1
|
Yamada D, Kobayashi S, Doki Y, Eguchi H. Genomic landscape of biliary tract cancer and corresponding targeted treatment strategies. Int J Clin Oncol 2025:10.1007/s10147-025-02761-x. [PMID: 40281353 DOI: 10.1007/s10147-025-02761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Biliary tract cancers (BTCs) are classified on the basis of their anatomical origin, and the feasibility of surgical resection depends on the tumor location and extent of progression. However, for unresectable BTCs, systemic therapy has been uniformly applied. Gemcitabine and cisplatin (GC) therapy and GC-based therapies were established as the first-line standard BTC treatment. However, no highly effective second-line therapy has been established, and the prognosis remains poor, highlighting the need for further therapeutic advancements. Meanwhile, the era of precision medicine has expanded the use of genetic testing, leading to the identification of actionable molecular targets in BTC. Several targeted therapies, including FGFR inhibitors and IDH1 inhibitors, have been developed, offering new second-line treatment options and the potential for first-line use in appropriate cases. Notably, the frequency of these genetic alterations varies depending on the tumor location, demonstrating the molecular heterogeneity of BTC. Therefore, it has been recognized that a tailored treatment approach for each BTC patient may be more effective than uniform systemic therapy. Consequently, although routine genetic testing before initiating systemic treatment is currently limited by the medical environment (e.g., cost, accessibility, regional differences), it is recommended in ESMO guideline and might be increasingly advocated. However, BTC harbors a wide range of genetic alterations, and numerous targeted therapies are being developed accordingly. This review provides an overview of the reported genetic alterations in BTC, the frequencies of these alterations, and the corresponding targeted therapies, emphasizing the evolving role of precision medicine in BTC treatment.
Collapse
Affiliation(s)
- Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2E2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Tu DH, Qu R, Wen F, Zhou Q, Liu Q, Huang L, Chen T. Successful conversion surgery following tislelizumab with chemotherapy in a patient with stage IIIC lung adenocarcinoma harboring RET fusions: A case report and review of the literature. Exp Ther Med 2025; 29:70. [PMID: 39991722 PMCID: PMC11843209 DOI: 10.3892/etm.2025.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have emerged as a beacon of hope for most patients with stage III non-small cell lung cancer (NSCLC) who are no longer surgical candidates. However, the literature on the use of immunotherapy in patients with NSCLC with rearranged during transfection (RET) gene fusions is scant. The present study reports the case of a 61-year-old female patient, diagnosed with stage IIIC lung adenocarcinoma, exhibiting two RET gene fusions and high programmed death-ligand 1 expression. Following four treatment cycles of tislelizumab in combination with pemetrexed and cisplatin, the patient was successfully downstaged, enabling radical surgery. The post-operative pathology analysis indicated a major pathologic response. This case study contributes to the growing body of evidence supporting the use of ICIs in treating locally advanced NSCLC with RET gene fusions.
Collapse
Affiliation(s)
- De-Hao Tu
- Department of Thoracic Surgery, Yueyang Central Hospital, Yueyang, Hunan 414000, P.R. China
| | - Rirong Qu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fang Wen
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, P.R. China
| | - Qiang Zhou
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, P.R. China
| | - Qianyun Liu
- Department of Medical Imaging, Yueyang Central Hospital, Yueyang, Hunan 414000, P.R. China
| | - Lingmei Huang
- Department of Pulmonary and Critical Care Medicine, Yueyang Central Hospital, Yueyang, Hunan 414000, P.R. China
| | - Tao Chen
- Department of Thoracic Surgery, Yueyang Central Hospital, Yueyang, Hunan 414000, P.R. China
| |
Collapse
|
3
|
Adashek JJ, Munoz JL, Kurzrock R. If it is a solid tumor target, then it may be a hematologic cancer target: Bridging the great divide. MED 2025; 6:100550. [PMID: 39689708 PMCID: PMC11725447 DOI: 10.1016/j.medj.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Tumor-agnostic US Food and Drug Administration approvals are transforming oncology. They include larotrectinib/entrectinib/repotrectinib (NTRK fusions), selpercatinib (RET fusions), dabrafenib/trametinib (BRAFV600E mutations), pembrolizumab/dostarlimab (microsatellite instability), pembrolizumab (high tumor mutational burden), and trastuzumab deruxtecan (HER2 3+ expression) (all solid cancers). Pemigatinib is approved for FGFR1-rearranged myeloid/lymphoid neoplasms. The genomically driven tissue-agnostic approach has a strong biological rationale (cancer is a disease of the genome), yields remarkably high response rates, and provides drug access to patients with an unmet need (rare/ultra-rare malignancies). Despite the solid tumor focus, both solid and hematologic cancers can harbor identical driver molecular abnormalities and respond to cognate therapies. For example, BRAFV600E and IDH1/2 mutations; ALK, FGFR, and NTRK fusions; PD-L1 amplification; and CD70 antigens are druggable in both solid and blood malignancies by gene-/immune-targeted therapies/chimeric antigen receptor T cells. Future biomarker-based tissue-agnostic basket studies/approvals should bridge the great divide and include both solid and hematologic cancers.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA.
| | - Javier L Munoz
- Department of Hematology, Mayo Clinic Arizona, Phoenix, AZ, USA.
| | - Razelle Kurzrock
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Omaha, NE, USA.
