1
|
Ebrahimnezhad M, Valizadeh A, Majidinia M, Tabnak P, Yousefi B. Unveiling the potential of FOXO3 in lung cancer: From molecular insights to therapeutic prospects. Biomed Pharmacother 2024; 176:116833. [PMID: 38843589 DOI: 10.1016/j.biopha.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Lung cancer poses a significant challenge regarding molecular heterogeneity, as it encompasses a wide range of molecular alterations and cancer-related pathways. Recent discoveries made it feasible to thoroughly investigate the molecular mechanisms underlying lung cancer, giving rise to the possibility of novel therapeutic strategies relying on molecularly targeted drugs. In this context, forkhead box O3 (FOXO3), a member of forkhead transcription factors, has emerged as a crucial protein commonly dysregulated in cancer cells. The regulation of the FOXO3 in reacting to external stimuli plays a key role in maintaining cellular homeostasis as a component of the molecular machinery that determines whether cells will survive or dies. Indeed, various extrinsic cues regulate FOXO3, affecting its subcellular location and transcriptional activity. These regulations are mediated by diverse signaling pathways, non-coding RNAs (ncRNAs), and protein interactions that eventually drive post-transcriptional modification of FOXO3. Nevertheless, while it is no doubt that FOXO3 is implicated in numerous aspects of lung cancer, it is unclear whether they act as tumor suppressors, promotors, or both based on the situation. However, FOXO3 serves as an intriguing possible target in lung cancer therapeutics while widely used anti-cancer chemo drugs can regulate it. In this review, we describe a summary of recent findings on molecular mechanisms of FOXO3 to clarify that targeting its activity might hold promise in lung cancer treatment.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Valizadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Yoshimura A, Horinaka M, Yaoi T, Ono H, Itoh K, Yamada T, Takayama K, Sakai T. Epithelial-mesenchymal transition status is a remarkable biomarker for the combination treatment with avutometinib and defactinib in KRAS-mutated non-small cell lung cancer. Br J Cancer 2024; 131:361-371. [PMID: 38822146 PMCID: PMC11263561 DOI: 10.1038/s41416-024-02727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Recent therapeutic strategies for KRAS-mutated cancers that inhibit the MAPK pathway have attracted considerable attention. The RAF/MEK clamp avutometinib (VS-6766/CH5126766/RO5126766/CKI27) is promising for patients with KRAS-mutated cancers. Although avutometinib monotherapy has shown clinical activity in patients with KRAS-mutated cancers, effective combination strategies will be important to develop. METHODS Using a phosphorylation kinase array kit, we explored the feedback mechanism of avutometinib in KRAS-mutated NSCLC cells, and investigated the efficacy of combining avutometinib with inhibitors of the feedback signal using in vitro and in vivo experiments. Moreover, we searched for a biomarker for the efficacy of combination therapy through an in vitro study and analysis using the The Cancer Genome Atlas Programme dataset. RESULTS Focal adhesion kinase (FAK) phosphorylation/activation was increased after avutometinib treatment and synergy between avutometinib and FAK inhibitor, defactinib, was observed in KRAS-mutated NSCLC cells with an epithelial rather than mesenchymal phenotype. Combination therapy with avutometinib and defactinib induced apoptosis with upregulation of Bim in cancer cells with an epithelial phenotype in an in vitro and in vivo study. CONCLUSIONS These results demonstrate that the epithelial-mesenchymal transition status may be a promising biomarker for the efficacy of combination therapy with avutometinib and defactinib in KRAS-mutated NSCLC.
Collapse
Affiliation(s)
- Akihiro Yoshimura
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, 355-5, Haruobi-cho, Kamigyo-ku, Kyoto, 602-8026, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hisako Ono
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Clinical Oncology, Japanese Red Cross Kyoto Daini Hospital, 355-5, Haruobi-cho, Kamigyo-ku, Kyoto, 602-8026, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
3
|
Smoots SG, Schreiber AR, Jackson MM, Bagby SM, Dominguez ATA, Dus ED, Binns CA, MacBeth M, Whitty PA, Diamond JR, Pitts TM. Overcoming doxorubicin resistance in triple-negative breast cancer using the class I-targeting HDAC inhibitor bocodepsin/OKI-179 to promote apoptosis. Breast Cancer Res 2024; 26:35. [PMID: 38429789 PMCID: PMC10908182 DOI: 10.1186/s13058-024-01799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a poor prognosis. Doxorubicin is part of standard curative therapy for TNBC, but chemotherapy resistance remains an important clinical challenge. Bocodepsin (OKI-179) is a small molecule class I histone deacetylase (HDAC) inhibitor that promotes apoptosis in TNBC preclinical models. The purpose of this study was to investigate the combination of bocodepsin and doxorubicin in preclinical TNBC models and evaluate the impact on terminal cell fate, including apoptosis and senescence. METHODS TNBC cell lines were treated with doxorubicin and CellTiter-Glo was used to assess proliferation and determine doxorubicin sensitivity. Select cell lines were treated with OKI-005 (in vitro version of bocodepsin) and doxorubicin and assessed for proliferation, apoptosis as measured by Annexin V/PI, and cell cycle by flow cytometry. Immunoblotting was used to assess changes in mediators of apoptosis, cell cycle arrest, and senescence. Senescence was measured by the senescence-associated β-galactosidase assay. An MDA-MB-231 xenograft in vivo model was treated with bocodepsin, doxorubicin, or the combination and assessed for inhibition of tumor growth. shRNA knockdown of p53 was performed in the CAL-51 cell line and proliferation, apoptosis and senescence were assessed in response to combination treatment. RESULTS OKI-005 and doxorubicin resulted in synergistic antiproliferative activity in TNBC cells lines regardless of p53 mutation status. The combination led to increased apoptosis and decreased senescence. In vivo, the combination resulted in increased tumor growth inhibition compared to either single agent. shRNA knock-down of p53 led to increased doxorubicin-induced senescence that was decreased with the addition of OKI-005 in vitro. CONCLUSION The addition of bocodepsin to doxorubicin resulted in synergistic antiproliferative activity in vitro, improved tumor growth inhibition in vivo, and promotion of apoptosis which makes this a promising combination to overcome doxorubicin resistance in TNBC. Bocodepsin is currently in clinical development and has a favorable toxicity profile compared to other HDAC inhibitors supporting the feasibility of evaluating this combination in patients with TNBC.
Collapse
Affiliation(s)
- Stephen G Smoots
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA
| | - Anna R Schreiber
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA
| | - Marilyn M Jackson
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA
| | - Stacey M Bagby
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA
| | - Adrian T A Dominguez
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA
| | - Evan D Dus
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA
| | - Cameron A Binns
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA
| | - Morgan MacBeth
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA
| | - Phaedra A Whitty
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA
| | - Jennifer R Diamond
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA
| | - Todd M Pitts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue MS8117, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
5
|
Schreiber AR, Kagihara JA, Corr BR, Davis SL, Lieu C, Kim SS, Jimeno A, Camidge DR, Williams J, Heim AM, Martin A, DeMattei JA, Holay N, Triplett TA, Eckhardt SG, Litwiler K, Winkler J, Piscopio AD, Diamond JR. First-in-Human Dose-Escalation Study of the Novel Oral Depsipeptide Class I-Targeting HDAC Inhibitor Bocodepsin (OKI-179) in Patients with Advanced Solid Tumors. Cancers (Basel) 2023; 16:91. [PMID: 38201519 PMCID: PMC10778198 DOI: 10.3390/cancers16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: Histone deacetylases (HDACs) play a critical role in epigenetic signaling in cancer; however, available HDAC inhibitors have limited therapeutic windows and suboptimal pharmacokinetics (PK). This first-in-human phase I dose escalation study evaluated the safety, PK, pharmacodynamics (PDx), and efficacy of the oral Class I-targeting HDAC inhibitor bocodepsin (OKI-179). (2) Patients and Methods: Patients (n = 34) with advanced solid tumors were treated with OKI-179 orally once daily in three schedules: 4 days on 3 days off (4:3), 5 days on 2 days off (5:2), or continuous in 21-day cycles until disease progression or unacceptable toxicity. Single-patient escalation cohorts followed a standard 3 + 3 design. (3) Results: The mean duration of treatment was 81.2 (range 11-447) days. The most frequent adverse events in all patients were nausea (70.6%), fatigue (47.1%), and thrombocytopenia (41.2%). The maximum tolerated dose (MTD) of OKI-179 was 450 mg with 4:3 and 200 mg with continuous dosing. Dose-limiting toxicities included decreased platelet count and nausea. Prolonged disease control was observed, including two patients with platinum-resistant ovarian cancer. Systemic exposure to the active metabolite exceeded the preclinical efficacy threshold at doses lower than the MTD and was temporally associated with increased histone acetylation in circulating T cells. (4) Conclusions: OKI-179 has a manageable safety profile at the recommended phase 2 dose (RP2D) of 300 mg daily on a 4:3 schedule with prophylactic oral antiemetics. OKI-179 is currently being investigated with the MEK inhibitor binimetinib in patients with NRAS-mutated melanoma in the phase 2 Nautilus trial.
