1
|
Pecci V, Pierconti F, Carlino A, Pinto F, Gradilone U, De Martino S, Rotili D, Grassi C, Pontecorvi A, Gaetano C, Strigari L, Farsetti A, Nanni S. Prognostic Impact of H19/Cell Adhesion Molecules Circuitry on Prostate Cancer Biopsy. Biomedicines 2024; 12:2322. [PMID: 39457633 PMCID: PMC11504315 DOI: 10.3390/biomedicines12102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Metastatic prostate cancer (PCa) presents a significant challenge in oncology due to its high mortality rate and the absence of effective biomarkers for predicting patient outcomes. Building on previous research that highlighted the critical role of the long noncoding RNA (lncRNA) H19 and cell adhesion molecules in promoting tumor progression under hypoxia and estrogen stimulation, this study aimed to assess the potential of these components as prognostic biomarkers for PCa at the biopsy stage. METHODS This research utilized immunohistochemistry and droplet digital PCR to analyze formalin-fixed paraffin-embedded (FFPE) biopsies, focusing on specific markers within the H19/cell adhesion molecules pathway. RESULTS A novel multivariate analysis led to a "BioScore", a composite biomarker score to predict disease progression. This score is based on evaluating five key markers: the expression levels of Hypoxia-Inducible Factor 2 Alpha (HIF-2α), endothelial Nitric Oxide Synthase (eNOS), β4 integrin, E-cadherin transcript (CDH1), and lncRNA H19. The criteria for the "BioScore" involve identifying three out of these five markers, combining elevated levels of HIF-2α, eNOS, β4 integrin, and CDH1 with reduced H19 expression. CONCLUSIONS This finding suggests the possibility of identifying, at the time of biopsy, PCa patients at higher risk of metastasis based on dysregulation in the H19/cell adhesion molecules circuitry. This study provides a valuable opportunity for early intervention in managing PCa, potentially contributing to personalized treatment strategies.
Collapse
Affiliation(s)
- Valeria Pecci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.P.); (F.P.); (U.G.); (A.P.)
| | - Francesco Pierconti
- Fondazione “Policlinico Universitario A. Gemelli IRCCS”, 00168 Rome, Italy; (F.P.); (A.C.); (C.G.)
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Angela Carlino
- Fondazione “Policlinico Universitario A. Gemelli IRCCS”, 00168 Rome, Italy; (F.P.); (A.C.); (C.G.)
| | - Francesco Pinto
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.P.); (F.P.); (U.G.); (A.P.)
- Fondazione “Policlinico Universitario A. Gemelli IRCCS”, 00168 Rome, Italy; (F.P.); (A.C.); (C.G.)
| | - Ugo Gradilone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.P.); (F.P.); (U.G.); (A.P.)
| | - Sara De Martino
- National Research Council (CNR)–Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” (IASI), 00185 Rome, Italy;
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Claudio Grassi
- Fondazione “Policlinico Universitario A. Gemelli IRCCS”, 00168 Rome, Italy; (F.P.); (A.C.); (C.G.)
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.P.); (F.P.); (U.G.); (A.P.)
- Fondazione “Policlinico Universitario A. Gemelli IRCCS”, 00168 Rome, Italy; (F.P.); (A.C.); (C.G.)
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Lidia Strigari
- Department of Medical Physics, S. Orsola Malpighi University Hospital, 40138 Bologna, Italy;
| | - Antonella Farsetti
- National Research Council (CNR)–Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” (IASI), 00185 Rome, Italy;
| | - Simona Nanni
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (V.P.); (F.P.); (U.G.); (A.P.)
- Fondazione “Policlinico Universitario A. Gemelli IRCCS”, 00168 Rome, Italy; (F.P.); (A.C.); (C.G.)
| |
Collapse
|
2
|
Bialkowska K, El Khalki L, Rana PS, Wang W, Lindner DJ, Parker Y, Languino LR, Altieri DC, Pluskota E, Sossey-Alaoui K, Plow EF. Role of Kindlin 2 in prostate cancer. Sci Rep 2024; 14:19809. [PMID: 39191802 PMCID: PMC11349918 DOI: 10.1038/s41598-024-70202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Kindlin-2 is a cytoskeletal adapter protein that is present in many different cell types. By virtue of its interaction with multiple binding partners, Kindlin-2 intercalates into numerous signaling pathways and cytoskeletal nodes. A specific interaction of Kindlin-2 that is of paramount importance in many cellular responses is its direct binding to the cytoplasmic tails of integrins, an interaction that controls many of the adhesive, migratory and signaling responses mediated by members of the integrin family of cell-surface heterodimers. Kindlin-2 is highly expressed in many cancers and is particularly prominent in prostate cancer cells. CRISPR/cas9 was used as a primary approach to knockout expression of Kindlin-2 in both androgen-independent and dependent prostate cancer cell lines, and the effects of Kindlin-2 suppression on oncogenic properties of these prostate cancer cell lines was examined. Adhesion to extracellular matrix proteins was markedly blunted, consistent with the control of integrin function by Kindlin-2. Migration across matrices was also affected. Anchorage independent growth was markedly suppressed. These observations indicate that Kindlin-2 regulates hallmark features of prostate cancer cells. In androgen expressing cells, testosterone-stimulated adhesion was Kindlin-2-dependent. Furthermore, tumor growth of a prostate cancer cell line lacking Kindlin-2 and implanted into the prostate gland of immunocompromised mice was markedly blunted and was associated with suppression of angiogenesis in the developing tumor. These results establish a key role of Kindlin-2 in prostate cancer progression and suggest that Kindlin-2 represents an interesting therapeutic target for treatment of prostate cancer.
Collapse
Affiliation(s)
- Katarzyna Bialkowska
- Department of Cardiovascular Biology and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44139, USA
| | - Lamyae El Khalki
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Priyanka S Rana
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Wei Wang
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Daniel J Lindner
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Yvonne Parker
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Lucia R Languino
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Elzbieta Pluskota
- Department of Cardiovascular Biology and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44139, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Division of Cancer Biology, MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA.
| | - Edward F Plow
- Department of Cardiovascular Biology and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44139, USA.