| |
Collapse
|
4
|
Wang J, Hua D, Li M, Liu N, Zhang Y, Zhao Y, Jiang S, Hu X, Wang Y, Zhu H. The Role of Zuo Jin Wan in Modulating the Tumor Microenvironment of Colorectal Cancer. Comb Chem High Throughput Screen 2025; 28:523-532. [PMID: 38284730 DOI: 10.2174/0113862073281374231228041841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Traditional Chinese medicine (TCM) can modulate the immune function of tumor patients in various ways. Zuojin Wan (ZJW, a 6:1 ratio of Huang Lian and Wu Zhu Yu) can modulate the microenvironment of ulcerative colitis, but its role in regulating the colorectal cancer (CRC) microenvironment remains unclear. Exploring the role of ZJW in CRC immunomodulation may improve the antitumor effect of existing immunotherapeutic strategies. MATERIAL AND METHODS The active compounds of each herb in ZJW were obtained from the HIT2.0 database with literature evidence. Single-cell RNA sequencing data of CRC were obtained from published studies (PMID: 32451460, 32103181, and 32561858). Pathway enrichment was analyzed using the reactome database, and intergenic correlation analysis was performed using the corrplot R software package. ZJW-regulated gene expression was verified by RT-qPCR. RESULTS Huang Lian and Wu Zhu Yu contain 19 and 4 compounds, respectively. Huang Lian targets 146 proteins, and Wu Zhu Yu targets 28 proteins based on evidence from the literature. ZJW regulates a range of biological processes associated with immune function, including cytokine signaling and Toll-Like Receptor 4 (TLR4) cascade. ZJW regulates malignant CRC cells, immune cells (including T-cells, B-cells, mast cells, NK/NKT cells, and myeloid cells), and other nonimmune cells (including endothelial cells, enteric glial cells, and pericytes). We confirmed that ZJW significantly downregulated the expression of TIMP1 and MTDHin CRC cell lines. CONCLUSIONS ZJW regulates a range of cells in the CRC microenvironment, including malignant CRC, immune cells, and stromal cells. In CRC cell lines, downregulation of TIMP1 and MTDH by ZJW may play an important role in the immunomodulation in CRC.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongming Hua
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengyao Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ningning Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shasha Jiang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huirong Zhu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
5
|
Liao CY, Gonzalez-Ferrer C, Whipple S, Peterson PM, Barker SS, Bhandari NR, Wang F. Real-World Outcomes of Selective RET Inhibitor Selpercatinib in the United States: Descriptive, Retrospective Findings from Two Databases. Cancers (Basel) 2024; 16:3835. [PMID: 39594790 PMCID: PMC11592841 DOI: 10.3390/cancers16223835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVES This study described real-world patient characteristics and outcomes among selpercatinib-treated patients in the United States, using the Flatiron Health electronic health record-derived deidentified database (FHD) for advanced/metastatic non-small cell lung cancer (a/mNSCLC) and Optum's de-identified Clinformatics® Data Mart Database (CDM). METHODS Patients initiating selpercatinib treatment between 08MAY2020 and 30JUN2023 were included. We evaluated real-world time to selpercatinib treatment discontinuation or death (rwTTDd) and time to next treatment or death (rwTTNTd) using Kaplan-Meier analyses. Medication possession ratio (MPR) was estimated as a measure of medication adherence in CDM patients. RESULTS In a/mNSCLC patients from the FHD (N = 68), the median rwTTDd and rwTTNTd were 22.4 [95%CI: 13.3-NR] and 21.0 [95%CI: 11.6-NR] months, respectively. In CDM, these durations were 12.1 [95%CI: 9.6-NR] and 16.2 [95%CI: 9.6-NR] months for lung cancer (n = 43), while these were not reached for thyroid cancer (n = 24) patients. The median MPR was 0.98 [IQR: 0.84-1.00] among all patients in the CDM (N = 75), with 77.3% of patients adhering (MPR ≥ 0.80) to selpercatinib. CONCLUSIONS Real-world outcomes in this older and frailer patient cohort align with phase 3 trial results, further supporting selpercatinib as the standard of care for patients with RET-altered cancers. Early testing for the detection of RET alterations remains essential.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng Wang
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (C.-Y.L.); (C.G.-F.); (S.W.); (P.M.P.); (S.S.B.); (N.R.B.)
| |
Collapse
|
6
|
Li W, Wang Y, Xiong A, Gao G, Song Z, Zhang Y, Huang D, Ye F, Wang Q, Li Z, Liu J, Xu C, Sun Y, Liu X, Zhou F, Zhou C. First-in-human, phase 1 dose-escalation and dose-expansion study of a RET inhibitor SY-5007 in patients with advanced RET-altered solid tumors. Signal Transduct Target Ther 2024; 9:300. [PMID: 39489747 PMCID: PMC11532403 DOI: 10.1038/s41392-024-02006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Oncogenic RET alteration is an important, tissue-agnostic therapeutic target across diverse cancers. We conducted a first-in-human phase 1 study on SY-5007, a potent and selective RET inhibitor, in patients with RET-altered solid tumors. Primary endpoints were safety, maximum tolerated dose (MTD), and recommended phase 2 dose (RP2D). Secondary endpoints included pharmacokinetics and preliminary anti-tumor activity. A total of 122 patients were enrolled (17 in dose-escalation phase and 105 in dose-expansion phase), including 91 with non-small cell lung cancer, 23 with medullary thyroid cancer, 7 with papillary thyroid cancer and 1 with gastric cancer. Treatment-related adverse events (TRAEs) were reported in 96.7% of patients, with the most common grade ≥ 3 TRAEs being hypertension (22.1%), diarrhea (16.4%), hypertriglyceridemia (6.6%), and neutropenia (6.6%). The exposure to SY-5007 was dose proportional. Among the 116 efficacy-evaluable patients, the overall objective response rate (ORR) was 57.8%, with 70.0% in treatment-naïve patients and 51.3% in previously treated patients. The median progression-free survival (PFS) was 21.1 months. Efficacy was observed regardless of tumor types and previous therapies. Biomarker analysis of 61 patients with circulating tumor DNA (ctDNA)-detectable RET alterations showed an ORR of 57.4% and median PFS of 13.8 months. Rapid ctDNA clearance of RET alteration correlated with faster responses and improved outcomes. In relapsed patients, off-target induced resistance was observed in 57.1% (12/21), with no on-target RET alterations identified. In conclusion, SY-5007 was well-tolerated and showed promising efficacy in patients with RET-altered solid tumors. Serial ctDNA monitoring may unveil treatment response and potential resistance mechanisms (NCT05278364).
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/antagonists & inhibitors
- Male
- Female
- Middle Aged
- Aged
- Adult
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Thyroid Cancer, Papillary/drug therapy
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Neoplasms/drug therapy
- Neoplasms/genetics
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/pathology
- Maximum Tolerated Dose
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/pharmacology
- Aged, 80 and over
Collapse
Affiliation(s)
- Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yongsheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Ge Gao
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Zhengbo Song
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yiping Zhang
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dingzhi Huang
- Lung Cancer Department, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhihui Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jiaye Liu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chunwei Xu
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yinghui Sun
- Shouyao Holdings (Beijing) Co., Ltd, Beijing, China
| | - Xijie Liu
- Shouyao Holdings (Beijing) Co., Ltd, Beijing, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Westphalen CB, Martins-Branco D, Beal JR, Cardone C, Coleman N, Schram AM, Halabi S, Michiels S, Yap C, André F, Bibeau F, Curigliano G, Garralda E, Kummar S, Kurzrock R, Limaye S, Loges S, Marabelle A, Marchió C, Mateo J, Rodon J, Spanic T, Pentheroudakis G, Subbiah V. The ESMO Tumour-Agnostic Classifier and Screener (ETAC-S): a tool for assessing tumour-agnostic potential of molecularly guided therapies and for steering drug development. Ann Oncol 2024; 35:936-953. [PMID: 39187421 DOI: 10.1016/j.annonc.2024.07.730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Advances in precision oncology led to approval of tumour-agnostic molecularly guided treatment options (MGTOs). The minimum requirements for claiming tumour-agnostic potential remain elusive. METHODS The European Society for Medical Oncology (ESMO) Precision Medicine Working Group (PMWG) coordinated a project to optimise tumour-agnostic drug development. International experts examined and summarised the publicly available data used for regulatory assessment of the tumour-agnostic indications approved by the US Food and Drug Administration and/or the European Medicines Agency as of December 2023. Different scenarios of minimum objective response rate (ORR), number of tumour types investigated, and number of evaluable patients per tumour type were assessed for developing a screening tool for tumour-agnostic potential. This tool was tested using the tumour-agnostic indications approved during the first half of 2024. A taxonomy for MGTOs and a framework for tumour-agnostic drug development were conceptualised. RESULTS Each tumour-agnostic indication had data establishing objective response in at least one out of five patients (ORR ≥ 20%) in two-thirds (≥4) of the investigated tumour types, with at least five evaluable patients in each tumour type. These minimum requirements were met by tested indications and may serve as a screening tool for tumour-agnostic potential, requiring further validation. We propose a conceptual taxonomy classifying MGTOs based on the therapeutic effect obtained by targeting a driver molecular aberration across tumours and its modulation by tumour-specific biology: tumour-agnostic, tumour-modulated, or tumour-restricted. The presence of biology-informed mechanistic rationale, early regulatory advice, and adequate trial design demonstrating signs of biology-driven tumour-agnostic activity, followed by confirmatory evidence, should be the principles for tumour-agnostic drug development. CONCLUSION The ESMO Tumour-Agnostic Classifier (ETAC) focuses on the interplay of targeted driver molecular aberration and tumour-specific biology modulating the therapeutic effect of MGTOs. We propose minimum requirements to screen for tumour-agnostic potential (ETAC-S) as part of tumour-agnostic drug development. Definition of ETAC cut-offs is warranted.
