of deleterious or beneficial substrates in coronavirus infection is crucial for developing precise drug targets to treat virus-induced diseases. However, this switch remains largely unknown. Using a dual split-fluorescence assay, we identify PDPK1 as a negative regulator of innate immunity, directing the transition from virophagy to mitophagy through the phosphorylation of SQSTM1 at T138. Remarkably, a PDPK1-targeting peptide inhibits the replication of various RNA viruses by restoring innate immunity through enhanced virophagy and suppressed mitophagy, thereby protecting female mice from lethal infections. These findings underscore the detrimental role of PDPK1 in innate immunity by orchestrating the shift from virophagy to mitophagy, positioning PDPK1 as a promising pharmacological target for effectively combating a broad spectrum of virus infections.
Collapse
Affiliation(s)
- Yahui Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chunyan Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Chenchen Zhao
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiayu Wu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Ya Zhu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Fei Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiepeng Zhong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jinyang Chen
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Xianghong Yang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China.
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China.
| |
Collapse
|
2
|
Simbilyabo LZ, Yang L, Wen J, Liu Z. The unfolded protein response machinery in glioblastoma genesis, chemoresistance and as a druggable target. CNS Neurosci Ther 2024; 30:e14839. [PMID: 39021040 PMCID: PMC11255034 DOI: 10.1111/cns.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions. METHODS This article, reviews how the UPR is implicated in cell homeostasis maintenance, then surveils the evidence supporting the UPR involvement in GB genesis, progression, angiogenesis, GB stem cell biology, tumor microenvironment modulation, extracellular matrix remodeling, cell fate decision, invasiveness, and grading. Next, it concurs the evidence showing how the UPR mediates GB chemoresistance-related mechanisms. RESULTS The UPR stress sensors IRE1, PERK, and ATF6 with their regulator GRP78 are upregulated in GB compared to lower grade gliomas and normal brain tissue. They are activated in response to oncogenes and are implicated at different stages of GB progression, from its genesis to chemoresistance and relapse. The UPR arms can be effectors of apoptosis as mediators or targets. CONCLUSION Recent research has established the role of the UPR in GB pathophysiology and chemoresistance. Targeting its different sensors have shown promising in overcoming GB chomo- and radioresistance and inducing apoptosis.
Collapse
Affiliation(s)
- Lucette Z. Simbilyabo
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liting Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
4
|
Dent P, Booth L, Roberts JL, Poklepovic A, Martinez J, Cridebring D, Reiman EM. AR12 increases BAG3 expression which is essential for Tau and APP degradation via LC3-associated phagocytosis and macroautophagy. Aging (Albany NY) 2022; 14:8221-8242. [PMID: 36227739 PMCID: PMC9648812 DOI: 10.18632/aging.204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
We defined the mechanisms by which the chaperone ATPase inhibitor AR12 and the multi-kinase inhibitor neratinib interacted to reduce expression of Tau and amyloid-precursor protein (APP) in microglia and neuronal cells. AR12 and neratinib interacted to increase the phosphorylation of eIF2A S51 and the expression of BAG3, Beclin1 and ATG5, and in parallel, enhanced autophagosome formation and autophagic flux. Knock down of BAG3, Beclin1 or ATG5 abolished autophagosome formation and significantly reduced degradation of p62, LAMP2, Tau, APP, and GRP78 (total and plasma membrane). Knock down of Rubicon, a key component of LC3-associated phagocytosis (LAP), significantly reduced autophagosome formation but not autophagic flux and prevented degradation of Tau, APP, and cell surface GRP78, but not ER-localized GRP78. Knock down of Beclin1, ATG5 or Rubicon or over-expression of GRP78 prevented the significant increase in eIF2A phosphorylation. Knock down of eIF2A prevented the increase in BAG3 expression and significantly reduced autophagosome formation, autophagic flux, and it prevented Tau and APP degradation. We conclude that AR12 has the potential to reduce Tau and APP levels in neurons and microglia via the actions of LAP, endoplasmic reticulum stress signaling and macroautophagy. We hypothesize that the initial inactivation of GRP78 catalytic function by AR12 facilitates an initial increase in eIF2A phosphorylation which in turn is essential for greater levels of eIF2A phosphorylation, greater levels of BAG3 and macroautophagy and eventually leading to significant amounts of APP/Tau degradation.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer Martinez
- National Institute of Environmental Health Sciences, Inflammation and Autoimmunity Group, Triangle Park, Durham, NC 27709, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
5
|
Zhao P, Shen Y, Li M, Dan H, Zhao Z, Zhang J. Integration of Transcriptomics and Metabolomics Reveals the Antitumor Mechanism Underlying Tadalafil in Colorectal Cancer. Front Pharmacol 2022; 13:793499. [PMID: 35694253 PMCID: PMC9184725 DOI: 10.3389/fphar.2022.793499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
The potential role of tadalafil, a PDE5 inhibitor, in anticancer activity and prolonged survival has been proposed. However, the systematic effects of tadalafil in colorectal cancer were not fully understood. In this study, we assessed the anti-tumor activity of tadalafil in human colorectal cancer cells. A systematic perspective of the tadalafil-induced anti-tumor mechanism was provided by the integration of transcriptomics and metabolomics. We found that differentially expressed genes (DEGs) were mainly involved in microRNAs in cancer, purine metabolism, glycosphingolipid biosynthesis, arginine biosynthesis, and amino acid metabolism. Amino acid metabolism, especially alanine, aspartate, and glutamate metabolism was the most of the differentially accumulated metabolites (DAMs) through the analysis of metabolomics. The conjoint analysis of DEGs and DAMs presented that they were also mainly involved in alanine, aspartate, and glutamate metabolism. Amino acid metabolism-related genes, GPT, GGT5, and TAT, were significantly decreased after tadalafil treatment. In particular, the disturbance of alanine, aspartate, and glutamate metabolism may be the explanation for the major mechanism resulting from tadalafil anti-tumor activity.
Collapse
Affiliation(s)
- Pan Zhao
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Yao Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Mengyang Li
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Hanjun Dan
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Zhiming Zhao
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Zhiming Zhao, ; Jian Zhang,
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zhiming Zhao, ; Jian Zhang,
| |
Collapse
|
6
|
Sanati M, Aminyavari S, Mollazadeh H, Bibak B, Mohtashami E, Afshari AR. How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme. Pharmacol Rep 2022; 74:323-339. [PMID: 35050491 DOI: 10.1007/s43440-021-00349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
Since the discovery of phosphodiesterase-5 (PDE5) enzyme overexpression in the central nervous system (CNS) malignancies, investigations have explored the potential capacity of current PDE5 inhibitor drugs for repositioning in the treatment of brain tumors, notably glioblastoma multiforme (GBM). It has now been recognized that these drugs increase brain tumors permeability and enhance standard chemotherapeutics effectiveness. More importantly, studies have highlighted the promising antitumor functions of PDE5 inhibitors, e.g., triggering apoptosis, suppressing tumor cell growth and invasion, and reversing tumor microenvironment (TME) immunosuppression in the brain. However, contradictory reports have suggested a pro-oncogenic role for neuronal cyclic guanosine monophosphate (cGMP), indicating the beneficial function of PDE5 in the brain of GBM patients. Unfortunately, due to the inconsistent preclinical findings, only a few clinical trials are evaluating the therapeutic value of PDE5 inhibitors in GBM treatment. Accordingly, additional studies should be conducted to shed light on the precise effect of PDE5 inhibitors in GBM biology regarding the existing molecular heterogeneities among individuals. Here, we highlighted and discussed the previously investigated mechanisms underlying the impacts of PDE5 inhibitors in cancers, focusing on GBM to provide an overview of current knowledge necessary for future studies.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
7
|
Nandi S, Kumar P, Amin SA, Jha T, Gayen S. First molecular modelling report on tri-substituted pyrazolines as phosphodiesterase 5 (PDE5) inhibitors through classical and machine learning based multi-QSAR analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:917-939. [PMID: 34727793 DOI: 10.1080/1062936x.2021.1989721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Phosphodiesterase 5 (PDE5) falls under a broad category of metallohydrolase enzymes responsible for the catalysis of the phosphodiesterase bond, and thus it can terminate the action of cyclic guanosine monophosphate (cGMP). Overexpression of this enzyme leads to development of a number of pathological conditions. Thus, targeting the enzyme to develop inhibitors could be useful for the treatment of erectile dysfunction as well as pulmonary hypertension. In the current study, several molecular modelling techniques were utilized including Bayesian classification, single tree and forest tree recursive partitioning, and genetic function approximation to identify crucial structural fingerprints important for optimization of tri-substituted pyrazoline derivatives as PDE5 inhibitors. Later, various machine learning models were also developed that could be utilized to predict and screen PDE5 inhibitors in the future.