| |
Collapse
|
3
|
Zhong M, Xu W, Tian P, Zhang Q, Wang Z, Liang L, Zhang Q, Yang Y, Lu Y, Wei G. An Inherited Allele Confers Prostate Cancer Progression and Drug Resistance via RFX6/HOXA10-Orchestrated TGFβ Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401492. [PMID: 38932472 PMCID: PMC11348203 DOI: 10.1002/advs.202401492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Genetic and epigenetic alterations are cancer hallmark characteristics. However, the role of inherited cancer predisposition alleles in co-opting lineage factor epigenetic reprogramming and tumor progression remains elusive. Here the FinnGen cohort phenome-wide analysis, along with multiple genome-wide association studies, has consistently identified the rs339331-RFX6/6q22 locus associated with prostate cancer (PCa) risk across diverse populations. It is uncovered that rs339331 resides in a reprogrammed androgen receptor (AR) binding site in PCa tumors, with the T risk allele enhancing AR chromatin occupancy. RFX6, an AR-regulated gene linked to rs339331, exhibits synergistic prognostic value for PCa recurrence and metastasis. This comprehensive in vitro and in vivo studies demonstrate the oncogenic functions of RFX6 in promoting PCa cell proliferation and metastasis. Mechanistically, RFX6 upregulates HOXA10 that profoundly correlates with adverse PCa outcomes and is pivotal in RFX6-mediated PCa progression, facilitating the epithelial-mesenchymal transition (EMT) and modulating the TGFβ/SMAD signaling axis. Clinically, HOXA10 elevation is associated with increased EMT scores, tumor advancement and PCa recurrence. Remarkably, reducing RFX6 expression restores enzalutamide sensitivity in resistant PCa cells and tumors. This findings reveal a complex interplay of genetic and epigenetic mechanisms in PCa pathogenesis and drug resistance, centered around disrupted prostate lineage AR signaling and abnormal RFX6 expression.
Collapse
Affiliation(s)
- Mengjie Zhong
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Pan Tian
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Qin Zhang
- Disease Networks Research UnitFaculty of Biochemistry and Molecular MedicineBiocenter OuluUniversity of OuluOulu90220Finland
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Limiao Liang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Qixiang Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Yuehong Yang
- Disease Networks Research UnitFaculty of Biochemistry and Molecular MedicineBiocenter OuluUniversity of OuluOulu90220Finland
| | - Ying Lu
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Gong‐Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
- Disease Networks Research UnitFaculty of Biochemistry and Molecular MedicineBiocenter OuluUniversity of OuluOulu90220Finland
| |
Collapse
|
4
|
Enikeeva K, Rafikova G, Sharifyanova Y, Mulyukova D, Vanzin A, Pavlov V. Epigenetics as a Key Factor in Prostate Cancer. Adv Biol (Weinh) 2024; 8:e2300520. [PMID: 38379272 DOI: 10.1002/adbi.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/01/2024] [Indexed: 02/22/2024]
Abstract
Nowadays, prostate cancer is one of the most common forms of malignant neoplasms in men all over the world. Against the background of increasing incidence, there is a high mortality rate from prostate cancer, which is associated with an inadequate treatment strategy. Such a high prevalence of prostate cancer requires the development of methods that can ensure early detection of the disease, improve the effectiveness of treatment, and predict the therapeutic effect. Under these circumstances, it becomes crucial to focus on the development of effective diagnostic and therapeutic approaches. Due to the development of molecular genetic methods, a large number of studies have been accumulated on the role of epigenetic regulation of gene activity in cancer development, since it is epigenetic changes that can be detected at the earliest stages of cancer development. The presence of epigenetic aberrations in tumor tissue and correlations with drug resistance suggest new therapeutic approaches. Detection of epigenetic alterations such as CpG island methylation, histone modification, and microRNAs as biomarkers will improve the diagnosis of the disease, and the use of these strategies as targets for therapy will allow for greater personalization of prostate cancer treatment.
Collapse
Affiliation(s)
- Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Yuliya Sharifyanova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Diana Mulyukova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Alexandr Vanzin
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| |
Collapse
|
5
|
Gadkar S, Thakur M, Desouza J, Bhowmick S, Patel V, Chaudhari U, Acharya KK, Sachdeva G. Estrogen receptor expression is modulated in human and mouse prostate epithelial cells during cancer progression. Steroids 2022; 184:109036. [PMID: 35413338 DOI: 10.1016/j.steroids.2022.109036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
Substantial data posit estrogen receptors (ERs) as promising targets for prostate cancer (PCa) therapeutics. However, the trials on assessing the chemo-preventive or therapeutic potential of ER targeting drugs or selective estrogen receptor modulators (SERMs) have not yet established their clinical benefits. This could be ascribed to a possible modulation in the ER expression during PCa progression. Further it is warranted to test various ER targeting drugs in appropriate preclinical models that simulate human ER expression pattern during PCa progression. The study was undertaken to revisit the existing data on the epithelial ER expression pattern in human cancerous prostates and experimentally determine whether these patterns are replicated in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice, a model for human PCa. Estradiol (E2) binding to the plasma membrane of the epithelial cells and its modulation during the PCa progression in TRAMP were also investigated. A reassessment of the existing data revealed a trend towards downregulation in the epithelial expression of wild-type ESR1 transcripts in high-grade PCa, compared to non-cancerous prostate in humans. Next, epithelial cell-enriched populations from TRAMP prostates (TP) displaying low-grade prostatic intraepithelial neoplasia (LGPIN), high-grade PIN (HGPIN), HGPIN with well-differentiated carcinoma (PIN + WDC), WDC (equivalent to grade 2/3 human PCa), and poorly-differentiated carcinoma (PDC-equivalent to grade 4/5 human PCa) revealed significantly higher Esr1 and Esr2 levels in HGPIN and significantly reduced levels in WDC, compared to respective age-matched control prostates. These patterns for the nuclear ERs were similar to the trend shown by E2 binding to the plasma membrane of the epithelial cells during PCa progression in TRAMP. E2 binding to epithelial cells (EpCAM+), though significantly higher in TPs displaying LGPIN, decreased significantly as the disease progressed to WDC. The study highlights a reduction in the epithelial ESR level with the PCa progression and this pattern was evident in both humans and TRAMP. These observations may have major implications in refining PCa therapeutics targeting ER.