Collapse
Affiliation(s)
- C B Westphalen
- Comprehensive Cancer Center Munich & Department of Medicine III, University Hospital, LMU Munich, Munich; German Cancer Consortium (DKTK), partner site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - D Martins-Branco
- Scientific and Medical Division, European Society for Medical Oncology (ESMO), Lugano, Switzerland
| | - J R Beal
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - C Cardone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Naples, Italy
| | - N Coleman
- School of Medicine, Trinity College Dublin, Dublin; Medical Oncology Department, St. James's Hospital, Dublin; Trinity St. James's Cancer Institute, Dublin, Ireland
| | - A M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City; Weill Cornell Medical College, New York City
| | - S Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham; Duke Cancer Institute, Duke University, Durham, USA
| | - S Michiels
- Oncostat U1018, Inserm, Université Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif; Service de Biostatistique et Epidémiologie, Gustave Roussy, Villejuif, France
| | - C Yap
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - F André
- INSERM U981, Gustave Roussy, Villejuif; Department of Cancer Medicine, Gustave Roussy, Villejuif; Faculty of Medicine, Université Paris-Saclay, Kremlin Bicêtre
| | - F Bibeau
- Service d'Anatomie Pathologique, CHU Besançon, Université de Bourgogne Franche-Comté, Besançon, France
| | - G Curigliano
- Istituto Europeo di Oncologia, IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - E Garralda
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - S Kummar
- Division of Hematology and Medical Oncology, Department of Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland
| | - R Kurzrock
- Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, USA
| | - S Limaye
- Medical & Precision Oncology, Sir H. N. Reliance Foundation Hospital & Research Centre, Mumbai, India
| | - S Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - A Marabelle
- Drug Development Department (DITEP) and Laboratory for Translational Research in Immunotherapy (LRTI), Gustave Roussy, INSERM U1015 & CIC1428, Université Paris-Saclay, Villejuif, France
| | - C Marchió
- Department of Medical Sciences, University of Turin, Turin; Division of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - J Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - J Rodon
- Department of Investigational Cancer Therapeutics, UT MD Anderson, Houston, USA
| | - T Spanic
- Europa Donna Slovenia, Ljubljana, Slovenia
| | - G Pentheroudakis
- Scientific and Medical Division, European Society for Medical Oncology (ESMO), Lugano, Switzerland
| | - V Subbiah
- Early-Phase Drug Development, Sarah Cannon Research Institute (SCRI), Nashville, USA
| |
Collapse
|
8
|
Chunmao W, Haijie C, Zitong W, Zhi Y. A case of neoadjuvant targeted therapy with pralsetinib for locally advanced lung adenocarcinoma with RET fusion mutation. J Cardiothorac Surg 2024; 19:554. [PMID: 39354540 PMCID: PMC11443678 DOI: 10.1186/s13019-024-03092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
This case report details the successful treatment of a 68-year-old male patient with locally advanced RET-rearranged lung adenocarcinoma using neoadjuvant pralsetinib. The patient initially presented with a suspicious right upper lobe nodule, which was later diagnosed as lung adenocarcinoma following genetic testing that revealed a RET exon 12 fusion. After 2 months of neoadjuvant treatment with pralsetinib, a significant radiological response was observed, with a reduction in tumor size and metabolic activity. Subsequently, the patient underwent video-assisted thoracoscopic right upper lobectomy and mediastinal lymph node dissection. Postoperative pathological analysis revealed a major pathological response, with only 5% residual tumor cells in the primary lesion and no viable tumor cells in the lymph nodes. Postoperative pathological staging of TNM was ypT1aN0M0, stage IA1(AJCC, 8th edition). The patient recovered well after surgery, demonstrating the potential efficacy of neoadjuvant pralsetinib in locally advanced RET-rearranged lung adenocarcinoma. However, further clinical validation is required to establish the role of neoadjuvant targeted therapy and postoperative adjuvant therapy in this patient population.
Collapse
Affiliation(s)
- Wang Chunmao
- Department of Thoracic Surgery, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, No. 9 Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Cheng Haijie
- Department of Thoracic Surgery, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, No. 9 Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Wang Zitong
- Department of Thoracic Surgery, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, No. 9 Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Yang Zhi
- Department of Thoracic Surgery, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, No. 9 Beiguan Street, Tongzhou District, Beijing, 101149, China.
| |
Collapse
|
9
|
Zhang Y, Zheng WH, Zhou SH, Gu JL, Yu Q, Zhu YZ, Yan YJ, Zhu Z, Shang JB. Molecular genetics, therapeutics and RET inhibitor resistance for medullary thyroid carcinoma and future perspectives. Cell Commun Signal 2024; 22:460. [PMID: 39342195 PMCID: PMC11439284 DOI: 10.1186/s12964-024-01837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare type of thyroid malignancy that accounts for approximately 1-2% of all thyroid cancers (TCs). MTC include hereditary and sporadic cases, the former derived from a germline mutation of rearrangement during transfection (RET) proto-oncogene, whereas somatic RET mutations are frequently present in the latter. Surgery is the standard treatment for early stage MTC, and the 10-year survival rate of early MTC is over 80%. While for metastatic MTC, chemotherapy showing low response rate, and there was a lack of effective systemic therapies in the past. Due to the high risk (ca. 15-20%) of distant metastasis and limited systemic therapies, the 10-year survival rate of patients with advanced MTC was only 10-40% from the time of first metastasis. Over the past decade, targeted therapy for RET has developed rapidly, bringing hopes to patients with advanced and progressive MTC. Two multi-kinase inhibitors (MKIs) including Cabozantinib and Vandetanib have been shown to increase progression-free survival (PFS) for patients with metastatic MTC and have been approved as choices of first-line treatment. However, these MKIs have not prolonged overall survival (OS) and their utility is limited due to high rates of off-target toxicities. Recently, new generation TKIs, including Selpercatinib and Pralsetinib, have demonstrated highly selective efficacy against RET and more favorable side effect profiles, and gained approval as second-line treatment options. Despite the ongoing development of RET inhibitors, the management of advanced and progressive MTC remains challenging, drug resistance remains the main reason for treatment failure, and the mechanisms are still unclear. Besides, new promising therapeutic approaches, such as novel drug combinations and next generation RET inhibitors are under development. Herein, we overview the pathogenesis, molecular genetics and current management approaches of MTC, and focus on the recent advances of RET inhibitors, summarize the current situation and unmet needs of these RET inhibitors in MTC, and provide an overview of novel strategies for optimizing therapeutic effects.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei-Hui Zheng
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shi-Hong Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Lei Gu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi-Zhou Zhu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu-Jie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jin-Biao Shang
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Adashek JJ, Brodsky M, Levis MJ. Complete morphologic response to gilteritinib in ALK-rearranged acute myeloid leukemia. NPJ Precis Oncol 2024; 8:197. [PMID: 39256524 PMCID: PMC11387604 DOI: 10.1038/s41698-024-00701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
The cytogenetic abnormality inv(2)(p23q13) in acute myeloid leukemia (AML) results in a fusion of RANBP2 with ALK. This fusion makes ALK constitutively active and acts as a driver for the proliferation of AML cell lines. Gilteritinib, a FLT3 inhibitor approved in AML, also can inhibit ALK among other receptor tyrosine kinases. A 75-year-old-woman with a history of essential thrombocythemia (ET) and a presumed germline DDX41 mutation developed ALK-fusion positive AML and despite standard therapies was transfusion-dependent and globally declining. The patient has been on gilteritinib with an ongoing response of more than one year with near normal blood counts and no evidence of AML. The fact that she was found to harbor a presumed germline DDX41 alteration may account for why she developed, and yet survived, two myeloid neoplasms (ET and AML). Additionally, this demonstrates that gilteritinib is clinically active as an ALK inhibitor, and could be considered for use in any AML patient presenting with an inv(2(p23q13)) translocation. Finally, it is an example of using a disease-agnostic, precision medicine approach to arrive at a beneficial treatment.