Collapse
Affiliation(s)
- S Nandi
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
| | - P Kumar
- Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, India
| | - S A Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Gayen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
8
|
Tsao N, Chang YC, Hsieh SY, Li TC, Chiu CC, Yu HH, Hsu TC, Kuo CF. AR-12 Has a Bactericidal Activity and a Synergistic Effect with Gentamicin against Group A Streptococcus. Int J Mol Sci 2021; 22:ijms222111617. [PMID: 34769046 PMCID: PMC8583967 DOI: 10.3390/ijms222111617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 μg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection.
Collapse
Affiliation(s)
- Nina Tsao
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Ya-Chu Chang
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Sung-Yuan Hsieh
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300024, Taiwan;
| | - Tang-Chi Li
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Ching-Chen Chiu
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (N.T.); (Y.-C.C.); (T.-C.L.); (C.-C.C.)
| | - Hai-Han Yu
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Tzu-Ching Hsu
- Department of Biological Science and Technology, College of Medical Science and Technology, I-Shou University, Kaohsiung 824005, Taiwan; (H.-H.Y.); (T.-C.H.)
| | - Chih-Feng Kuo
- School of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7967)
| |
Collapse
|
9
|
Abstract
Pancreatic cancer is an almost incurable malignancy whose incidence has increased over the past 30 years. Instead of pursuing the development of modalities utilizing 'traditional' cytotoxic chemotherapeutic agents, we have explored the possibilities of developing novel multi-kinase inhibitor drug combinations to kill this tumor type. Several approaches using the multi-kinase inhibitors sorafenib, regorafenib, and neratinib have been safely translated from the bench to the bedside, with objective anti-tumor responses. This review will discuss our prior preclinical and clinical studies and discuss future clinical opportunities in this disease.
Collapse
|
10
|
Sobolewski C, Legrand N. Celecoxib Analogues for Cancer Treatment: An Update on OSU-03012 and 2,5-Dimethyl-Celecoxib. Biomolecules 2021; 11:biom11071049. [PMID: 34356673 PMCID: PMC8302000 DOI: 10.3390/biom11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is an important enzyme involved in prostaglandins biosynthesis from arachidonic acid. COX-2 is frequently overexpressed in human cancers and plays a major tumor promoting function. Accordingly, many efforts have been devoted to efficiently target the catalytic site of this enzyme in cancer cells, by using COX-2 specific inhibitors such as celecoxib. However, despite their potent anti-tumor properties, the myriad of detrimental effects associated to the chronic inhibition of COX-2 in healthy tissues, has considerably limited their use in clinic. In addition, increasing evidence indicate that these anti-cancerous properties are not strictly dependent on the inhibition of the catalytic site. These findings have led to the development of non-active COX-2 inhibitors analogues aiming at preserving the antitumor effects of COX-2 inhibitors without their side effects. Among them, two celecoxib derivatives, 2,5-Dimethyl-Celecoxib and OSU-03012, have been developed and suggested for the treatment of viral (e.g., recently SARS-CoV-2), inflammatory, metabolic diseases and cancers. These molecules display stronger anti-tumor properties than celecoxib and thus may represent promising anti-cancer molecules. In this review, we discuss the impact of these two analogues on cancerous processes but also their potential for cancer treatment alone or in combination with existing approaches.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-379-5421
| | - Noémie Legrand
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland;
| |
Collapse
|
11
|
Dent P, Booth L, Roberts JL, Poklepovic A, Cridebring D, Reiman EM. Inhibition of heat shock proteins increases autophagosome formation, and reduces the expression of APP, Tau, SOD1 G93A and TDP-43. Aging (Albany NY) 2021; 13:17097-17117. [PMID: 34252884 PMCID: PMC8312464 DOI: 10.18632/aging.203297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Aberrant expression and denaturation of Tau, amyloid-beta and TDP-43 can lead to cell death and is a major component of pathologies such as Alzheimer’s Disease (AD). AD neurons exhibit a reduced ability to form autophagosomes and degrade proteins via autophagy. Using genetically manipulated colon cancer cells we determined whether drugs that directly inhibit the chaperone ATPase activity or cause chaperone degradation and endoplasmic reticulum stress signaling leading to macroautophagy could reduce the levels of these proteins. The antiviral chaperone ATPase inhibitor AR12 reduced the ATPase activities and total expression of GRP78, HSP90, and HSP70, and of Tau, Tau 301L, APP, APP692, APP715, SOD1 G93A and TDP-43. In parallel, it increased the phosphorylation of ATG13 S318 and eIF2A S51 and caused eIF2A-dependent autophagosome formation and autophagic flux. Knock down of Beclin1 or ATG5 prevented chaperone, APP and Tau degradation. Neratinib, used to treat HER2+ breast cancer, reduced chaperone levels and expression of Tau and APP via macroautophagy, and neratinib interacted with AR12 to cause further reductions in protein levels. The autophagy-regulatory protein ATG16L1 is expressed as two isoforms, T300 or A300: Africans trend to express T300 and Europeans A300. We observed higher basal expression of Tau in T300 cells when compared to isogenic A300 cells. ATG16L1 isoform expression did not alter basal levels of HSP90, HSP70 or HSP27, however, basal levels of GRP78 were reduced in A300 cells. The abilities of both AR12 and neratinib to stimulate ATG13 S318 and eIF2A S51 phosphorylation and autophagic flux was also reduced in A300 cells. Our data support further evaluation of AR12 and neratinib in neuronal cells as repurposed treatments for AD.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Pharmacology and Toxicology, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
12
|
Iratni R, Ayoub MA. Sildenafil in Combination Therapy against Cancer: A Literature Review. Curr Med Chem 2021; 28:2248-2259. [PMID: 32744956 DOI: 10.2174/0929867327666200730165338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022]
Abstract
The concepts of drug repurposing and Sildenafil or blue pill are tightly linked over the years. Indeed, in addition to its initial clinical application as an anti-hypertensive drug in the pulmonary system, Sildenafil is also known for its beneficial effects in erectile dysfunction. Moreover, evidence has been accumulated to support its value in anti-cancer therapy, either alone or in combination with other clinically efficient chemotherapy drugs. In this review, we focused on the old and recent in vitro and in vivo studies demonstrating the cellular and molecular rationale for the application of Sildenafil in combination therapy in various types of cancer. We emphasized on the different molecular targets as well as the different signaling pathways involved in cancer cells. The pro-apoptotic effect of Sildenafil through nitric oxide (NO)/ phosphodiesterase type 5 (PDE5)-dependent manner seems to be one of the most common mechanisms. However, the activation of autophagy, as well as the modulation of the anti-tumor immunity, constitutes the other pathways triggered by Sildenafil. Overall, the studies converged to reveal the complexity of the anti-cancer potential of Sildenafil. Thus, through our review, we aimed to present an updated and simplified picture of such repurposing of Sildenafil in the field of oncology.
Collapse
Affiliation(s)
- Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box: 15551, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box: 15551, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Yang Y, Zhang X, Zhang X, Wang Y, Wang X, Hu L, Zhao Y, Wang H, Wang Z, Wang H, Wang L, Dirks WG, Drexler HG, Xu X, Hu Z. Modulators of histone demethylase JMJD1C selectively target leukemic stem cells. FEBS Open Bio 2020; 11:265-277. [PMID: 33289299 PMCID: PMC7780120 DOI: 10.1002/2211-5463.13054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Leukemic stem cells (LSCs) comprise a very rare cell population that results in the development of acute myeloid leukemia. The selective targeting of drivers in LSCs with small molecule inhibitors holds promise for treatment of acute myeloid leukemia. Recently, we reported the identification of inhibitors of the histone lysine demethylase JMJD1C that preferentially kill MLL rearranged acute leukemia cells. Here, we report the identification of jumonji domain modulator #7 (JDM‐7). Surface plasmon resonance analysis showed that JDM‐7 binds to JMJD1C and its family homolog JMJD1B. JDM‐7 did not significantly suppress cell proliferation in liquid cell culture at higher doses, although it led to a significant decrease in semi‐solid colony formation experiments at lower concentrations. Moreover, low doses of JDM‐7 did not suppress the proliferation of erythroid progenitor cells. We identified that JDM‐7 downregulates the LSC self‐renewal gene HOXA9 in leukemia cells. We further found that the structure of JDM‐7 is similar to that of tadalafil, a drug approved by the US Food and Drug Administration. Molecular docking and surface plasmon resonance analysis showed that tadalafil binds to JMJD1C. Moreover, similar to JDM‐7, tadalafil suppressed colony formation of leukemia cells in semi‐solid cell culture at a concentration that did not affect primary umbilical cord blood cells. In summary, we have identified JDM‐7 and tadalafil as potential JMJD1C modulators that selectively inhibit the growth of LSCs.