Collapse
Affiliation(s)
- Sushama Gadkar
- Cell Physiology and Pathology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India
| | - Mohini Thakur
- Cell Physiology and Pathology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India
| | - Junita Desouza
- Cell Physiology and Pathology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India
| | - Shilpa Bhowmick
- Viral Immunopathogenesis Laboratory, ICMR-NIRRCH, Mumbai 400012, India
| | - Vainav Patel
- Viral Immunopathogenesis Laboratory, ICMR-NIRRCH, Mumbai 400012, India
| | - Uddhav Chaudhari
- Cell Physiology and Pathology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India
| | - Kshitish K Acharya
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Shodhaka Life Sciences Pvt. Ltd., Bengaluru (Bangalore) 560100, India
| | - Geetanjali Sachdeva
- Cell Physiology and Pathology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai 400012, India.
| |
Collapse
|
6
|
Belluti S, Semeghini V, Rigillo G, Ronzio M, Benati D, Torricelli F, Reggiani Bonetti L, Carnevale G, Grisendi G, Ciarrocchi A, Dominici M, Recchia A, Dolfini D, Imbriano C. Alternative splicing of NF-YA promotes prostate cancer aggressiveness and represents a new molecular marker for clinical stratification of patients. J Exp Clin Cancer Res 2021; 40:362. [PMID: 34782004 PMCID: PMC8594157 DOI: 10.1186/s13046-021-02166-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Approaches based on expression signatures of prostate cancer (PCa) have been proposed to predict patient outcomes and response to treatments. The transcription factor NF-Y participates to the progression from benign epithelium to both localized and metastatic PCa and is associated with aggressive transcriptional profile. The gene encoding for NF-YA, the DNA-binding subunit of NF-Y, produces two alternatively spliced transcripts, NF-YAs and NF-YAl. Bioinformatic analyses pointed at NF-YA splicing as a key transcriptional signature to discriminate between different tumor molecular subtypes. In this study, we aimed to determine the pathophysiological role of NF-YA splice variants in PCa and their association with aggressive subtypes. METHODS Data on the expression of NF-YA isoforms were extracted from the TCGA (The Cancer Genome Atlas) database of tumor prostate tissues and validated in prostate cell lines. Lentiviral transduction and CRISPR-Cas9 technology allowed the modulation of the expression of NF-YA splice variants in PCa cells. We characterized 3D cell cultures through in vitro assays and RNA-seq profilings. We used the rank-rank hypergeometric overlap approach to identify concordant/discordant gene expression signatures of NF-YAs/NF-YAl-overexpressing cells and human PCa patients. We performed in vivo studies in SHO-SCID mice to determine pathological and molecular phenotypes of NF-YAs/NF-YAl xenograft tumors. RESULTS NF-YA depletion affects the tumorigenic potential of PCa cells in vitro and in vivo. Elevated NF-YAs levels are associated to aggressive PCa specimens, defined by Gleason Score and TNM classification. NF-YAl overexpression increases cell motility, while NF-YAs enhances cell proliferation in PCa 3D spheroids and xenograft tumors. The transcriptome of NF-YAs-spheroids has an extensive overlap with localized and metastatic human PCa signatures. According to PCa PAM50 classification, NF-YAs transcript levels are higher in LumB, characterized by poor prognosis compared to LumA and basal subtypes. A significant decrease in NF-YAs/NF-YAl ratio distinguishes PCa circulating tumor cells from cancer cells in metastatic sites, consistently with pro-migratory function of NF-YAl. Stratification of patients based on NF-YAs expression is predictive of clinical outcome. CONCLUSIONS Altogether, our results indicate that the modulation of NF-YA isoforms affects prostate pathophysiological processes and contributes to cancer-relevant phenotype, in vitro and in vivo. Evaluation of NF-YA splicing may represent a new molecular strategy for risk assessment of PCa patients.
Collapse
Affiliation(s)
- Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Valentina Semeghini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Mirko Ronzio
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences for Children & Adults, Division of Pathology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy.
| |
Collapse
|
7
|
Signore M, Alfonsi R, Federici G, Nanni S, Addario A, Bertuccini L, Aiello A, Di Pace AL, Sperduti I, Muto G, Giacobbe A, Collura D, Brunetto L, Simone G, Costantini M, Crinò L, Rossi S, Tabolacci C, Diociaiuti M, Merlino T, Gallucci M, Sentinelli S, Papalia R, De Maria R, Bonci D. Diagnostic and prognostic potential of the proteomic profiling of serum-derived extracellular vesicles in prostate cancer. Cell Death Dis 2021; 12:636. [PMID: 34155195 PMCID: PMC8215487 DOI: 10.1038/s41419-021-03909-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-β5, Survivin, TGF-β, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.
Collapse
Affiliation(s)
- Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Romina Alfonsi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Simona Nanni
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Addario
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Bertuccini
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Aurora Aiello
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy
| | - Anna Laura Di Pace
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giovanni Muto
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Alessandro Giacobbe
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Devis Collura
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Lidia Brunetto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Simone
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Manuela Costantini
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Lucio Crinò
- Department of Oncology, IRST-Meldola, Meldola, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Diociaiuti
- Department of Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Tania Merlino
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Gallucci
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy.,Department of Urology, Sapienza University of Rome, Rome, Italy
| | | | | | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Désirée Bonci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy. .,IRCCS, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
8
|
Liu J, Yin J, Chen P, Liu D, He W, Li Y, Li M, Fu X, Zeng G, Guo Y, Wang X, DiSanto ME, Zhang X. Smoothened inhibition leads to decreased cell proliferation and suppressed tissue fibrosis in the development of benign prostatic hyperplasia. Cell Death Discov 2021; 7:115. [PMID: 34006832 PMCID: PMC8131753 DOI: 10.1038/s41420-021-00501-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in aging males. It has been proven that the Hedgehog (HH) is implied as an effective and fundamental regulatory growth factor signal for organogenesis, homeostasis, and regeneration. Smoothened (SMO), as the major control point of HH signals, activates aberrantly in most human solid tumors. However, the specific function of SMO and its downstream glioma-associated oncogene (GLI) family in BPH has not been well understood. Here, we first revealed that the SMO cascade was upregulated in BPH tissues and was localized in both the stromal and the epithelium compartments of human prostate tissues. Cyclopamine, as a specific SMO inhibitor, was incubated with BPH-1 and WPMY-1, and intraperitoneally injected into a BPH rat model established by castration with testosterone supplementation. SMO inhibition could induce cell apoptosis, cell cycle arrest at the G0/G1 phase, and a reduction of tissue fibrosis markers, both in vitro and in vivo. Finally, a tissue microarray, containing 104 BPH specimens, was constructed to analyze the correlations between the expression of SMO cascade and clinical parameters. The GLI2 was correlated positively with nocturia and negatively with fPSA. The GLI3 was in a positive relationship with International Prostate Symptom Score and nocturia. In conclusion, our study suggested that SMO cascade could play important roles in the development of BPH and it might be rediscovered as a promising therapeutic target for BPH.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Cui J, Zhang Y, Ren X, Jin L, Zhang H. TBX1 Functions as a Tumor Activator in Prostate Cancer by Promoting Ribosome RNA Gene Transcription. Front Oncol 2021; 10:616173. [PMID: 33575219 PMCID: PMC7871003 DOI: 10.3389/fonc.2020.616173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
TBX1 belongs to an evolutionarily conserved family of transcription factors involved in organ development. TBX1 has been reported to have a hypermethylated cytosine guanine dinucleotide island around its second exon, which was related to prostate cancer (PCa) progression. However, the role and exact mechanism of TBX1 in PCa remains unknown. Using human prostate samples, online data mining and multiple in vitro and in vivo models, we examined the biological role and underlying mechanisms of TBX1 in PCa. TBX1 was highly expressed in PCa tissues, and high TBX1 expression was positively associated with Gleason score, pathological tumor stage, pathological lymph node stage, extraprostatic extension and disease/progression-free survival. In vitro and in vivo data demonstrated that TBX1 silencing inhibits PCa cell proliferation and colony formation and increases the cell population at the G0/G1 phase. The exogenous expression of TBX1 rescued these phenotypes. Mechanistically, TBX1 silencing suppressed the expression of 45S ribosomal RNA (rRNA), which was rescued by the exogenous expression of TBX1. TBX1 silencing inhibited the monomethylation of histone 3 lysine 4 (H3K4me1) binding with the non-coding intergenic spacer (IGS) regions of ribosomal DNA (rDNA) and the recruitment of upstream binding factor to the promoter and IGS regions of rDNA. The drug-induced enhancement of H3K4me1 counteracted the effect of TBX1 silencing. These findings indicate that TBX1 exerts its tumor activator function in PCa cells via epigenetic control, thereby promoting rRNA gene transcription. Thus, TBX1 may represent a prognostic biomarker and therapeutic target for PCa patients.