Collapse
Affiliation(s)
- Jacob J Adashek
- START Center for Cancer Research - San Antonio, San Antonio, USA.
| | - Max Brodsky
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Mark J Levis
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
11
|
Farrokhi A, Atre T, Rever J, Fidanza M, Duey W, Salitra S, Myung J, Guo M, Jo S, Uzozie A, Baharvand F, Rolf N, Auer F, Hauer J, Grupp SA, Eydoux P, Lange PF, Seif AE, Maxwell CA, Reid GSD. The Eμ-Ret mouse is a novel model of hyperdiploid B-cell acute lymphoblastic leukemia. Leukemia 2024; 38:969-980. [PMID: 38519798 PMCID: PMC11073968 DOI: 10.1038/s41375-024-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eμ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eμ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eμ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.
Collapse
Affiliation(s)
- Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jenna Rever
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Mario Fidanza
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Wendy Duey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Samuel Salitra
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Junia Myung
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Meiyun Guo
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sumin Jo
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Anuli Uzozie
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Fatemeh Baharvand
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Franziska Auer
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hauer
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stephan A Grupp
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrice Eydoux
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philipp F Lange
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alix E Seif
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Maxwell
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Gregor S D Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Adashek JJ, Kato S, Sicklick JK, Lippman SM, Kurzrock R. If it's a target, it's a pan-cancer target: Tissue is not the issue. Cancer Treat Rev 2024; 125:102721. [PMID: 38522181 PMCID: PMC11093268 DOI: 10.1016/j.ctrv.2024.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Cancer is traditionally diagnosed and treated on the basis of its organ of origin (e.g., lung or colon cancer). However, organ-of-origin diagnostics does not reveal the underlying oncogenic drivers. Fortunately, molecular diagnostics have advanced at a breathtaking pace, and it is increasingly apparent that cancer is a disease of the genome. Hence, we now have multiple genomic biomarker-based, tissue-agnostic Food and Drug Administration approvals for both gene- and immune-targeted therapies (larotrectinib/entrectinib, for NTRK fusions; selpercatinib, RET fusions; dabrafenib plus trametinib, BRAFV600E mutations; pembrolizumab/dostarlimab, microsatellite instability; and pembrolizumab for high tumor mutational burden; pemigatinib is also approved for FGFR1-rearranged myeloid/lymphoid neoplasms). There are emerging targets as well, including but not limited to ALK, BRCA and/or homologous repair deficiency, ERBB2 (HER2), IDH1/2, KIT, KRASG12C, NRG1, and VHL. Many tissue-agnostic approvals center on rare/ultra-rare biomarkers (often < 1 % of cancers), necessitating screening hundreds of tumors to find a single one harboring the cognate molecular alteration. Approval has generally been based on small single-arm studies (<30-100 patients) with high response rates (>30 % to > 75 %) of remarkable durability. Because of biomarker rarity, single-gene testing is not practical; next generation sequencing of hundreds of genes must be performed to obtain timely answers. Resistance to biomarker-driven therapeutics is often due to secondary mutations or co-driver gene defects; studies are now addressing the need for customized drug combinations matched to the complex molecular alteration portfolio in each tumor. Future investigation should expand tissue-agnostic therapeutics to encompass both hematologic and solid malignancies and include biomarkers beyond those that are DNA-based.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA.
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Jason K Sicklick
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA; Department of Surgery, Division of Surgical Oncology, University of California San Diego, UC San Diego Health, San Diego, CA, USA; Department of Pharmacology, University of California San Diego, UC San Diego Health, San Diego, CA, USA
| | - Scott M Lippman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee Wisconsin, USA; WIN Consortium, Paris France; University of Nebraska, United States.
| |
Collapse
|
13
|
Yan N, Zhang H, Shen S, Guo S, Li X. Response to immune checkpoint inhibitor combination therapy in metastatic RET-mutated lung cancer from real-world retrospective data. BMC Cancer 2024; 24:178. [PMID: 38317126 PMCID: PMC10845679 DOI: 10.1186/s12885-024-11852-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/06/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The impact of immune checkpoint inhibitors (ICIs) based treatments on non-small cell lung cancers (NSCLCs) with RET fusions remains poorly understood. METHODS We screened patients with RET fusions at the First Affiliated Hospital of Zhengzhou University and included those who were treated with ICIs based regimens for further analysis. We evaluated clinical indicators including objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). RESULTS A total of 232 patients with RET fusions were included in the study. Of these, 129 patients had their programmed death-ligand 1 (PDL1) expression levels tested, with 22 patients (17.8%) having a PDL1 level greater than or equal to 50%. Additionally, tumor mutational burden (TMB) status was evaluated in 35 patients, with the majority (30/35, 85.8%) having a TMB of less than 10 mutations per megabase. Out of the 38 patients treated with ICI based regimens, the median PFS was 5 months (95% confidence interval [CI]: 2.4-7.6 months) and the median OS was 19 months (95% CI: 9.7-28.3 months) at the time of data analysis. Stratification based on treatment lines did not show any significant differences in OS (18 vs. 19 months, p = 0.63) and PFS (6 vs. 5 months, p = 0.86). The ORR for patients treated with ICIs was 26.3%. Furthermore, no significant differences were found for PFS (p = 0.27) and OS (p = 0.75) between patients with positive and negative PDL1 expression. Additionally, there was no significant difference in PD-L1 levels (p = 0.10) between patients who achieved objective response and those who did not. CONCLUSIONS Patients with RET fusion positive NSCLCs may not benefit from ICI based regimens and therefore should not be treated with ICIs in clinical practice.