Collapse
Affiliation(s)
- Yong Yang
- Laboratory for Stem Cell and Regenerative Medicine & Clinical Research Center, The Affiliated Hospital of Weifang Medical University, China
| | - Xinjing Zhang
- Department of Anesthesiology, Zibo Central Hospital, China
| | - Xiaoyan Zhang
- The Department of Obstetrics and Gynecology, The Affiliated Hospital of Weifang Medical University, China
| | - Yishu Wang
- Laboratory for Stem Cell and Regenerative Medicine & Clinical Research Center, The Affiliated Hospital of Weifang Medical University, China
| | - Xintong Wang
- Beijing Beike Deyuan Bio-Pharm Technology Co. Ltd, China
| | - Linda Hu
- Upstate Medical University, Syracuse, NY, USA
| | - Yao Zhao
- Laboratory for Stem Cell and Regenerative Medicine & Clinical Research Center, The Affiliated Hospital of Weifang Medical University, China
| | - Haihua Wang
- Laboratory for Stem Cell and Regenerative Medicine & Clinical Research Center, The Affiliated Hospital of Weifang Medical University, China
| | - Zhanju Wang
- The Department of Hematology, the Affiliated Hospital of Weifang Medical University, China
| | - Haiying Wang
- The Department of Hematology, the Affiliated Hospital of Weifang Medical University, China
| | - Lin Wang
- The School of Physics and Optoelectronic Engineering, Weifang University, China
| | - Wilhelm G Dirks
- Department of Human and Animal Cell Culture, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G Drexler
- Department of Human and Animal Cell Culture, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Xin Xu
- Laboratory for Stem Cell and Regenerative Medicine & Clinical Research Center, The Affiliated Hospital of Weifang Medical University, China.,School of Life Science and Technology, Weifang Medical University, China
| | - Zhenbo Hu
- Laboratory for Stem Cell and Regenerative Medicine & Clinical Research Center, The Affiliated Hospital of Weifang Medical University, China
| |
Collapse
|
14
|
Rayner JO, Roberts RA, Kim J, Poklepovic A, Roberts JL, Booth L, Dent P. AR12 (OSU-03012) suppresses GRP78 expression and inhibits SARS-CoV-2 replication. Biochem Pharmacol 2020; 182:114227. [PMID: 32966814 PMCID: PMC7502229 DOI: 10.1016/j.bcp.2020.114227] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
AR12 is a derivative of celecoxib which no-longer acts against COX2 but instead inhibits the ATPase activity of multiple chaperone proteins, in particular GRP78. GRP78 acts as a sensor of endoplasmic reticulum stress and is an essential chaperone required for the life cycle of all mammalian viruses. We and others previously demonstrated in vitro and in vivo that AR12 increases autophagosome formation and autophagic flux, enhances virus protein degradation, preventing virus reproduction, and prolonging the survival of infected animals. In this report, we determined whether AR12 could act against SARS-CoV-2. In a dose-dependent fashion AR12 inhibited SARS-CoV-2 spike protein expression in transfected or infected cells. AR12 suppressed the production of infectious virions via autophagosome formation, which was also associated with degradation of GRP78. After AR12 exposure, the colocalization of GRP78 with spike protein was reduced. Knock down of eIF2α prevented AR12-induced spike degradation and knock down of Beclin1 or ATG5 caused the spike protein to localize in LAMP2+ vesicles without apparent degradation. HCT116 cells expressing ATG16L1 T300, found in the majority of persons of non-European descent, particularly from Africa, expressed greater amounts of GRP78 and SARS-CoV-2 receptor angiotensin converting enzyme 2 compared to ATG16L1 A300, predominantly found in Europeans, suggestive that ATG16L1 T300 expression may be associated with a greater ability to be infected and to reproduce SARS-CoV-2. In conclusion, our findings demonstrate that AR12 represents a clinically relevant anti-viral drug for the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Jonathan O Rayner
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, University of South Alabama, Mobile, AL 36688-0002, United States
| | - Rosemary A Roberts
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, University of South Alabama, Mobile, AL 36688-0002, United States
| | - Jin Kim
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, University of South Alabama, Mobile, AL 36688-0002, United States
| | - Andrew Poklepovic
- Departments of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0035, United States
| | - Jane L Roberts
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0035, United States
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, United States
| | - Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, United States.
| |
Collapse
|
15
|
Dent P, Booth L, Roberts JL, Poklepovic A, Hancock JF. Fingolimod Augments Monomethylfumarate Killing of GBM Cells. Front Oncol 2020; 10:22. [PMID: 32047722 PMCID: PMC6997152 DOI: 10.3389/fonc.2020.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Previously we demonstrated that the multiple sclerosis drug dimethyl fumarate (DMF) and its plasma breakdown product MMF could interact with chemotherapeutic agents to kill both GBM cells and activated microglia. The trial NCT02337426 demonstrated the safety of DMF in newly diagnosed GBM patients when combined with the standard of care Stupp protocol. We hypothesized that another multiple sclerosis drug, fingolimod (FTY720) would synergize with MMF to kill GBM cells. MMF and fingolimod interacted in a greater than additive fashion to kill PDX GBM isolates. MMF and fingolimod radiosensitized glioma cells and enhanced the lethality of temozolomide. Exposure to [MMF + fingolimod] activated an ATM-dependent toxic autophagy pathway, enhanced protective endoplasmic reticulum stress signaling, and inactivated protective PI3K, STAT, and YAP function. The drug combination reduced the expression of protective c-FLIP-s, MCL-1, BCL-XL, and in parallel caused cell-surface clustering of the death receptor CD95. Knock down of CD95 or over-expression of c-FLIP-s or BCL-XL suppressed killing. Fingolimod and MMF interacted in a greater than additive fashion to rapidly enhance reactive oxygen species production and over-expression of either thioredoxin or super-oxide dismutase two significantly reduced the drug-induced phosphorylation of ATM, autophagosome formation and [MMF + fingolimod] lethality. In contrast, the production of ROS was only marginally reduced in cells lacking ATM, CD95, or Beclin1. Collectively, our data demonstrate that the primary generation of ROS by [MMF + fingolimod] plays a key role, via the induction of toxic autophagy and death receptor signaling, in the killing of GBM cells.
Collapse
Affiliation(s)
- Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jane L Roberts
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Andrew Poklepovic
- Departments of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
16
|
Nam SM, Jeon YJ. Proteostasis In The Endoplasmic Reticulum: Road to Cure. Cancers (Basel) 2019; 11:E1793. [PMID: 31739582 PMCID: PMC6895847 DOI: 10.3390/cancers11111793] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that is responsible for the biosynthesis, folding, maturation, stabilization, and trafficking of transmembrane and secretory proteins. Therefore, cells evolve protein quality-control equipment of the ER to ensure protein homeostasis, also termed proteostasis. However, disruption in the folding capacity of the ER caused by a large variety of pathophysiological insults leads to the accumulation of unfolded or misfolded proteins in this organelle, known as ER stress. Upon ER stress, unfolded protein response (UPR) of the ER is activated, integrates ER stress signals, and transduces the integrated signals to relive ER stress, thereby leading to the re-establishment of proteostasis. Intriguingly, severe and persistent ER stress and the subsequently sustained unfolded protein response (UPR) are closely associated with tumor development, angiogenesis, aggressiveness, immunosuppression, and therapeutic response of cancer. Additionally, the UPR interconnects various processes in and around the tumor microenvironment. Therefore, it has begun to be delineated that pharmacologically and genetically manipulating strategies directed to target the UPR of the ER might exhibit positive clinical outcome in cancer. In the present review, we summarize recent advances in our understanding of the UPR of the ER and the UPR of the ER-mitochondria interconnection. We also highlight new insights into how the UPR of the ER in response to pathophysiological perturbations is implicated in the pathogenesis of cancer. We provide the concept to target the UPR of the ER, eventually discussing the potential of therapeutic interventions for targeting the UPR of the ER for cancer treatment.