Collapse
Affiliation(s)
- Anna R. Schreiber
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Jodi A. Kagihara
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
- Division of Medical Oncology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley R. Corr
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - S. Lindsey Davis
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Christopher Lieu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Sunnie S. Kim
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Antonio Jimeno
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - D. Ross Camidge
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | | | | | - Anne Martin
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | | | - Nisha Holay
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Todd A. Triplett
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - S. Gail Eckhardt
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77054, USA
| | | | | | | | - Jennifer R. Diamond
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| |
Collapse
|
6
|
Zhang M, Wang W, Liu K, Jia C, Hou Y, Bai G. Astragaloside IV protects against lung injury and pulmonary fibrosis in COPD by targeting GTP-GDP domain of RAS and downregulating the RAS/RAF/FoxO signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155066. [PMID: 37690229 DOI: 10.1016/j.phymed.2023.155066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Pulmonary fibrosis is a chronic progressive interstitial lung disease characterized by the replacement of lung parenchyma with fibrous scar tissue, usually as the final stage of lung injury like COPD. Astragaloside IV (AST), a bioactive compound found in the Astragalus membranaceus (Fisch.) used in traditional Chinese medicine, has been shown to improve pulmonary function and exhibit anti-pulmonary fibrosis effects. However, the exact molecular mechanisms through which it combats pulmonary fibrosis, especially in COPD, remain unclear. PURPOSE This study aimed to identify the potential therapeutic target and molecular mechanisms for AST in improving lung injury especially treating COPD type pulmonary fibrosis both in vivo and in vitro. METHODS Multi lung injury models were established in mice using lipopolysaccharide (LPS), cigarette smoke (CS), or LPS plus CS to simulate the processes of pulmonary fibrosis in COPD. The effect of AST on lung function protection was evaluated, and proteomic and metabolomic analysis were applied to identify the signaling pathway affected by AST and to find potential targets of AST. The interaction between AST and wild-type and mutant RAS proteins was studied. The RAS/RAF/FoxO signaling pathway was stimulated in BEAS-2B cells and in mice lung tissues by LPS plus CS to investigate the anti-pulmonary fibrosis mechanism of AST analyzed by western blotting. The regulatory effects of AST on the RAS/RAF/FoxO pathway dependent on RAS were further confirmed using RAS siRNA. RESULTS RAS was predicted and identified as the target protein of AST in anti-pulmonary fibrosis in COPD and improving lung function. The administration of AST was observed to impede the conversion of fibroblasts into myofibroblasts, reduce the manifestation of inflammatory factors and extracellular matrix, and hinder the activation of epithelial mesenchymal transition (EMT). Furthermore, AST significantly suppressed the RAS/RAF/FoxO signaling pathway in both in vitro and in vivo settings. CONCLUSION AST exhibited lung function protection and anti-pulmonary fibrosis effect by inhibiting the GTP-GDP domain of RAS, which downregulated the RAS/RAF/FoxO signaling pathway. This study revealed AST as a natural candidate molecule for the protection of pulmonary fibrosis in COPD.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Wenshuang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Chao Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| |
Collapse
|
7
|
Srivastava K, Lines KE, Jach D, Crnogorac-Jurcevic T. S100PBP is regulated by mutated KRAS and plays a tumour suppressor role in pancreatic cancer. Oncogene 2023; 42:3422-3434. [PMID: 37794133 PMCID: PMC10638088 DOI: 10.1038/s41388-023-02851-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
We have previously shown that expression of S100PBP, an S100P binding partner, gradually decreases during progression of pancreatic ductal adenocarcinomas (PDAC). Here, we show that loss of S100PBP leads to oncogenic transformation of pancreatic cells; after deregulation of S100PBP expression, both in silico and in vitro analyses highlighted alterations of genes known to modulate cytoskeleton, cell motility and survival. Overexpression of S100P reduced S100PBP expression, while co-immunoprecipitation indicated the interaction of S100P with S100PBP-p53-ubiquitin protein complex, likely causing S100PBP degradation. The doxycycline-induced KrasG12D activation resulted in decreased S100PBP levels, while low-dose treatment with HDAC inhibitor MS-275 rescued its expression in both human and mouse PDAC cell lines. This indicates KrasG12D as an upstream epigenetic regulator of S100PBP. Finally, analysis of TCGA PanCancer Atlas PDAC datasets demonstrated poor prognosis in patients with high S100P and low S100PBP expression, suggesting that S100PBP is a novel tumour suppressor gene with potential clinical utility.
Collapse
Affiliation(s)
- K Srivastava
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
- In-Vitro Pharmacology, UCB Pharmaceuticals Ltd, 216 Bath Road, Slough, Berkshire, SL1 3WE, UK.
| | - K E Lines
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - D Jach
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - T Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
8
|
Yoshioka T, Goda M, Kanda M, Itobayashi S, Sugimoto Y, Izawa‐Ishizawa Y, Yagi K, Aizawa F, Miyata K, Niimura T, Hamano H, Sakurada T, Zamami Y, Ishizawa K. Valproic acid treatment attenuates cisplatin-induced kidney injury by suppressing proximal tubular cell damage. Clin Transl Sci 2023; 16:2369-2381. [PMID: 37700528 PMCID: PMC10651653 DOI: 10.1111/cts.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Cisplatin treatment is effective against several types of carcinomas. However, it frequently leads to kidney injury, which warrants effective prevention methods. Sodium valproic acid is a prophylactic drug candidate with a high potential for clinical application against cisplatin-induced kidney injury. Therefore, in this study, we aimed to elucidate the mechanism underlying the prophylactic effect of valproic acid on cisplatin-induced kidney injury in a mouse model and HK2 and PODO cells with cisplatin-induced toxicity. In the mouse model of cisplatin-induced kidney injury, various renal function parameters and tubular damage scores were worsened by cisplatin, but they were significantly improved upon combination with valproic acid. No difference was observed in cisplatin accumulation between the cisplatin-treated and valproic acid-treated groups in whole blood and the kidneys. The mRNA expression levels of proximal tubular damage markers, apoptosis markers, and inflammatory cytokines significantly increased in the cisplatin group 72 h after cisplatin administration but significantly decreased upon combination with valproic acid. In HK2 cells, a human proximal tubular cell line, the cisplatin-induced decrease in cell viability was significantly suppressed by co-treatment with valproic acid. Valproic acid may inhibit cisplatin-induced kidney injury by suppressing apoptosis, inflammatory responses, and glomerular damage throughout the kidneys by suppressing proximal tubular cell damage. However, prospective controlled trials need to evaluate these findings before their practical application.
Collapse
Affiliation(s)
- Toshihiko Yoshioka
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Masaya Kanda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Sayuri Itobayashi
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yugo Sugimoto
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yuki Izawa‐Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of General MedicineTaoka HospitalTokushimaJapan
| | - Kenta Yagi
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Koji Miyata
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| | - Hirofumi Hamano
- Department of PharmacyOkayama University HospitalOkayamaJapan
| | - Takumi Sakurada
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Yoshito Zamami
- Department of PharmacyOkayama University HospitalOkayamaJapan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| |
Collapse
|
9
|
Du R, Wang C, Liu J, Wang K, Dai L, Shen W. Phosphorylation of TGIF2 represents a therapeutic target that drives EMT and metastasis of lung adenocarcinoma. BMC Cancer 2023; 23:52. [PMID: 36647029 PMCID: PMC9841675 DOI: 10.1186/s12885-023-10535-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND TGF-β-induced factor homeobox 2 (TGIF2) is a transcription regulator that is phosphorylated by EGFR/ERK signaling. However, the functions of phosphorylated (p)-TGIF2 in cancer are largely unknown. Here, we investigated the roles of p-TGIF2 in promoting epithelial-mesenchymal transition (EMT) and metastasis in lung adenocarcinoma (LUAD). METHODS In vitro and in vivo experiments were conducted to investigate the role of TGIF2 in LUAD EMT and metastasis. Dual-luciferase reporter and ChIP assays were employed to observe the direct transcriptional regulation of E-cadherin by TGIF2 and HDAC1. Co-immunoprecipitation was performed to identify the interaction between TGIF2 and HDAC1. RESULTS Downregulating the expression of TGIF2 inhibited LUAD cell migration, EMT and metastasis in vitro and in vivo. Phosphorylation of TGIF2 by EGFR/ERK signaling was required for TGIF2-promoted LUAD EMT and metastasis since phosphorylation-deficient TGIF2 mutant lost these functions. Phosphorylation of TGIF2 was necessary to recruit HDAC1 to the E-cadherin promoter sequence and subsequently suppress E-cadherin transcription. Meanwhile, inhibition of HDAC1 repressed the TGIF2 phosphorylation-induced migration and EMT of LUAD cells. In xenograft mouse models, both inhibition of ERK and HDAC1 could significantly inhibited TGIF2-enhanced metastasis. Furthermore, TGIF2-positive staining was significantly correlated with E-cadherin-negative staining in human lung cancer specimens. CONCLUSIONS Our study reveals the novel function of p-TGIF2 in promoting EMT and metastasis in LUAD; p-TGIF2 could be a potential therapeutic target to inhibit LUAD metastasis.
