1
|
Iacovacci J, Brough R, Moughari FA, Alexander J, Kemp H, Tutt ANJ, Natrajan R, Lord CJ, Haider S. Proteogenomic discovery of RB1-defective phenocopy in cancer predicts disease outcome, response to treatment, and therapeutic targets. SCIENCE ADVANCES 2025; 11:eadq9495. [PMID: 40138429 PMCID: PMC11939072 DOI: 10.1126/sciadv.adq9495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Genomic defects caused by truncating mutations or deletions in the Retinoblastoma tumor suppressor gene (RB1) are frequently observed in many cancer types leading to dysregulation of the RB pathway. Here, we propose an integrative proteogenomic approach that predicts cancers with dysregulation in the RB pathway. A subset of these cancers, which we term as "RBness," lack RB1 genomic defects and yet phenocopy the transcriptional profile of RB1-defective cancers. We report RBness as a pan-cancer phenomenon, associated with patient outcome and chemotherapy response in multiple cancer types, and predictive of CDK4/6 inhibitor response in estrogen-positive breast cancer. Using RNA interference and a CRISPR-Cas9 screen in isogenic models, we find that RBness cancers also phenocopy synthetic lethal vulnerabilities of cells with RB1 genomic defects. In summary, our findings suggest that dysregulation of the RB pathway in cancers lacking RB1 genomic defects provides a molecular rationale for how these cancers could be treated.
Collapse
Affiliation(s)
- Jacopo Iacovacci
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano 20133, Italy
| | - Rachel Brough
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
| | - Fatemeh Ahmadi Moughari
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - John Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Harriet Kemp
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Andrew N. J. Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Christopher J. Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
2
|
Luo H, Sun Y, Xu T. Application status and research progress of targeted therapy drugs for hormone receptor-positive breast cancer. Front Med (Lausanne) 2025; 12:1513836. [PMID: 40134916 PMCID: PMC11933059 DOI: 10.3389/fmed.2025.1513836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/10/2025] [Indexed: 03/27/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women and the leading cause of cancer-related deaths in women. As one of the most common subtypes of breast cancer, patients with hormone receptor-positive (HR+) breast cancer usually experience disease progression over an extended period of time, triggering the search for therapeutic strategies other than endocrine therapy. In recent years, continuous research on various targets has led to dramatic changes in the treatment of hormone receptor-positive breast cancer patients, resulting in prolonged clinical survival. With the redefinition of human epidermal growth factor-2 (HER2) expression, more precise and individualized treatment is possible. This review comprehensively reviews targeted therapies and critical clinical trials for HR+ breast cancer and tracks the latest advances. It also provides valuable insights into the future direction of targeted therapies.
Collapse
Affiliation(s)
- Han Luo
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Yue Sun
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Tiefeng Xu
- Department of Breast Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Norman A, Seetharam M, Allred J, Kong J, Opyrchal M, Ma WW, Lou Y, Dy GK, Mahipal A, Weroha SJ, Wahner Hendrickson AE, Reid JM, Adjei AA. A phase I study of the CDK4/6 inhibitor ribociclib combined with gemcitabine in patients with advanced solid tumors. BJC REPORTS 2025; 3:1. [PMID: 39809926 PMCID: PMC11733298 DOI: 10.1038/s44276-024-00107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Based on preclinical data showing addition of CDK4/6 inhibitors to gemcitabine was synergistic, ribociclib was evaluated in combination with gemcitabine to determine the maximum tolerated dose (MTD) and dose limiting toxicities (DLT). METHODS In this single arm multicohort phase I trial, we evaluated the safety and efficacy of ribociclib plus gemcitabine in patients with advanced solid tumors. Patients received gemcitabine intravenously on days 1 and 8 followed by ribociclib days 8-14, with treatment repeated every 3 weeks. RESULTS The study enrolled 43 patients between October 2017 and September 2019. The escalation phase (19 patients) determined the MTD and recommended phase II dose (RP2D) to be ribociclib 800 mg daily and gemcitabine 1000 mg/m2 for the expansion phase (24 patients). One patient experienced Grade 4 thrombocytopenia. Eleven patients experienced Grade 3 adverse events (AE), the most common being neutropenia, thrombocytopenia, and anemia. No partial or complete responses were observed. 15/22 (68%) of efficacy evaluable patients who received the MTD achieved best response of stable disease. CONCLUSIONS The addition of ribociclib to gemcitabine was tolerated well and yielded stability of tumors in both cohorts. Biomarkers such as Rb status and activity of CDK2 and CDK4/6 complexes may help to select patients who may respond better to the combination of gemcitabine and ribociclib. CLINICAL TRIAL REGISTRATION NCT03237390.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Grace K Dy
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Amit Mahipal
- University Hospitals at Case Western University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
4
|
Asciolla JJ, Wu X, Adamopoulos C, Gavathiotis E, Poulikakos PI. Resistance mechanisms and therapeutic strategies of CDK4 and CDK6 kinase targeting in cancer. NATURE CANCER 2025; 6:24-40. [PMID: 39885369 DOI: 10.1038/s43018-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Cyclin-dependent kinases (CDKs) 4 and 6 (CDK4/6) are important regulators of the cell cycle. Selective CDK4/6 small-molecule inhibitors have shown clinical activity in hormonal receptor-positive (HR+) metastatic breast cancer, but their effectiveness remains limited in other cancer types. CDK4/6 degradation and improved selectivity across CDK paralogs are approaches that could expand the effectiveness of CDK4/6 targeting. Recent studies also suggest the use of CDK4/6-targeting agents in cancer immunotherapy. In this Review, we highlight recent advancements in the mechanistic understanding and development of pharmacological approaches targeting CDK4/6. Collectively, these developments pose new challenges and opportunities for rationally designing more effective treatments.
Collapse
Affiliation(s)
- James J Asciolla
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- China Innovation Center of Roche, Shanghai, China
| | - Christos Adamopoulos
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Wu J, Wang J, O’Connor TN, Tzetzo SL, Gurova KV, Knudsen ES, Witkiewicz AK. Separable Cell Cycle Arrest and Immune Response Elicited through Pharmacological CDK4/6 and MEK Inhibition in RASmut Disease Models. Mol Cancer Ther 2024; 23:1801-1814. [PMID: 39148328 PMCID: PMC11614708 DOI: 10.1158/1535-7163.mct-24-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The combination of CDK4/6 and MEK inhibition as a therapeutic strategy has shown promise in various cancer models, particularly in those harboring RAS mutations. An initial high-throughput drug screen identified high synergy between the CDK4/6 inhibitor palbociclib and the MEK inhibitor trametinib when used in combination in soft tissue sarcomas. In RAS mutant models, combination treatment with palbociclib and trametinib induced significant G1 cell cycle arrest, resulting in a marked reduction in cell proliferation and growth. CRISPR-mediated RB1 depletion resulted in a decreased response to CDK4/6 and MEK inhibition, which was validated in both cell culture and xenograft models. Beyond its cell cycle inhibitory effects, pathway enrichment analysis revealed the robust activation of interferon pathways upon CDK4/6 and MEK inhibition. This induction of gene expression was associated with the upregulation of retroviral elements. The TANK-binding kinase 1 inhibitor GSK8612 selectively blocked the induction of interferon-related genes induced by palbociclib and trametinib treatment and highlighted the separable epigenetic responses elicited by combined CDK4/6 and MEK inhibition. Together, these findings provide key mechanistic insights into the therapeutic potential of CDK4/6 and MEK inhibition in soft tissue sarcomas.
Collapse
Affiliation(s)
- Jin Wu
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Jianxin Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Thomas N. O’Connor
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Stephanie L. Tzetzo
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Katerina V. Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Erik S. Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| | - Agnieszka K. Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, NY, USA 14263
| |
Collapse
|
6
|
Iacobescu GL, Corlatescu AD, Serban B, Spiridonica R, Costin HP, Cirstoiu C. Genetics and Molecular Pathogenesis of the Chondrosarcoma: A Review of the Literature. Curr Issues Mol Biol 2024; 46:12658-12671. [PMID: 39590345 PMCID: PMC11593320 DOI: 10.3390/cimb46110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The chondrosarcoma, a cartilage-forming bone tumor, presents significant clinical challenges due to its resistance to chemotherapy and radiotherapy. Surgical excision remains the primary treatment, but high-grade chondrosarcomas are prone to recurrence and metastasis, necessitating the identification of reliable biomarkers for diagnosis and prognosis. This review explores the genetic alterations and molecular pathways involved in chondrosarcoma pathogenesis. These markers show promise in distinguishing between benign enchondromas and malignant chondrosarcomas, assessing tumor aggressiveness, and guiding treatment. While these advancements offer hope for more personalized and targeted therapeutic strategies, further clinical validation of these biomarkers is essential to improve prognostic accuracy and patient outcomes in chondrosarcoma management.