Collapse
Affiliation(s)
- Ningning Yan
- Department of Medical Oncology, Zhengzhou University First Affiliated Hospital, 1st East Jianshe Road, Zhengzhou, Henan, 450002, China
| | - Huixian Zhang
- Department of Medical Oncology, Zhengzhou University First Affiliated Hospital, 1st East Jianshe Road, Zhengzhou, Henan, 450002, China
| | - Shujing Shen
- Department of Radiation Oncology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450002, China
| | - Sanxing Guo
- Department of Medical Oncology, Zhengzhou University First Affiliated Hospital, 1st East Jianshe Road, Zhengzhou, Henan, 450002, China.
| | - Xingya Li
- Department of Medical Oncology, Zhengzhou University First Affiliated Hospital, 1st East Jianshe Road, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
14
|
Mol P, Balaya RDA, Dagamajalu S, Babu S, Chandrasekaran P, Raghavan R, Suresh S, Ravishankara N, Raju AH, Nair B, Modi PK, Mahadevan A, Prasad TSK, Raju R. A network map of GDNF/RET signaling pathway in physiological and pathological conditions. J Cell Commun Signal 2023; 17:1089-1095. [PMID: 36715855 PMCID: PMC10409931 DOI: 10.1007/s12079-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) signals through a multi-component receptor system predominantly consisting of glycosyl-phosphatidylinositol-anchored GDNF family receptor alpha-1 (GFRα1) and the Rearranged during transfection (RET) receptor tyrosine kinase. GDNF/RET signaling is vital to the central and peripheral nervous system, kidney morphogenesis, and spermatogenesis. In addition, the dysregulation of the GDNF/RET signaling has been implicated in the pathogenesis of cancers. Despite the extensive research on GDNF/RET signaling, a molecular network of reactions induced by GDNF reported across the published literature. However, a comprehensive GDNF/RET pathway resource is currently unavailable. We describe an integrated signaling pathway reaction map of GDNF/RET consisting of 1151 molecular reactions. These include information pertaining to 52 molecular association events, 70 enzyme catalysis events, 36 activation/inhibition events, 22 translocation events, 856 gene regulation events, and 115 protein-level expression events induced by GDNF in diverse cell types. We developed a comprehensive GDNF/RET signaling network map based on these molecular reactions. The pathway map was made accessible through WikiPathways database ( https://www.wikipathways.org/index.php/Pathway:WP5143 ). Biocuration and development of gene regulatory network map of GDNF/RET signaling pathway.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525 India
| | | | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Sreeranjini Babu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Pavithra Chandrasekaran
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Reshma Raghavan
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Sneha Suresh
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Namitha Ravishankara
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Anu Hemalatha Raju
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525 India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | | | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018 India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| |
Collapse
|
15
|
Schrenk KG, Weschenfelder W, Spiegel C, Agaimy A, Stöhr R, Hartmann A, Gaßler N, Drescher R, Freesmeyer M, Malouhi A, Bürckenmeyer F, Aschenbach R, Teichgräber U, Kögler C, Vogt M, Hofmann GO, Hochhaus A. Exceptional response to neoadjuvant targeted therapy with the selective RET inhibitor selpercatinib in RET-fusion-associated sarcoma. J Cancer Res Clin Oncol 2023; 149:5493-5496. [PMID: 36469155 PMCID: PMC10356868 DOI: 10.1007/s00432-022-04496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
With the increasing use of next-generation sequencing, highly effective targeted therapies have been emerging as treatment options for several cancer types. Recurrent gene-fusions have been recognized in sarcomas; however, options for targeted therapy remain scarce. Here, we describe a case of a sarcoma, associated with a RET::TRIM33-fusion gene with an exceptional response to a neoadjuvant therapy with the selective RET inhibitor selpercatinib. Resected tumor revealed subtotal histopathologic response. This is the first report of successful targeted therapy with selpercatinib in RET-fusion-associated sarcomas. As new targeted therapies are under development, similar treatment options may become available for sarcoma patients.
Collapse
Affiliation(s)
- Karin G Schrenk
- Department of Hematology and Internal Oncology, Clinic of Internal Medicine II, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Wolfram Weschenfelder
- Clinic of Trauma-, Hand- and Reconstructive Surgery, University Hospital Jena, Jena, Germany
| | - Christian Spiegel
- Clinic of Trauma-, Hand- and Reconstructive Surgery, University Hospital Jena, Jena, Germany
| | - Abbas Agaimy
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Stöhr
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nikolaus Gaßler
- Institute of Forensic Medicine, Section of Pathology, University Hospital Jena, Jena, Germany
| | - Robert Drescher
- Clinic of Nuclear Medicine, University Hospital Jena, Jena, Germany
| | | | - Amer Malouhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Florian Bürckenmeyer
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - René Aschenbach
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Christine Kögler
- Clinic of General- and Visceral Surgery, Malteser Hospital St. Marien, Erlangen, Germany
| | - Matthias Vogt
- Clinic in the Medicenter PartGmbB, Erlangen, Germany
| | - Gunther O Hofmann
- Clinic of Trauma-, Hand- and Reconstructive Surgery, University Hospital Jena, Jena, Germany
| | - Andreas Hochhaus
- Department of Hematology and Internal Oncology, Clinic of Internal Medicine II, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
16
|
Gristina V, Pisapia P, Barraco N, Pepe F, Iacono F, La Mantia M, Peri M, Galvano A, Incorvaia L, Badalamenti G, Bazan V, Troncone G, Russo A, Malapelle U. The significance of tissue-agnostic biomarkers in solid tumors: the more the merrier? Expert Rev Mol Diagn 2023; 23:851-861. [PMID: 37552548 DOI: 10.1080/14737159.2023.2245752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION To date, several emerging biomarkers have gained considerable interest in the field of predictive molecular oncology. The advent of precision medicine has led to the development of innovative drugs targeting rare molecular pathways independently from histology, defined as tissue-agnostic drugs. AREAS COVERED Although there is a lot of promise for this new tissue-agnostic model in the oncological scenario, crucial issues from both the diagnostic and therapeutic standpoint are emerging. This review aims to critically examine the role of tissue-agnostic biomarkers in different solid tumors, focusing on the prevalence and methods of detection of agnostic biomarkers together with drug approvals to guide clinicians in this evolving landscape. EXPERT OPINION To strengthen the framework for tissue-agnostic approvals, the dialogue between regulatory, industrial, and academic parties should be intensified. Critical questions include the development of an efficient network system that can overcome the heterogeneity of patients' inclusion criteria along with the increasingly difficult interpretation of next-generation sequencing (NGS) profiling technologies. Cost-effectiveness and risk-benefit studies are needed in the national context considering the modalities of access to diagnostic tests and reimbursement of treatments.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Pasquale Pisapia
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Federica Iacono
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Maria La Mantia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Marta Peri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| |
Collapse
|
17
|
Yen CC, Yeh YM, Huang HY, Ting YL, Fu PA, Lin TC, Liu IT, Yen CJ. Clinical Characteristics and Responses to Immune Checkpoint Inhibitors in RET-Aberrant Digestive Tract Tumours. Target Oncol 2023:10.1007/s11523-023-00974-6. [PMID: 37347391 DOI: 10.1007/s11523-023-00974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND RET plays an oncogenic role, and its aberrations are potentially actionable. However, they have seldom been reported in tumours other than lung or thyroid cancers. The correlation of RET aberrations with clinical characteristics, co-occurring aberrations, and responses to immune checkpoint inhibitors (ICPi) have not been explored in digestive tract tumours. OBJECTIVES The aim of the study was to elucidate the clinical characteristics, frequently co-altered genes, and treatment responses in RET-aberrant digestive tract tumours. PATIENTS AND METHODS We retrospectively evaluated patients with digestive tract cancers for RET-aberrant tumours via FoundationOne CDx tumour-based selected genome sequencing from Jan 2016 to Jan 2021. RESULTS In a median follow-up time of 51 months, a total of 453 patients were analysed. RET-aberrant tumours accounted for 4.4% in the studied population (n = 20), and 1.1% had an oncogenic fusion (n = 5). APC, KRAS, TP53, MSH6 and STK11 were the differentially co-altered genes (all false discovery rates <0.05). The presence of RET aberrations alone was not a significant prognostic factor. Eleven patients with RET-aberrant tumours received ICPi-based treatment and none achieved an objective response. In contrast, 47 patients with non-aberrant tumours received ICPi treatment and had an objective response rate of 27.7% and a significantly longer treatment duration (6.2 vs 2.8 months, p = 0.0008). CONCLUSIONS Albeit rarely, RET aberrations can be found in digestive tract tumours. Patients with RET-aberrant tumours have a blunted response to ICPi and a comparable prognosis as compared with RET-wild type tumours. Together, these results provide insights into this rare but potentially actionable target in digestive tract tumours.