Collapse
Affiliation(s)
- Renle Du
- grid.207374.50000 0001 2189 3846Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846College of Public Health, Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chen Wang
- grid.207374.50000 0001 2189 3846School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052 China
| | - Jingjing Liu
- grid.207374.50000 0001 2189 3846Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Keyan Wang
- grid.207374.50000 0001 2189 3846Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Liping Dai
- grid.207374.50000 0001 2189 3846Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenzhi Shen
- grid.449428.70000 0004 1797 7280Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining, 272067 China
| |
Collapse
|
10
|
Seidlitz T, Schmäche T, Garcίa F, Lee JH, Qin N, Kochall S, Fohgrub J, Pauck D, Rothe A, Koo BK, Weitz J, Remke M, Muñoz J, Stange DE. Sensitivity towards HDAC inhibition is associated with RTK/MAPK pathway activation in gastric cancer. EMBO Mol Med 2022; 14:e15705. [PMID: 35993110 PMCID: PMC9549728 DOI: 10.15252/emmm.202215705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer ranks the fifth most common and third leading cause of cancer-related deaths worldwide. Alterations in the RTK/MAPK, WNT, cell adhesion, TP53, TGFβ, NOTCH, and NFκB signaling pathways could be identified as main oncogenic drivers. A combination of altered pathways can be associated with molecular subtypes of gastric cancer. In order to generate model systems to study the impact of different pathway alterations in a defined genetic background, we generated three murine organoid models: a RAS-activated (KrasG12D , Tp53R172H ), a WNT-activated (Apcfl/fl , Tp53R172H ), and a diffuse (Cdh1fl/fl , Apcfl/fl ) model. These organoid models were morphologically and phenotypically diverse, differed in proteome expression signatures and possessed individual drug sensitivities. A differential vulnerability to RTK/MAPK pathway interference based on the different mitogenic drivers and according to the level of dependence on the pathway could be uncovered. Furthermore, an association between RTK/MAPK pathway activity and susceptibility to HDAC inhibition was observed. This finding was further validated in patient-derived organoids from gastric adenocarcinoma, thus identifying a novel treatment approach for RTK/MAPK pathway altered gastric cancer patients.
Collapse
Affiliation(s)
- Therese Seidlitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tim Schmäche
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Fernando Garcίa
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Joon Ho Lee
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nan Qin
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Susan Kochall
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Juliane Fohgrub
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David Pauck
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alexander Rothe
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria.,Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
11
|
Celesia A, Notaro A, Franzò M, Lauricella M, D’Anneo A, Carlisi D, Giuliano M, Emanuele S. The Histone Deacetylase Inhibitor ITF2357 (Givinostat) Targets Oncogenic BRAF in Melanoma Cells and Promotes a Switch from Pro-Survival Autophagy to Apoptosis. Biomedicines 2022; 10:biomedicines10081994. [PMID: 36009541 PMCID: PMC9405675 DOI: 10.3390/biomedicines10081994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylase inhibitors (HDACI) are epigenetic compounds that have been widely considered very promising antitumor agents. Here, we focus on the effects of the pan-HDAC inhibitor ITF2357 (Givinostat) in comparison with SAHA (Vorinostat) in melanoma cells bearing BRAF V600E oncogenic mutation. Our results indicate both ITF2357 and SAHA dose-dependently reduce the viability of BRAF-mutated SK-MEL-28 and A375 melanoma cells. The comparison of IC50 values revealed that ITF2357 was much more effective than SAHA. Interestingly, both inhibitors markedly decreased oncogenic BRAF protein expression levels, ITF2357 being the most effective compound. Moreover, the BRAF decrease induced by ITF2357 was accompanied by a decrease in the level of phospho-ERK1/2. The inhibitor of upstream MEK activity, U0126, reduced ERK1/2 phosphorylation and dramatically potentiated the antitumor effect of ITF2357, exacerbating the reduction in the BRAF level. ITF2357 stimulated an early pro-survival autophagic response, which was followed by apoptosis, as indicated by apoptotic markers evaluation and the protective effects exerted by the pan-caspase inhibitor z-VADfmk. Overall, our data indicate for the first time that ITF2357 targets oncogenic BRAF in melanoma cells and induces a switch from autophagy to classic apoptosis, thus representing a possible candidate in melanoma targeted therapy.
Collapse
Affiliation(s)
- Adriana Celesia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Antonietta Notaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Marzia Franzò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
- Correspondence: (M.G.); (S.E.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
- Correspondence: (M.G.); (S.E.)
| |
Collapse
|
12
|
Sharma R, Chatterjee E, Mathew J, Sharma S, Rao NV, Pan CH, Lee SB, Dhingra A, Grewal AS, Liou JP, Guru SK, Nepali K. Accommodation of ring C expanded deoxyvasicinone in the HDAC inhibitory pharmacophore culminates into a tractable anti-lung cancer agent and pH-responsive nanocarrier. Eur J Med Chem 2022; 240:114602. [PMID: 35858522 DOI: 10.1016/j.ejmech.2022.114602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
A fragment recruitment process was conducted to pinpoint a suitable fragment for installation in the HDAC inhibitory template to furnish agents endowed with the potential to treat lung cancer. Resultantly, Ring C expanded deoxyvasicinone was selected as an appropriate surface recognition part that was accommodated in the HDAC three-component model. Delightfully, fused quinazolinone 6 demonstrating a magnificent anticancer profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80-0.96 μM) was identified. Results of the mechanistic studies confirmed that the cell growth inhibitory effects of compound 6 stems for HDAC6 (IC50 = 12.9 nM), HDAC1 (IC50 = 49.9 nM) and HDAC3 inhibition (IC50 = 68.5 nM), respectively. Compound 6 also suppressed the colony formation ability of A549 cells, induced apoptosis, and increased autophagic flux. Key interactions of HDAC inhibitor 6 within the active site of HDAC isoforms were figured out through molecular modeling studies. Furthermore, a pH-responsive nanocarrier (Hyaluronic acid - fused quinazolinone 6 nanoparticles) was designed and assessed using a dialysis bag approach under both normal and acidic circumstances that confirmed the pH-sensitive nature of NPs. Delightfully, the nanoparticles demonstrated selective cell viability reduction potential towards the lung cancer cell lines (A549 lung cancer cell lines) and were found to be largely devoid of cell growth inhibitory effects under normal settings (L929, mouse fibroblast cells).