Collapse
Affiliation(s)
- Georgian-Longin Iacobescu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Bogdan Serban
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Razvan Spiridonica
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Horia Petre Costin
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Catalin Cirstoiu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
7
|
Hassanzadeh A, Shomali N, Kamrani A, Soltani-Zangbar MS, Nasiri H, Akbari M. Cancer therapy by cyclin-dependent kinase inhibitors (CDKIs): bench to bedside. EXCLI JOURNAL 2024; 23:862-882. [PMID: 38983782 PMCID: PMC11231458 DOI: 10.17179/excli2024-7076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 07/11/2024]
Abstract
A major characteristic of cancer is dysregulated cell division, which results in aberrant growth of cells. Consequently, medicinal targets that prevent cell division would be useful in the fight against cancer. The primary regulator of proliferation is a complex consisting of cyclin and cyclin-dependent kinases (CDKs). The FDA has granted approval for CDK inhibitors (CDKIs) to treat metastatic hormone receptor-positive breast cancer. Specifically, CDK4/6 CDKIs block the enzyme activity of CDK4 and CDK6. Unfortunately, the majority of first-generation CDK inhibitors, also known as pan-CDK inhibitors because they target multiple CDKs, have not been authorized for clinical use owing to their serious side effects and lack of selection. In contrast to this, significant advancements have been created to permit the use of pan-CDK inhibitors in therapeutic settings. Notably, the toxicity and negative consequences of pan-CDK inhibitors have been lessened in recent years thanks to the emergence of combination therapy tactics. Therefore, pan-CDK inhibitors have renewed promise for clinical use when used in a combination regimen. The members of the CDK family have been reviewed and their primary roles in cell cycle regulation were covered in this review. Next, we provided an overview of the state of studies on CDK inhibitors.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Needham D. Niclosamide: A career builder. J Control Release 2024; 369:786-856. [PMID: 37544514 DOI: 10.1016/j.jconrel.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023]
Abstract
My contribution to honoring Professor Kinam Park celebrates and resonates with his scholarly career in drug delivery, his commitment to encouraging the next generation(s), and his efforts to keep us focused on clinically effective formulations. To do this I take as my example, niclosamide, a small molecule protonophore that, uniquely, can "target" all cell membranes, both plasma and organelle. As such, it acts upstream of many cell pathways and so has the potential to affect many of the essential events that a cell, and particularly a diseased cell or other entities like a virus, use to stay alive and prosper. Literature shows that it has so far been discovered to positively influence (at least): cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, systemic sclerosis, Parkinson's, and COPD. With such a fundamental action and broad-spectrum activity, I believe that studying niclosamide in all its manifestations, discovering if and to what extent it can contribute positively to disease control (and also where it can't), formulating it as effective therapeutics, and testing them in preclinical and clinical trials is a career builder for our next generation(s). The article is divided into two parts: Part I introduces niclosamide and other proton shunts mainly in cancer and viral infections and reviews an exponentially growing literature with some concepts and physicochemical properties that lead to its proton shunt mechanism. Part II focuses on repurposing by reformulation of niclosamide. I give two examples of "carrier-free formulations", - one for cancer (as a prodrug therapeutic of niclosamide stearate for i.v. and other administration routes, exemplified by our recent work on Osteosarcoma in mice and canine patients), and the other as a niclosamide solution formulation (that could provide the basis for a preventative nasal spray and early treatment option for COVID19 and other respiratory virus infections). My goal is to excite and enthuse, encourage, and motivate all involved in the drug development and testing process in academia, institutes, and industry, to learn more about this interesting molecule and others like it. To enable such endeavors, I give many proposed ideas throughout the document, that have been stimulated and inspired by gaps in the literature, urgent needs in disease, and new studies arising from our own work. The hope is that, by reading through this document and studying the suggested topics and references, the drug delivery and development community will continue our lineage and benefit from our legacy to achieve niclosamide's potential as an effective contributor to the treatment and control of many diseases and conditions.
Collapse
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA; Translational Therapeutics, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
9
|
Seetharam M, Norman A, Allred J, Kong J, Opyrchal M, Ma WW, Lou Y, Dy GK, Mahipal A, Weroha J, Wahner-Hendrickson A, Reid JM, Adjei AA. A Phase I Study of sequences of the CDK4/6 Inhibitor, Ribociclib Combined with Gemcitabine in Patients with Advanced Solid Tumors. RESEARCH SQUARE 2024:rs.3.rs-4261257. [PMID: 38746220 PMCID: PMC11092794 DOI: 10.21203/rs.3.rs-4261257/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Based on preclinical data showing addition of CDK4/6 inhibitors to gemcitabine is synergistic, ribociclib was evaluated in combination with gemcitabine to determine the maximum tolerated dose (MTD) and dose limiting toxicities (DLT). Methods In this single arm multicohort phase I trial, we evaluated the safety and efficacy of Ribociclib plus Gemcitabine in patients with advanced solid tumors. Patients received Gemcitabine intravenously on days 1 and 8 followed by Ribociclib days 8-14, with treatment repeated every 3 weeks. Results The study enrolled 43 patients between October 2017 and September 2019. The escalation phase (19 patients) determined the MTD and recommended phase II dose (RP2D) to be ribociclib 800mg daily and gemcitabine 1000mg/m2 for the expansion phase (24 patients). One patient experienced Grade 4 thrombocytopenia. Eleven patients experienced Grade 3 adverse events (AE), the most common being neutropenia, thrombocytopenia, and anemia. No partial or complete responses were observed. 15/22 (68%) of efficacy evaluable patients who received the MTD achieved best response of stable disease. Conclusions The addition of Ribociclib to Gemcitabine was tolerated well and yielded stability of tumors in both cohorts. Ribociclib and gemcitabine could have synergistic activity in certain tumor types, and our data provides support for the combination. Clinical Trial Registration NCT03237390.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Grace K Dy
- Roswell Park Comprehensive Cancer Center
| | | | | | | | | | | |
Collapse
|
10
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
11
|
Lv S, Yang J, Lin J, Huang X, Zhao H, Zhao C, Yang L. CDK4/6 inhibitors in lung cancer: current practice and future directions. Eur Respir Rev 2024; 33:230145. [PMID: 38355149 PMCID: PMC10865100 DOI: 10.1183/16000617.0145-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/11/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and ∼85% of lung cancers are classified as nonsmall cell lung cancer (NSCLC). These malignancies can proliferate indefinitely, in part due to dysregulation of the cell cycle and the resulting abnormal cell growth. The specific activation of cyclin-dependent kinases 4 and 6 (CDK4/6) is closely linked to tumour proliferation. Approximately 80% of human tumours exhibit abnormalities in the cyclin D-CDK4/6-INK4-RB pathway. Specifically, CDK4/6 inhibitors either as monotherapy or combination therapy have been investigated in pre-clinical and clinical studies for the treatment of NSCLC, and promising results have been achieved. This review article focuses on research regarding the use of CDK4/6 inhibitors in NSCLC, including the characteristics and mechanisms of action of approved drugs and progress of pre-clinical and clinical research.
Collapse
Affiliation(s)
- Shuoshuo Lv
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jie Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Basnet R, Amissah OB, Basnet BB, Huang R, Sun Y, de Dieu Habimana J, Li Z. Potential Target of CDK6 Signaling Pathway for Cancer Treatment. Curr Drug Targets 2024; 25:724-739. [PMID: 39039674 DOI: 10.2174/0113894501313781240627062206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Cancer involves uncontrolled cell growth due to genetic mutations. Tumors can form when CDK6, a gene essential for controlling cell growth, isn't working correctly. Researchers are investigating drugs that inhibit CDK6; some of them appear promising. Nevertheless, CDK6 is advantageous and harmful to cancer because it controls other cellular processes. By inhibiting CDK6 and CDK4, CDK4/6 inhibitors offer a novel therapeutic strategy that stops cell proliferation. The study investigates the function of CDK6 in cancer, the difficulties in targeting CDK6, and possible remedies. OBJECTIVE Scientists have developed drugs designed to block CDK6 and prevent it from altering other proteins. These drugs, also known as CDK6 inhibitors, help treat cancer. Finding the best drugs for CDK6 is still tricky, though. The drugs' selectivity, potency, and cost are some difficulties. These factors depend on CDK6's structure and interactions with other proteins. The structure of CDK6 and how it influences its function and regulation are explained in this review. It also describes CDK6's function in cancer and its interaction with other molecules and proteins, which is crucial for cell division. This review also discusses the present and upcoming therapies that target CDK6, as well as how CDK6 interacts with drugs that block it. CONCLUSION This review presents the structure, current research, and overview of CDK6. It also reviews the role of CDK6 in cancer, function, and regulation. Additionally, it explores its role in cancer signaling networks and its interaction with CDK6 inhibitors. Lastly, it discusses the current status and prospects of therapies targeting CDK6.
