1
|
Plakoula E, Kalampounias G, Alexis S, Verigou E, Kourakli A, Zafeiropoulou K, Symeonidis A. Prognostic Value of PSMB5 and Correlations with LC3II and Reactive Oxygen Species Levels in the Bone Marrow Mononuclear Cells of Bortezomib-Resistant Multiple Myeloma Patients. Curr Issues Mol Biol 2025; 47:32. [PMID: 39852147 PMCID: PMC11763810 DOI: 10.3390/cimb47010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Proteasome inhibitors (PIs) constitute the most common type of induction treatment for multiple myeloma. Interactions between the proteasome, autophagy, and reactive oxygen species (ROS) have been shown in the past, thus emphasizing the need for a better understanding of the underlying pathophysiology. For this study, bone marrow mononuclear cells from 110 myeloma patients were collected at different disease stages. PSMB5 and LC3I/II protein levels were determined using Western blot, proteasome proteolytic activity (PPA) with spectrofluorometry, and ROS with flow cytometry. PSMB5 accumulation was found to diminish after PI treatment (p-value = 0.014), and the same pattern was observed in PPA (p-value < 0.001). Conversely, LC3II protein levels were elevated at both remission and relapse compared to baseline levels (p-value = 0.041). Patients with a baseline PSMB5 accumulation lower than 1.06 units had longer disease-free survival compared to those with values above 1.06 units (12.0 ± 6.7 vs. 36 ± 12.1 months; p-value < 0.001). Median ROS levels in plasma cells were significantly higher at relapse compared to both baseline and remission levels (p-value < 0.001), implying poor prognosis. Overall, post-treatment PSMB5 reduction could indicate a shift from proteasomal to autophagic degradation as a main proteostatic mechanism, thus explaining resistance. The elevated oxidative stress in PI-treated patients could possibly serve as an additional compensatory mechanism.
Collapse
Affiliation(s)
- Eva Plakoula
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
| | - Spyridon Alexis
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Evgenia Verigou
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Alexandra Kourakli
- Department of Hematology, OLYMPION General Hospital, Volou & Meilichou Str., 26443 Patras, Greece;
| | - Kalliopi Zafeiropoulou
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Argiris Symeonidis
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
- Department of Hematology, OLYMPION General Hospital, Volou & Meilichou Str., 26443 Patras, Greece;
| |
Collapse
|
2
|
Li B, Adam Eichhorn PJ, Chng WJ. Targeting the ubiquitin pathway in lymphoid malignancies. Cancer Lett 2024; 594:216978. [PMID: 38795760 DOI: 10.1016/j.canlet.2024.216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore; Department of Medicine, School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Hsu HC, Li D, Zhan W, Ye J, Liu YJ, Leung A, Qin J, Crespo B, Gamo FJ, Zhang H, Cui L, Roth A, Kirkman LA, Li H, Lin G. Structures revealing mechanisms of resistance and collateral sensitivity of Plasmodium falciparum to proteasome inhibitors. Nat Commun 2023; 14:8302. [PMID: 38097652 PMCID: PMC10721928 DOI: 10.1038/s41467-023-44077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The proteasome of the malaria parasite Plasmodium falciparum (Pf20S) is an advantageous drug target because its inhibition kills P. falciparum in multiple stages of its life cycle and synergizes with artemisinins. We recently developed a macrocyclic peptide, TDI-8304, that is highly selective for Pf20S over human proteasomes and is potent in vitro and in vivo against P. falciparum. A mutation in the Pf20S β6 subunit, A117D, confers resistance to TDI-8304, yet enhances both enzyme inhibition and anti-parasite activity of a tripeptide vinyl sulfone β2 inhibitor, WLW-vs. Here we present the high-resolution cryo-EM structures of Pf20S with TDI-8304, of human constitutive proteasome with TDI-8304, and of Pf20Sβ6A117D with WLW-vs that give insights into the species selectivity of TDI-8304, resistance to it, and the collateral sensitivity associated with resistance, including that TDI-8304 binds β2 and β5 in wild type Pf20S as well as WLW-vs binds β2 and β5 in Pf20Sβ6A117D. We further show that TDI-8304 kills P. falciparum as quickly as chloroquine and artemisinin and is active against P. cynomolgi at the liver stage. This increases interest in using these structures to facilitate the development of Pf20S inhibitors that target multiple proteasome subunits and limit the emergence of resistance.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Daqiang Li
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jianxiang Ye
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Yi Jing Liu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Annie Leung
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Benigno Crespo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Francisco-Javier Gamo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, The Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, 20910, MD, USA
| | - Laura A Kirkman