Collapse
Affiliation(s)
- Jie Cui
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,School of General Medicine, Xi'an Medical University, Xi'an, China
| | - Yamin Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,School of General Medicine, Xi'an Medical University, Xi'an, China
| | - Xiaoyue Ren
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,School of General Medicine, Xi'an Medical University, Xi'an, China
| | - Lei Jin
- School of General Medicine, Xi'an Medical University, Xi'an, China
| | - Hongyi Zhang
- School of General Medicine, Xi'an Medical University, Xi'an, China.,Department of Urology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| |
Collapse
|
10
|
Metabolic Reprogramming by Malat1 Depletion in Prostate Cancer. Cancers (Basel) 2020; 13:cancers13010015. [PMID: 33375130 PMCID: PMC7801945 DOI: 10.3390/cancers13010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is one of the most common cancers in developed countries, being the second leading cause of cancer death among men. Surgery is the primary therapeutic option, but about one-third of patients develop a recurrence within ten years, for which successful therapy is unavailable. Based on these observations, it has become urgent to develop novel molecular tools for predicting clinical outcome. Here, we focus on one of the best characterized cancer-associated long non-coding transcripts, namely metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). This study highlighted a novel role for MALAT1 as a controller of prostate cancer metabolism. MALAT1 silencing caused a metabolic rewire in both experimental models adopted, prostate cancer cell lines, and organotypic slice cultures derived from surgical specimens. PCa cells upon MALAT1 silencing revert their phenotype towards glycolysis, which is characteristic of normal prostate cells. In this regard, MALAT1 targeting may represent a promising diagnostic tool and a novel therapeutic option. Abstract The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes growth and progression in prostate cancer (PCa); however, little is known about its possible impact in PCa metabolism. The aim of this work has been the assessment of the metabolic reprogramming associated with MALAT1 silencing in human PCa cells and in an ex vivo model of organotypic slice cultures (OSCs). Cultured cells and OSCs derived from primary tumors were transfected with MALAT1 specific gapmers. Cell growth and survival, gene profiling, and evaluation of targeted metabolites and metabolic enzymes were assessed. Computational analysis was made considering expression changes occurring in metabolic markers following MALAT1 targeting in cultured OSCs. MALAT1 silencing reduced expression of some metabolic enzymes, including malic enzyme 3, pyruvate dehydrogenase kinases 1 and 3, and choline kinase A. Consequently, PCa metabolism switched toward a glycolytic phenotype characterized by increased lactate production paralleled by growth arrest and cell death. Conversely, the function of mitochondrial succinate dehydrogenase and the expression of oxidative phosphorylation enzymes were markedly reduced. A similar effect was observed in OSCs. Based on this, a predictive algorithm was developed aimed to predict tumor recurrence in a subset of patients. MALAT1 targeting by gapmer delivery restored normal metabolic energy pathway in PCa cells and OSCs.
Collapse
|
11
|
He J, Zhou Y, Arredondo Carrera HM, Sprules A, Neagu R, Zarkesh SA, Eaton C, Luo J, Gartland A, Wang N. Inhibiting the P2X4 Receptor Suppresses Prostate Cancer Growth In Vitro and In Vivo, Suggesting a Potential Clinical Target. Cells 2020; 9:cells9112511. [PMID: 33233569 PMCID: PMC7699771 DOI: 10.3390/cells9112511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men, causing considerable morbidity and mortality. The P2X4 receptor (P2X4R) is the most ubiquitously expressed P2X receptor in mammals and is positively associated with tumorigenesis in many cancer types. However, its involvement in PCa progression is less understood. We hypothesized that P2X4R activity enhanced tumour formation by PCa cells. We showed that P2X4R was the most highly expressed, functional P2 receptor in these cells using quantitative reverse transcription PCR (RT-PCR) and a calcium influx assay. The effect of inhibiting P2X4R on PCa (PC3 and C4-2B4 cells) viability, proliferation, migration, invasion, and apoptosis were examined using the selective P2XR4 antagonists 5-BDBD and PSB-12062. The results demonstrated that inhibiting P2X4R impaired the growth and mobility of PCa cells but not apoptosis. In BALB/c immunocompromised nude mice inoculated with human PC3 cells subcutaneously, 5-BDBD showed anti-tumourigenic effects. Finally, a retrospective analysis of P2RX4 expression in clinical datasets (GDS1439, GDS1746, and GDS3289) suggested that P2X4R was positively associated with PCa malignancy. These studies suggest that P2X4R has a role in enhancing PCa tumour formation and is a clinically targetable candidate for which inhibitors are already available and have the potential to suppress disease progression.
Collapse
Affiliation(s)
- Jiepei He
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Yuhan Zhou
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Hector M. Arredondo Carrera
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Alexandria Sprules
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Ramona Neagu
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Sayyed Amin Zarkesh
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Colby Eaton
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Alison Gartland
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
| | - Ning Wang
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (J.H.); (Y.Z.); (H.M.A.C.); (A.S.); (R.N.); (S.A.Z.); (C.E.); (A.G.)