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Esha Chatterjee
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - N Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taiwan
| | - Ashwani Dhingra
- Dept. of Pharmaceutical Sciences, Guru Gobind Singh College of Pharmacy, Near Guru Nanak Khalsa College, Yamuna Nagar, 135001, Haryana, India
| | - Ajmer S Grewal
- Dept. of Pharmaceutical Sciences, Guru Gobind Singh College of Pharmacy, Near Guru Nanak Khalsa College, Yamuna Nagar, 135001, Haryana, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Santosh K Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan.
| |
Collapse
|
13
|
Jin X, Ng V, Zhao M, Liu L, Higashimoto T, Lee ZH, Chung J, Chen V, Ney G, Kandarpa M, Talpaz M, Li Q. Epigenetic downregulation of Socs2 contributes to mutant N-Ras-mediated hematopoietic dysregulation. Dis Model Mech 2022; 15:274899. [PMID: 35352806 PMCID: PMC9092650 DOI: 10.1242/dmm.049088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
RAS mutations occur in a broad spectrum of human hematopoietic malignancies. Activating Ras mutations in blood cells leads to hematopoietic malignancies in mice. In murine hematopoietic stem cells (HSCs), mutant N-RasG12D activates Stat5 to dysregulate stem cell function. However, the underlying mechanism remains elusive. In this study, we demonstrate that Stat5 activation induced by a hyperactive Nras mutant, G12D, is dependent on Jak2 activity. Jak2 is activated in Nras mutant HSCs and progenitors (HSPCs), and inhibiting Jak2 with ruxolitinib significantly decreases Stat5 activation and HSPC hyper-proliferation in vivo in NrasG12D mice. Activation of Jak2-Stat5 is associated with downregulation of Socs2, an inhibitory effector of Jak2/Stat5. Restoration of Socs2 blocks NrasG12D HSC reconstitution in bone marrow transplant recipients. SOCS2 downregulation is also observed in human acute myeloid leukemia (AML) cells that carry RAS mutations. RAS mutant AML cells exhibited suppression of the enhancer active marker H3K27ac at the SOCS2 locus. Finally, restoration of SOCS2 in RAS mutant AML cells mitigated leukemic growth. Thus, we discovered a novel signaling feedback loop whereby hyperactive Ras signaling activates Jak2/Stat5 via suppression of Socs2. Summary: Jak2/Stat5 is often considered to be parallel to or upstream of Ras signaling. We have discovered a novel signaling feedback loop whereby hyperactive Ras signaling activates Jak2/Stat5 via suppression of Socs2.
Collapse
Affiliation(s)
- Xi Jin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Victor Ng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meiling Zhao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lu Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomoyasu Higashimoto
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zheng Hong Lee
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jooho Chung
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Victor Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gina Ney
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malathi Kandarpa
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Moshe Talpaz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qing Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
15
|
Combining HDAC and MEK Inhibitors with Radiation against Glioblastoma-Derived Spheres. Cells 2022; 11:cells11050775. [PMID: 35269397 PMCID: PMC8909581 DOI: 10.3390/cells11050775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma stem-like cells (GSLCs) in glioblastoma limit effective treatment and promote therapeutic resistance and tumor recurrence. Using a combined radiation and drug-screening platform, we tested the combination of a histone deacetylase inhibitor (HDACi) and MAPK/ERK kinase inhibitor (MEKi) with radiation to predict the efficacy against GSLCs. To mimic a stem-like phenotype, glioblastoma-derived spheres were used and treated with a combination of HDACi (MS-275) and MEKi (TAK-733 or trametinib) with 4 Gy irradiation. The sphere-forming ability after the combined radiochemotherapy was investigated using a sphere formation assay, while the expression levels of the GSLC markers (CD44, Nestin and SOX2) after treatment were analyzed using Western blotting and flow cytometry. The combined radiochemotherapy treatment inhibited the sphere formation in both glioblastoma-derived spheres, decreased the expression of the GSLC markers in a cell-line dependent manner and increased the dead cell population. Finally, we showed that the combined treatment with radiation was more effective at reducing the GSLC markers compared to the standard treatment of temozolomide and radiation. These results suggest that combining HDAC and MEK inhibition with radiation may offer a new strategy to improve the treatment of glioblastoma.
Collapse
|
16
|
Ferrara MG, Stefani A, Pilotto S, Carbone C, Vita E, Di Salvatore M, D'Argento E, Sparagna I, Monaca F, Valente G, Vitale A, Piro G, Belluomini L, Milella M, Tortora G, Bria E. The Renaissance of KRAS Targeting in Advanced Non-Small-Cell Lung Cancer: New Opportunities Following Old Failures. Front Oncol 2022; 11:792385. [PMID: 35004317 PMCID: PMC8733471 DOI: 10.3389/fonc.2021.792385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents the perfect paradigm of ‘precision medicine’ due to its complex intratumoral heterogeneity. It is truly characterized by a range of molecular alterations that can deeply influence the natural history of this disease. Several molecular alterations have been found over time, paving the road to biomarker-driven therapy and radically changing the prognosis of ‘oncogene addicted’ NSCLC patients. Kirsten rat sarcoma (KRAS) mutations are present in up to 30% of NSCLC (especially in adenocarcinoma histotype) and have been identified decades ago. Since its discovery, its molecular characteristics and its marked affinity to a specific substrate have led to define KRAS as an undruggable alteration. Despite that, many attempts have been made to develop drugs capable of targeting KRAS signaling but, until a few years ago, these efforts have been unsuccessful. Comprehensive genomic profiling and wide-spectrum analysis of genetic alterations have only recently allowed to identify different types of KRAS mutations. This tricky step has finally opened new frontiers in the treatment approach of KRAS-mutant patients and might hopefully increase their prognosis and quality of life. In this review, we aim to highlight the most interesting aspects of (epi)genetic KRAS features, hoping to light the way to the state of art of targeting KRAS in NSCLC.
Collapse
Affiliation(s)
- Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Alessio Stefani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Emanuele Vita
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | - Ettore D'Argento
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Ileana Sparagna
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Federico Monaca
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Giustina Valente
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Antonio Vitale
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
17
|
Lanzi C, Favini E, Dal Bo L, Tortoreto M, Arrighetti N, Zaffaroni N, Cassinelli G. Upregulation of ERK-EGR1-heparanase axis by HDAC inhibitors provides targets for rational therapeutic intervention in synovial sarcoma. J Exp Clin Cancer Res 2021; 40:381. [PMID: 34857011 PMCID: PMC8638516 DOI: 10.1186/s13046-021-02150-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synovial sarcoma (SS) is an aggressive soft tissue tumor with limited therapeutic options in advanced stage. SS18-SSX fusion oncogenes, which are the hallmarks of SS, cause epigenetic rewiring involving histone deacetylases (HDACs). Promising preclinical studies supporting HDAC targeting for SS treatment were not reflected in clinical trials with HDAC inhibitor (HDACi) monotherapies. We investigated pathways implicated in SS cell response to HDACi to identify vulnerabilities exploitable in combination treatments and improve the therapeutic efficacy of HDACi-based regimens. METHODS Antiproliferative and proapoptotic effects of the HDACi SAHA and FK228 were examined in SS cell lines in parallel with biochemical and molecular analyses to bring out cytoprotective pathways. Treatments combining HDACi with drugs targeting HDACi-activated prosurvival pathways were tested in functional assays in vitro and in a SS orthotopic xenograft model. Molecular mechanisms underlying synergisms were investigated in SS cells through pharmacological and gene silencing approaches and validated by qRT-PCR and Western blotting. RESULTS SS cell response to HDACi was consistently characterized by activation of a cytoprotective and auto-sustaining axis involving ERKs, EGR1, and the β-endoglycosidase heparanase, a well recognized pleiotropic player in tumorigenesis and disease progression. HDAC inhibition was shown to upregulate heparanase by inducing expression of the positive regulator EGR1 and by hampering negative regulation by p53 through its acetylation. Interception of HDACi-induced ERK-EGR1-heparanase pathway by cell co-treatment with a MEK inhibitor (trametinib) or a heparanase inhibitor (SST0001/roneparstat) enhanced antiproliferative and pro-apoptotic effects. HDAC and heparanase inhibitors had opposite effects on histone acetylation and nuclear heparanase levels. The combination of SAHA with SST0001 prevented the upregulation of ERK-EGR1-heparanase induced by the HDACi and promoted caspase-dependent cell death. In vivo, the combined treatment with SAHA and SST0001 potentiated the antitumor efficacy against the CME-1 orthotopic SS model as compared to single agent administration. CONCLUSIONS The present study provides preclinical rationale and mechanistic insights into drug combinatory strategies based on the use of ERK pathway and heparanase inhibitors to improve the efficacy of HDACi-based antitumor therapies in SS. The involvement of classes of agents already clinically available, or under clinical evaluation, indicates the transferability potential of the proposed approaches.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Enrica Favini
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
18
|
Liu S, Zou Q, Chen JP, Yao X, Guan P, Liang W, Deng P, Lai X, Yin J, Chen J, Chen R, Yu Z, Xiao R, Sun Y, Hong JH, Liu H, Lu H, Chen J, Bei JX, Koh J, Chan JY, Wang B, Kang T, Yu Q, Teh BT, Liu J, Xiong Y, Tan J. Targeting enhancer reprogramming to mitigate MEK inhibitor resistance in preclinical models of advanced ovarian cancer. J Clin Invest 2021; 131:e145035. [PMID: 34464356 DOI: 10.1172/jci145035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is characterized by aberrant activation of the mitogen-activated protein kinase (MAPK), highlighting the importance of targeting the MAPK pathway as an attractive therapeutic strategy. However, the clinical efficacy of MEK inhibitors is limited by intrinsic or acquired drug resistance. Here, we established patient-derived ovarian cancer models resistant to MEK inhibitors and demonstrated that resistance to the clinically approved MEK inhibitor trametinib was associated with enhancer reprogramming. We also showed that enhancer decommissioning induced the downregulation of negative regulators of the MAPK pathway, leading to constitutive ERK activation and acquired resistance to trametinib. Epigenetic compound screening uncovered that HDAC inhibitors could alter the enhancer reprogramming and upregulate the expression of MAPK negative regulators, resulting in sustained MAPK inhibition and reversal of trametinib resistance. Consequently, a combination of HDAC inhibitor and trametinib demonstrated a synergistic antitumor effect in vitro and in vivo, including patient-derived xenograft mouse models. These findings demonstrated that enhancer reprogramming of the MAPK regulatory pathway might serve as a potential mechanism underlying MAPK inhibitor resistance and concurrent targeting of epigenetic pathways and MAPK signaling might provide an effective treatment strategy for advanced ovarian cancer.