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Tubío-Santamaría N, Jayavelu AK, Schnoeder TM, Eifert T, Hsu CJ, Perner F, Zhang Q, Wenge DV, Hansen FM, Kirkpatrick JM, Jyotsana N, Lane SW, von Eyss B, Deshpande AJ, Kühn MWM, Schwaller J, Cammann C, Seifert U, Ebstein F, Krüger E, Hochhaus A, Heuser M, Ori A, Mann M, Armstrong SA, Heidel FH. Immunoproteasome function maintains oncogenic gene expression in KMT2A-complex driven leukemia. Mol Cancer 2023; 22:196. [PMID: 38049829 PMCID: PMC10694946 DOI: 10.1186/s12943-023-01907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Pharmacologic targeting of chromatin-associated protein complexes has shown significant responses in KMT2A-rearranged (KMT2A-r) acute myeloid leukemia (AML) but resistance frequently develops to single agents. This points to a need for therapeutic combinations that target multiple mechanisms. To enhance our understanding of functional dependencies in KMT2A-r AML, we have used a proteomic approach to identify the catalytic immunoproteasome subunit PSMB8 as a specific vulnerability. Genetic and pharmacologic inactivation of PSMB8 results in impaired proliferation of murine and human leukemic cells while normal hematopoietic cells remain unaffected. Disruption of immunoproteasome function drives an increase in transcription factor BASP1 which in turn represses KMT2A-fusion protein target genes. Pharmacologic targeting of PSMB8 improves efficacy of Menin-inhibitors, synergistically reduces leukemia in human xenografts and shows preserved activity against Menin-inhibitor resistance mutations. This identifies and validates a cell-intrinsic mechanism whereby selective disruption of proteostasis results in altered transcription factor abundance and repression of oncogene-specific transcriptional networks. These data demonstrate that the immunoproteasome is a relevant therapeutic target in AML and that targeting the immunoproteasome in combination with Menin-inhibition could be a novel approach for treatment of KMT2A-r AML.
Collapse
Affiliation(s)
- Nuria Tubío-Santamaría
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Ashok Kumar Jayavelu
- Max-Planck-Institute of Biochemistry, Munich, Germany
- Proteomics and Cancer Cell Signaling Group, DKFZ, Heidelberg, Germany
| | - Tina M Schnoeder
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Theresa Eifert
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Chen-Jen Hsu
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Florian Perner
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Qirui Zhang
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Daniela V Wenge
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, 02215, USA
| | - Fynn M Hansen
- Max-Planck-Institute of Biochemistry, Munich, Germany
| | | | - Nidhi Jyotsana
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Steven W Lane
- Queensland Institute for Medical Research (QIMR), Brisbane, Australia
| | - Björn von Eyss
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | | | - Michael W M Kühn
- Medizinische Klinik 3, Hämatologie, Onkologie und Pneumologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital of Basel, Basel, Switzerland
| | - Clemens Cammann
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie - Virologie, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie - Virologie, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Frédéric Ebstein
- Department of Biochemistry, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Elke Krüger
- Department of Biochemistry, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | | | - Michael Heuser
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Alessandro Ori
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, 02215, USA
| | - Florian H Heidel
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany.
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany.
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
6
|
Kim YJ, Lee Y, Shin H, Hwang S, Park J, Song EJ. Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res 2023; 46:573-597. [PMID: 37541992 DOI: 10.1007/s12272-023-01455-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
As the ubiquitin-proteasome system (UPS) regulates almost every biological process, the dysregulation or aberrant expression of the UPS components causes many pathological disorders, including cancers. To find a novel target for anticancer therapy, the UPS has been an active area of research since the FDA's first approval of a proteasome inhibitor bortezomib in 2003 for treating multiple myeloma (MM). Here, we summarize newly described UPS components, including E3 ubiquitin ligases, deubiquitinases (DUBs), and immunoproteasome, whose malfunction leads to tumorigenesis and whose inhibitors have been investigated in clinical trials as anticancer therapy since 2020. We explain the mechanism and effects of several inhibitors in depth to better comprehend the advantages of targeting UPS components for cancer treatment. In addition, we describe attempts to overcome resistance and limited efficacy of some launched proteasome inhibitors, as well as an emerging PROTAC-based tool targeting UPS components for anticancer therapy.