- Correspondence: ; Tel.: +44-(0)-114-2159216
| |
Collapse
|
12
|
Izzo S, Naponelli V, Bettuzzi S. Flavonoids as Epigenetic Modulators for Prostate Cancer Prevention. Nutrients 2020; 12:E1010. [PMID: 32268584 PMCID: PMC7231128 DOI: 10.3390/nu12041010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is a multifactorial disease with an unclear etiology. Due to its high prevalence, long latency, and slow progression, PCa is an ideal target for chemoprevention strategies. Many research studies have highlighted the positive effects of natural flavonoids on chronic diseases, including PCa. Different classes of dietary flavonoids exhibit anti-oxidative, anti-inflammatory, anti-mutagenic, anti-aging, cardioprotective, anti-viral/bacterial and anti-carcinogenic properties. We overviewed the most recent evidence of the antitumoral effects exerted by dietary flavonoids, with a special focus on their epigenetic action in PCa. Epigenetic alterations have been identified as key initiating events in several kinds of cancer. Many dietary flavonoids have been found to reverse DNA aberrations that promote neoplastic transformation, particularly for PCa. The epigenetic targets of the actions of flavonoids include oncogenes and tumor suppressor genes, indirectly controlled through the regulation of epigenetic enzymes such as DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC). In addition, flavonoids were found capable of restoring miRNA and lncRNA expression that is altered during diseases. The optimization of the use of flavonoids as natural epigenetic modulators for chemoprevention and as a possible treatment of PCa and other kinds of cancers could represent a promising and valid strategy to inhibit carcinogenesis and fight cancer.
Collapse
Affiliation(s)
- Simona Izzo
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy; (S.I.); (S.B.)
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy; (S.I.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Saverio Bettuzzi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy; (S.I.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| |
Collapse
|
13
|
Nuclear receptor HNF4α performs a tumor suppressor function in prostate cancer via its induction of p21-driven cellular senescence. Oncogene 2019; 39:1572-1589. [PMID: 31695151 PMCID: PMC7018660 DOI: 10.1038/s41388-019-1080-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
Hepatocyte nuclear factor 4α (HNF4α, NR2A1) is a highly conserved member of the nuclear receptor superfamily. Recent advances reveal that it is a key transcriptional regulator of genes, broadly involved in xenobiotic and drug metabolism and also cancers of gastrointestinal tract. However, the exact functional roles of HNF4α in prostate cancer progression are still not fully understood. In this study, we determined the functional significance of HNF4α in prostate cancer. Our results showed that HNF4α exhibited a reduced expression pattern in clinical prostate cancer tissues, prostate cancer cell lines and xenograft model of castration-relapse prostate cancer. Stable HNF4α knockdown not only could promote cell proliferation and suppress doxorubicin (Dox)-induced cellular senescence in prostate cancer cells, but also confer resistance to paclitaxel treatment and enhance colony formation capacity and in vivo tumorigenicity of prostate cancer cells. On the contrary, ectopic overexpression of HNF4α could significantly inhibit the cell proliferation of prostate cancer cells, induce cell-cycle arrest at G2/M phase and trigger the cellular senescence in prostate cancer cells by activation of p21 signal pathway in a p53-independent manner via its direct transactivation of CDKN1A. Together, our results show that HNF4α performs a tumor suppressor function in prostate cancer via a mechanism of p21-driven cellular senescence.
Collapse
|
14
|
H19-Dependent Transcriptional Regulation of β3 and β4 Integrins Upon Estrogen and Hypoxia Favors Metastatic Potential in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20164012. [PMID: 31426484 PMCID: PMC6720303 DOI: 10.3390/ijms20164012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Estrogen and hypoxia promote an aggressive phenotype in prostate cancer (PCa), driving transcription of progression-associated genes. Here, we molecularly dissect the contribution of long non-coding RNA H19 to PCa metastatic potential under combined stimuli, a topic largely uncovered. The effects of estrogen and hypoxia on H19 and cell adhesion molecules’ expression were investigated in PCa cells and PCa-derived organotypic slice cultures (OSCs) by qPCR and Western blot. The molecular mechanism was addressed by chromatin immunoprecipitations, overexpression, and silencing assays. PCa cells’ metastatic potential was analyzed by in vitro cell-cell adhesion, motility test, and trans-well invasion assay. We found that combined treatment caused a significant H19 down-regulation as compared with hypoxia. In turn, H19 acts as a transcriptional repressor of cell adhesion molecules, as revealed by up-regulation of both β3 and β4 integrins and E-cadherin upon H19 silencing or combined treatment. Importantly, H19 down-regulation and β integrins induction were also observed in treated OSCs. Combined treatment increased both cell motility and invasion of PCa cells. Lastly, reduction of β integrins and invasion was achieved through epigenetic modulation of H19-dependent transcription. Our study revealed that estrogen and hypoxia transcriptionally regulate, via H19, cell adhesion molecules redirecting metastatic dissemination from EMT to a β integrin-mediated invasion.
Collapse
|
15
|
Nucleoporin 153 regulates estrogen-dependent nuclear translocation of endothelial nitric oxide synthase and estrogen receptor beta in prostate cancer. Oncotarget 2018; 9:27985-27997. [PMID: 29963256 PMCID: PMC6021351 DOI: 10.18632/oncotarget.25462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
Nucleoporin 153 (Nup153), key regulator of nuclear import/export, has been recently associated to oncogenic properties in pancreatic and breast tumour cells modulating either cell motility and migration or gene expression by chromatin association. In the present work, we have characterized the role of Nup153 in a cellular model of prostate cancer (PCa). The analysis of several immortalized cell lines derived from freshly explants of prostate cancer specimens showed that Nup153 protein was higher and present in multimeric complexes with eNOS and ERβ as compared to normal/hyperplastic prostate epithelial cells. This phenomenon was enhanced in the presence of 17β-estradiol (E2, 10-7M). Further experiments revealed that eNOS and ERβ were present in a DNA binding complexes associated with Nup153 promoter as demonstrated by ChIPs. Notably, after Nup153 depletion (siNup153), a reduction of migration capacity and colony formation in primary tumor-derived and metastatic PCa cells was observed. In addition, eNOS and ERβ nuclear localization was lost upon siNup 153 regardless of E2 treatment, suggesting that Nup153 is a key regulator of prostate cancer cell function and of the nuclear translocation of these proteins in response to hormone stimulus. Taken altogether our findings indicate that in PCa cells: i. the expression and function of Nup153 is modulated by estrogen signaling; ii. Nup153 contributes to cell migration and proliferation; iii. Nup153 regulates the nuclear translocation of eNOS and ERβ by forming a multimeric complex. Our findings unveil Nup153 as a novel component of the estrogen-dependent multimeric complex, thus representing a potential therapeutic candidate in prostate cancer.