Collapse
Affiliation(s)
- Shini Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Qiong Zou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jie-Ping Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaosai Yao
- Institute of Molecular and Cell Biology, Singapore
| | - Peiyong Guan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Weiting Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Peng Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaowei Lai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jiaxin Yin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jinghong Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Rui Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Zhaoliang Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rong Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yichen Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jing Han Hong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Hui Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Huaiwu Lu
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianfeng Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Joanna Koh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Jason Yongsheng Chan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Baohua Wang
- The First Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Bin-Tean Teh
- Institute of Molecular and Cell Biology, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,SingHealth Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
| | - Jihong Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Ying Xiong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jing Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Shim J, Goldsmith KC. A New Player in Neuroblastoma: YAP and Its Role in the Neuroblastoma Microenvironment. Cancers (Basel) 2021; 13:cancers13184650. [PMID: 34572875 PMCID: PMC8472533 DOI: 10.3390/cancers13184650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is the most common extra-cranial pediatric solid tumor that accounts for more than 15% of childhood cancer-related deaths. High risk neuroblastomas that recur during or after intense multimodal therapy have a <5% chance at a second sustained remission or cure. The solid tumor microenvironment (TME) has been increasingly recognized to play a critical role in cancer progression and resistance to therapy, including in neuroblastoma. The Yes-Associated Protein (YAP) in the Hippo pathway can regulate cancer proliferation, tumor initiation, and therapy response in many cancer types and as such, its role in the TME has gained interest. In this review, we focus on YAP and its role in neuroblastoma and further describe its demonstrated and potential effects on the neuroblastoma TME. We also discuss the therapeutic strategies for inhibiting YAP in neuroblastoma.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kelly C. Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-727-2655
| |
Collapse
|
20
|
Hamilton G, Plangger A. Cytotoxic activity of KRAS inhibitors in combination with chemotherapeutics. Expert Opin Drug Metab Toxicol 2021; 17:1065-1074. [PMID: 34347509 DOI: 10.1080/17425255.2021.1965123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION KRAS is the most frequently mutated oncogenic driver in pancreatic, lung, and colon cancer. Recently, KRAS inhibitors in clinical use show promising activity but most responses are partial and drug resistance develops. The use of therapeutics in combination with KRAS inhibitors are expected to improve outcomes. AREAS COVERED This review describes the KRAS G12C mutation-specific inhibitors and the SOS1-targeting inhibitors that reduce the GTP-loading of wildtype and mutated KRAS. Both types of compounds reduce tumor cell proliferation in vitro and in vivo. The combinations of the various KRAS inhibitors with downstream signaling effectors, modulators of KRAS-associated metabolic alterations and chemotherapeutics are summarized. EXPERT OPINION The clinical potency of mutated KRAS-specific inhibitors needs to be improved by suitable drug combinations. Inhibition of downstream signaling cascades increases toxicity and other combinations exploited comprise G12C-directed inhibitors with SOS1 inhibitors, glucose/glutamine metabolic modulators, classical chemotherapeutics, and others. The most suitable inhibitor combinations corroborated in preclinical development await clinical verification.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department Of Vascular Surgery, Medical University Of Vienna, Vienna, Austria
| | - Adelina Plangger
- Department Of Vascular Surgery, Medical University Of Vienna, Vienna, Austria
| |
Collapse
|
21
|
KRASG12C inhibitor: combing for combination. Biochem Soc Trans 2021; 48:2691-2701. [PMID: 33242077 DOI: 10.1042/bst20200473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Oncogenic mutation in KRAS is one of the most common alterations in human cancer. After decades of extensive research and unsuccessful drug discovery programs, therapeutic targeting of KRAS mutant tumour is at an exciting juncture. The discovery of mutation-specific inhibitors of KRASG12C and early positive findings from clinical trials has raised the hope of finally having a drug to treat a significant segment of KRAS mutant cancer patients. Crucially, it has also re-energized the RAS field to look beyond G12C mutation and find new innovative targeting opportunities. However, the early clinical trial data also indicates that there is significant variation in response among patients and that monotherapy treatment with KRASG12C inhibitors (G12Ci) alone is unlikely to be sufficient to elicit a sustained response. Understanding the molecular mechanism of variation in patient response and identifying possible combination opportunities, which could be exploited to achieve durable and significant responses and delay emergence of resistance, is central to the success of G12Ci therapy. Given the specificity of G12Ci, toxicity is expected to be minimal. Therefore, it might be possible to combine G12Ci with other targeted agents which have previously been explored to tackle KRAS mutant cancer but deemed too toxic, e.g. MEK inhibitor. Ongoing clinical trials will shed light on clinical resistance to G12C inhibitors, however extensive work is already ongoing to identify the best combination partners. This review provides an update on combination opportunities which could be explored to maximize the benefit of this new exciting drug.
Collapse
|
22
|
Maxwell MJ, Arnold A, Sweeney H, Chen L, Lih TSM, Schnaubelt M, Eberhart CG, Rubens JA, Zhang H, Clark DJ, Raabe EH. Unbiased Proteomic and Phosphoproteomic Analysis Identifies Response Signatures and Novel Susceptibilities After Combined MEK and mTOR Inhibition in BRAF V600E Mutant Glioma. Mol Cell Proteomics 2021; 20:100123. [PMID: 34298159 PMCID: PMC8363840 DOI: 10.1016/j.mcpro.2021.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
The mitogen-activated protein kinase pathway is one of the most frequently altered pathways in cancer. It is involved in the control of cell proliferation, invasion, and metabolism, and can cause resistance to therapy. A number of aggressive malignancies, including melanoma, colon cancer, and glioma, are driven by a constitutively activating missense mutation (V600E) in the v-Raf murine sarcoma viral oncogene homolog B (BRAF) component of the pathway. Mitogen-activated protein kinase kinase (MEK) inhibition is initially effective in targeting these cancers, but reflexive activation of mammalian target of rapamycin (mTOR) signaling contributes to frequent therapy resistance. We have previously demonstrated that combination treatment with the MEK inhibitor trametinib and the dual mammalian target of rapamycin complex 1/2 inhibitor TAK228 improves survival and decreases vascularization in a BRAFV600E mutant glioma model. To elucidate the mechanism of action of this combination therapy and understand the ensuing tumor response, we performed comprehensive unbiased proteomic and phosphoproteomic characterization of BRAFV600E mutant glioma xenografts after short-course treatment with trametinib and TAK228. We identified 13,313 proteins and 30,928 localized phosphosites, of which 12,526 proteins and 17,444 phosphosites were quantified across all samples (data available via ProteomeXchange; identifier PXD022329). We identified distinct response signatures for each monotherapy and combination therapy and validated that combination treatment inhibited activation of the mitogen-activated protein kinase and mTOR pathways. Combination therapy also increased apoptotic signaling, suppressed angiogenesis signaling, and broadly suppressed the activity of the cyclin-dependent kinases. In response to combination therapy, both epidermal growth factor receptor and class 1 histone deacetylase proteins were activated. This study reports a detailed (phospho)proteomic analysis of the response of BRAFV600E mutant glioma to combined MEK and mTOR pathway inhibition and identifies new targets for the development of rational combination therapies for BRAF-driven tumors.