Collapse
Affiliation(s)
- Yeon Jung Kim
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yeonjoo Lee
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyungkyung Shin
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - SuA Hwang
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jinyoung Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
7
|
Anders HJ, Kitching AR, Leung N, Romagnani P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nat Rev Immunol 2023; 23:453-471. [PMID: 36635359 PMCID: PMC9838307 DOI: 10.1038/s41577-022-00816-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/14/2023]
Abstract
'Glomerulonephritis' (GN) is a term used to describe a group of heterogeneous immune-mediated disorders characterized by inflammation of the filtration units of the kidney (the glomeruli). These disorders are currently classified largely on the basis of histopathological lesion patterns, but these patterns do not align well with their diverse pathological mechanisms and hence do not inform optimal therapy. Instead, we propose grouping GN disorders into five categories according to their immunopathogenesis: infection-related GN, autoimmune GN, alloimmune GN, autoinflammatory GN and monoclonal gammopathy-related GN. This categorization can inform the appropriate treatment; for example, infection control for infection-related GN, suppression of adaptive immunity for autoimmune GN and alloimmune GN, inhibition of single cytokines or complement factors for autoinflammatory GN arising from inborn errors in innate immunity, and plasma cell clone-directed or B cell clone-directed therapy for monoclonal gammopathies. Here we present the immunopathogenesis of GN and immunotherapies in use and in development and discuss how an immunopathogenesis-based GN classification can focus research, and improve patient management and teaching.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Munich, Germany.
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Department of Paediatric Nephrology, Monash Health, Clayton, VIC, Australia
| | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Paola Romagnani
- Department of Experimental and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
8
|
Zhan W, Li D, Saha P, Wang R, Zhang H, Ajay AK, Deban C, Sukenick G, Azzi J, Lin G. Discovery of Highly Selective Inhibitors of the Human Constitutive Proteasome β5c Chymotryptic Subunit. J Med Chem 2023; 66:1172-1185. [PMID: 36608337 PMCID: PMC10157300 DOI: 10.1021/acs.jmedchem.2c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe our discovery and development of potent and highly selective inhibitors of human constitutive proteasome chymotryptic activity (β5c). Structure-activity relationship studies of the novel class of inhibitors focused on optimization of N-cap, C-cap, and side chain of the chemophore asparagine. Compound 32 is the most potent and selective β5c inhibitor in this study. A docking study provides a structure rationale for potency and selectivity. Kinetic studies show a reversible and noncompetitive inhibition mechanism. It enters the cells to engage the proteasome target, potently and selectively kills multiple myeloma cells, and does so by synergizing with a β5i-selective inhibitor.
Collapse
Affiliation(s)
- Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| | - Daqiang Li
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| | - Priya Saha
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| | - Rong Wang
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| | - Amrendra K. Ajay
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christa Deban
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George Sukenick
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Jamil Azzi
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| |
Collapse
|
9
|
Lignet F, Esdar C, Walter-Bausch G, Friese-Hamim M, Stinchi S, Drouin E, El Bawab S, Becker AD, Gimmi C, Sanderson MP, Rohdich F. Translational PK/PD Modeling of Tumor Growth Inhibition and Target Inhibition to Support Dose Range Selection of the LMP7 Inhibitor M3258 in Relapsed/Refractory Multiple Myeloma. J Pharmacol Exp Ther 2023; 384:163-172. [PMID: 36273822 DOI: 10.1124/jpet.122.001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Abstract
M3258 is an orally bioavailable, potent, selective, reversible inhibitor of the large multifunctional peptidase 7 (LMP7, β5i, PSMB8) proteolytic subunit of the immunoproteasome, a component of the cellular protein degradation machinery, highly expressed in malignant hematopoietic cells including multiple myeloma. Here we describe the fit-for-purpose pharmacokinetic (PK)/pharmacodynamic (PD)/efficacy modeling of M3258 based on preclinical data from several species. The inhibition of LMP7 activity (PD) and tumor growth (efficacy) were tested in human multiple myeloma xenografts in mice. PK and efficacy data were correlated yielding a free M3258 concentration of 45 nM for half-maximal tumor growth inhibition (KC50). As M3258 only weakly inhibits LMP7 in mouse cells, both in vitro and in vivo bridging studies were performed in rats, monkeys, and dogs for translational modeling. These data indicated that the PD response in human xenograft models was closely reflected in dog PBMCs. A PK/PD model was established, predicting a free IC50 value of 9 nM for M3258 in dogs in vivo, in close agreement with in vitro measurements. In parallel, the human PK parameters of M3258 were predicted by various approaches including in vitro extrapolation and allometric scaling. Using PK/PD/efficacy simulations, the efficacious dose range and corresponding PD response in human were predicted. Taken together, these efforts supported the design of a phase Ia study of M3258 in multiple myeloma patients (NCT04075721). At the lowest tested dose level, the predicted exposure matched well with the observed exposure while the duration of LMP7 inhibition was underpredicted by the model. SIGNIFICANCE STATEMENT: M3258 is a novel inhibitor of the immunoproteasome subunit LMP7. The human PK and human efficacious dose range of M3258 were predicted using in vitro-in vivo extrapolation and allometric scaling methods together with a fit-for-purpose PK/PD and efficacy model based on data from several species. A comparison with data from the Phase Ia clinical study showed that the human PK was accurately predicted, while the extent and duration of PD response were more pronounced than estimated.