Collapse
Affiliation(s)
- Rajesh Basnet
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | | | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
13
|
Rechberger JS, Toll SA, Vanbilloen WJF, Daniels DJ, Khatua S. Exploring the Molecular Complexity of Medulloblastoma: Implications for Diagnosis and Treatment. Diagnostics (Basel) 2023; 13:2398. [PMID: 37510143 PMCID: PMC10378552 DOI: 10.3390/diagnostics13142398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Over the last few decades, significant progress has been made in revealing the key molecular underpinnings of this disease, leading to the identification of distinct molecular subgroups with different clinical outcomes. In this review, we provide an update on the molecular landscape of medulloblastoma and treatment strategies. We discuss the four main molecular subgroups (WNT-activated, SHH-activated, and non-WNT/non-SHH groups 3 and 4), highlighting the key genetic alterations and signaling pathways associated with each entity. Furthermore, we explore the emerging role of epigenetic regulation in medulloblastoma and the mechanism of resistance to therapy. We also delve into the latest developments in targeted therapies and immunotherapies. Continuing collaborative efforts are needed to further unravel the complex molecular mechanisms and profile optimal treatment for this devastating disease.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Wouter J F Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 Tilburg, The Netherlands
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Qiu J, Sheng D, Lin F, Jiang P, Shi N. The efficacy and safety of Trilaciclib in preventing chemotherapy-induced myelosuppression: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2023; 14:1157251. [PMID: 37305548 PMCID: PMC10248018 DOI: 10.3389/fphar.2023.1157251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Background: This study aims to assess the clinical efficacy and safety of Trilaciclib in preventing chemotherapy-induced myelosuppression in adult patients through meta-analysis. Methods: The PubMed, Embase, Cochrane Library, Clinical Trials, EU Clinical Trials Register, and International Clinical Trials Registry Platform were searched up to 25 October 2022. Only randomized controlled trials (RCTs) comparing the clinical outcomes of Trilaciclib and Trilaciclib plus chemotherapy for treating malignant cancers in adult patients were included. The primary outcome included the incidence of SN, FN, the DSN, and administration of ESAs, G-CSFs, and RBC or platelet transfusions, while the secondary outcomes included the risk of adverse events (AEs) and severe adverse events (SAEs). Results: In total, four randomized controlled trials (RCTs) involving 345 patients with SCLC or breast cancer were included in this meta-analysis. Results showed that administration of Trilaciclib significantly reduced the occurrence of SN (19.3% vs. 42.2%, OR = 0.31), FN (3.22% vs. 6.72%, OR = 0.47), anemia (20.5% vs. 38.2%, OR = 0.38) and shortened the DSN during treatment. The proportion of patients receiving therapeutic use of ESAs (4.03% vs. 11.8%, OR = 0.31), G-CSF (37.0% vs. 53.5%, OR = 0.52), RBC transfusions (19.8% vs. 29.9%, OR = 0.56) was also statistically lower in the experimental group than in the control group. Meanwhile, the ORR, overall survival, and progress-free survival of the two groups were identical, and no negative impact of Trilaciclib on the clinical outcomes of chemotherapy treatments was found. Other chemotherapy-induced adverse events (AEs) and severe adverse events (SAEs) like diarrhea, fatigue, nausea, and vomiting were identical regardless of Trilaciclib usage. Conclusion: Trilaciclib demonstrated its efficacy in reducing the occurrence of chemotherapy-induced myelosuppression and utilization of supportive care interventions without undermining the clinical benefits of chemotherapy regimens during treatment with an acceptable safety profile.
Collapse
Affiliation(s)
- Jingyue Qiu
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, Beijing, China
| | - Dandan Sheng
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, Beijing, China
| | - Fei Lin
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Clinical Medical College, Chengdu Medical College, Chengdu, China
| | - Peng Jiang
- Medical Team, PLA Strategic Support Force Integrated Training Team, Beijing, China
| | - Ning Shi
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
15
|
Thanh Nguyen TD, Wang Y, Bui TN, Lazcano R, Ingram DR, Yi M, Vakulabharanam V, Luo L, Pina MA, Karakas C, Li M, Kettner NM, Somaiah N, Hougton PJ, Mawlawi O, Lazar AJ, Hunt KK, Keyomarsi K. Sequential Targeting of Retinoblastoma and DNA Synthesis Pathways Is a Therapeutic Strategy for Sarcomas That Can Be Monitored in Real Time. Cancer Res 2023; 83:939-955. [PMID: 36603130 PMCID: PMC10023441 DOI: 10.1158/0008-5472.can-22-2258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Treatment strategies with a strong scientific rationale based on specific biomarkers are needed to improve outcomes in patients with advanced sarcomas. Suppression of cell-cycle progression through reactivation of the tumor suppressor retinoblastoma (Rb) using CDK4/6 inhibitors is a potential avenue for novel targeted therapies in sarcomas that harbor intact Rb signaling. Here, we evaluated combination treatment strategies (sequential and concomitant) with the CDK4/6 inhibitor abemacicib to identify optimal combination strategies. Expression of Rb was examined in 1,043 sarcoma tumor specimens, and 50% were found to be Rb-positive. Using in vitro and in vivo models, an effective two-step sequential combination strategy was developed. Abemaciclib was used first to prime Rb-positive sarcoma cells to reversibly arrest in G1 phase. Upon drug removal, cells synchronously traversed to S phase, where a second treatment with S-phase targeted agents (gemcitabine or Wee1 kinase inhibitor) mediated a synergistic response by inducing DNA damage. The response to treatment could be noninvasively monitored using real-time positron emission tomography imaging and serum thymidine kinase activity. Collectively, these results show that a novel, sequential treatment strategy with a CDK4/6 inhibitor followed by a DNA-damaging agent was effective, resulting in synergistic tumor cell killing. This approach can be readily translated into a clinical trial with noninvasive functional imaging and serum biomarkers as indicators of response and cell cycling. SIGNIFICANCE An innovative sequential therapeutic strategy targeting Rb, followed by treatment with agents that perturb DNA synthesis pathways, results in synergistic killing of Rb-positive sarcomas that can be noninvasively monitored.
Collapse
Affiliation(s)
- Tuyen Duong Thanh Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rossana Lazcano
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Davis R. Ingram
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Yi
- Departments of Breast Surgical Oncology and Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Linjie Luo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marc A. Pina
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Nicole M. Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peter J. Hougton
- Greehey Children’s Cancer Research Institute and Molecular Medicine, The University of Texas Heath Science Center, San Antonio, TX 78229, USA
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kelly K. Hunt
- Departments of Breast Surgical Oncology and Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Papadimitriou MC, Pazaiti A, Iliakopoulos K, Markouli M, Michalaki V, Papadimitriou CA. Resistance to CDK4/6 inhibition: Mechanisms and strategies to overcome a therapeutic problem in the treatment of hormone receptor-positive metastatic breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119346. [PMID: 36030016 DOI: 10.1016/j.bbamcr.2022.119346] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Selective CDK4/6 inhibitors, such as palbociclib, ribociclib, and abemaciclib, have been approved in combination with hormone therapy for the treatment of patients with HR+, HER2-negative advanced or metastatic breast cancer (mBC). Despite their promising activity, approximately 10 % of patients have de novo resistance, while the rest of them will develop acquired resistance after 24-28 months when used as first-line therapy and after a shorter period when used as second-line therapy. Various mechanisms of resistance to CDK4/6 inhibitors have been described, including cell cycle-related mechanisms, such as RB loss, p16 amplification, CDK6 or CDK4 amplification, and cyclin E-CDK2 amplification. Other bypass mechanisms involve the activation of FGFR or PI3K/AKT/mTOR pathways. Identifying the different mechanisms by which resistance to CDK4/6 inhibitors occurs may help to design new treatment strategies to improve patient outcomes. This review presents the currently available knowledge on the mechanisms of resistance to CDK4/6 inhibitors, explores possible treatment strategies that could overcome this therapeutic problem, and summarizes relevant recent clinical trials.
Collapse
Affiliation(s)
- Marios C Papadimitriou
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Anastasia Pazaiti
- Breast Clinic of Oncologic and Reconstructive Surgery, Metropolitan General Hospital, Leoforos Mesogeion 264, 155 62 Cholargos, Greece.
| | - Konstantinos Iliakopoulos
- Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Mariam Markouli
- Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Vasiliki Michalaki
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Christos A Papadimitriou
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece.
| |
Collapse
|
17
|
Goel S, Tan AR, Rugo HS, Aftimos P, Andrić Z, Beelen A, Zhang J, Yi JS, Malik R, O'Shaughnessy J. Trilaciclib prior to gemcitabine plus carboplatin for metastatic triple-negative breast cancer: phase III PRESERVE 2. Future Oncol 2022; 18:3701-3711. [PMID: 36135712 DOI: 10.2217/fon-2022-0773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy for which cytotoxic chemotherapy remains the backbone of treatment. Trilaciclib is an intravenous cyclin-dependent kinase 4/6 inhibitor that induces transient cell cycle arrest of hematopoietic stem and progenitor cells and immune cells during chemotherapy exposure, protecting them from chemotherapy-induced damage and enhancing immune activity. Administration of trilaciclib prior to gemcitabine plus carboplatin (GCb) significantly improved overall survival (OS) compared with GCb alone in an open-label phase II trial in patients with metastatic TNBC, potentially through protection and direct activation of immune function. The randomized, double-blind, placebo-controlled, phase III PRESERVE 2 trial will evaluate the efficacy and safety of trilaciclib administered prior to GCb in patients with locally advanced unresectable or metastatic TNBC. Clinical Trial Registration: NCT04799249 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Antoinette R Tan
- Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - Hope S Rugo
- University of California San Francisco Comprehensive Cancer Center, San Francisco, CA 94158-1710, USA
| | - Philippe Aftimos
- Institut Jules Bordet, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Zoran Andrić
- Clinical Hospital Centre Bezanijska Kosa, 11080, Belgrade, Serbia
| | - Andrew Beelen
- G1 Therapeutics, Research Triangle Park, NC 27709, USA
| | | | - John S Yi
- G1 Therapeutics, Research Triangle Park, NC 27709, USA
| | - Rajesh Malik
- G1 Therapeutics, Research Triangle Park, NC 27709, USA
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX 75246, USA
| |
Collapse
|
18
|
Smith ER, Huang M, Schlumbrecht MP, George SH, Xu XX. Rationale for combination of paclitaxel and CDK4/6 inhibitor in ovarian cancer therapy - non-mitotic mechanisms of paclitaxel. Front Oncol 2022; 12:907520. [PMID: 36185294 PMCID: PMC9520484 DOI: 10.3389/fonc.2022.907520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Taxanes and CDK4/6 inhibitors (CDK4/6i) are two families of successful anti-mitotic drugs used in the treatment of solid tumors. Paclitaxel, representing taxane compounds, has been used either alone or in combination with other agents (commonly carboplatin/cisplatin) in the treatment of many solid tumors including ovarian, breast, lung, prostate cancers, and Kaposi's sarcoma. Paclitaxel has been routinely prescribed in cancer treatment since the 1990s, and its prominent role is unlikely to be replaced in the foreseeable future. Paclitaxel and other taxanes work by binding to and stabilizing microtubules, causing mitotic arrest, aberrant mitosis, and cell death. CDK4/6i (palbociclib, ribociclib, abemaciclib) are relatively new cell cycle inhibitors that have been found to be effective in breast cancer treatment, and are currently being developed in other solid tumors. CDK4/6i blocks cell cycle progression at the G1 phase, resulting in cell death by mechanisms not yet fully elucidated. At first glance, paclitaxel and CDK4/6i are unlikely synergistic agents as both are cell cycle inhibitors that work at different phases of the cell cycle, and few clinical trials have yet considered adding CDK4/6i to existing paclitaxel chemotherapy. However, recent findings suggest the importance of a non-mitotic mechanism of paclitaxel in cancer cell death and pre-clinical data support rationale for a strategic paclitaxel and CDK4/6i combination. In mouse tumor model studies, drug sequencing resulted in differential efficacy, indicating complex biological interactions of the two drugs. This article reviews the rationales of combining paclitaxel with CDK4/6i as a potential therapeutic option in recurrent ovarian cancer.