Collapse
Affiliation(s)
- Chih-Chieh Yen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Yeh
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Hsuan-Yi Huang
- Division of Colorectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Lin Ting
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Pei-An Fu
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Tzu-Chien Lin
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - I-Ting Liu
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Chia-Jui Yen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan.
| |
Collapse
|
18
|
Gouda MA, Subbiah V. Precision oncology with selective RET inhibitor selpercatinib in RET-rearranged cancers. Ther Adv Med Oncol 2023; 15:17588359231177015. [PMID: 37360768 PMCID: PMC10288430 DOI: 10.1177/17588359231177015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Rearranged during transfection (RET) is a protooncogene that encodes for receptor tyrosine kinase with downstream effects on multiple cellular pathways. Activating RET alterations can occur and lead to uncontrolled cellular proliferation as a hallmark of cancer development. Oncogenic RET fusions are present in nearly 2% of patients with non-small cell lung cancer (NSCLC), 10-20% of patients with thyroid cancer, and <1% across the pan-cancer spectrum. In addition, RET mutations are drivers in 60% of sporadic medullary thyroid cancers and 99% of hereditary thyroid cancers. The discovery, rapid clinical translation, and trials leading to FDA approvals of selective RET inhibitors, selpercatinib and pralsetinib, have revolutionized the field of RET precision therapy. In this article, we review the current status on the use of the selective RET inhibitor, selpercatinib, in RET fusion-positive tumors: NSCLC, thyroid cancers, and the more recent tissue-agnostic activity leading to FDA approval.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center. Houston, TX, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute, 1100 Dr. Martin L. King Jr. Blvd. Suite 800. Nashville, TN 37203, USA
| |
Collapse
|
19
|
Chen Y, Ning Y, Chen Z, Xue Y, Wu Q, Duan W, Ding J, Zhou J, Xie H, Zhang H. Design, synthesis and pharmacological evaluation of 2,3-dihydrobenzofuran IRAK4 inhibitors for the treatment of diffuse large B-cell lymphoma. Eur J Med Chem 2023; 256:115453. [PMID: 37163947 DOI: 10.1016/j.ejmech.2023.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Interleukin-1 receptor associated kinase 4 (IRAK4) is a critical mediator of MYD88 L265P-induced NF-κB activation, indicating it is a promising therapeutic target for diffuse large B-cell lymphoma (DLBCL). Herein we report the discovery of a series of 2,3-dihydrobenzofuran IRAK4 inhibitors through structure-based drug design. The representative compound 22 exhibited strong IRAK4 inhibitory potency (IRAK4 IC50 = 8.7 nM), favorable kinase selectivity and high antiproliferative activity against the MYD88 L265P DLBCL cell line (OCI-LY10 IC50 = 0.248 μM). Compound 22 also exhibited the ability to inhibit the activation of IRAK4 signaling pathway and induce apoptosis in MYD88 L265P DLBCL cell line. In combination with Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, 22 showed enhanced apoptosis-inducing effect and antiproliferative potency. The most advanced compound 22 in this inhibitor series holds promise for further development into efficacious and selective IRAK4 inhibitors for the treatment of DLBCL.
Collapse
Affiliation(s)
- Yun Chen
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yi Ning
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Zhiwei Chen
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China
| | - Yaping Xue
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Qingyun Wu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wenhu Duan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, PR China.
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
20
|
Adashek JJ, Sapkota S, de Castro Luna R, Seiwert TY. Complete response to alectinib in ALK-fusion metastatic salivary ductal carcinoma. NPJ Precis Oncol 2023; 7:36. [PMID: 37041305 PMCID: PMC10090142 DOI: 10.1038/s41698-023-00378-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
The advent of next-generation sequencing (NGS) has allowed for the identification of novel therapeutic targets for patients with uncommon cancers. It is well known that fusion translocations are potent driver of cancer pathogenesis and can render tumors exquisitely sensitive to matching targeted therapies. Here we describe a patient with ALK-fusion positive widely metastatic salivary ductal carcinoma, who achieved a durable complete response from alectinib, a potent and specific ALK tyrosine kinase inhibitor. This case serves as another reminder that ALK-fusions can be targeted regardless of histology and can afford patients dramatic and durable benefit. It also emphasizes the need for insurance coverage for such beneficial therapies. While ALK fusions are exceedingly rare in salivary ductal carcinoma, the presence of multiple other targetable aberrations supports the recommendation for universal NGS testing for such tumors.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA.
| | - Surendra Sapkota
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD, USA
| | - Rodrigo de Castro Luna
- Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Tanguy Y Seiwert
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
21
|
Hu X, Khatri U, Shen T, Wu J. Progress and challenges in RET-targeted cancer therapy. Front Med 2023; 17:207-219. [PMID: 37131086 DOI: 10.1007/s11684-023-0985-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
The rearranged during transfection (RET) is a receptor protein tyrosine kinase. Oncogenic RET fusions or mutations are found most often in non-small cell lung cancer (NSCLC) and in thyroid cancer, but also increasingly in various types of cancers at low rates. In the last few years, two potent and selective RET protein tyrosine kinase inhibitors (TKIs), pralsetinib (BLU-667) and selpercatinib (LOXO-292, LY3527723) were developed and received regulatory approval. Although pralsetinib and selpercatinib gave high overall response rates (ORRs), < 10% of patients achieved a complete response (CR). The RET TKI-tolerated residual tumors inevitably develop resistance by secondary target mutations, acquired alternative oncogenes, or MET amplification. RET G810 mutations located at the kinase solvent front site were identified as the major on-target mechanism of acquired resistance to both selpercatinib and pralsetinib. Several next-generation of RET TKIs capable of inhibiting the selpercatinib/pralsetinib-resistant RET mutants have progressed to clinical trials. However, it is likely that new TKI-adapted RET mutations will emerge to cause resistance to these next-generation of RET TKIs. Solving the problem requires a better understanding of the multiple mechanisms that support the RET TKI-tolerated persisters to identify a converging point of vulnerability to devise an effective co-treatment to eliminate the residual tumors.