Collapse
Affiliation(s)
- Micah J Maxwell
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Antje Arnold
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heather Sweeney
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lijun Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tung-Shing M Lih
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schnaubelt
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles G Eberhart
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Rubens
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J Clark
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric H Raabe
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
23
|
Das TK, Gatto J, Mirmira R, Hourizadeh E, Kaufman D, Gelb BD, Cagan R. Drosophila RASopathy models identify disease subtype differences and biomarkers of drug efficacy. iScience 2021; 24:102306. [PMID: 33855281 PMCID: PMC8026909 DOI: 10.1016/j.isci.2021.102306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/30/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
RASopathies represent a family of mostly autosomal dominant diseases that are caused by missense variants in the rat sarcoma viral oncogene/mitogen activated protein kinase (RAS/MAPK) pathway including KRAS, NRAS, BRAF, RAF1, and SHP2. These variants are associated with overlapping but distinct phenotypes that affect the heart, craniofacial, skeletal, lymphatic, and nervous systems. Here, we report an analysis of 13 Drosophila transgenic lines, each expressing a different human RASopathy isoform. Similar to their human counterparts, each Drosophila line displayed common aspects but also important differences including distinct signaling pathways such as the Hippo and SAPK/JNK signaling networks. We identified multiple classes of clinically relevant drugs-including statins and histone deacetylase inhibitors-that improved viability across most RASopathy lines; in contrast, several canonical RAS pathway inhibitors proved less broadly effective. Overall, our study compares and contrasts a large number of RASopathy-associated variants including their therapeutic responses.
Collapse
Affiliation(s)
- Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Jared Gatto
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Rupa Mirmira
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Ethan Hourizadeh
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Dalia Kaufman
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Bruce D. Gelb
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Ross Cagan
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
24
|
Wang J, Sun T, Meng Z, Wang L, Li M, Chen J, Qin T, Yu J, Zhang M, Bie Z, Dong Z, Jiang X, Lin L, Zhang C, Liu Z, Jiang R, Yang G, Li L, Zhang Y, Huang D. XPO1 inhibition synergizes with PARP1 inhibition in small cell lung cancer by targeting nuclear transport of FOXO3a. Cancer Lett 2021; 503:197-212. [PMID: 33493586 DOI: 10.1016/j.canlet.2021.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Patient mortality rates have remained stubbornly high for the past decades in small cell lung cancer (SCLC) because of having no standard targeted therapies with confirmed advantages at present. Poly [ADP-ribose] polymerase (PARP) inhibitors have shown promise in preclinical models but have had unsatisfactory clinical results in SCLC. By RNA-seq and isobaric tags for relative and absolute quantification (ITRAQ), we revealed that PARP1 inhibition led to the relocalization of forkhead box-O3a (FOXO3a) from nuclear to cytoplasm. By performing co-Immunoprecipitation (co-IP) and CRISPR-Cas9-mediated knockout plasmid we showed that FOXO3a was subject to exportin 1 (XPO1)-dependent nuclear export. We demonstrated the effects of the PARP inhibitor BMN673 on apoptosis and DNA damage were markedly enhanced by simultaneous inhibition of XPO1 in vitro. The combination of BMN673 and the XPO1 inhibitor selinexor inhibited primary SCLC cell proliferation in mini-patient-derived xenotransplants (miniPDXs) and markedly inhibited tumor growth without significant toxicity in xenograft models. The efficacy was enhanced for more than 2.5 times, compared to the single agent. Based on these findings, we further designed a novel dual PARP-XPO1 inhibitor and showed its effectiveness in SCLC. In this work, we illustrated that combining a PARP inhibitor with an XPO1 inhibitor is associated with significantly improved efficacy and tolerability. Dual PARP-XPO1 inhibition restored the FOXO3a balance and activity in SCLC. Collectively, targeting PARP1 and XPO1 opens new avenues for therapeutic intervention against SCLC, warranting further investigation in potential clinical trials.
Collapse
Affiliation(s)
- Jingya Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, PR China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, PR China
| | - Zhaoting Meng
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Liuchun Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Mengjie Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Jinliang Chen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Tingting Qin
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Jiangyong Yu
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Miao Zhang
- Department of Oncology, The No.1 Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050010, PR China
| | - Zhixin Bie
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Zhiqiang Dong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, PR China
| | - Xiangli Jiang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Li Lin
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Cuicui Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Zhujun Liu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, PR China.
| | - Lin Li
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Yan Zhang
- Department of Oncology, The No.1 Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050010, PR China.
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, PR China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China; Tianjin's Clinical Research Center for Cancer, PR China; Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, 300060, PR China.
| |
Collapse
|
25
|
Chang TC, Matossian MD, Elliott S, Burks HE, Sabol RA, Ucar DA, Wathieu H, Zabaleta J, Valle LD, Gill S, Martin E, Riker AI, Miele L, Bunnell BA, Burow ME, Collins-Burow BM. Evaluation of deacetylase inhibition in metaplastic breast carcinoma using multiple derivations of preclinical models of a new patient-derived tumor. PLoS One 2020; 15:e0226464. [PMID: 33035223 PMCID: PMC7546483 DOI: 10.1371/journal.pone.0226464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) is a clinically aggressive and rare subtype of breast cancer, with similar features to basal-like breast cancers. Due to rapid growth rates and characteristic heterogeneity, MBC is often unresponsive to standard chemotherapies; and novel targeted therapeutic discovery is urgently needed. Histone deacetylase inhibitors (DACi) suppress tumor growth and metastasis through regulation of the epithelial-to-mesenchymal transition axis in various cancers, including basal-like breast cancers. We utilized a new MBC patient-derived xenograft (PDX) to examine the effect of DACi therapy on MBC. Cell morphology, cell cycle-associated gene expressions, transwell migration, and metastasis were evaluated in patient-derived cells and tumors after treatment with romidepsin and panobinostat. Derivations of our PDX model, including cells, spheres, organoids, explants, and in vivo implanted tumors were treated. Finally, we tested the effects of combining DACi with approved chemotherapeutics on relative cell biomass. DACi significantly suppressed the total number of lung metastasis in vivo using our PDX model, suggesting a role for DACi in preventing circulating tumor cells from seeding distal tissue sites. These data were supported by our findings that DACi reduced cell migration, populations, and expression of mesenchymal-associated genes. While DACi treatment did affect cell cycle-regulating genes in vitro, tumor growth was not affected compared to controls. Importantly, gene expression results varied depending on the cellular or tumor system used, emphasizing the importance of using multiple derivations of cancer models in preclinical therapeutic discovery research. Furthermore, DACi sensitized and produced a synergistic effect with approved oncology therapeutics on inherently resistant MBC. This study introduced a role for DACi in suppressing the migratory and mesenchymal phenotype of MBC cells through regulation of the epithelial-mesenchymal transition axis and suppression of the CTC population. Preliminary evidence that DACi treatment in combination with MEK1/2 inhibitors exerts a synergistic effect on MBC cells was also demonstrated.