Collapse
Affiliation(s)
- Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marilyn Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Matthew P. Schlumbrecht
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sophia H.L. George
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
19
|
Tatum JL, Kalen JD, Jacobs PM, Riffle LA, James A, Thang L, Sanders C, Hollingshead MG, Basuli F, Shi J, Doroshow JH. 3'-[ 18F]fluoro-3'-deoxythymidine ([ 18F]FLT) Positron Emission Tomography as an In Vivo Biomarker of inhibition of CDK 4/6-Rb pathway by Palbociclib in a patient derived bladder tumor. J Transl Med 2022; 20:375. [PMID: 35982453 PMCID: PMC9389794 DOI: 10.1186/s12967-022-03580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Several new generation CDK4/6 inhibitors have been developed and approved for breast cancer therapy in combination with endocrine therapeutics. Application of these inhibitors either alone or in combination in other solid tumors has been proposed, but no imaging biomarkers of response have been reported in non-breast cancer animal models. The purpose of this study was to evaluate 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT) Positron Emission Tomography (PET) as in vivo biomarker of response to palbociclib in a non-breast cancer model. Methods Twenty-four NSG mice bearing patient derived xenografts (PDX) of a well-characterized bladder tumor were randomized into 4 treatment groups: vehicle (n = 6); palbociclib (n = 6); temozolomide (n = 6); and palbociclib plus temozolomide (n = 6) and treated with two cycles of therapy or vehicle. Tumor uptake of [18F]FLT was determined by micro-PET/CT at baseline, 3 days, and 9 days post initiation of therapy. Following the second cycle of therapy, the mice were maintained until their tumors reached a size requiring humane termination. Results [18F]FLT uptake decreased significantly in the palbociclib and combination arms (p = 0.0423 and 0.0106 respectively at day 3 and 0.0012 and 0.0031 at day 9) with stable tumor volume. In the temozolomide arm [18F]FLT uptake increased with day 9 uptake significantly different than baseline (p = 0.0418) and progressive tumor growth was observed during the treatment phase. All groups exhibited progressive disease after day 22, 10 days following cessation of therapy. Conclusion Significant decreases in [18F]FLT uptake as early as three days post initiation of therapy with palbociclib, alone or in combination with temozolomide, in this bladder cancer model correlates with an absence of tumor growth during therapy that persists until day 18 for the palbociclib group and day 22 for the combination group (6 days and 10 days) following cessation of therapy. These results support early modulation of [18F]FLT as an in vivo biomarker predictive of palbociclib therapy response in a non-breast cancer model. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03580-8.
Collapse
Affiliation(s)
- James L Tatum
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joseph D Kalen
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Paula M Jacobs
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Lisa A Riffle
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Amy James
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Lai Thang
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Chelsea Sanders
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Melinda G Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Frederick, MD, United States
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Coffman LG, Orellana TJ, Liu T, Frisbie LG, Normolle D, Griffith K, Uppal S, McLean K, Berger JL, Boisen M, Courtney-Brooks M, Edwards RP, Lesnock J, Mahdi H, Olawaiye A, Sukumvanich P, Taylor SE, Buckanovich R. Phase I trial of ribociclib with platinum chemotherapy in recurrent ovarian cancer. JCI Insight 2022; 7:160573. [PMID: 35972817 DOI: 10.1172/jci.insight.160573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND New therapeutic combinations to improve the outcome of ovarian cancer patients are clearly needed. Preclinical studies with ribociclib (LEE-011), a CDK4/6 cell cycle checkpoint inhibitor, demonstrate a synergistic effect with platinum chemotherapy and efficacy as a maintenance therapy after chemotherapy. We tested the safety and initial efficacy of ribociclib in combination with platinum-based chemotherapy in recurrent ovarian cancer. METHODS This phase I trial combined weekly carboplatin and paclitaxel chemotherapy with ribociclib followed by ribociclib maintenance in patients with recurrent platinum-sensitive ovarian cancer. Primary objectives were safety and maximum tolerated dose (MTD) of ribociclib when given with platinum and taxane chemotherapy. Secondary endpoints were response rate (RR) and progression-free survival (PFS). RESULTS Thirty-five patients were enrolled. Patients had a mean 2.5 prior lines of chemotherapy, and 51% received prior maintenance therapy with Poly (ADP-ribose) polymerase inhibitors (PARPi) and/or Bevacizumab. The MTD was 400mg. The most common AEs included anemia (82.9%), neutropenia (82.9%), fatigue (82.9%), and nausea (77.1%). Overall RR was 79.3% with a stable disease (SD) rate of 18% resulting in a clinical benefit rate of 96.6%. The PFS was 11.4 months. RR and PFS did not differ based on number of lines of prior chemotherapy or prior maintenance therapy. CONCLUSIONS This work demonstrates the combination of ribociclib with chemotherapy in ovarian cancer is feasible and safe. With a clinical benefit rate of 97%, this work provides encouraging evidence of clinical efficacy in patients with recurrent platinum-sensitive disease. TRIAL REGISTRATION CLINICALTRIALS gov NCT03056833. FUNDING This investigator-initiated trial was supported by Novartis who provided drug and funds for trial execution.
Collapse
Affiliation(s)
- Lan G Coffman
- Department of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Taylor J Orellana
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States of America
| | - Tianshi Liu
- Department of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Leonard G Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, United States of America
| | - Daniel Normolle
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, United States of America
| | - Kent Griffith
- Center for Cancer Data Sciences, University of Michigan, Ann Arbor, United States of America
| | - Shitanshu Uppal
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, United States of America
| | - Karen McLean
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, United States of America
| | - Jessica L Berger
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States of America
| | - Michelle Boisen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States of America
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States of America
| | - Robert P Edwards
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States of America
| | - Jamie Lesnock
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States of America
| | - Haider Mahdi
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States of America
| | - Alexander Olawaiye
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States of America
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States of America
| | - Sarah E Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States of America
| | - Ronald Buckanovich
- Department of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
21
|
Target actionability review to evaluate CDK4/6 as a therapeutic target in paediatric solid and brain tumours. Eur J Cancer 2022; 170:196-208. [PMID: 35671543 DOI: 10.1016/j.ejca.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Childhood cancer is still a leading cause of death around the world. To improve outcomes, there is an urgent need for tailored treatment. The systematic evaluation of existing preclinical data can provide an overview of what is known and identify gaps in the current knowledge. Here, we applied the target actionability review (TAR) methodology to assess the strength and weaknesses of available scientific literature on CDK4/6 as a therapeutic target in paediatric solid and brain tumours by structured critical appraisal. METHODS Using relevant search terms in PubMed, a list of original publications investigating CDK4/6 in paediatric solid tumour types was identified based on relevancy criteria. Each publication was annotated for the tumour type and categorised into separate proof-of-concept (PoC) data modules. Based on rubrics, quality and experimental outcomes were scored independently by two reviewers. A third reviewer evaluated and adjudicated score discrepancies. Scores for each PoC module were averaged for each tumour type and visualised in a heatmap matrix in the publicly available R2 data portal. RESULTS AND CONCLUSIONS This CDK4/6 TAR, generated by analysis of 151 data entries from 71 publications, showed frequent genomic aberrations of CDK4/6 in rhabdomyosarcoma, osteosarcoma, high-grade glioma, medulloblastoma, and neuroblastoma. However, a clear correlation between CDK4/6 aberrations and compound efficacy is not coming forth from the literature. Our analysis indicates that several paediatric indications would need (further) preclinical evaluation to allow for better recommendations, especially regarding the dependence of tumours on CDK4/6, predictive biomarkers, resistance mechanisms, and combination strategies. Nevertheless, our TAR heatmap provides support for the relevance of CDK4/6 inhibition in Ewing sarcoma, medulloblastoma, malignant peripheral nerve sheath tumour and to a lesser extent neuroblastoma, rhabdomyosarcoma, rhabdoid tumour and high-grade glioma. The interactive heatmap is accessible through R2 [r2platform.com/TAR/CDK4_6].