Collapse
Affiliation(s)
- Su Min Nam
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
17
|
Booth L, Roberts JL, Cruickshanks N, Grant S, Poklepovic A, Dent P. Editor's Note: Regulation of OSU-03012 Toxicity by ER Stress Proteins and ER Stress–Inducing Drugs. Mol Cancer Ther 2019; 18:1669. [DOI: 10.1158/1535-7163.mct-19-0666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Shen K, Johnson DW, Vesey DA, McGuckin MA, Gobe GC. Role of the unfolded protein response in determining the fate of tumor cells and the promise of multi-targeted therapies. Cell Stress Chaperones 2018; 23:317-334. [PMID: 28952072 PMCID: PMC5904077 DOI: 10.1007/s12192-017-0844-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Although there have been advances in our understanding of carcinogenesis and development of new treatments, cancer remains a common cause of death. Many regulatory pathways are incompletely understood in cancer development and progression, with a prime example being those related to the endoplasmic reticulum (ER). The pathological sequelae that arise from disruption of ER homeostasis are not well defined. The ER is an organelle that is responsible for secretory protein biosynthesis and the quality control of protein folding. The ER triggers an unfolded protein response (UPR) when misfolded proteins accumulate, and while the UPR acts to restore protein folding and ER homeostasis, this response can work as a switch to determine the death or survival of cells. The treatment of cancer with agents that target the UPR has shown promising outcomes. The UPR has wide crosstalk with other signaling pathways. Multi-targeted cancer therapies which target the intersections within signaling networks have shown synergistic tumoricidal effects. In the present review, the basic cellular and signaling pathways of the ER and UPR are introduced; then the crosstalk between the ER and other signaling pathways is summarized; and ultimately, the evidence that the UPR is a potential target for cancer therapy is discussed. Regulation of the UPR downstream signaling is a common therapeutic target for different tumor types. Tumoricidal effects achieved from modulating the UPR downstream signaling could be enhanced by phosphodiesterase 5 (PDE5) inhibitors. Largely untapped by Western medicine for cancer therapies are Chinese herbal medicines. This review explores and discusses the value of some Chinese herbal extracts as PDE5 inhibitors.
Collapse
Affiliation(s)
- Kunyu Shen
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - David W Johnson
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - David A Vesey
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Michael A McGuckin
- Mucosal Disease Inflammatory Disease Biology and Therapeutics Group, UQ Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
19
|
Pantziarka P, Sukhatme V, Crispino S, Bouche G, Meheus L, Sukhatme VP. Repurposing drugs in oncology (ReDO)-selective PDE5 inhibitors as anti-cancer agents. Ecancermedicalscience 2018; 12:824. [PMID: 29743944 PMCID: PMC5931815 DOI: 10.3332/ecancer.2018.824] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
Selective phosphodiesterase 5 inhibitors, including sildenafil, tadalafil and vardenafil, are widely-used in the treatment of erectile dysfunction and pulmonary arterial hypertension. They are also well-known as examples of successful drug repurposing in that they were initially developed for angina and only later developed for erectile dysfunction. However, these drugs may also be effective cancer treatments. A range of evidentiary sources are assessed in this paper and the case made that there is pre-clinical and clinical evidence that these drugs may offer clinical benefit in a range of cancers. In particular, evidence is presented that these drugs have potent immunomodulatory activity that warrants clinical study in combination with check-point inhibition.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium.,The George Pantziarka TP53 Trust, London KT1 2JP, UK
| | | | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium
| | - Vikas P Sukhatme
- GlobalCures Inc., Newton, MA 02459, USA.,Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M, Hamai A, Siemianowicz K, Likus W, Wiechec E, Toyota BD, Hoshyar R, Seyfoori A, Sepehri Z, Ande SR, Khadem F, Akbari M, Gorman AM, Samali A, Klonisch T, Ghavami S. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 2018; 184:13-41. [DOI: 10.1016/j.pharmthera.2017.10.017] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Chen YH, Cimino PJ, Luo J, Dahiya S, Gutmann DH. ABCG1 maintains high-grade glioma survival in vitro and in vivo. Oncotarget 2018; 7:23416-24. [PMID: 26981778 PMCID: PMC5029636 DOI: 10.18632/oncotarget.8030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/25/2016] [Indexed: 01/23/2023] Open
Abstract
The overall survival for adults with malignant glioma (glioblastoma) remains poor despite advances in radiation and chemotherapy. One of the mechanisms by which cancer cells develop relative resistance to treatment is through de-regulation of endoplasmic reticulum (ER) homeostasis. We have recently shown that ABCG1, an ATP-binding cassette transporter, maintains ER homeostasis and suppresses ER stress-induced apoptosis in low-grade glioma. Herein, we demonstrate that ABCG1 expression is increased in human adult glioblastoma, where it correlates with poor survival in individuals with the mesenchymal subtype. Leveraging a mouse model of mesenchymal glioblastoma (NPcis), shRNA-mediated Abcg1 knockdown (KD) increased CHOP ER stress protein expression and resulted in greater NPcis glioma cell death in vitro. Moreover, Abcg1 KD reduced NPcis glioma growth and increased mouse survival in vivo. Collectively, these results demonstrate that ABCG1 is critical for malignant glioma cell survival, and might serve as a future therapeutic target for these deadly brain cancers.
Collapse
Affiliation(s)
- Yi-Hsien Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick J Cimino
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonika Dahiya
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
Multi-kinase inhibitors interact with sildenafil and ERBB1/2/4 inhibitors to kill tumor cells in vitro and in vivo. Oncotarget 2018; 7:40398-40417. [PMID: 27259258 PMCID: PMC5130016 DOI: 10.18632/oncotarget.9752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/20/2016] [Indexed: 01/12/2023] Open
Abstract
We have recently demonstrated that multi-kinase inhibitors such as sorafenib and pazopanib can suppress the detection of chaperones by in situ immuno-fluorescence, which is further enhanced by phosphodiesterase 5 inhibitors. Sorafenib and pazopanib inhibited the HSP90 ATPase activity with IC50 values of ~1.0 μM and ~75 nM, respectively. Pazopanib docked in silico with two possible poses into the HSP90 ATP binding pocket. Pazopanib and sildenafil combined to reduce the total protein levels of HSP1H/p105 and c-MYC and to reduce their co-localization. Sorafenib/pazopanib combined with sildenafil in a [GRP78+HSP27] –dependent fashion to: (i) profoundly activate an eIF2α/Beclin1 pathway; (ii) profoundly inactivate mTOR and increase ATG13 phosphorylation, collectively resulting in the formation of toxic autophagosomes. In a fresh PDX isolate of NSCLC combined knock down of [ERBB1+ERBB3] or use of the ERBB1/2/4 inhibitor afatinib altered cell morphology, enhanced ATG13 phosphorylation, inactivated NFκB, and further enhanced [sorafenib/pazopanib + sildenafil] lethality. Identical data to that with afatinib were obtained knocking down PI3K p110α/β or using buparlisib, copanlisib or the specific p110α inhibitor BYL719. Afatinib adapted NSCLC clones were resistant to buparlisib or copanlisib but were more sensitive than control clones to [sorafenib + sildenafil] or [pazopanib + sildenafil]. Lapatinib significantly enhanced the anti-tumor effect of [regorafenib + sildenafil] in vivo; afatinib and BYL719 enhanced the anti-tumor effects of [sorafenib + sildenafil] and [pazopanib] in vivo, respectively.
Collapse
|
23
|
Poklepovic A, Gordon S, Shafer DA, Roberts JD, Bose P, Geyer CE, McGuire WP, Tombes MB, Shrader E, Strickler K, Quigley M, Wan W, Kmieciak M, Massey HD, Booth L, Moran RG, Dent P. Phase I study of pemetrexed with sorafenib in advanced solid tumors. Oncotarget 2018; 7:42625-42638. [PMID: 27213589 PMCID: PMC5173162 DOI: 10.18632/oncotarget.9434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/16/2016] [Indexed: 01/16/2023] Open
Abstract
Purpose To determine if combination treatment with pemetrexed and sorafenib is safe and tolerable in patients with advanced solid tumors. Results Thirty-seven patients were enrolled and 36 patients were treated (24 in cohort A; 12 in cohort B). The cohort A dose schedule resulted in problematic cumulative toxicity, while the cohort B dose schedule was found to be more tolerable. The maximum tolerated dose (MTD) was pemetrexed 750 mg/m2 every 14 days with oral sorafenib 400 mg given twice daily on days 1–5. Because dosing delays and modifications were associated with the MTD, the recommended phase II dose was declared to be pemetrexed 500 mg/m2 every 14 days with oral sorafenib 400 mg given twice daily on days 1–5. Thirty-three patients were evaluated for antitumor activity. One complete response and 4 partial responses were observed (15% overall response rate). Stable disease was seen in 15 patients (45%). Four patients had a continued response at 6 months, including 2 of 5 patients with triple-negative breast cancer. Experimental Design A phase I trial employing a standard 3 + 3 design was conducted in patients with advanced solid tumors. Cohort A involved a novel dose escalation schema exploring doses of pemetrexed every 14 days with continuous sorafenib. Cohort B involved a modified schedule of sorafenib dosing on days 1–5 of each 14-day pemetrexed cycle. Radiographic assessments were conducted every 8 weeks. Conclusions Pemetrexed and intermittent sorafenib therapy is a safe and tolerable combination for patients, with promising activity seen in patients with breast cancer.