Collapse
Affiliation(s)
- Tiffany C. Chang
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail: (TCC); (BMCB)
| | - Margarite D. Matossian
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Steven Elliott
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Hope E. Burks
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Rachel A. Sabol
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | - Henri Wathieu
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | - Luis De Valle
- Department of Pathology, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | - Sukhmani Gill
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Elizabeth Martin
- Department of Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Adam I. Riker
- Department of Surgery, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lucio Miele
- Department of Genetics, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | - Bruce A. Bunnell
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Matthew E. Burow
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Bridgette M. Collins-Burow
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail: (TCC); (BMCB)
| |
Collapse
|
26
|
Li Y, Zhang X, Zhu S, Dejene EA, Peng W, Sepulveda A, Seto E. HDAC10 Regulates Cancer Stem-Like Cell Properties in KRAS-Driven Lung Adenocarcinoma. Cancer Res 2020; 80:3265-3278. [PMID: 32540961 PMCID: PMC7442594 DOI: 10.1158/0008-5472.can-19-3613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/11/2020] [Accepted: 06/10/2020] [Indexed: 02/03/2023]
Abstract
Activation of oncogenic KRAS is the most common driving event in lung adenocarcinoma development. Despite the existing rationale for targeting activated KRAS and its downstream effectors, the failure of clinical trials to date indicates that the mechanism of KRAS-driven malignancy remains poorly understood. Here we report that histone deacetylase 10 (HDAC10) might function as a putative tumor suppressor in mice carrying a spontaneously activated oncogenic Kras allele. Hdac10 deletion accelerated KRAS-driven early-onset lung adenocarcinomas, increased macrophage infiltration in the tumor microenvironment, and shortened survival time in mice. Highly tumorigenic and stem-like lung adenocarcinoma cells were increased in Hdac10-deleted tumors compared with Hdac10 wild-type tumors. HDAC10 regulated the stem-like properties of KRAS-expressing tumor cells by targeting SOX9. Expression of SOX9 was significantly increased in Hdac10-deleted tumor cells and depletion of SOX9 in Hdac10 knockout (KO) lung adenocarcinoma cells inhibited growth of tumorspheres. The genes associated with TGFβ pathway were enriched in Hdac10 KO tumor cells, and activation of TGFβ signaling contributed to SOX9 induction in Hdac10 KO lung adenocarcinoma cells. Overall, our study evaluates the functions and mechanisms of action of HDAC10 in lung carcinogenesis that will inform the rationale for targeting its related regulatory signaling as an anticancer strategy. SIGNIFICANCE: These findings linking HDAC10 and lung tumorigenesis identify potential novel strategies for targeting HDAC10 as a treatment for lung cancer.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Biochemistry & Molecular Medicine, George Washington Cancer Center, George Washington University School of Medicine & Health Sciences, Washington, D.C
| | - Xiangyang Zhang
- Department of Neurology, George Washington University School of Medicine & Health Sciences, Washington, D.C
| | - Shaoqi Zhu
- Department of Physics, Columbian College of Arts & Sciences, George Washington University, Washington, D.C
| | - Eden A Dejene
- Department of Biochemistry & Molecular Medicine, George Washington Cancer Center, George Washington University School of Medicine & Health Sciences, Washington, D.C
| | - Weiqun Peng
- Department of Physics, Columbian College of Arts & Sciences, George Washington University, Washington, D.C
| | - Antonia Sepulveda
- Department of Pathology, George Washington Cancer Center, George Washington University School of Medicine & Health Sciences, Washington, D.C
| | - Edward Seto
- Department of Biochemistry & Molecular Medicine, George Washington Cancer Center, George Washington University School of Medicine & Health Sciences, Washington, D.C.
| |
Collapse
|
27
|
Passiglia F, Malapelle U, Del Re M, Righi L, Pagni F, Furlan D, Danesi R, Troncone G, Novello S. KRAS inhibition in non-small cell lung cancer: Past failures, new findings and upcoming challenges. Eur J Cancer 2020; 137:57-68. [PMID: 32745965 DOI: 10.1016/j.ejca.2020.06.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Despite the high prevalence of Kirsten rat sarcoma (KRAS) mutations in non-small cell lung cancer (NSCLC), for a long time it has been defined as an 'undruggable target', with precision medicine not considered as an adequate approach to treat this subgroup of patients. After several years of efforts, preliminary data from early clinical trials have recently demonstrated that direct pharmacological inhibition of KRAS p.G12C mutation is possible, emerging as an effective targeted treatment for about 10-12% of patients with advanced NSCLC, with potential relevant impact on their long-term survival and quality of life. This review reports the current status of KRAS mutations detection in the Italian real-word scenario, summarises the biological basis of KRAS inhibition in NSCLC and provides an updated overview of therapeutic strategies, discussing the potential reasons for past failures and analysing the upcoming challenges related to the advent of new targeted agents in clinical practice.
Collapse
Affiliation(s)
- Francesco Passiglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy.
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Italy.
| | - Luisella Righi
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy.
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano- Bicocca, 20900 Monza, Italy.
| | - Daniela Furlan
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy.
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Italy.
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Silvia Novello
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy.
| |
Collapse
|
28
|
Lyu X, Zeng L, Zhang H, Ke Y, Liu X, Zhao N, Yuan J, Chen G, Yang S. Hydroxychloroquine suppresses lung tumorigenesis via inducing FoxO3a nuclear translocation through STAT3 inactivation. Life Sci 2020; 246:117366. [PMID: 32001266 DOI: 10.1016/j.lfs.2020.117366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hydroxychloroquine exhibits synergistic anticancer properties as an adjuvant. However, the role and molecular mechanisms underlying of HCQ as monotherapy for lung adenocarcinoma (LUAD) have yet to be elucidated. METHODS We assessed the antitumor effects of HCQ in LUAD cells through a series of in vitro and in vivo assays. GEO database and R packages were used to predict molecular mechanisms of HCQ in the treatment of lung adenocarcinoma, followed by verification of gene expression and subcellular localization via immunoblotting, immunofluorescent and immunohistochemistry assays. RESULTS We showed the phenotypic effects that HCQ inhibited cell growth, induced apoptosis and cell cycle arrest at G1/S transition in A549 and PC-9 cells, which was associated with inhibition of CDK2, CDK4, CyclinD1 and CyclinE, but up-regulation of p21 and p27Kip1. Bioinformatic analysis predicted that 63 targets related to HCQ and LUAD were mainly enriched in JAK-STAT and FoxO pathways. Then, we observed that HCQ decreased the phosphorylation of STAT3, but increased the expression of FoxO3a and its accumulation in the nucleus. The specific STAT3 inhibitor cryptotanshinon augmented the HCQ-induced upregulation and nuclear translocation of FoxO3a. In addition, HCQ increased the expression of p27Kip1, which was impaired by FoxO3a blockade with siRNA. Finally, ablation of p27Kip1 expression abrogated the cytotoxicity of HCQ. More importantly, similar results were further confirmed in vivo. CONCLUSIONS Taken together, this study suggests that STAT3/FoxO3a/p27Kip1 signaling pathway is involved in the anticancer effects of HCQ, and provides preliminary evidence for therapeutic prospects of HCQ alone in LUAD.
Collapse
Affiliation(s)
- Xin Lyu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, PR China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, PR China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, PR China
| | - Yue Ke
- Department of Radiation Oncology, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, PR China
| | - Xuan Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, PR China
| | - Nannan Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, PR China
| | - Jingyan Yuan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, PR China
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, PR China.
| |
Collapse
|
29
|
Wu HZ, Xiao JQ, Xiao SS, Cheng Y. KRAS: A Promising Therapeutic Target for Cancer Treatment. Curr Top Med Chem 2019; 19:2081-2097. [PMID: 31486755 DOI: 10.2174/1568026619666190905164144] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most commonly mutated oncogene in human cancer. The developments of many cancers depend on sustained expression and signaling of KRAS, which makes KRAS a high-priority therapeutic target. Scientists have not successfully developed drugs that target KRAS, although efforts have been made last three decades. In this review, we highlight the emerging experimental strategies of impairing KRAS membrane localization and the direct targeting of KRAS. We also conclude the combinatorial therapies and RNA interference technology for the treatment of KRAS mutant cancers. Moreover, the virtual screening approach to discover novel KRAS inhibitors and synthetic lethality interactors of KRAS are discussed in detail.
Collapse
Affiliation(s)
- Hai-Zhou Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Jia-Qi Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Song-Shu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
30
|
Shi S, Zhang J, Liu M, Dong H, Li N. Ras-ERK signalling represses H1.4 phosphorylation at serine 36 to promote non-small-cell lung carcinoma cells growth and migration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2343-2351. [PMID: 31184227 DOI: 10.1080/21691401.2019.1624558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent papers suggest that oncogenic Ras participate in regulating tumour cells proliferation and metastasis. This work linked Ras with H1.4 modification in non-small-cell lung carcinoma (NSCLC), to better understand the oncogenic effects of Ras. A plasmid for expressing Ras mutated at G13D and T35S was transfected into NCI-H2126 and A549 cells. Phosphorylation of H1.4S36 was determined by immunoblotting. Effects of phosphorylation of H1.4 at serine (S) 36 (H1.4S36ph) on NCI-H2126 and A549 cells were tested by MTT assay, soft-agar colony formation assay, flow cytometry and transwell assay. Chromatin-immunoprecipitation (ChIP) and RT-qPCR were conducted to measure the effects of H1.4S36ph on Ras downstream genes. The catalyzing enzymes participate in H1.4S36 phosphorylation were further studied. We found that Ras-ERK signalling repressed the phosphorylation of H1.4 at S36. H1.4S36ph functioned as a tumour suppressor, as its overexpression repressed NCI-H2126 and A549 cells viability, colony formation, S-phase arrest, migration and invasion. H1.4S36ph was able to mediate the transcription of Ras downstream genes. Ras-ERK signalling repressed H1.4S36ph through degradation of PKA, and the degradation was mediated by MDM2. In conclusion, Ras-ERK signalling repressed H1.4 phosphorylation at S36 to participate in NSCLC cells growth, migration and invasion. Ras-ERK signalling repressed H1.4S36ph through MDM2-dependent degradation of PKA. This study provides a novel explanation for Ras-ERK's tumour-promoting function. Highlights: H1.4S36 phosphorylation is repressed by Ras-ERK activation; H1.4S36ph inhibits the phenotype of NSCLC cells; H1.4S36ph regulates the transcription of Ras downstream genes; Ras-ERK represses H1.4S36ph by MDM2-dependent degradation of PKA.