Collapse
|
16
|
Nowacka-Zawisza M, Wiśnik E. DNA methylation and histone modifications as epigenetic regulation in prostate cancer (Review). Oncol Rep 2017; 38:2587-2596. [PMID: 29048620 DOI: 10.3892/or.2017.5972] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men in Poland after lung cancer and the third leading cause of cancer-related mortality after lung and colon cancer. The etiology of most cases of prostate cancer are not fully known, and therefore it is essential to search for the molecular basis of prostate cancer and markers for the early diagnosis of this type of cancer. Epigenetics deals with changes in gene expression that are not determined by changes in the DNA sequence. Epigenetic changes refer to changes in the structure of DNA, which are the result of DNA modification after replication and/or post-translational modification of proteins associated with DNA. In contrast to mutations, epigenetic changes are reversible and occur very rapidly. The major epigenetic mechanisms include DNA methylation, modification of histone proteins, chemical modification and chromatin remodeling changes in gene expression caused by microRNAs (miRNAs). Epigenetic changes play an important role in malignant transformation and can be specific to types of cancers including prostate cancer.
Collapse
Affiliation(s)
- Maria Nowacka-Zawisza
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Ewelina Wiśnik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
17
|
Genetic association analysis of the RTK/ERK pathway with aggressive prostate cancer highlights the potential role of CCND2 in disease progression. Sci Rep 2017; 7:4538. [PMID: 28674394 PMCID: PMC5495790 DOI: 10.1038/s41598-017-04731-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/19/2017] [Indexed: 12/02/2022] Open
Abstract
The RTK/ERK signaling pathway has been implicated in prostate cancer progression. However, the genetic relevance of this pathway to aggressive prostate cancer at the SNP level remains undefined. Here we performed a SNP and gene-based association analysis of the RTK/ERK pathway with aggressive prostate cancer in a cohort comprising 956 aggressive and 347 non-aggressive cases. We identified several loci including rs3217869/CCND2 within the pathway shown to be significantly associated with aggressive prostate cancer. Our functional analysis revealed a statistically significant relationship between rs3217869 risk genotype and decreased CCND2 expression levels in a collection of 119 prostate cancer patient samples. Reduced expression of CCND2 promoted cell proliferation and its overexpression inhibited cell growth of prostate cancer. Strikingly, CCND2 downregulation was consistently observed in the advanced prostate cancer in 18 available clinical data sets with a total amount of 1,095 prostate samples. Furthermore, the lower expression levels of CCND2 markedly correlated with prostate tumor progression to high Gleason score and elevated PSA levels, and served as an independent predictor of biochemical relapse and overall survival in a large cohort of prostate cancer patients. Together, we have identified an association of genetic variants and genes in the RTK/ERK pathway with prostate cancer aggressiveness, and highlighted the potential importance of CCND2 in prostate cancer susceptibility and tumor progression to metastasis.
Collapse
|
18
|
Noh MG, Kim SS, Hwang EC, Kwon DD, Choi C. Yes-Associated Protein Expression Is Correlated to the Differentiation of Prostate Adenocarcinoma. J Pathol Transl Med 2017; 51:365-373. [PMID: 28602051 PMCID: PMC5525043 DOI: 10.4132/jptm.2017.05.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 11/30/2022] Open
Abstract
Background Yes-associated protein (YAP) in the Hippo signaling pathway is a growth control pathway that regulates cell proliferation and stem cell functions. Abnormal regulation of YAP was reported in human cancers including liver, lung, breast, skin, colon, and ovarian cancer. However, the function of YAP is not known in prostate adenocarcinoma. The purpose of this study was to investigate the role of YAP in tumorigenesis, differentiation, and prognosis of prostate adenocarcinoma. Methods The nuclear and cytoplasmic expression of YAP was examined in 188 cases of prostate adenocarcinoma using immunohistochemistry. YAP expression levels were evaluated in the nucleus and cytoplasm of the prostate adenocarcinoma and the adjacent normal prostate tissue. The presence of immunopositive tumor cells was evaluated and interpreted in comparison with the patients’ clinicopathologic data. Results YAP expression levels were not significantly different between normal epithelial cells and prostate adenocarcinoma. However, YAP expression level was significantly higher in carcinomas with a high Gleason grades (8–10) than in carcinomas with a low Gleason grades (6–7) (p < .01). There was no statistical correlation between YAP expression and stage, age, prostate-specific antigen level, and tumor volume. Biochemical recurrence (BCR)–free survival was significantly lower in patients with high YAP expressing cancers (p = .02). However high YAP expression was not an independent prognostic factor for BCR in the Cox proportional hazards model. Conclusions The results suggested that YAP is not associated with prostate adenocarcinoma development, but it may be associated with the differentiation of the adenocarcinoma. YAP was not associated with BCR.
Collapse
Affiliation(s)
- Myung-Giun Noh
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Sung Sun Kim
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Eu Chang Hwang
- Department of Urology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Dong Deuk Kwon
- Department of Urology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Chan Choi
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
19
|
C-Met/miR-130b axis as novel mechanism and biomarker for castration resistance state acquisition. Oncogene 2017; 36:3718-3728. [PMID: 28192399 DOI: 10.1038/onc.2016.505] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/06/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022]
Abstract
Although a significant subset of prostate tumors remain indolent during the entire life, the advanced forms are still one of the leading cause of cancer-related death. There are not reliable markers distinguishing indolent from aggressive forms. Here we highlighted a new molecular circuitry involving microRNA and coding genes promoting cancer progression and castration resistance. Our preclinical and clinical data demonstrated that c-Met activation increases miR-130b levels, inhibits androgen receptor expression, promotes cancer spreading and resistance to hormone ablation therapy. The relevance of these findings was confirmed on patients' samples and by in silico analysis on an independent patient cohort from Taylor's platform. Data suggest c-Met/miR-130b axis as a new prognostic marker for patients' risk assessment and as an indicator of therapy resistance. Our results propose new biomarkers for therapy decision-making in all phases of the pathology. Data may help identify high-risk patients to be treated with adjuvant therapy together with alternative cure for castration-resistant forms while facilitating the identification of possible patients candidates for anti-Met therapy. In addition, we demonstrated that it is possible to evaluate Met/miR-130b axis expression in exosomes isolated from peripheral blood of surgery candidates and advanced patients offering a new non-invasive tool for active surveillance and therapy monitoring.