Collapse
Affiliation(s)
- Xueqing Hu
- Peggy and Charles Stephenson Cancer Center, and Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ujjwol Khatri
- Peggy and Charles Stephenson Cancer Center, and Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Tao Shen
- Peggy and Charles Stephenson Cancer Center, and Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, and Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
22
|
Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, Ghanaatian M, Rezaei-Tazangi F, Baziyar P, Ahmadi A, Hamblin MR, Aref AR. Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci 2023; 80:104. [PMID: 36947256 PMCID: PMC11073124 DOI: 10.1007/s00018-023-04729-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 03/23/2023]
Abstract
Targeted therapy is a new cancer treatment approach, involving drugs that particularly target specific proteins in cancer cells, such as receptor tyrosine kinases (RTKs) which are involved in promoting growth and proliferation, Therefore inhibiting these proteins could impede cancer progression. An understanding of RTKs and the relevant signaling cascades, has enabled the development of many targeted drug therapies employing RTK inhibitors (RTKIs) some of which have entered clinical application. Here we discuss RTK structures, activation mechanisms and functions. Moreover, we cover the potential effects of combination drug therapy (including chemotherapy or immunotherapy agents with one RTKI or multiple RTKIs) especially for drug resistant cancers.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Elmira Fardi
- Medical Branch, Islamic Azad University of Tehran, Tehran, Iran
| | - Hajarossadat Ghaderi
- Laboratory of Regenerative and Medical Innovation, Pasteur Institute of Iran, Tehran, Iran
| | - Sahar Palizdar
- Division of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Tehran East Branch, Tehran, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
23
|
Gupta A, Kurzrock R, Adashek JJ. Evolution of the Targeted Therapy Landscape for Cholangiocarcinoma: Is Cholangiocarcinoma the 'NSCLC' of GI Oncology? Cancers (Basel) 2023; 15:1578. [PMID: 36900367 PMCID: PMC10000383 DOI: 10.3390/cancers15051578] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
In the past two decades, molecular targeted therapy has revolutionized the treatment landscape of several malignancies. Lethal malignancies such as non-small cell lung cancer (NSCLC) have become a model for precision-matched immune- and gene-targeted therapies. Multiple small subgroups of NSCLC defined by their genomic aberrations are now recognized; remarkably, taken together, almost 70% of NSCLCs now have a druggable anomaly. Cholangiocarcinoma (CCA) is a rare tumor with a poor prognosis. Novel molecular alterations have been recently identified in patients with CCA, and the potential for targeted therapy is being realized. In 2019, a fibroblast growth factor receptor 2 (FGFR2) inhibitor, pemigatinib, was the first approved targeted therapy for patients with locally advanced or metastatic intrahepatic CCA who had FGFR2 gene fusions or rearrangement. More regulatory approvals for matched targeted therapies as second-line or subsequent treatments in advanced CCA followed, including additional drugs that target FGFR2 gene fusion/rearrangement. Recent tumor-agnostic approvals include (but are not limited to) drugs that target mutations/rearrangements in the following genes and are hence applicable to CCA: isocitrate dehydrogenase 1 (IDH1); neurotrophic tropomyosin-receptor kinase (NTRK); the V600E mutation of the BRAF gene (BRAFV600E); and high tumor mutational burden, high microsatellite instability, and gene mismatch repair-deficient (TMB-H/MSI-H/dMMR) tumors. Ongoing trials investigate HER2, RET, and non-BRAFV600E mutations in CCA and improvements in the efficacy and safety of new targeted treatments. This review aims to present the current status of molecularly matched targeted therapy for advanced CCA.
Collapse
Affiliation(s)
- Amol Gupta
- Department of Medicine, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Razelle Kurzrock
- WIN Consortium, San Diego, CA 92093, USA
- Division of Hematology and Oncology, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA
- Division of Hematology and Oncology, University of Nebraska, Omaha, NE 68182, USA
| | - Jacob J. Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
24
|
Miyazaki K, Kishimoto H, Kobayashi H, Suzuki A, Higuchi K, Shirasaka Y, Inoue K. The Glycosylated N-Terminal Domain of MUC1 Is Involved in Chemoresistance by Modulating Drug Permeation Across the Plasma Membrane. Mol Pharmacol 2023; 103:166-175. [PMID: 36804202 DOI: 10.1124/molpharm.122.000597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022] Open
Abstract
Mucin 1 (MUC1) is aberrantly expressed in various cancers and implicated in cancer progression and chemoresistance. Although the C-terminal cytoplasmic tail of MUC1 is involved in signal transduction, promoting chemoresistance, the role of the extracellular MUC1 domain [N-terminal glycosylated domain (NG)-MUC1] remains unclear. In this study, we generated stable MCF7 cell lines expressing MUC1 and cytoplasmic tail-deficient MUC1 (MUC1ΔCT) and show that NG-MUC1 is involved in drug resistance by modulating the transmembrane permeation of various compounds without cytoplasmic tail signaling. Heterologous expression of MUC1ΔCT increased cell survival in treating anticancer drugs (such as 5-fluorouracil, cisplatin, doxorubicin, and paclitaxel), in particular by causing an approximately 150-fold increase in the IC50 of paclitaxel, a lipophilic drug, compared with the control [5-fluorouracil (7-fold), cisplatin (3-fold), and doxorubicin (18-fold)]. The uptake studies revealed that accumulations of paclitaxel and Hoechst 33342, a membrane-permeable nuclear staining dye, were reduced to 51% and 45%, respectively, in cells expressing MUC1ΔCT via ABCB1/P-gp-independent mechanisms. Such alterations in chemoresistance and cellular accumulation were not observed in MUC13-expressing cells. Furthermore, we found that MUC1 and MUC1ΔCT increased the cell-adhered water volume by 2.6- and 2.7-fold, respectively, suggesting the presence of a water layer on the cell surface created by NG-MUC1. Taken together, these results suggest that NG-MUC1 acts as a hydrophilic barrier element against anticancer drugs and contributes to chemoresistance by limiting the membrane permeation of lipophilic drugs. Our findings could help better the understanding of the molecular basis of drug resistance in cancer chemotherapy. SIGNIFICANCE STATEMENT: Membrane-bound mucin (MUC1), aberrantly expressed in various cancers, is implicated in cancer progression and chemoresistance. Although the MUC1 cytoplasmic tail is involved in proliferation-promoting signal transduction thereby leading to chemoresistance, the significance of the extracellular domain remains unclear. This study clarifies the role of the glycosylated extracellular domain as a hydrophilic barrier element to limit the cellular uptake of lipophilic anticancer drugs. These findings could help better the understanding of the molecular basis of MUC1 and drug resistance in cancer chemotherapy.
Collapse
Affiliation(s)
- Kaori Miyazaki
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Hanai Kobayashi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Ayaka Suzuki
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Yoshiyuki Shirasaka
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| |
Collapse
|
25
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
26
|
Addeo A, Miranda-Morales E, den Hollander P, Friedlaender A, O Sintim H, Wu J, Mani SA, Subbiah V. RET aberrant cancers and RET inhibitor therapies: Current state-of-the-art and future perspectives. Pharmacol Ther 2023; 242:108344. [PMID: 36632846 PMCID: PMC10141525 DOI: 10.1016/j.pharmthera.2023.108344] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
Precision oncology informed by genomic information has evolved in leaps and bounds over the last decade. Although non-small cell lung cancer (NSCLC) has moved to center-stage as the poster child of precision oncology, multiple targetable genomic alterations have been identified in various cancer types. RET alterations occur in roughly 2% of all human cancers. The role of RET as oncogenic driver was initially identified in 1985 after the discovery that transfection with human lymphoma DNA transforms NIH-3T3 fibroblasts. Germline RET mutations are causative of multiple endocrine neoplasia type 2 syndrome, and RET fusions are found in 10-20% of papillary thyroid cases and are detected in most patients with advanced sporadic medullary thyroid cancer. RET fusions are oncogenic drivers in 2% of Non-small cell lung cancer. Rapid translation and regulatory approval of selective RET inhibitors, selpercatinib and pralsetinib, have opened up the field of RET precision oncology. This review provides an update on RET precision oncology from bench to bedside and back. We explore the impact of selective RET inhibitor in patients with advanced NSCLC, thyroid cancer, and other cancers in a tissue-agnostic fashion, resistance mechanisms, and future directions.