Collapse
Affiliation(s)
- Floriane Lignet
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Christina Esdar
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Gina Walter-Bausch
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Manja Friese-Hamim
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Sofia Stinchi
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Elise Drouin
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Samer El Bawab
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Andreas D Becker
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Claude Gimmi
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Michael P Sanderson
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| | - Felix Rohdich
- The Healthcare Business of Merck KGaA, Darmstadt, Germany (F.L., C.E., G.W.-B., M.F.-H., S.S., S.E.B., A.D.B., C.G., M.P.S., F.R.) and EMD Serono, Billerica, Massachusetts (E.D.)
| |
Collapse
|
10
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
11
|
Xie T, Fan G, Huang L, Lou N, Han X, Xing P, Shi Y. Analysis on methylation and expression of PSMB8 and its correlation with immunity and immunotherapy in lung adenocarcinoma. Epigenomics 2022; 14:1427-1448. [PMID: 36683462 DOI: 10.2217/epi-2022-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: To find biomarkers for immunity and immunotherapy in lung adenocarcinoma (LUAD) through multiomics analysis. Materials & methods: The multiomics data of patients with LUAD were downloaded from the TCGA and GEO databases. CIBERSORT, quanTIseq, ESTIMATEScore, k-means clustering, gene set enrichment analysis, gene set variation analysis, immunophenoscore and logistic regression were used in this study. Results: PSMB8 HypoMet-HighExp group patients have more active immune-related pathways, more antitumor immune cells, less protumor immune cells, higher immunophenoscore and longer progression-free survival of immune checkpoint inhibitor therapy than HyperMet-LowExp group. In multivariate analysis, PSMB8 showed an independent value. Conclusion: The combination of DNA methylation and mRNA expression of PSMB8 could independently distinguish types of tumor immune microenvironment and predict programmed cell death protein 1/programmed cell death-ligand 1 inhibitors' effects in patients with LUAD.
Collapse
Affiliation(s)
- Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Liling Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ning Lou
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe & Rare Diseases, NMPA Key Laboratory for Clinical Research & Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| |
Collapse
|
12
|
Identification of N, C-capped di- and tripeptides as selective immunoproteasome inhibitors. Eur J Med Chem 2022; 234:114252. [DOI: 10.1016/j.ejmech.2022.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
13
|
Immunoproteasome Activity in Chronic Lymphocytic Leukemia as a Target of the Immunoproteasome-Selective Inhibitors. Cells 2022; 11:cells11050838. [PMID: 35269460 PMCID: PMC8909520 DOI: 10.3390/cells11050838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Targeting proteasome with proteasome inhibitors (PIs) is an approved treatment strategy in multiple myeloma that has also been explored pre-clinically and clinically in other hematological malignancies. The approved PIs target both the constitutive and the immunoproteasome, the latter being present predominantly in cells of lymphoid origin. Therapeutic targeting of the immunoproteasome in cells with sole immunoproteasome activity may be selectively cytotoxic in malignant cells, while sparing the non-lymphoid tissues from the on-target PIs toxicity. Using activity-based probes to assess the proteasome activity profile and correlating it with the cytotoxicity assays, we identified B-cell chronic lymphocytic leukemia (B-CLL) to express predominantly immunoproteasome activity, which is associated with high sensitivity to approved proteasome inhibitors and, more importantly, to the immunoproteasome selective inhibitors LU005i and LU035i, targeting all immunoproteasome active subunits or only the immunoproteasome β5i, respectively. At the same time, LU102, a proteasome β2 inhibitor, sensitized B-CLL or immunoproteasome inhibitor-inherently resistant primary cells of acute myeloid leukemia, B-cell acute lymphoblastic leukemia, multiple myeloma and plasma cell leukemia to low doses of LU035i. The immunoproteasome thus represents a novel therapeutic target, which warrants further testing with clinical stage immunoproteasome inhibitors in monotherapy or in combinations.