Collapse
|
22
|
Kostopoulou ON, Zupancic M, Pont M, Papin E, Lukoseviciute M, Mikelarena BA, Holzhauser S, Dalianis T. Targeted Therapy of HPV Positive and Negative Tonsillar Squamous Cell Carcinoma Cell Lines Reveals Synergy between CDK4/6, PI3K and Sometimes FGFR Inhibitors, but Rarely between PARP and WEE1 Inhibitors. Viruses 2022; 14:v14071372. [PMID: 35891353 PMCID: PMC9320646 DOI: 10.3390/v14071372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Human papillomavirus positive (HPV+) tonsillar and base of tongue squamous cell carcinoma (TSCC/BOTSCC) have a favorable outcome, but upon relapse, survival is poor and new therapeutical options are needed. Recently, we found synergistic effects by combining the food and drug administration approved (FDA) phosphoinositide 3-kinase (PI3K) and fibroblast-growth-factor-receptor (FGFR) inhibitors BYL719 and JNJ-42756493 on TSCC cell lines. Here this approach was extended and Cyclin-Dependent-Kinase-4/6 (CDK4/6) and Poly-ADP-ribose-polymerase (PARP) and WEE1 inhibitors PD-0332991, and MK-1775 respectively were also examined. HPV+ CU-OP-2, -3, -20, and HPV- CU-OP-17 TSCC cell lines were treated with either BYL719 and JNJ-42756493, PD-0332991 BMN-673 and MK-1775 alone or in different combinations. Viability, proliferation, and cytotoxicity were followed by WST-1 assays and the IncuCyte S3 Live® Cell Analysis System. All inhibitors presented dose-dependent inhibitory effects on tested TSCC lines. Synergy was frequently obtained when combining CDK4/6 with PI3K inhibitors, but only sometimes or rarely when combining CDK4/6 with FGFR inhibitors or PARP with WEE1 inhibitors. To conclude, using CDK4/6 with PI3K or FGFR inhibitors, especially PD-0332991 with BYL719 presented synergy and enhanced the decrease of viability considerably, while although dose dependent responses were obtained with PARP and WEE1 inhibitors (BMN-673 and MK-1775 resp.), synergy was rarely disclosed.
Collapse
Affiliation(s)
- Ourania N. Kostopoulou
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
| | - Mark Zupancic
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
- Department of Head-, Neck-, Lung- and Skin Cancer, Theme Cancer, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Mariona Pont
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
| | - Emma Papin
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
| | - Monika Lukoseviciute
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
| | - Borja Agirre Mikelarena
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
| | - Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
- Correspondence: (S.H.); (T.D.)
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, 171 64 Stockholm, Sweden; (O.N.K.); (M.Z.); (M.P.); (E.P.); (M.L.); (B.A.M.)
- Correspondence: (S.H.); (T.D.)
| |
Collapse
|
23
|
Schneeweiss-Gleixner M, Filik Y, Stefanzl G, Berger D, Sadovnik I, Bauer K, Smiljkovic D, Eisenwort G, Witzeneder N, Greiner G, Hoermann G, Schiefer AI, Schwaab J, Jawhar M, Reiter A, Sperr WR, Arock M, Valent P, Gleixner KV. CDK4/CDK6 Inhibitors Synergize with Midostaurin, Avapritinib, and Nintedanib in Inducing Growth Inhibition in KIT D816V + Neoplastic Mast Cells. Cancers (Basel) 2022; 14:3070. [PMID: 35804842 PMCID: PMC9264943 DOI: 10.3390/cancers14133070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
In most patients with advanced systemic mastocytosis (AdvSM), neoplastic mast cells (MC) express KIT D816V. However, despite their disease-modifying potential, KIT D816V-targeting drugs, including midostaurin and avapritinib, may not produce long-term remissions in all patients. Cyclin-dependent kinase (CDK) 4 and CDK6 are promising targets in oncology. We found that shRNA-mediated knockdown of CDK4 and CDK6 results in growth arrest in the KIT D816V+ MC line HMC-1.2. The CDK4/CDK6 inhibitors palbociclib, ribociclib, and abemaciclib suppressed the proliferation in primary neoplastic MC as well as in all HMC-1 and ROSA cell subclones that were examined. Abemaciclib was also found to block growth in the drug-resistant MC line MCPV-1, whereas no effects were seen with palbociclib and ribociclib. Anti-proliferative drug effects on MC were accompanied by cell cycle arrest. Furthermore, CDK4/CDK6 inhibitors were found to synergize with the KIT-targeting drugs midostaurin, avapritinib, and nintedanib in inducing growth inhibition and apoptosis in neoplastic MCs. Finally, we found that CDK4/CDK6 inhibitors induce apoptosis in CD34+/CD38- stem cells in AdvSM. Together, CDK4/CDK6 inhibition is a potent approach to suppress the growth of neoplastic cells in AdvSM. Whether CDK4/CDK6 inhibitors can improve clinical outcomes in patients with AdvSM remains to be determined in clinical trials.
Collapse
Affiliation(s)
- Mathias Schneeweiss-Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yüksel Filik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Daniela Berger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Irina Sadovnik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Karin Bauer
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Dubravka Smiljkovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Gregor Eisenwort
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Nadine Witzeneder
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Ihr Labor, Medical Diagnostic Laboratories Vienna, 1220 Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; (J.S.); (M.J.); (A.R.)
| | - Mohamad Jawhar
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; (J.S.); (M.J.); (A.R.)
| | - Andreas Reiter
- Department of Hematology and Oncology, University Medical Center Mannheim and Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany; (J.S.); (M.J.); (A.R.)
| | - Wolfgang R. Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), 75013 Paris, France;
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| | - Karoline V. Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.-G.); (Y.F.); (I.S.); (K.B.); (D.S.); (G.E.); (N.W.); (G.G.); (G.H.); (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (G.S.); (D.B.)
| |
Collapse
|
24
|
Savarese T, Abate A, Basnet RM, Lorini L, Gurizzan C, Tomasoni M, Lombardi D, Tomasini D, Zizioli D, Memo M, Berruti A, Bonini SA, Sigala S, Bossi P. Cytotoxic effects of targeted agent alone or with chemotherapy in the treatment of adenoid cystic carcinoma: a preclinical study. Sci Rep 2022; 12:9951. [PMID: 35705678 PMCID: PMC9200834 DOI: 10.1038/s41598-022-14197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is a rare malignancy characterized by high incidence of relapse. When relapsing, ACC has an indolent but relentless behaviour, thus leading to a poor long-term prognosis. The treatment of choice of relapsing ACC remains surgery followed by radiotherapy, whenever feasible. Therapeutic weapons are limited to systemic drugs. The most widely used chemotherapy regimen is the combination of cisplatin and doxorubicin, however with low response rate and not long lasting; there is also a lack of alternatives for second line therapies in case of disease progression. Therefore, a more comprehensive strategy aimed at identifying at preclinical level the most promising drugs or combination is clearly needed. In this study, the cytotoxic effects of two standard chemotherapy drugs, cisplatin and doxorubicin, and of five targeted therapy-drugs was tested in vitro, on an h-TERT immortalized ACC cell line, and in vivo, on zebrafish embryos with ACC tumoral cell xenograft. Then, combinations of one standard chemotherapy drug plus one targeted therapy drug were also evaluated, in order to find the best treatment strategy for ACC. Data obtained demonstrated that both vorinostat and olaparib significantly increased the standard chemotherapy cytotoxic effects, suggesting new interesting therapeutic options for ACC.
Collapse
Affiliation(s)
- Teresa Savarese
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Ram Manohar Basnet
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Luigi Lorini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Cristina Gurizzan
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Michele Tomasoni
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiologic Sciences, and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Davide Lombardi
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiologic Sciences, and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Davide Tomasini
- Radiation Oncology Unit, Department of Medical and Surgical Specialties, Radiological Science and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Daniela Zizioli
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Sara A Bonini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Paolo Bossi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
25
|
Rustamadji P, Wiyarta E, Anggreani I. Exploring the Expression of Survivin on Neoadjuvant Chemotherapy in Invasive Breast Carcinoma. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Biomarkers are required to monitor the response to neoadjuvant chemotherapy (NC) in patients with invasive breast cancer (IBC). The purpose of this study is to determine the function of Survivin in the administration of NC, both taxane- and non-taxane-based, to patients with IBC.
Methods: Thirty-one samples were categorized according to the NC's administrative status (before or after) and the type of NC used (taxane- or non-taxane-based). Age, tumor grade, receptor status (ER, PR, HER2, Ki-67), and survivin expression were evaluated. Survivin expressions were evaluated by IHC staining and categorized according median H-score cut-offs, while other data were collected from archives. Data was gathered and analyzed using generalized linear model.
Results: Survivin expression decreased following NC administration, although not significantly (p=0.285). The taxane group had lower survivin expression. Statistically, this was not significant (p=0.329). The non-taxane group had the same outcome (p=0.792). The decline in survivin expression was greater in the taxane group than in the non-taxane group, although it was not statistically significant (p=0.369).
Conclusion: Although the changes in survivin expression were not statistically significant, when clinical and laboratory data are analyzed, survivin expression has the potential to be a predictive biomarker of NC response as well as clinical outcome in IBC.