Collapse
|
20
|
Aiello A, Bacci L, Re A, Ripoli C, Pierconti F, Pinto F, Masetti R, Grassi C, Gaetano C, Bassi PF, Pontecorvi A, Nanni S, Farsetti A. MALAT1 and HOTAIR Long Non-Coding RNAs Play Opposite Role in Estrogen-Mediated Transcriptional Regulation in Prostate Cancer Cells. Sci Rep 2016; 6:38414. [PMID: 27922078 PMCID: PMC5138831 DOI: 10.1038/srep38414] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
In the complex network of nuclear hormone receptors, the long non-coding RNAs (lncRNAs) are emerging as critical determinants of hormone action. Here we investigated the involvement of selected cancer-associated lncRNAs in Estrogen Receptor (ER) signaling. Prior studies by Chromatin Immunoprecipitation (ChIP) Sequencing showed that in prostate cancer cells ERs form a complex with the endothelial nitric oxide synthase (eNOS) and that in turn these complexes associate with chromatin in an estrogen-dependent fashion. Among these associations (peaks) we focused our attention on those proximal to the regulatory region of HOTAIR and MALAT1. These transcripts appeared regulated by estrogens and able to control ERs function by interacting with ERα/ERβ as indicated by RNA-ChIP. Further studies performed by ChIRP revealed that in unstimulated condition, HOTAIR and MALAT1 were present on pS2, hTERT and HOTAIR promoters at the ERE/eNOS peaks. Interestingly, upon treatment with17β-estradiol HOTAIR recruitment to chromatin increased significantly while that of MALAT1 was reduced, suggesting an opposite regulation and function for these lncRNAs. Similar results were obtained in cells and in an ex vivo prostate organotypic slice cultures. Overall, our data provide evidence of a crosstalk between lncRNAs, estrogens and estrogen receptors in prostate cancer with important consequences on gene expression regulation.
Collapse
Affiliation(s)
- Aurora Aiello
- National Research Council, Institute of Cell Biology and Neurobiology, Rome, 00143, Italy.,Università Cattolica, Institute of Medical Pathology, Rome, 00168, Italy
| | - Lorenza Bacci
- Università Cattolica, Institute of Medical Pathology, Rome, 00168, Italy
| | - Agnese Re
- National Research Council, Institute of Cell Biology and Neurobiology, Rome, 00143, Italy
| | - Cristian Ripoli
- Università Cattolica, Institute of Human Physiology, Rome, 00168, Italy
| | | | - Francesco Pinto
- Università Cattolica, Fondazione Policlinico 'A. Gemelli', Urological Clinic, Rome, 00168, Italy
| | - Riccardo Masetti
- Università Cattolica, Multidisciplinary Breast Center, Fondazione Policlinico 'A. Gemelli', Rome, 00168, Italy
| | - Claudio Grassi
- Università Cattolica, Institute of Human Physiology, Rome, 00168, Italy.,San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, 00163 Rome, Italy
| | - Carlo Gaetano
- Goethe University Frankfurt, Division of Cardiovascular Epigenetics, Department of Cardiology, Internal Medicine Clinic III, Frankfurt am Main, 60590, Germany
| | - Pier Francesco Bassi
- Università Cattolica, Fondazione Policlinico 'A. Gemelli', Urological Clinic, Rome, 00168, Italy
| | - Alfredo Pontecorvi
- Università Cattolica, Institute of Medical Pathology, Rome, 00168, Italy
| | - Simona Nanni
- Università Cattolica, Institute of Medical Pathology, Rome, 00168, Italy
| | - Antonella Farsetti
- National Research Council, Institute of Cell Biology and Neurobiology, Rome, 00143, Italy.,Goethe University Frankfurt, Internal Medicine Clinic III, Frankfurt am Main, 60590, Germany
| |
Collapse
|
21
|
Matijasevic Z, Krzywicka-Racka A, Sluder G, Gallant J, Jones SN. The Zn-finger domain of MdmX suppresses cancer progression by promoting genome stability in p53-mutant cells. Oncogenesis 2016; 5:e262. [PMID: 27694836 PMCID: PMC5117848 DOI: 10.1038/oncsis.2016.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023] Open
Abstract
The MDMX (MDM4) oncogene is amplified or overexpressed in a significant percentage of human tumors. MDMX is thought to function as an oncoprotein by binding p53 tumor suppressor protein to inhibit p53-mediated transcription, and by complexing with MDM2 oncoprotein to promote MDM2-mediated degradation of p53. However, down-regulation or loss of functional MDMX has also been observed in a variety of human tumors that are mutated for p53, often correlating with more aggressive cancers and a worse patient prognosis. We have previously reported that endogenous levels of MdmX can suppress proliferation and promote pseudo-bipolar mitosis in primary and tumor cells derived from p53-deficient mice, and that MdmX-p53 double deficient mice succumb to spontaneously formed tumors more rapidly than p53-deficient mice. These results suggest that the MdmX oncoprotein may act as a tumor-suppressor in cancers with compromised p53 function. By using orthotopic transplantation and lung colonization assays in mice we now establish a p53-independent anti-oncogenic role for MdmX in tumor progression. We also demonstrate that the roles of MdmX in genome stability and in proliferation are two distinct functions encoded by the separate MdmX protein domains. The central Zn-finger domain suppresses multipolar mitosis and chromosome loss, whereas the carboxy-terminal RING domain suppresses proliferation of p53-deficient cells. Furthermore, we determine that it is the maintenance of genome stability that underlies MdmX role in suppression of tumorigenesis in hyperploid p53 mutant tumors. Our results offer a rationale for the increased metastatic potential of p53 mutant human cancers with aberrant MdmX function and provide a caveat for the application of anti-MdmX treatment of tumors with compromised p53 activity.
Collapse
Affiliation(s)
- Z Matijasevic
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - A Krzywicka-Racka
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - G Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - J Gallant
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - S N Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
22
|
Re A, Nanni S, Aiello A, Granata S, Colussi C, Campostrini G, Spallotta F, Mattiussi S, Pantisano V, D'Angelo C, Biroccio A, Rossini A, Barbuti A, DiFrancesco D, Trimarchi F, Pontecorvi A, Gaetano C, Farsetti A. Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways. Endocrine 2016; 53:681-8. [PMID: 26547215 DOI: 10.1007/s12020-015-0751-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/19/2015] [Indexed: 10/22/2022]
Abstract
The epigenetics of early commitment to embryonal cardiomyocyte is poorly understood. In this work, we compared the effect of thyroid hormone and that of anacardic acid, a naturally occurring histone acetylase inhibitor, or both in combination, on mouse embryonic stem cells (mES) differentiating into embryonal cardiomyocyte by embryoid bodies (EBs) formation. Although the results indicated that anacardic acid (AA) and thyroid hormone were both efficient in promoting cardiomyocyte differentiation, we noticed that a transient exposure of mES to AA alone was sufficient to enlarge the beating areas of EBs compared to those of untreated controls. This effect was associated with changes in the chromatin structure at the promoters of specific cardiomyogenic genes. Among them, a rapid induction of the transcription factor Castor 1 (CASZ1), important for cardiomyocytes differentiation and maturation during embryonic development, was observed in the presence of AA. In contrast, thyroid hormone (T 3) was more effective in stimulating spontaneous firing, thus suggesting a role in the production of a population of cardiomyocyte with pacemaker properties. In conclusion, AA and thyroid hormone both enhanced cardiomyocyte formation along in apparently distinct pathways.