Collapse
Affiliation(s)
- Andrew Poklepovic
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah Gordon
- Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Danielle A Shafer
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John D Roberts
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,Current address: Department of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Prithviraj Bose
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,Current address: Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charles E Geyer
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William P McGuire
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mary Beth Tombes
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ellen Shrader
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Katie Strickler
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maria Quigley
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Wen Wan
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maciej Kmieciak
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - H Davis Massey
- Departments of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Richard G Moran
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul Dent
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
24
|
Abdulrahman BA, Abdelaziz D, Thapa S, Lu L, Jain S, Gilch S, Proniuk S, Zukiwski A, Schatzl HM. The celecoxib derivatives AR-12 and AR-14 induce autophagy and clear prion-infected cells from prions. Sci Rep 2017; 7:17565. [PMID: 29242534 PMCID: PMC5730578 DOI: 10.1038/s41598-017-17770-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders that affect both humans and animals. The autocatalytic conversion of the cellular prion protein (PrPC) into the pathologic isoform PrPSc is a key feature in prion pathogenesis. AR-12 is an IND-approved derivative of celecoxib that demonstrated preclinical activity against several microbial diseases. Recently, AR-12 has been shown to facilitate clearance of misfolded proteins. The latter proposes AR-12 to be a potential therapeutic agent for neurodegenerative disorders. In this study, we investigated the role of AR-12 and its derivatives in controlling prion infection. We tested AR-12 in prion infected neuronal and non-neuronal cell lines. Immunoblotting and confocal microscopy results showed that AR-12 and its analogue AR-14 reduced PrPSc levels after only 72 hours of treatment. Furthermore, infected cells were cured of PrPSc after exposure of AR-12 or AR-14 for only two weeks. We partially attribute the influence of the AR compounds on prion propagation to autophagy stimulation, in line with our previous findings that drug-induced stimulation of autophagy has anti-prion effects in vitro and in vivo. Taken together, this study demonstrates that AR-12 and the AR-14 analogue are potential new therapeutic agents for prion diseases and possibly protein misfolding disorders involving prion-like mechanisms.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| | - Dalia Abdelaziz
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Li Lu
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Shubha Jain
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | | | | | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
- Departments of Veterinary Sciences and of Molecular Biology, University of Wyoming, Laramie, Wyoming, 82071, USA.
| |
Collapse
|
25
|
Booth L, Roberts JL, Tavallai M, Webb T, Leon D, Chen J, McGuire WP, Poklepovic A, Dent P. The afatinib resistance of in vivo generated H1975 lung cancer cell clones is mediated by SRC/ERBB3/c-KIT/c-MET compensatory survival signaling. Oncotarget 2017; 7:19620-30. [PMID: 26934000 PMCID: PMC4991406 DOI: 10.18632/oncotarget.7746] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
We generated afatinib resistant clones of H1975 lung cancer cells by transient exposure of established tumors to the drug and collected the re-grown tumors. Afatinib resistant H1975 clones did not exhibit any additional mutations in proto-oncogenes when compared to control clones. Afatinib resistant H1975 tumor clones expressed less PTEN than control clones and in afatinib resistant clones this correlated with increased basal SRC Y416, ERBB3 Y1289, AKT T308 and mTOR S2448 phosphorylation, decreased expression of ERBB1, ERBB2 and ERBB3 and increased total expression of c-MET, c-KIT and PDGFRβ. Afatinib resistant clones were selectively killed by knock down of [ERBB3 + c-MET + c-KIT] but not by the individual or doublet knock down combinations. The combination of the ERBB1/2/4 inhibitor afatinib with the SRC family inhibitor dasatinib killed afatinib resistant H1975 cells in a greater than additive fashion; other drugs used in combination with dasatinib such as sunitinib, crizotinib and amufatinib were less effective. [Afatinib + dasatinib] treatment profoundly inactivated ERBB3, AKT and mTOR in the H1975 afatinib resistant clones and increased ATG13 S318 phosphorylation. Knock down of ATG13, Beclin1 or eIF2α strong suppressed killing by [ERBB3 + c-MET + c-KIT] knock down, but were only modestly protective against [afatinib + dasatinib] lethality. Thus afatinib resistant H1975 NSCLC cells rely on ERBB1- and SRC-dependent hyper-activation of residual ERBB3 and elevated signaling, due to elevated protein expression, from wild type c-MET and c-KIT to remain alive. Inhibition of ERBB3 signaling via both blockade of SRC and ERBB1 results in tumor cell death.
Collapse
Affiliation(s)
- Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mehrad Tavallai
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Timothy Webb
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Daniel Leon
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jesse Chen
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - William P McGuire
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
26
|
Booth L, Shuch B, Albers T, Roberts JL, Tavallai M, Proniuk S, Zukiwski A, Wang D, Chen CS, Bottaro D, Ecroyd H, Lebedyeva IO, Dent P. Multi-kinase inhibitors can associate with heat shock proteins through their NH2-termini by which they suppress chaperone function. Oncotarget 2017; 7:12975-96. [PMID: 26887051 PMCID: PMC4914336 DOI: 10.18632/oncotarget.7349] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/16/2016] [Indexed: 12/03/2022] Open
Abstract
We performed proteomic studies using the GRP78 chaperone-inhibitor drug AR-12 (OSU-03012) as bait. Multiple additional chaperone and chaperone-associated proteins were shown to interact with AR-12, including: GRP75, HSP75, BAG2; HSP27; ULK-1; and thioredoxin. AR-12 down-regulated in situ immuno-fluorescence detection of ATP binding chaperones using antibodies directed against the NH2-termini of the proteins but only weakly reduced detection using antibodies directed against the central and COOH portions of the proteins. Traditional SDS-PAGE and western blotting assessment methods did not exhibit any alterations in chaperone detection. AR-12 altered the sub-cellular distribution of chaperone proteins, abolishing their punctate speckled patterning concomitant with changes in protein co-localization. AR-12 inhibited chaperone ATPase activity, which was enhanced by sildenafil; inhibited chaperone – chaperone and chaperone – client interactions; and docked in silico with the ATPase domains of HSP90 and of HSP70. AR-12 combined with sildenafil in a GRP78 plus HSP27 –dependent fashion to profoundly activate an eIF2α/ATF4/CHOP/Beclin1 pathway in parallel with inactivating mTOR and increasing ATG13 phosphorylation, collectively resulting in formation of punctate toxic autophagosomes. Over-expression of [GRP78 and HSP27] prevented: AR-12 –induced activation of ER stress signaling and maintained mTOR activity; AR-12 –mediated down-regulation of thioredoxin, MCL-1 and c-FLIP-s; and preserved tumor cell viability. Thus the inhibition of chaperone protein functions by AR-12 and by multi-kinase inhibitors very likely explains why these agents have anti-tumor effects in multiple genetically diverse tumor cell types.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Brian Shuch
- Urologic and Diagnostic Radiology, Yale School of Medicine, New Haven, CT 06520-8058, USA.,Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Thomas Albers
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | - Dasheng Wang
- Molecular and Translational Science, United States Medicinal Chemistry and Pharmacognosy, School of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ching-Shih Chen
- Molecular and Translational Science, United States Medicinal Chemistry and Pharmacognosy, School of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Don Bottaro
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, NSW 2522, Australia
| | - Iryna O Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
27
|
Type 5 phosphodiesterase regulates glioblastoma multiforme aggressiveness and clinical outcome. Oncotarget 2017; 8:13223-13239. [PMID: 28099939 PMCID: PMC5355091 DOI: 10.18632/oncotarget.14656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/12/2016] [Indexed: 01/27/2023] Open
Abstract
Expression of type 5 phosphodiesterase (PDE5), a cGMP-specific hydrolytic enzyme, is frequently altered in human cancer, but its specific role in tumorigenesis remains controversial. Herein, by analyzing a cohort of 69 patients affected by glioblastoma multiforme (GBM) who underwent chemo- and radiotherapy after surgical resection of the tumor, we found that PDE5 was strongly expressed in cancer cells in about 50% of the patients. Retrospective analysis indicated that high PDE5 expression in GBM cells significantly correlated with longer overall survival of patients. Furthermore, silencing of endogenous PDE5 by short hairpin lentiviral transduction (sh-PDE5) in the T98G GBM cell line induced activation of an invasive phenotype. Similarly, pharmacological inhibition of PDE5 activity strongly enhanced cell motility and invasiveness in T98G cells. This invasive phenotype was accompanied by increased secretion of metallo-proteinase 2 (MMP-2) and activation of protein kinase G (PKG). Moreover, PDE5 silencing markedly enhanced DNA damage repair and cell survival following irradiation. The enhanced radio-resistance of sh-PDE5 GBM cells was mediated by an increase of poly(ADP-ribosyl)ation (PARylation) of cellular proteins and could be counteracted by poly(ADP-ribose) polymerase (PARP) inhibitors. Conversely, PDE5 overexpression in PDE5-negative U87G cells significantly reduced MMP-2 secretion, inhibited their invasive potential and interfered with DNA damage repair and cell survival following irradiation. These studies identify PDE5 as a favorable prognostic marker for GBM, which negatively affects cell invasiveness and survival to ionizing radiation. Moreover, our work highlights the therapeutic potential of targeting PKG and/or PARP activity in this currently incurable subset of brain cancers.