Collapse
|
14
|
Functional Differences between Proteasome Subtypes. Cells 2022; 11:cells11030421. [PMID: 35159231 PMCID: PMC8834425 DOI: 10.3390/cells11030421] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Four proteasome subtypes are commonly present in mammalian tissues: standard proteasomes, which contain the standard catalytic subunits β1, β2 and β5; immunoproteasomes containing the immuno-subunits β1i, β2i and β5i; and two intermediate proteasomes, containing a mix of standard and immuno-subunits. Recent studies revealed the expression of two tissue-specific proteasome subtypes in cortical thymic epithelial cells and in testes: thymoproteasomes and spermatoproteasomes. In this review, we describe the mechanisms that enable the ATP- and ubiquitin-dependent as well as the ATP- and ubiquitin-independent degradation of proteins by the proteasome. We focus on understanding the role of the different proteasome subtypes in maintaining protein homeostasis in normal physiological conditions through the ATP- and ubiquitin-dependent degradation of proteins. Additionally, we discuss the role of each proteasome subtype in the ATP- and ubiquitin-independent degradation of disordered proteins. We also discuss the role of the proteasome in the generation of peptides presented by MHC class I molecules and the implication of having different proteasome subtypes for the peptide repertoire presented at the cell surface. Finally, we discuss the role of the immunoproteasome in immune cells and its modulation as a potential therapy for autoimmune diseases.
Collapse
|
15
|
Kisselev AF. Site-Specific Proteasome Inhibitors. Biomolecules 2021; 12:54. [PMID: 35053202 PMCID: PMC8773591 DOI: 10.3390/biom12010054] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Proteasome is a multi-subunit protein degradation machine, which plays a key role in the maintenance of protein homeostasis and, through degradation of regulatory proteins, in the regulation of numerous cell functions. Proteasome inhibitors are essential tools for biomedical research. Three proteasome inhibitors, bortezomib, carfilzomib, and ixazomib are approved by the FDA for the treatment of multiple myeloma; another inhibitor, marizomib, is undergoing clinical trials. The proteolytic core of the proteasome has three pairs of active sites, β5, β2, and β1. All clinical inhibitors and inhibitors that are widely used as research tools (e.g., epoxomicin, MG-132) inhibit multiple active sites and have been extensively reviewed in the past. In the past decade, highly specific inhibitors of individual active sites and the distinct active sites of the lymphoid tissue-specific immunoproteasome have been developed. Here, we provide a comprehensive review of these site-specific inhibitors of mammalian proteasomes and describe their utilization in the studies of the biology of the active sites and their roles as drug targets for the treatment of different diseases.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
16
|
Kirk CJ, Muchamuel T, Wang J, Fan RA. Discovery and Early Clinical Development of Selective Immunoproteasome Inhibitors. Cells 2021; 11:cells11010009. [PMID: 35011570 PMCID: PMC8750005 DOI: 10.3390/cells11010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
Inhibitors of the proteolytic activity of the 20S proteasome have transformed the treatment of multiple B-cell malignancies. These agents have also been employed with success in the treatment of patients with autoimmune diseases and immune-mediated disorders. However, new agents are needed to fully unlock the potential of proteasome inhibitors as immunomodulatory drugs. The discovery that selective inhibitors of the immunoproteasome possess broad anti-inflammatory activity in preclinical models has led to the progression of multiple compounds to clinical trials. This review focuses on the anti-inflammatory potential of immunoproteasome inhibition and the early development of KZR-616, the first selective inhibitor of the immunoproteasome to reach clinical testing.