Collapse
|
26
|
Rampioni Vinciguerra GL, Sonego M, Segatto I, Dall’Acqua A, Vecchione A, Baldassarre G, Belletti B. CDK4/6 Inhibitors in Combination Therapies: Better in Company Than Alone: A Mini Review. Front Oncol 2022; 12:891580. [PMID: 35712501 PMCID: PMC9197541 DOI: 10.3389/fonc.2022.891580] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
The cyclin D-CDK4/6 complexes play a pivotal role in controlling the cell cycle. Deregulation in cyclin D-CDK4/6 pathway has been described in many types of cancer and it invariably leads to uncontrolled cell proliferation. Many efforts have been made to develop a target therapy able to inhibit CDK4/6 activity. To date, three selective CDK4/6 small inhibitors have been introduced in the clinic for the treatment of hormone positive advanced breast cancer patients, following the impressive results obtained in phase III clinical trials. However, since their approval, clinical evidences have demonstrated that about 30% of breast cancer is intrinsically resistant to CDK4/6 inhibitors and that prolonged treatment eventually leads to acquired resistance in many patients. So, on one hand, clinical and preclinical studies fully support to go beyond breast cancer and expand the use of CDK4/6 inhibitors in other tumor types; on the other hand, the question of primary and secondary resistance has to be taken into account, since it is now very clear that neoplastic cells rapidly develop adaptive strategies under treatment, eventually resulting in disease progression. Resistance mechanisms so far discovered involve both cell-cycle and non-cell-cycle related escape strategies. Full understanding is yet to be achieved but many different pathways that, if targeted, may lead to reversion of the resistant phenotype, have been already elucidated. Here, we aim to summarize the knowledge in this field, focusing on predictive biomarkers, to recognize intrinsically resistant tumors, and therapeutic strategies, to overcome acquired resistance.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Alessandra Dall’Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant’Andrea Hospital, University of Rome “Sapienza”, Rome, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- *Correspondence: Barbara Belletti,
| |
Collapse
|
27
|
Crozier L, Foy R, Mouery BL, Whitaker RH, Corno A, Spanos C, Ly T, Gowen Cook J, Saurin AT. CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J 2022; 41:e108599. [PMID: 35037284 PMCID: PMC8922273 DOI: 10.15252/embj.2021108599] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
CDK4/6 inhibitors arrest the cell cycle in G1-phase. They are approved to treat breast cancer and are also undergoing clinical trials against a range of other tumour types. To facilitate these efforts, it is important to understand why a cytostatic arrest in G1 causes long-lasting effects on tumour growth. Here, we demonstrate that a prolonged G1 arrest following CDK4/6 inhibition downregulates replisome components and impairs origin licencing. Upon release from that arrest, many cells fail to complete DNA replication and exit the cell cycle in a p53-dependent manner. If cells fail to withdraw from the cell cycle following DNA replication problems, they enter mitosis and missegregate chromosomes causing excessive DNA damage, which further limits their proliferative potential. These effects are observed in a range of tumour types, including breast cancer, implying that genotoxic stress is a common outcome of CDK4/6 inhibition. This unanticipated ability of CDK4/6 inhibitors to induce DNA damage now provides a rationale to better predict responsive tumour types and effective combination therapies, as demonstrated by the fact that CDK4/6 inhibition induces sensitivity to chemotherapeutics that also cause replication stress.
Collapse
Affiliation(s)
- Lisa Crozier
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Reece Foy
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Brandon L Mouery
- Curriculum in Genetics and Molecular BiologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Robert H Whitaker
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Andrea Corno
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Christos Spanos
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Tony Ly
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
- Present address:
Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Jeanette Gowen Cook
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Adrian T Saurin
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
28
|
Tan AR, Wright GS, Thummala AR, Danso MA, Popovic L, Pluard TJ, Han HS, Vojnović Ž, Vasev N, Ma L, Richards DA, Wilks ST, Milenković D, Xiao J, Sorrentino J, Horton J, O'Shaughnessy J. Trilaciclib Prior to Chemotherapy in Patients with Metastatic Triple-Negative Breast Cancer: Final Efficacy and Subgroup Analysis from a Randomized Phase II Study. Clin Cancer Res 2022; 28:629-636. [PMID: 34887261 PMCID: PMC9377748 DOI: 10.1158/1078-0432.ccr-21-2272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/25/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE We report final antitumor efficacy results from a phase II study of trilaciclib, an intravenous cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, administered prior to gemcitabine plus carboplatin (GCb) in patients with metastatic triple-negative breast cancer (NCT02978716). PATIENTS AND METHODS Patients were randomized (1:1:1) to group 1 [GCb (days 1, 8); n = 34], group 2 [trilaciclib prior to GCb (days 1, 8); n = 33], or group 3 [trilaciclib (days 1, 8) and trilaciclib prior to GCb (days 2, 9); n = 35]. Subgroup analyses were performed according to CDK4/6 dependence, level of programmed death-ligand 1 (PD-L1) expression, and RNA-based immune signatures using proportional hazards regression. T-cell receptor (TCR) β CDR3 regions were amplified and sequenced to identify, quantify, and compare the abundance of each unique TCRβ CDR3 at baseline and on treatment. RESULTS Median overall survival (OS) was 12.6 months in group 1, not reached in group 2 (HR = 0.31; P = 0.0016), 17.8 months in group 3 (HR = 0.40; P = 0.0004), and 19.8 months in groups 2 and 3 combined (HR = 0.37; P < 0.0001). Efficacy outcomes were comparable regardless of cancer CDK4/6 dependence status and immune signatures. Administering trilaciclib prior to GCb prolonged OS irrespective of PD-L1 status but had greater benefit in the PD-L1-positive population. T-cell activation was enhanced in patients receiving trilaciclib. CONCLUSIONS Administering trilaciclib prior to GCb enhanced antitumor efficacy, with significant improvements in OS. Efficacy outcomes in immunologic subgroups and enhancements in T-cell activation suggest these improvements may be mediated via immunologic mechanisms.
Collapse
Affiliation(s)
- Antoinette R. Tan
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina.,Corresponding Author: Antoinette R. Tan, Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Suite 6200, Charlotte, NC 28204. Phone: 980–442–6039; Fax: 980–442–6321; E-mail:
| | - Gail S. Wright
- Florida Cancer Specialists and Research Institute, New Port Richey, Florida
| | | | | | - Lazar Popovic
- Oncology Institute of Vojvodina, University of Novi Sad, Novi Sad, Serbia
| | | | - Hyo S. Han
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Nikola Vasev
- University Clinic of Radiotherapy and Oncology, Skopje, North Macedonia
| | - Ling Ma
- Rocky Mountain Cancer Centers, Lakewood, Colorado
| | | | - Sharon T. Wilks
- Texas Oncology-San Antonio, US Oncology Research, San Antonio, Texas
| | | | - Jie Xiao
- G1 Therapeutics, Inc., Research Triangle Park, North Carolina
| | | | - Janet Horton
- G1 Therapeutics, Inc., Research Triangle Park, North Carolina
| | - Joyce O'Shaughnessy
- Texas Oncology—Baylor Charles A. Sammons Cancer Center, US Oncology Research, Dallas, Texas
| |
Collapse
|
29
|
Jiang Z, Li H, Schroer SA, Voisin V, Ju Y, Pacal M, Erdmann N, Shi W, Chung PED, Deng T, Chen N, Ciavarra G, Datti A, Mak TW, Harrington L, Dick FA, Bader GD, Bremner R, Woo M, Zacksenhaus E. Hypophosphorylated pRb knock-in mice exhibit hallmarks of aging and vitamin C-preventable diabetes. EMBO J 2022; 41:e106825. [PMID: 35023164 PMCID: PMC8844977 DOI: 10.15252/embj.2020106825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic β-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.
Collapse
Affiliation(s)
- Zhe Jiang
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Huiqin Li
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Stephanie A Schroer
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Veronique Voisin
- The Donnelly CentreDepartment of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - YoungJun Ju
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Marek Pacal
- Lunenfeld Tanenbaum Research Institute – Sinai Health SystemMount Sinai HospitalDepartment of Ophthalmology and Vision ScienceUniversity of TorontoTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Natalie Erdmann
- Campbell Family Institute for Breast Cancer ResearchPrincess Margaret HospitalTorontoONCanada
| | - Wei Shi
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Philip E D Chung
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Tao Deng
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Nien‐Jung Chen
- Campbell Family Institute for Breast Cancer ResearchPrincess Margaret HospitalTorontoONCanada
| | - Giovanni Ciavarra
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Alessandro Datti
- Department of Agriculture, Food, and Environmental SciencesUniversity of PerugiaPerugiaItaly
- Network Biology Collaborative CentreSMART Laboratory for High‐Throughput Screening ProgramsMount Sinai HospitalTorontoONCanada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer ResearchPrincess Margaret HospitalTorontoONCanada
| | - Lea Harrington
- Department of MedicineInstitute for Research in Immunology and CancerUniversity of MontrealMontrealQCCanada
| | | | - Gary D Bader
- The Donnelly CentreDepartment of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute – Sinai Health SystemMount Sinai HospitalDepartment of Ophthalmology and Vision ScienceUniversity of TorontoTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Minna Woo
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
| | - Eldad Zacksenhaus
- Max Bell Research CentreToronto General Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of MedicineUniversity of TorontoTorontoONCanada
| |
Collapse
|
30
|
Cetin B, Wabl CA, Gumusay O. CDK4/6 inhibitors: mechanisms of resistance and potential biomarkers of responsiveness in breast cancer. Future Oncol 2022; 18:1143-1157. [PMID: 35137602 DOI: 10.2217/fon-2021-0842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hormone receptor (HR)-positive, HER2-negative tumors represent the most common form of metastatic breast cancer (MBC), and endocrine therapy has been the mainstay treatment for several decades. Recently, a novel drug class called CDK4/6 inhibitors in combination with endocrine therapy have remarkably improved the outcome of patients with HR-positive, HER2-negative MBC by targeting the cell cycle machinery and overcoming aspects of endocrine resistance. Several potential cell-cycle-specific and nonspecific mechanisms of resistance to CDK4/6 inhibitors have been reported in recent studies. This review discusses potential resistance mechanisms to CDK4/6 inhibitors, the use of biomarkers to guide treatment for HR-positive, HER2-negative MBC and possible approaches to overcome resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Bulent Cetin
- Department of Internal Medicine, Division of Medical Oncology, Suleyman Demirel University Faculty of Medicine, Isparta, 32260, Turkey
| | - Chiara A Wabl
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Ozge Gumusay
- University of California Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Hsu JY, Seligson ND, Hays JL, Miles WO, Chen JL. Clinical Utility of CDK4/6 Inhibitors in Sarcoma: Successes and Future Challenges. JCO Precis Oncol 2022; 6:e2100211. [PMID: 35108033 PMCID: PMC8820917 DOI: 10.1200/po.21.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Soft tissue and bone sarcomas are rare malignancies that exhibit significant pathologic and molecular heterogeneity. Deregulation of the CDKN2A-CCND-CDK4/6-retinoblastoma 1 (Rb) pathway is frequently observed in about 25% of unselected sarcomas and is pathognomonic for specific sarcoma subtypes. This genomic specificity has fueled the clinical evaluation of selective CDK4/6 inhibitors in sarcomas. Here, we highlight successes, opportunities, and future challenges for using CDK4/6 inhibitors to treat sarcoma. MATERIALS AND METHODS This review summarizes the current evidence for the use of CDK4/6 inhibitors in sarcoma while identifying molecular rationale and predictive biomarkers that provide the foundation for targeting the CDK4/6 pathway in sarcoma. A systematic review was performed of articles indexed in the PubMed database and the National Institutes of Health Clinical Trials Registry (ClinicalTrials.gov). For each sarcoma subtype, we discuss the preclinical rationale, case reports, and available clinical trials data. RESULTS Despite promising clinical outcomes in a subset of sarcomas, resistance to CDK4/6 inhibitors results in highly heterogeneous clinical outcomes. Current clinical data support the use of CDK4/6 inhibitors in subsets of sarcoma primarily driven by CDK4/6 deregulation. When dysregulation of the Rb pathway is a secondary driver of sarcoma, combination therapy with CDK4/6 inhibition may be an option. Developing strategies to identify responders and the mechanisms that drive resistance is important to maximize the clinical utility of these drugs in patients with sarcoma. Potential biomarkers that indicate CDK4/6 inhibitor sensitivity in sarcoma include CDK4, CCND, CCNE, RB1, E2F1, and CDKN2A. CONCLUSION CDK4/6 inhibitors represent a major breakthrough for targeted cancer treatment. CDK4/6 inhibitor use in sarcoma has led to limited, but significant, early clinical success. Targeted future clinical research will be key to unlocking the potential of CDK4/6 inhibition in sarcoma.