Collapse
Affiliation(s)
- Alfredo Addeo
- Oncology Department, University Hospital Geneva (HUG), Geneva, Switzerland
| | - Ernesto Miranda-Morales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; Legorreta Cancer Center, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Alex Friedlaender
- Oncology Department, University Hospital Geneva (HUG), Geneva, Switzerland
| | - Herman O Sintim
- Purdue Institute for Cancer Research, Institute for Drug Discovery and Department of Chemistry, West Lafayette, IN, USA
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; Legorreta Cancer Center, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics(,) Division of Cancer Medicine, Unit 455, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
27
|
Zhou L, Li J, Zhang X, Xu Z, Yan Y, Hu K. An integrative pan cancer analysis of RET aberrations and their potential clinical implications. Sci Rep 2022; 12:13913. [PMID: 35978072 PMCID: PMC9386015 DOI: 10.1038/s41598-022-17791-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022] Open
Abstract
RET (rearranged during transfection), encoding a tyrosine kinase receptor, is a novel therapeutic target for cancers. The aberrations of RET are commonly found in cancers. Here, we profiled a comprehensive genomic landscape of RET mutations, copy number variants (CNVs), co-occurrence of RET and its mRNA expression and methylation levels in pan cancer, paving the way to the development of new RET-targeted therapies in clinic. Analysis of RET somatic mutations, CNVs, co-occurrence, mRNA expression and methylation were performed among 32 cancer types from The Cancer Genome Atlas (TCGA) dataset covering a total of 10,953 patients with 10,967 samples. RET aberrations were found in 3.0% of diverse cancers. The top two RET-altered tumors were skin cutaneous melanoma (SKCM) and uterine corpus endometrial carcinoma (UCEC) with dominant mutations in the other and PKinase_Tyr domains. RET-G823E and RET-S891L were most commonly found in SKCM and UCEC. Thyroid carcinoma (THCA) demonstrated the highest rate of coiled-coil domain containing 6 (CCDC6)-RET fusions, which constitutively activate RET kinase. Two FDA-approved RET inhibitors-pralsetinib and selpercatinib have been implied for the treatment of patients with RET S891L mutant UCEC and the treatment of patients with metastatic RET-fusion positive THCA and non-small cell lung cancer (NSCLC) at therapeutic level 1. We also identified four RET M918T-altered cases in patients with pheochromocytoma and paraganglioma (PCPG), which may induce drug resistance against multikinase inhibitors. Next, 273 co-occurring aberrations, most frequently in Notch signaling, TGF-β pathway, cell cycle, and Ras-Raf-MEK-Erk/JNK signaling, were uncovered among 311 RET altered cases. TP53 mutations (162 patients) leads to the most significant co-occurrence associated with RET aberrations. Furthermore, the RET expression was found most significantly increased in breast invasive carcinoma (BRCA) and neck squamous cell carcinoma (HNSC), as compared to their corresponding normal tissues. At last, patients with higher expression and sequence variant frequency have a worse prognosis, such as sarcoma patients. This work provided a profound and comprehensive analysis of RET and co-occurred alterations, RET mRNA expression and the clinical significance in pan cancer, offering new insights into targeted therapy for patients with RET anomalies.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaofang Zhang
- Departments of Burn and Plastic, Ningxiang People's Hospital, Hunan University of Chinese Medicine, Changsha, 410600, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
28
|
Scheffler M, Michels S, Nogova L. [Targeted treatment of non-small cell lung cancer]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:700-708. [PMID: 35925271 DOI: 10.1007/s00108-022-01372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Non-small cell lung cancer (NSCLC) has made a remarkable development in recent decades with respect to its perception. In the late 1990s it was the "problem child" as the main cause of cancer with increasing tendencies, especially in women and with a pronounced stigmatization. It is now the role model as a biologically rational targeted treatment based on molecular dependencies of the tumor with a vast improvement of the traditionally poor survival times. Molecular tumor boards have long followed the NSCLC example in the assessment of targeted treatment approaches for other tumor entities. This review article gives an overview of the current possibilities for targeted treatment of NSCLC, which nowadays are applicable for nearly one third of all patients with NSCLC.
Collapse
Affiliation(s)
- Matthias Scheffler
- Klinik I für Innere Medizin, Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Lung Cancer Group Cologne, Universitätsklinikum Köln (AöR), Kerpener Str. 62, 50937, Köln, Deutschland.
| | - Sebastian Michels
- Klinik I für Innere Medizin, Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Lung Cancer Group Cologne, Universitätsklinikum Köln (AöR), Kerpener Str. 62, 50937, Köln, Deutschland
| | - Lucia Nogova
- Klinik I für Innere Medizin, Centrum für Integrierte Onkologie (CIO) Aachen Bonn Köln Düsseldorf, Lung Cancer Group Cologne, Universitätsklinikum Köln (AöR), Kerpener Str. 62, 50937, Köln, Deutschland
| |
Collapse
|
29
|
Román-Gil MS, Pozas J, Rosero-Rodríguez D, Chamorro-Pérez J, Ruiz-Granados Á, Caracuel IR, Grande E, Molina-Cerrillo J, Alonso-Gordoa T. Resistance to RET targeted therapy in Thyroid Cancer: Molecular basis and overcoming strategies. Cancer Treat Rev 2022; 105:102372. [DOI: 10.1016/j.ctrv.2022.102372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/07/2022]
|
30
|
Matrone A, Gambale C, Prete A, Elisei R. Sporadic Medullary Thyroid Carcinoma: Towards a Precision Medicine. Front Endocrinol (Lausanne) 2022; 13:864253. [PMID: 35422765 PMCID: PMC9004483 DOI: 10.3389/fendo.2022.864253] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a neuroendocrine malignant tumor originating from parafollicular C-cells producing calcitonin. Most of cases (75%) are sporadic while the remaining (25%) are hereditary. In these latter cases medullary thyroid carcinoma can be associated (multiple endocrine neoplasia type IIA and IIB) or not (familial medullary thyroid carcinoma), with other endocrine diseases such as pheochromocytoma and/or hyperparathyroidism. RET gene point mutation is the main molecular alteration involved in MTC tumorigenesis, both in sporadic and in hereditary cases. Total thyroidectomy with prophylactic/therapeutic central compartment lymph nodes dissection is the initial treatment of choice. Further treatments are needed according to tumor burden and rate of progression. Surgical treatments and local therapies are advocated in the case of single or few local or distant metastasis and slow rate of progression. Conversely, systemic treatments should be initiated in cases with large metastatic and rapidly progressive disease. In this review, we discuss the details of systemic treatments in advanced and metastatic sporadic MTC, focusing on multikinase inhibitors, both those already used in clinical practice and under investigation, and on emerging treatments such as highly selective RET inhibitors and radionuclide therapy.
Collapse
Affiliation(s)
| | | | | | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Endocrine Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|