Collapse
|
28
|
Puduvalli VK, Chaudhary R, McClugage SG, Markert J. Beyond Alkylating Agents for Gliomas: Quo Vadimus? Am Soc Clin Oncol Educ Book 2017; 37:175-186. [PMID: 28561663 PMCID: PMC5803081 DOI: 10.1200/edbk_175003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in therapies have yielded notable success in terms of improved survival in several cancers. However, such treatments have failed to improve outcome in patients with gliomas for whom surgery followed by radiation therapy and chemotherapy with alkylating agents remain the standard of care. Genetic and epigenetic studies have helped identify several alterations specific to gliomas. Attempts to target these altered pathways have been unsuccessful due to various factors, including tumor heterogeneity, adaptive resistance of tumor cells, and limitations of access across the blood-brain barrier. Novel therapies that circumvent such limitations have been the focus of intense study and include approaches such as immunotherapy, targeting of signaling hubs and metabolic pathways, and use of biologic agents. Immunotherapeutic approaches including tumor-targeted vaccines, immune checkpoint blockade, antibody-drug conjugates, and chimeric antigen receptor-expressing cell therapies are in various stages of clinical trials. Similarly, identification of key metabolic pathways or converging hubs of signaling pathways that are tumor specific have yielded novel targets for therapy of gliomas. In addition, the failure of conventional therapies against gliomas has led to a growing interest among patients in the use of alternative therapies, which in turn has necessitated developing evidence-based approaches to the application of such therapies in clinical studies. The development of these novel approaches bears potential for providing breakthroughs in treatment of more meaningful and improved outcomes for patients with gliomas.
Collapse
Affiliation(s)
- Vinay K Puduvalli
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| | - Rekha Chaudhary
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| | - Samuel G McClugage
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| | - James Markert
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
29
|
Yuan J, Zhang YM, Wu W, Ma W, Wang F. Effect of glycosides of Cistanche on the expression of mitochondrial precursor protein and keratin type II cytoskeletal 6A in a rat model of vascular dementia. Neural Regen Res 2017; 12:1152-1158. [PMID: 28852399 PMCID: PMC5558496 DOI: 10.4103/1673-5374.211196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Glycosides of Cistanche (GC) is a preparation used extensively for its neuroprotective effect against neurological diseases, but its mechanisms of action remains incompletely understood. Here, we established a bilateral common carotid artery occlusion model of vascular dementia in rats and injected the model rats with a suspension of GC (10 mg/kg/day, intraperitoneally) for 14 consecutive days. Immunohistochemistry showed that GC significantly reduced p-tau and amyloid beta (Aβ) immunoreactivity in the hippocampus of the model rats. Proteomic analysis demonstrated upregulation of mitochondrial precursor protein and downregulation of keratin type II cytoskeletal 6A after GC treatment compared with model rats that had received saline. Western blot assay confirmed these findings. Our results suggest that the neuroprotective effect of GC in vascular dementia occurs via the promotion of neuronal cytoskeleton regeneration.
Collapse
|
30
|
BOOTH LAURENCE, ROBERTS JANEL, ECROYD HEATH, TRITSCH SARAHR, BAVARI SINA, REID STPATRICK, PRONIUK STEFAN, ZUKIWSKI ALEXANDER, JACOB ABRAHAM, SEPÚLVEDA CLAUDIAS, GIOVANNONI FEDERICO, GARCÍA CYBELEC, DAMONTE ELSA, GONZÁLEZ-GALLEGO JAVIER, TUÑÓN MARÍAJ, DENT PAUL. AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication. J Cell Physiol 2016; 231:2286-302. [PMID: 27187154 PMCID: PMC6327852 DOI: 10.1002/jcp.25431] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 01/13/2023]
Abstract
We have recently demonstrated that AR-12 (OSU-03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR-12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock down of chaperones or AR-12 treatment inactivated mTOR and elevated ATG13 S318 phosphorylation concomitant with inducing an endoplasmic reticulum stress response that in an eIF2α-dependent fashion increased Beclin1 and LC3 expression and autophagosome formation. Over-expression of chaperones prevented the reduction in receptor/glucosidase expression, mTOR inactivation, the ER stress response, and autophagosome formation. AR-12 reduced the reproduction of viruses including Mumps, Influenza, Measles, Junín, Rubella, HIV (wild type and protease resistant), and Ebola, an effect replicated by knock down of multiple chaperone proteins. AR-12-stimulated the co-localization of Influenza, EBV and HIV virus proteins with LC3 in autophagosomes and reduced viral protein association with the chaperones HSP90, HSP70, and GRP78. Knock down of Beclin1 suppressed drug-induced autophagosome formation and reduced the anti-viral protection afforded by AR-12. In an animal model of hemorrhagic fever virus, a transient exposure of animals to low doses of AR-12 doubled animal survival from ∼30% to ∼60% and suppressed liver damage as measured by ATL, GGT and LDH release. Thus through inhibition of chaperone protein functions; reducing the production, stability and processing of viral proteins; and stimulating autophagosome formation/viral protein degradation, AR-12 acts as a broad-specificity anti-viral drug in vitro and in vivo. We argue future patient studies with AR-12 are warranted. J. Cell. Physiol. 231: 2286-2302, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LAURENCE BOOTH
- Department of Biochemistry and Molecular Biology, Virginia
Commonwealth University, Richmond, Virginia
| | - JANE L. ROBERTS
- Department of Biochemistry and Molecular Biology, Virginia
Commonwealth University, Richmond, Virginia
| | - HEATH ECROYD
- School of Biological Sciences and Illawarra Health and
Medical Research Institute, University of Wollongong, New South Wales,
Australia
| | - SARAH R. TRITSCH
- Molecular and Translational Science, United States Army
Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick,
Frederick, Maryland
| | - SINA BAVARI
- Molecular and Translational Science, United States Army
Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick,
Frederick, Maryland
| | - ST. PATRICK REID
- Molecular and Translational Science, United States Army
Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick,
Frederick, Maryland
| | | | | | - ABRAHAM JACOB
- Department of Otolaryngology, University of Arizona Ear
Institute, Tucson, Arizona
| | - CLAUDIA S. SEPÚLVEDA
- FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4,
lab QB-17, Buenos Aires, Argentina
| | - FEDERICO GIOVANNONI
- FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4,
lab QB-17, Buenos Aires, Argentina
| | - CYBELE C. GARCÍA
- FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4,
lab QB-17, Buenos Aires, Argentina
| | - ELSA DAMONTE
- FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4,
lab QB-17, Buenos Aires, Argentina
| | | | - MARÍA J. TUÑÓN
- Institute of Biomedicine and CIBEREhd, University of
León, León, Spain
| | - PAUL DENT
- Department of Biochemistry and Molecular Biology, Virginia
Commonwealth University, Richmond, Virginia
| |
Collapse
|
31
|
Booth L, Roberts JL, Ecroyd H, Reid SP, Proniuk S, Zukiwski A, Jacob A, Damonte E, Tuñón MJ, Dent P. AR-12 Inhibits Chaperone Proteins Preventing Virus Replication and the Accumulation of Toxic Misfolded Proteins. ACTA ACUST UNITED AC 2016; 7. [PMID: 27957385 PMCID: PMC5146995 DOI: 10.4172/2155-9899.1000454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, NSW 2522, Australia
| | - St Patrick Reid
- Molecular and Translational Science, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA
| | | | | | - Abraham Jacob
- Department of Otolaryngology, The University of Arizona Ear Institute, 1515 North Campbell Avenue, PO Box 245024, Tucson AZ 85724, USA
| | - Elsa Damonte
- FCEN-UBA, Ciudad Universitaria, Pabellón 2 Piso 4, lab QB-17, 1428 Buenos Aires, Argentina
| | - María J Tuñón
- Institute of Biomedicine and CIBEREhd, University of León, 24071, Spain
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
32
|