Collapse
Affiliation(s)
- Jocelyn Y. Hsu
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Nathan D. Seligson
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Department of Pharmacotherapy and Translational Research, University of Florida, Jacksonville, FL
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL
| | - John L. Hays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH
| | - Wayne O. Miles
- Department of Molecular Genetics, The Ohio State University, Columbus, OH
| | - James L. Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Division of Bioinformatics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| |
Collapse
|
32
|
Kim ES, Keam SJ. Trilaciclib for the reduction of chemotherapy-induced myelosuppression in the management of extensive-stage small cell lung cancer: a profile of its use. DRUGS & THERAPY PERSPECTIVES 2022. [DOI: 10.1007/s40267-021-00889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Arora M, Bogenberger JM, Abdelrahman AM, Yonkus J, Alva-Ruiz R, Leiting JL, Chen X, Serrano Uson Junior PL, Dumbauld CR, Baker AT, Gamb SI, Egan JB, Zhou Y, Nagalo BM, Meurice N, Eskelinen EL, Salomao MA, Kosiorek HE, Braggio E, Barrett MT, Buetow KH, Sonbol MB, Mansfield AS, Roberts LR, Bekaii-Saab TS, Ahn DH, Truty MJ, Borad MJ. Synergistic combination of cytotoxic chemotherapy and cyclin-dependent kinase 4/6 inhibitors in biliary tract cancers. Hepatology 2022; 75:43-58. [PMID: 34407567 DOI: 10.1002/hep.32102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Biliary tract cancers (BTCs) are uncommon, but highly lethal, gastrointestinal malignancies. Gemcitabine/cisplatin is a standard-of-care systemic therapy, but has a modest impact on survival and harbors toxicities, including myelosuppression, nephropathy, neuropathy, and ototoxicity. Whereas BTCs are characterized by aberrations activating the cyclinD1/cyclin-dependent kinase (CDK)4/6/CDK inhibitor 2a/retinoblastoma pathway, clinical use of CDK4/6 inhibitors as monotherapy is limited by lack of validated biomarkers, diffident preclinical efficacy, and development of acquired drug resistance. Emerging studies have explored therapeutic strategies to enhance the antitumor efficacy of CDK4/6 inhibitors by the combination with chemotherapy regimens, but their mechanism of action remains elusive. APPROACH AND RESULTS Here, we report in vitro and in vivo synergy in BTC models, showing enhanced efficacy, reduced toxicity, and better survival with a combination comprising gemcitabine/cisplatin and CDK4/6 inhibitors. Furthermore, we demonstrated that abemaciclib monotherapy had only modest efficacy attributable to autophagy-induced resistance. Notably, triplet therapy was able to potentiate efficacy through elimination of the autophagic flux. Correspondingly, abemaciclib potentiated ribonucleotide reductase catalytic subunit M1 reduction, resulting in sensitization to gemcitabine. CONCLUSIONS As such, these data provide robust preclinical mechanistic evidence of synergy between gemcitabine/cisplatin and CDK4/6 inhibitors and delineate a path forward for translation of these findings to preliminary clinical studies in advanced BTC patients.
Collapse
Affiliation(s)
- Mansi Arora
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Jennifer Yonkus
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Xianfeng Chen
- Department of Informatics, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Chelsae R Dumbauld
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Alexander T Baker
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott I Gamb
- Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, Minnesota, USA
| | - Jan B Egan
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bolni Marius Nagalo
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathalie Meurice
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Marcela A Salomao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Heidi E Kosiorek
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Michael T Barrett
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - Kenneth H Buetow
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Mohamad B Sonbol
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Aaron S Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lewis R Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tanios S Bekaii-Saab
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - Daniel H Ahn
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
34
|
Pesch AM, Hirsh NH, Michmerhuizen AR, Jungles KM, Wilder-Romans K, Chandler BC, Liu M, Lerner LM, Nino CA, Ward C, Cobain EF, Lawrence TS, Pierce LJ, Rae JM, Speers CW. RB expression confers sensitivity to CDK4/6 inhibitor-mediated radiosensitization across breast cancer subtypes. JCI Insight 2021; 7:154402. [PMID: 34932500 PMCID: PMC8855810 DOI: 10.1172/jci.insight.154402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Standard radiation therapy (RT) does not reliably provide locoregional control for women with multinode-positive breast cancer and triple-negative breast cancer (TNBC). We hypothesized that CDK4/6 inhibition (CDK4/6i) would increase the radiosensitivity not only of estrogen receptor–positive (ER+) cells, but also of TNBC that expresses retinoblastoma (RB) protein. We found that CDK4/6i radiosensitized RB WT TNBC (n = 4, radiation enhancement ratio [rER]: 1.49–2.22) but failed to radiosensitize RB-null TNBC (n = 3, rER: 0.84–1.00). RB expression predicted response to CDK4/6i + RT (R2 = 0.84), and radiosensitization was lost in ER+/TNBC cells (rER: 0.88–1.13) after RB1 knockdown in isogenic and nonisogenic models. CDK4/6i suppressed homologous recombination (HR) in RB WT cells but not in RB-null cells or isogenic models of RB1 loss; HR competency was rescued with RB reexpression. Radiosensitization was independent of nonhomologous end joining and the known effects of CDK4/6i on cell cycle arrest. Mechanistically, RB and RAD51 interact in vitro to promote HR repair. CDK4/6i produced RB-dependent radiosensitization in TNBC xenografts but not in isogenic RB1-null xenografts. Our data provide the preclinical rationale for a clinical trial expanding the use of CDK4/6i + RT to difficult-to-control RB-intact breast cancers (including TNBC) and nominate RB status as a predictive biomarker of therapeutic efficacy.
Collapse
Affiliation(s)
- Andrea M Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Nicole H Hirsh
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Anna R Michmerhuizen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Kassidy M Jungles
- Department of Radiation Oncology, University of Michgan, Ann Arbor, United States of America
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Benjamin C Chandler
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Meilan Liu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Lynn M Lerner
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Charles A Nino
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Connor Ward
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Erin F Cobain
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - James M Rae
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
35
|
Concerning FDA approval of trilaciclib (Cosela) in extensive-stage small-cell lung cancer. Transl Oncol 2021; 14:101206. [PMID: 34419683 PMCID: PMC8379686 DOI: 10.1016/j.tranon.2021.101206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Trilaciclib is a recently approved cyclin-dependent kinase 4/6 inhibitor that is designed to decrease the incidence of chemotherapy-induced myelosuppression in adult patients with extensive-stage small-cell lung cancer receiving chemotherapy. Currently, this first-in-class therapy raises two open issues: its bio-plausibility and paucity of evidence demonstrating a lasting impact on clinical endpoints. Based on the existing phase 2 data, trilaciclib appears to be a therapy that can make a positive impact by preventing myelosuppression, but empirical validation with larger phase III trials should be conducted to confirm these benefits. The purpose of this article is to facilitate discussion about the role of trilaciclib in clinical practice and the need for additional trials.