Collapse
Affiliation(s)
- Shaomin Shi
- a Department of Respiratory, China-Japan Union Hospital of Jilin University , Changchun , China
| | - Jingzhe Zhang
- b Department of Orthopedics, China-Japan Union Hospital of Jilin University , Changchun , China
| | - Meihan Liu
- c Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun , China
| | - Hang Dong
- b Department of Orthopedics, China-Japan Union Hospital of Jilin University , Changchun , China
| | - Ning Li
- a Department of Respiratory, China-Japan Union Hospital of Jilin University , Changchun , China
| |
Collapse
|
31
|
Chao MW, Chang LH, Tu HJ, Chang CD, Lai MJ, Chen YY, Liou JP, Teng CM, Pan SL. Combination treatment strategy for pancreatic cancer involving the novel HDAC inhibitor MPT0E028 with a MEK inhibitor beyond K-Ras status. Clin Epigenetics 2019; 11:85. [PMID: 31142371 PMCID: PMC6540419 DOI: 10.1186/s13148-019-0681-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/08/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Oncogenic K-Ras signaling highly relies on the canonical Ras/MEK/ERK pathway to contribute to pancreatic cancer progression. However, numerous efforts of MEK inhibitors have failed to provide an optimal antitumor effect for pancreatic cancer in practice. The aim of the present work was to develop a more efficacious therapeutic intervention for MEK inhibitors through combination with histone deacetylase (HDAC) inhibitor MPT0E028. METHODS The effects of combined therapy on cell viability, apoptosis, protein, and RNA expressions were determined by MTT assay, flow cytometry, western blotting, and quantitative PCR analysis. The AsPC-1 xenograft was used to assess antitumor effects in vivo. RESULTS The co-administration of MPT0E028 and MEK inhibitor yielded synergistic effects on cell viability suppression both in K-Ras mutated and wild-type pancreatic cancer cells and also markedly triggered cell apoptosis. Surprisingly, ERK and epidermal growth factor receptor (EGFR) were activated by the long-term and low-concentration treatment of MPT0E028 or another HDAC inhibitor alone. Whereas, the pharmacological attenuation of ERK signaling dramatically abolished the MPTE028-induced p-ERK and EGFR expression. Overexpression of HDAC4, HDAC6, and MEK, respectively, reversed the cell death induced by the combined treatment. Finally, the combined treatment decreased the tumor volume in an AsPC-1 xenograft model compared to each individual treatment alone. CONCLUSIONS The synergistic anti-survival effect of the combination was suggested to occur via compensation of the MEK inhibitor for activated ERK. Our results indicate that this combination strategy could benefit patients with pancreatic cancer beyond K-Ras status.
Collapse
Affiliation(s)
- Min-Wu Chao
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsun Chang
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huang-Ju Tu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chao-Di Chang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jung Lai
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,The Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Che-Ming Teng
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan.,Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan. .,The Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
32
|
Yang Z, Liao J, Carter-Cooper BA, Lapidus RG, Cullen KJ, Dan H. Regulation of cisplatin-resistant head and neck squamous cell carcinoma by the SRC/ETS-1 signaling pathway. BMC Cancer 2019; 19:485. [PMID: 31118072 PMCID: PMC6532223 DOI: 10.1186/s12885-019-5664-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We investigated the role of the ETS-1 transcription factor in Head and Neck Squamous Cell Carcinoma (HNSCC) in multiple cisplatin-resistant HNSCC cell lines. METHODS We examined its molecular link with SRC and MEK/ERK pathways and determined the efficacy of either MEK/ERK inhibitor PD0325901 or SRC inhibitor Dasatinib on cisplatin-resistant HNSCC inhibition. RESULTS We found that ETS-1 protein expression levels in a majority of cisplatin-resistant HNSCC cell types were higher than those in their parental cisplatin sensitive partners. High ETS-1 expression was also found in patient-derived, cisplatin-resistant HNSCC cells. While ETS-1 knockdown inhibited cell proliferation, migration, and invasion, it could still re-sensitize cells to cisplatin treatment. Interestingly, previous studies have shown that MER/ERK pathways could regulate ETS-1 through its phosphorylation at threonine 38 (T38). Although almost all cisplatin-resistant HNSCC cells we tested showed higher ETS-1 phosphorylation levels at T38, we found that inhibition of MEK/ERK pathways with the MEK inhibitor PD0325901 did not block this phosphorylation. In addition, treatment of cisplatin-resistant HNSCC cells with the MEK inhibitor completely blocked ERK phosphorylation but did not re-sensitize cells to cisplatin treatment. Furthermore, we found that, consistent with ETS-1 increase, SRC phosphorylation dramatically increased in cisplatin-resistant HNSCC, and treatment of cells with the SRC inhibitor, Dasatinib, blocked SRC phosphorylation and decreased ETS-1 expression. Importantly, we showed that Dasatinib, as a single agent, significantly suppressed cell proliferation, migration, and invasion, in addition to survival. CONCLUSIONS Our results demonstrate that the SRC/ETS-1 pathway plays a crucial role and could be a key therapeutic target in cisplatin-resistant HNSCC treatment.
Collapse
Affiliation(s)
- Zejia Yang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jipei Liao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brandon A Carter-Cooper
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kevin J Cullen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hancai Dan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Food Additive Sodium Benzoate (NaB) Activates NFκB and Induces Apoptosis in HCT116 Cells. Molecules 2018; 23:molecules23040723. [PMID: 29565269 PMCID: PMC6017321 DOI: 10.3390/molecules23040723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/16/2023] Open
Abstract
NaB, the metabolite of cinnamon and sodium salt of benzoic acid is a commonly used food and beverage preservative. Various studies have investigated NaB for its effects on different cellular models. However, the effects of NaB on cancer cell viability signaling is substantially unknown. In this study, the effects of NaB on viability parameters and NFκB, one of the most important regulators in apoptosis, were examined in HCT116 colon cancer cells. Cell culture, light microscopy, spectrophotometry, flow cytometry, and western blot were used as methods to determine cell viability, caspase-3 activity, NFκB, Bcl-xl, Bim, and PARP proteins, respectively. NaB (6.25 mM–50 mM) treatment inhibited cell viability by inducing apoptosis, which was evident with increased Annexin V-PE staining and caspase-3 activity. NFκB activation accompanied the induction of apoptosis in NaB treated cells. Inhibition of NFκB with BAY 11-7082 did not show a pronounced effect on cell viability but induced a more apoptotic profile, which was confirmed by increased PARP fragmentation and caspase-3 activity. This effect was mostly evident at 50 mM concentration of NaB. Bcl-xl levels were not affected by NaB or BAY 11-7082/NaB treatment; whereas, total Bim increased with NaB treatment. Inhibition of NFκB activity further increased Bim levels. Overall, these results suggest that NaB induces apoptosis and activates NFκB in HCT116 colon cancer cells. Activation of NFκB emerges as target in an attempt to protect cells against apoptosis.
Collapse
|
34
|
Zhang X, Liu X, Kang S, Liu C, Hao Y. Resveratrol enhances the effects of ALA-PDT on skin squamous cells A431 through p38/ MAPK signaling pathway. Cancer Biomark 2018; 21:797-803. [PMID: 29286920 DOI: 10.3233/cbm-170495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xin Zhang
- Department of Dermatology, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou 014010, Inner Mongolia, China
- Inner Mongolia Medical University, Hohehot 010000, Inner Mongolia, China
| | - Xia Liu
- Department of Dermatology, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou 014010, Inner Mongolia, China
- Inner Mongolia Medical University, Hohehot 010000, Inner Mongolia, China
| | - Shuxia Kang
- Department of Dermatology, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou 014010, Inner Mongolia, China
- Inner Mongolia Medical University, Hohehot 010000, Inner Mongolia, China
| | - Caiyun Liu
- Hunan Youcheng Biotechnology Co. Ltd, Changsha 410000, Hunan, China
| | - Yuqin Hao
- Department of Dermatology, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou 014010, Inner Mongolia, China
| |
Collapse
|