Collapse
|
17
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
18
|
Sloot W, Glaser N, Hansen A, Hellmann J, Jaeckel S, Johannes S, Knippel A, Lai V, Onidi M. Improved nonclinical safety profile of a novel, highly selective inhibitor of the immunoproteasome subunit LMP7 (M3258). Toxicol Appl Pharmacol 2021; 429:115695. [PMID: 34419493 DOI: 10.1016/j.taap.2021.115695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023]
Abstract
M3258 is the first selective inhibitor of the immunoproteasome subunit LMP7 (Large multifunctional protease 7) in early clinical development with the potential to improve therapeutic utility in patients of multiple myeloma (MM) or other hematological malignancies. Safety pharmacology studies with M3258 did not reveal any functional impairments of the cardiovascular system in several in vitro tests employing human cardiomyocytes and cardiac ion channels (including hERG), guinea pig heart refractory period and force contraction, and rat aortic contraction as well as in cardiovascular function tests in dogs. Following single dose M3258 administration to rats, no changes were observed on respiratory function by using whole body plethysmography, nor did it change (neuro)behavioral parameters in a battery of tests. Based on pivotal 4-week toxicity studies with daily oral dosing of M3258, the identified key target organs of toxicity were limited to the lympho-hematopoietic system in rats and dogs, and to the intestine with its local lymphoid tissues in dogs only. Importantly, the stomach, nervous system, heart, lungs, and kidneys, that may be part of clinically relevant toxicities as reported for pan-proteasome inhibitors, were spared with M3258. Therefore, it is anticipated that by targeting highly selective and potent inhibition of LMP7, the resulting favorable safety profile of M3258 together with the maintained potent anti-tumor activity as previously reported in mouse MM xenograft models, may translate into an improved benefit-risk profile in MM patients.
Collapse
Affiliation(s)
- Willem Sloot
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany.
| | - Nina Glaser
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Annika Hansen
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Juergen Hellmann
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Sven Jaeckel
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Sigrid Johannes
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Anja Knippel
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Valentina Lai
- Istituto di Ricerche Biomediche "Antoine Marxer" - RBM; Colleretto Giacosa, Italy
| | - Manuela Onidi
- Istituto di Ricerche Biomediche "Antoine Marxer" - RBM; Colleretto Giacosa, Italy
| |
Collapse
|
19
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
20
|
A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Cells 2021; 10:cells10081929. [PMID: 34440698 PMCID: PMC8394499 DOI: 10.3390/cells10081929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
At the heart of the ubiquitin-proteasome system, the 20S proteasome core particle (CP) breaks down the majority of intracellular proteins tagged for destruction. Thereby, the CP controls many cellular processes including cell cycle progression and cell signalling. Inhibitors of the CP can suppress these essential biological pathways, resulting in cytotoxicity, an effect that is beneficial for the treatment of certain blood cancer patients. During the last decade, several preclinical studies demonstrated that selective inhibition of the immunoproteasome (iCP), one of several CP variants in mammals, suppresses autoimmune diseases without inducing toxic side effects. These promising findings led to the identification of natural and synthetic iCP inhibitors with distinct chemical structures, varying potency and subunit selectivity. This review presents the most prominent iCP inhibitors with respect to possible scientific and medicinal applications, and discloses recent trends towards pan-immunoproteasome reactive inhibitors that cumulated in phase II clinical trials of the lead compound KZR-616 for chronic inflammations.
Collapse
|
21
|
Klein M, Busch M, Friese-Hamim M, Crosignani S, Fuchss T, Musil D, Rohdich F, Sanderson MP, Seenisamy J, Walter-Bausch G, Zanelli U, Hewitt P, Esdar C, Schadt O. Structure-Based Optimization and Discovery of M3258, a Specific Inhibitor of the Immunoproteasome Subunit LMP7 (β5i). J Med Chem 2021; 64:10230-10245. [PMID: 34228444 DOI: 10.1021/acs.jmedchem.1c00604] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (β1, β2, and β5). LMP7 (β5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs. Here, we describe the discovery and structure-based hit optimization of novel amido boronic acids, which selectively inhibit LMP7 while sparing all other subunits. The exploitation of structural differences between the proteasome subunits culminated in the identification of the highly potent, exquisitely selective, and orally available LMP7 inhibitor 50 (M3258). Based on the strong antitumor activity observed with M3258 in MM models and a favorable preclinical data package, a phase I clinical trial was initiated in relapsed/refractory MM patients.
Collapse
Affiliation(s)
- Markus Klein
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Michael Busch
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | - Thomas Fuchss
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Djordje Musil
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Felix Rohdich
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | | | | | - Ugo Zanelli
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | - Philip Hewitt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| | | | - Oliver Schadt
- Merck KGaA, Frankfurter Str. 250, Darmstadt 64293, Germany
| |
Collapse
|