Collapse
|
36
|
Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives. Cancers (Basel) 2021; 13:cancers13123035. [PMID: 34204543 PMCID: PMC8235237 DOI: 10.3390/cancers13123035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Altered regulation of the cell cycle is a hallmark of cancer. The recent clinical success of the inhibitors of CDK4 and CDK6 has convincingly demonstrated that targeting cell cycle components may represent an effective anti-cancer strategy, at least in some cancer types. However, possible applications of CDK4/6 inhibitors in patients with ovarian cancer is still under evaluation. Here, we describe the possible biological role of CDK4 and CDK6 complexes in ovarian cancer and provide the rationale for the use of CDK4/6 inhibitors in this pathology, alone or in combination with other drugs. This review, coupling basic, preclinical and clinical research studies, could be of great translational value for investigators attempting to design new clinical trials for the better management of ovarian cancer patients. Abstract Alterations in components of the cell-cycle machinery are present in essentially all tumor types. In particular, molecular alterations resulting in dysregulation of the G1 to S phase transition have been observed in almost all human tumors, including ovarian cancer. These alterations have been identified as potential therapeutic targets in several cancer types, thereby stimulating the development of small molecule inhibitors of the cyclin dependent kinases. Among these, CDK4 and CDK6 inhibitors confirmed in clinical trials that CDKs might indeed represent valid therapeutic targets in, at least some, types of cancer. CDK4 and CDK6 inhibitors are now used in clinic for the treatment of patients with estrogen receptor positive metastatic breast cancer and their clinical use is being tested in many other cancer types, alone or in combination with other agents. Here, we review the role of CDK4 and CDK6 complexes in ovarian cancer and propose the possible use of their inhibitors in the treatment of ovarian cancer patients with different types and stages of disease.
Collapse
|
37
|
Daniel D, Kuchava V, Bondarenko I, Ivashchuk O, Reddy S, Jaal J, Kudaba I, Hart L, Matitashvili A, Pritchett Y, Morris SR, Sorrentino JA, Antal JM, Goldschmidt J. Trilaciclib prior to chemotherapy and atezolizumab in patients with newly diagnosed extensive-stage small cell lung cancer: A multicentre, randomised, double-blind, placebo-controlled Phase II trial. Int J Cancer 2021; 148:2557-2570. [PMID: 33348420 PMCID: PMC8048941 DOI: 10.1002/ijc.33453] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Trilaciclib is an intravenous CDK4/6 inhibitor administered prior to chemotherapy to preserve haematopoietic stem and progenitor cells and immune system function from chemotherapy-induced damage (myelopreservation). The effects of administering trilaciclib prior to carboplatin, etoposide and atezolizumab (E/P/A) were evaluated in a randomised, double-blind, placebo-controlled Phase II study in patients with newly diagnosed extensive-stage small cell lung cancer (ES-SCLC) (NCT03041311). The primary endpoints were duration of severe neutropenia (SN; defined as absolute neutrophil count <0.5 × 109 cells per L) in Cycle 1 and occurrence of SN during the treatment period. Other endpoints were prespecified to assess the effects of trilaciclib on additional measures of myelopreservation, patient-reported outcomes, antitumour efficacy and safety. Fifty-two patients received trilaciclib prior to E/P/A and 53 patients received placebo. Compared to placebo, administration of trilaciclib resulted in statistically significant decreases in the mean duration of SN in Cycle 1 (0 vs 4 days; P < .0001) and occurrence of SN (1.9% vs 49.1%; P < .0001), with additional improvements in red blood cell and platelet measures and health-related quality of life (HRQoL). Trilaciclib was well tolerated, with fewer grade ≥3 adverse events compared with placebo, primarily due to less high-grade haematological toxicity. Antitumour efficacy outcomes were comparable. Administration of trilaciclib vs placebo generated more newly expanded peripheral T-cell clones (P = .019), with significantly greater expansion among patients with an antitumour response to E/P/A (P = .002). Compared with placebo, trilaciclib administered prior to E/P/A improved patients' experience of receiving treatment for ES-SCLC, as shown by reduced myelosuppression, and improved HRQoL and safety profiles.
Collapse
Affiliation(s)
- Davey Daniel
- Sarah Cannon Research Institute, Tennessee Oncology‐ChattanoogaChattanoogaTennesseeUSA
| | | | | | | | | | - Jana Jaal
- Department of Hematology‐OncologyUniversity of TartuTartuEstonia
| | - Iveta Kudaba
- Latvian Oncology CentreRiga East University HospitalRigaLatvia
| | - Lowell Hart
- Florida Cancer SpecialistsFort MyersFloridaUSA
| | | | | | | | | | | | | |
Collapse
|
38
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
39
|
Carretero-González A, Otero I, Lora D, Carril-Ajuria L, Castellano D, de Velasco G. Efficacy and safety of anti-PD-1/PD-L1 combinations versus standard of care in cancer: a systematic review and meta-analysis. Oncoimmunology 2021; 10:1878599. [PMID: 33680572 PMCID: PMC7906255 DOI: 10.1080/2162402x.2021.1878599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) as monotherapy in different solid tumors showed an early detrimental effect in a subset of patients reflected by the early crossover of the progression-free survival (PFS) curves. Currently, combination therapies with ICIs added to chemotherapy or targeted therapy are expanding the landscape of metastatic solid tumors. We have examined the benefits and risks of adding ICIs to the standard of care (SOC) versus SOC alone. A search of randomized clinical trials (RCTs) comparing ICIs combinations versus the corresponding SOC in different metastatic tumors according to the PRISMA guidelines was performed. Selected endpoints included PFS, time-to-response (TTR), overall survival (OS), overall response rate (ORR), and ≥ grade 3 adverse events (AEs). Subgroup analyses based on backbone treatment and tumor type were included. A total of 10536 patients (19 studies) were included (ICIs-arm: 5596 patients; SOC-arm: 4940 patients). Globally, PFS, OS, and ORR results favored ICIs-arm. No differences in terms of TTR were found between arms. ICI-arm was associated with a slight increase of ≥ G3 AEs (relative risk: 1.07). The results in multiple myeloma patients are controversial in favor of ICIs combinations. Adding ICIs to SOC benefits a greater number of patients, prolonging survival with no early detrimental effect. The toxicity profile is safe, with a mild increase of high-grade manageable AEs.
Collapse
Affiliation(s)
| | - Irene Otero
- Medical Oncology Department, Virgen de la Salud Hospital, Toledo, Spain
| | - David Lora
- Clinical Research Unit, IMAS12-CIBERESP, University Hospital 12 de Octubre, Madrid, Spain
| | - Lucía Carril-Ajuria
- Medical Oncology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - Daniel Castellano
- Medical Oncology Department, University Hospital 12 de Octubre, Madrid, Spain
| | | |
Collapse
|
40
|
Pesch AM, Hirsh NH, Chandler BC, Michmerhuizen AR, Ritter CL, Androsiglio MP, Wilder-Romans K, Liu M, Gersch CL, Larios JM, Pierce LJ, Rae JM, Speers CW. Short-term CDK4/6 Inhibition Radiosensitizes Estrogen Receptor-Positive Breast Cancers. Clin Cancer Res 2020; 26:6568-6580. [PMID: 32967938 DOI: 10.1158/1078-0432.ccr-20-2269] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/09/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have improved progression-free survival for metastatic, estrogen receptor-positive (ER+) breast cancers, but their role in the nonmetastatic setting remains unclear. We sought to understand the effects of CDK4/6 inhibition (CDK4/6i) and radiotherapy in multiple preclinical breast cancer models. EXPERIMENTAL DESIGN Transcriptomic and proteomic analyses were used to identify significantly altered pathways after CDK4/6i. Clonogenic assays were used to quantify the radiotherapy enhancement ratio (rER). DNA damage was quantified using γH2AX staining and the neutral comet assay. DNA repair was assessed using RAD51 foci formation and nonhomologous end joining (NHEJ) reporter assays. Orthotopic xenografts were used to assess the efficacy of combination therapy. RESULTS Palbociclib significantly radiosensitized multiple ER+ cell lines at low nanomolar, sub IC50 concentrations (rER: 1.21-1.52) and led to a decrease in the surviving fraction of cells at 2 Gy (P < 0.001). Similar results were observed in ribociclib-treated (rER: 1.08-1.68) and abemaciclib-treated (rER: 1.19-2.05) cells. Combination treatment decreased RAD51 foci formation (P < 0.001), leading to a suppression of homologous recombination activity, but did not affect NHEJ efficiency (P > 0.05). Immortalized breast epithelial cells and cells with acquired resistance to CDK4/6i did not demonstrate radiosensitization (rER: 0.94-1.11) or changes in RAD51 foci. In xenograft models, concurrent palbociclib and radiotherapy led to a significant decrease in tumor growth. CONCLUSIONS These studies provide preclinical rationale to test CDK4/6i and radiotherapy in women with locally advanced ER+ breast cancer at high risk for locoregional recurrence.
Collapse
Affiliation(s)
- Andrea M Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Nicole H Hirsh
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Benjamin C Chandler
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Cancer Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Anna R Michmerhuizen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | - Cassandra L Ritter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Meilan Liu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Christina L Gersch
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - José M Larios
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - James M Rae
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan. .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
41
|
Targeting Cell Cycle in Breast Cancer: CDK4/6 Inhibitors. Int J Mol Sci 2020; 21:ijms21186479. [PMID: 32899866 PMCID: PMC7554788 DOI: 10.3390/ijms21186479] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Deregulation of cell cycle, via cyclin D/CDK/pRb pathway, is frequently observed in breast cancer lending support to the development of drugs targeting the cell cycle control machinery, like the inhibitors of the cycline-dependent kinases (CDK) 4 and 6. Up to now, three CDK4/6 inhibitors have been approved by FDA for the treatment of hormone receptor-positive (HR+), HER2-negative metastatic breast cancer. These agents have been effective in improving the clinical outcomes, but the development of intrinsic or acquired resistance can limit the efficacy of these treatments. Clinical and translational research is now focused on investigation of the mechanism of sensitivity/resistance to CDK4/6 inhibition and novel therapeutic strategies aimed to improve clinical outcomes. This review summarizes the available knowledge regarding CDK4/6 inhibitor, the discovery of new biomarkers of response, and the biological rationale for new combination strategies of treatment.
Collapse
|