Booth L, Roberts JL, Tavallai M, Chuckalovcak J, Stringer DK, Koromilas AE, Boone DL, McGuire WP, Poklepovic A, Dent P. [Pemetrexed + Sorafenib] lethality is increased by inhibition of ERBB1/2/3-PI3K-NFκB compensatory survival signaling. Oncotarget 2016; 7:23608-32. [PMID: 27015562 PMCID: PMC5029651 DOI: 10.18632/oncotarget.8281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022] Open
Abstract
In the completed phase I trial NCT01450384 combining the anti-folate pemetrexed and the multi-kinase inhibitor sorafenib it was observed that 20 of 33 patients had prolonged stable disease or tumor regression, with one complete response and multiple partial responses. The pre-clinical studies in this manuscript were designed to determine whether [pemetrexed + sorafenib] -induced cell killing could be rationally enhanced by additional signaling modulators. Multiplex assays performed on tumor material that survived and re-grew after [pemetrexed + sorafenib] exposure showed increased phosphorylation of ERBB1 and of NFκB and IκB; with reduced IκB and elevated G-CSF and KC protein levels. Inhibition of JAK1/2 downstream of the G-CSF/KC receptors did not enhance [pemetrexed + sorafenib] lethality whereas inhibition of ERBB1/2/4 using kinase inhibitory agents or siRNA knock down of ERBB1/2/3 strongly promoted killing. Inhibition of ERBB1/2/4 blocked [pemetrexed + sorafenib] stimulated NFκB activation and SOD2 expression; and expression of IκB S32A S36A significantly enhanced [pemetrexed + sorafenib] lethality. Sorafenib inhibited HSP90 and HSP70 chaperone ATPase activities and reduced the interactions of chaperones with clients including c-MYC, CDC37 and MCL-1. In vivo, a 5 day transient exposure of established mammary tumors to lapatinib or vandetanib significantly enhanced the anti-tumor effect of [pemetrexed + sorafenib], without any apparent normal tissue toxicities. Identical data to that in breast cancer were obtained in NSCLC tumors using the ERBB1/2/4 inhibitor afatinib. Our data argue that the combination of pemetrexed, sorafenib and an ERBB1/2/4 inhibitor should be explored in a new phase I trial in solid tumor patients.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jane L. Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Antonis E. Koromilas
- Department of Oncology, Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - David L. Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, USA
| | | | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
33
|
Webb T, Carter J, Roberts JL, Poklepovic A, McGuire WP, Booth L, Dent P. Celecoxib enhances [sorafenib + sildenafil] lethality in cancer cells and reverts platinum chemotherapy resistance. Cancer Biol Ther 2015; 16:1660-70. [PMID: 26417912 DOI: 10.1080/15384047.2015.1099769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The present studies sought to determine whether the lethality of the drug combination [sorafenib + sildenafil] could be enhanced by the anti-inflammatory agent celecoxib, using ovarian cancer and other tumor cell lines as models. Also, in a dose dependent fashion celecoxib enhanced [sorafenib + sildenafil] lethality in multiple ovarian cancer cell lines. In a dose dependent fashion celecoxib enhanced the ability of [sorafenib + sildenafil] to reduce expression of multiple chaperone proteins in parallel with lower levels of the drug efflux pumps ABCB1 and ABCG2. Over-expression of GRP78 and HSP27 maintained pump expression in the presence of drugs. Cell killing by the 3 drug combination was mediated by mitochondrial / caspase 9 -dependent apoptotic signaling and by RIP-1 / caspases 2 and 4 / AIF -dependent necroptotic signaling. Pre-treatment of intrinsically resistant primary ovarian cancer cells with [celecoxib + sorafenib + sildenafil] significantly enhanced tumor cell killing by a subsequent cisplatin exposure. Similar data were obtained in some cancer cell lines, but not all, using the related platinum containing drugs, oxaliplatin and carboplatin. As our prior publications have also validated in vivo the combinations of [celecoxib + sildenafil] and [sorafenib + sildenafil] as cytotoxic to multiple tumor cell types, combined with the present findings, we would argue that the combination of celecoxib/sorafenib/sildenafil should be explored in a new phase I trial in ovarian cancer.
Collapse
Affiliation(s)
- Timothy Webb
- a Department of Biochemistry and Molecular Biology ; Virginia Commonwealth University ; Richmond , VA USA
| | - Jori Carter
- b Department of Gynecology and Obstetrics ; Virginia Commonwealth University ; Richmond , VA USA
| | - Jane L Roberts
- a Department of Biochemistry and Molecular Biology ; Virginia Commonwealth University ; Richmond , VA USA
| | - Andrew Poklepovic
- c Department of Medicine ; Virginia Commonwealth University ; Richmond , VA USA
| | - William P McGuire
- c Department of Medicine ; Virginia Commonwealth University ; Richmond , VA USA
| | - Laurence Booth
- a Department of Biochemistry and Molecular Biology ; Virginia Commonwealth University ; Richmond , VA USA
| | - Paul Dent
- a Department of Biochemistry and Molecular Biology ; Virginia Commonwealth University ; Richmond , VA USA
| |
Collapse
|
34
|
Roberts JL, Tavallai M, Nourbakhsh A, Fidanza A, Cruz-Luna T, Smith E, Siembida P, Plamondon P, Cycon KA, Doern CD, Booth L, Dent P. GRP78/Dna K Is a Target for Nexavar/Stivarga/Votrient in the Treatment of Human Malignancies, Viral Infections and Bacterial Diseases. J Cell Physiol 2015; 230:2552-78. [PMID: 25858032 PMCID: PMC4843173 DOI: 10.1002/jcp.25014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 01/10/2023]
Abstract
Prior tumor cell studies have shown that the drugs sorafenib (Nexavar) and regorafenib (Stivarga) reduce expression of the chaperone GRP78. Sorafenib/regorafenib and the multi‐kinase inhibitor pazopanib (Votrient) interacted with sildenafil (Viagra) to further rapidly reduce GRP78 levels in eukaryotes and as single agents to reduce Dna K levels in prokaryotes. Similar data were obtained in tumor cells in vitro and in drug‐treated mice for: HSP70, mitochondrial HSP70, HSP60, HSP56, HSP40, HSP10, and cyclophilin A. Prolonged ‘rafenib/sildenafil treatment killed tumor cells and also rapidly decreased the expression of: the drug efflux pumps ABCB1 and ABCG2; and NPC1 and NTCP, receptors for Ebola/Hepatitis A and B viruses, respectively. Pre‐treatment with the ‘Rafenib/sildenafil combination reduced expression of the Coxsackie and Adenovirus receptor in parallel with it also reducing the ability of a serotype 5 Adenovirus or Coxsackie virus B4 to infect and to reproduce. Sorafenib/pazopanib and sildenafil was much more potent than sorafenib/pazopanib as single agents at preventing Adenovirus, Mumps, Chikungunya, Dengue, Rabies, West Nile, Yellow Fever, and Enterovirus 71 infection and reproduction. ‘Rafenib drugs/pazopanib as single agents killed laboratory generated antibiotic resistant E. coli which was associated with reduced Dna K and Rec A expression. Marginally toxic doses of ‘Rafenib drugs/pazopanib restored antibiotic sensitivity in pan‐antibiotic resistant bacteria including multiple strains of blakpcKlebsiella pneumoniae. Thus, Dna K is an antibiotic target for sorafenib, and inhibition of GRP78/Dna K has therapeutic utility for cancer and for bacterial and viral infections. J. Cell. Physiol. 230: 2552–2578, 2015. © 2015 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Aida Nourbakhsh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | - Christopher D Doern
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
35
|
Booth L, Roberts JL, Tavallai M, Nourbakhsh A, Chuckalovcak J, Carter J, Poklepovic A, Dent P. OSU-03012 and Viagra Treatment Inhibits the Activity of Multiple Chaperone Proteins and Disrupts the Blood-Brain Barrier: Implications for Anti-Cancer Therapies. J Cell Physiol 2015; 230:1982-98. [PMID: 25736380 PMCID: PMC4835175 DOI: 10.1002/jcp.24977] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 12/14/2022]
Abstract
We examined the interaction between OSU‐03012 (also called AR‐12) with phosphodiesterase 5 (PDE5) inhibitors to determine the role of the chaperone glucose‐regulated protein (GRP78)/BiP/HSPA5 in the cellular response. Sildenafil (Viagra) interacted in a greater than additive fashion with OSU‐03012 to kill stem‐like GBM cells. Treatment of cells with OSU‐03012/sildenafil: abolished the expression of multiple oncogenic growth factor receptors and plasma membrane drug efflux pumps and caused a rapid degradation of GRP78 and other HSP70 and HSP90 family chaperone proteins. Decreased expression of plasma membrane receptors and drug efflux pumps was dependent upon enhanced PERK‐eIF2α‐ATF4‐CHOP signaling and was blocked by GRP78 over‐expression. In vivo OSU‐03012/sildenafil was more efficacious than treatment with celecoxib and sildenafil at killing tumor cells without damaging normal tissues and in parallel reduced expression of ABCB1 and ABCG2 in the normal brain. The combination of OSU‐03012/sildenafil synergized with low concentrations of sorafenib to kill tumor cells, and with lapatinib to kill ERBB1 over‐expressing tumor cells. In multiplex assays on plasma and human tumor tissue from an OSU‐03012/sildenafil treated mouse, we noted a profound reduction in uPA signaling and identified FGF and JAK1/2 as response biomarkers for potentially suppressing the killing response. Inhibition of FGFR signaling and to a lesser extent JAK1/2 signaling profoundly enhanced OSU‐03012/sildenafil lethality. J. Cell. Physiol. 230: 1982–1998, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Booth L, Roberts JL, Cash DR, Tavallai S, Jean S, Fidanza A, Cruz-Luna T, Siembiba P, Cycon KA, Cornelissen CN, Dent P. GRP78/BiP/HSPA5/Dna K is a universal therapeutic target for human disease. J Cell Physiol 2015; 230:1661-76. [PMID: 25546329 PMCID: PMC4402027 DOI: 10.1002/jcp.24919] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 01/11/2023]
Abstract
The chaperone GRP78/Dna K is conserved throughout evolution down to prokaryotes. The GRP78 inhibitor OSU-03012 (AR-12) interacted with sildenafil (Viagra) or tadalafil (Cialis) to rapidly reduce GRP78 levels in eukaryotes and as a single agent reduce Dna K levels in prokaryotes. Similar data with the drug combination were obtained for: HSP70, HSP90, GRP94, GRP58, HSP27, HSP40 and HSP60. OSU-03012/sildenafil treatment killed brain cancer stem cells and decreased the expression of: NPC1 and TIM1; LAMP1; and NTCP1, receptors for Ebola/Marburg/Hepatitis A, Lassa fever, and Hepatitis B viruses, respectively. Pre-treatment with OSU-03012/sildenafil reduced expression of the coxsakie and adenovirus receptor in parallel with it also reducing the ability of a serotype 5 adenovirus or coxsakie virus B4 to infect and to reproduce. Similar data were obtained using Chikungunya, Mumps, Measles, Rubella, RSV, CMV, and Influenza viruses. OSU-03012 as a single agent at clinically relevant concentrations killed laboratory generated antibiotic resistant E. coli and clinical isolate multi-drug resistant N. gonorrhoeae and MRSE which was in bacteria associated with reduced Dna K and Rec A expression. The PDE5 inhibitors sildenafil or tadalafil enhanced OSU-03012 killing in N. gonorrhoeae and MRSE and low marginally toxic doses of OSU-03012 could restore bacterial sensitivity in N. gonorrhoeae to multiple antibiotics. Thus, Dna K and bacterial phosphodiesterases are novel antibiotic targets, and inhibition of GRP78 is of therapeutic utility for cancer and also for bacterial and viral infections. J. Cell. Physiol. 230: 1661–1676, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Booth L, Roberts JL, Dent P. HSPA5/Dna K may be a useful target for human disease therapies. DNA Cell Biol 2015; 34:153-8. [PMID: 25689303 DOI: 10.1089/dna.2015.2808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The chaperone protein HSPA5/Dna K is conserved throughout evolution from higher eukaryotes down to prokaryotes. The celecoxib derivative OSU-03012 (also called AR-12) interacts with Viagra or Cialis in eukaryotic cells to rapidly reduce HSPA5 levels as well as blunt the functions of many other chaperone proteins. Because multiple chaperones are modulated in eukaryotes, the expression of cell surface virus receptors is reduced and because HSPA5 in blocked viruses cannot efficiently replicate. Because DnaK levels are reduced in prokaryotes by OSU-03012, the levels of DnaK chaperone proteins such as Rec A decline, which is associated with bacterial cell death and a resensitization of so-called drug-resistant superbugs to standard of care antibiotics. In Alzheimer's disease, HSPA5 has been shown to play a supportive role for the progression of tau phosphorylation and neurodegeneration. Thus, in eukaryotes, HSPA5 represents a target for anticancer, antiviral, and anti-Alzheimer's therapeutics and in prokaryotes, DnaK and bacterial phosphodiesterases represent novel antibiotic targets that should be exploited in the future by pharmaceutical companies.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, Virginia
| | | | | |
Collapse
|
38
|
Chen YH, McGowan LD, Cimino PJ, Dahiya S, Leonard JR, Lee DY, Gutmann DH. Mouse low-grade gliomas contain cancer stem cells with unique molecular and functional properties. Cell Rep 2015; 10:1899-912. [PMID: 25772366 DOI: 10.1016/j.celrep.2015.02.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/16/2015] [Accepted: 02/14/2015] [Indexed: 01/19/2023] Open
Abstract
The availability of adult malignant glioma stem cells (GSCs) has provided unprecedented opportunities to identify the mechanisms underlying treatment resistance. Unfortunately, there is a lack of comparable reagents for the study of pediatric low-grade glioma (LGG). Leveraging a neurofibromatosis 1 (Nf1) genetically engineered mouse LGG model, we report the isolation of CD133(+) multi-potent low-grade glioma stem cells (LG-GSCs), which generate glioma-like lesions histologically similar to the parent tumor following injection into immunocompetent hosts. In addition, we demonstrate that these LG-GSCs harbor selective resistance to currently employed conventional and biologically targeted anti-cancer agents, which reflect the acquisition of new targetable signaling pathway abnormalities. Using transcriptomic analysis to identify additional molecular properties, we discovered that mouse and human LG-GSCs harbor high levels of Abcg1 expression critical for protecting against ER-stress-induced mouse LG-GSC apoptosis. Collectively, these findings establish that LGG cancer stem cells have unique molecular and functional properties relevant to brain cancer treatment.
Collapse
Affiliation(s)
- Yi-Hsien Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Patrick J Cimino
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sonika Dahiya
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey R Leonard
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Da Yong Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Das A, Durrant D, Salloum FN, Xi L, Kukreja RC. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther 2014; 147:12-21. [PMID: 25444755 DOI: 10.1016/j.pharmthera.2014.10.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
The phosphodiesterase 5 (PDE5) inhibitors, including sildenafil (Viagra™), vardenafil (Levitra™), and tadalafil (Cialis™) have been developed for treatment of erectile dysfunction. Moreover, sildenafil and tadalafil are used for the management of pulmonary arterial hypertension in patients. Since our first report showing the cardioprotective effect of sildenafil in 2002, there has been tremendous growth of preclinical and clinical studies on the use of PDE5 inhibitors for cardiovascular diseases and cancer. Numerous animal studies have demonstrated that PDE5 inhibitors have powerful protective effect against myocardial ischemia/reperfusion (I/R) injury, doxorubicin cardiotoxicity, ischemic and diabetic cardiomyopathy, cardiac hypertrophy, Duchenne muscular dystrophy and the improvement of stem cell efficacy for myocardial repair. Mechanistically, PDE5 inhibitors protect the heart against I/R injury through increased expression of nitric oxide synthases, activation of protein kinase G (PKG), PKG-dependent hydrogen sulfide generation, and phosphorylation of glycogen synthase kinase-3β - a master switch immediately proximal to mitochondrial permeability transition pore and the end effector of cardioprotection. In addition, PDE5 inhibitors enhance the sensitivity of certain types of cancer to standard chemotherapeutic drugs, including doxorubicin. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular and anti-cancer benefits. Despite mixed results of these clinical trials, there is a continuing strong interest by basic scientists and clinical investigators in exploring their new clinical uses. It is our hope that future new mechanistic investigations and carefully designed clinical trials would help in reaping additional benefits of PDE5 inhibitors for cardiovascular disease and cancer in patients.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - David Durrant
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Rakesh C Kukreja
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|