Collapse
Affiliation(s)
- Agnese Re
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, 00143, Rome, Italy
| | - Simona Nanni
- Institute of Medical Pathology, Catholic University, Rome, Italy
| | - Aurora Aiello
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, 00143, Rome, Italy
| | - Serena Granata
- Institute of Medical Pathology, Catholic University, Rome, Italy
| | - Claudia Colussi
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, 00143, Rome, Italy
| | - Giulia Campostrini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Internal Medicine Clinic III, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Stefania Mattiussi
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, 00143, Rome, Italy
| | | | - Carmen D'Angelo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Rossini
- Bolzano Center for Biomedicine (Affiliated Institute of the University of Lübeck), European Academy Bozen/Bolzano (EURAC), Bolzano, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Dario DiFrancesco
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Francesco Trimarchi
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Internal Medicine Clinic III, Goethe University Frankfurt, 60590, Frankfurt, Germany.
| | - Antonella Farsetti
- National Research Council (CNR), Institute of Cell Biology and Neurobiology, 00143, Rome, Italy.
- Internal Medicine Clinic III, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
23
|
Wang Y, Ledet RJ, Imberg-Kazdan K, Logan SK, Garabedian MJ. Dynein axonemal heavy chain 8 promotes androgen receptor activity and associates with prostate cancer progression. Oncotarget 2016; 7:49268-49280. [PMID: 27363033 PMCID: PMC5226506 DOI: 10.18632/oncotarget.10284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/28/2016] [Indexed: 01/06/2023] Open
Abstract
To gain insight into cellular factors regulating AR action that could promote castration resistant prostate cancer (CRPC), we performed a genome-wide RNAi screen for factors that promote ligand-independent AR transcriptional activity and integrated clinical databases for candidate genes that are positively associated with prostate cancer metastasis and recurrence. From this analysis, we identified Dynein Axonemal Heavy Chain 8 (DNAH8) as an AR regulator that displayed higher mRNA expression in metastatic than in primary tumors, and showed high expression in patients with poor prognosis. Axonemal dyneins function in cellular motility, but the function of DNAH8 in prostate cancer or other cell types has not been reported. DNAH8 is on chromosome 6q21.2, a cancer-associated amplicon, and is primarily expressed in prostate and testis. Its expression is higher in primary tumors compared to normal prostate, and is further increased in metastatic prostate cancers. Patients expressing high levels of DNAH8 have a greater risk of relapse and a poor prognosis after prostatectomy. Depletion of DNAH8 in prostate cancer cells suppressed AR transcriptional activity and proliferation. Androgen treatment increased DNAH8 mRNA expression, and AR bound the DNAH8 promoter sequence indicating DNAH8 is an AR target gene. Thus, DNAH8 is a new regulator of AR associated with metastatic tumors and poor prognosis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Russell J. Ledet
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Keren Imberg-Kazdan
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Susan K. Logan
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Michael J. Garabedian
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
24
|
Honn KV, Guo Y, Cai Y, Lee MJ, Dyson G, Zhang W, Tucker SC. 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression. FASEB J 2016; 30:2360-9. [PMID: 26965684 PMCID: PMC4871796 DOI: 10.1096/fj.201500076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/22/2016] [Indexed: 01/26/2023]
Abstract
Previously we identified and deorphaned G-protein-coupled receptor 31 (GPR31) as the high-affinity 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] receptor (12-HETER1). Here we have determined its distribution in prostate cancer tissue and its role in prostate tumorigenesis using in vitro and in vivo assays. Data-mining studies strongly suggest that 12-HETER1 expression positively correlates with the aggressiveness and progression of prostate tumors. This was corroborated with real-time PCR analysis of human prostate tumor tissue arrays that revealed the expression of 12-HETER1 positively correlates with the clinical stages of prostate cancers and Gleason scores. Immunohistochemistry analysis also proved that the expression of 12-HETER1 is positively correlated with the grades of prostate cancer. Knockdown of 12-HETER1 in prostate cancer cells markedly reduced colony formation and inhibited tumor growth in animals. To discover the regulatory factors, 5 candidate 12-HETER1 promoter cis elements were assayed as luciferase reporter fusions in Chinese hamster ovary (CHO) cells, where the putative cis element required for gene regulation was mapped 2 kb upstream of the 12-HETER1 transcriptional start site. The data implicate 12-HETER1 in a critical new role in the regulation of prostate cancer progression and offer a novel alternative target for therapeutic intervention.-Honn, K. V., Guo, Y., Cai, Y., Lee, M.-J., Dyson, G., Zhang, W., Tucker, S. C. 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression.
Collapse
Affiliation(s)
- Kenneth V Honn
- Department of Pathology, Wayne State University, Detroit, Michigan, USA; Department of Chemistry, Wayne State University, Detroit, Michigan, USA Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Yande Guo
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
| | - Yinlong Cai
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
| | - Menq-Jer Lee
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
| | - Gregory Dyson
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, USA; Biostatics Core, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Wenliang Zhang
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
| | - Stephanie C Tucker
- Department of Pathology, Wayne State University, Detroit, Michigan, USA;
| |
Collapse
|
25
|
Zhao R, Choi BY, Lee MH, Bode AM, Dong Z. Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer. EBioMedicine 2016; 8:30-39. [PMID: 27428416 PMCID: PMC4919535 DOI: 10.1016/j.ebiom.2016.04.017] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Aberrant gene silencing is highly associated with altered cell cycle regulation during carcinogenesis. In particular, silencing of the CDKN2A tumor suppressor gene, which encodes the p16(INK4a) protein, has a causal link with several different types of cancers. The p16(INK4a) protein plays an executional role in cell cycle and senescence through the regulation of the cyclin-dependent kinase (CDK) 4/6 and cyclin D complexes. Several genetic and epigenetic aberrations of CDKN2A lead to enhanced tumorigenesis and metastasis with recurrence of cancer and poor prognosis. In these cases, the restoration of genetic and epigenetic reactivation of CDKN2A is a practical approach for the prevention and therapy of cancer. This review highlights the genetic status of CDKN2A as a prognostic and predictive biomarker in various cancers.
Collapse
Affiliation(s)
- Ran Zhao
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, Seowon University, Cheongju 361-742, South Korea
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
26
|
Brown AS, Kong SW, Kohane IS, Patel CJ. ksRepo: a generalized platform for computational drug repositioning. BMC Bioinformatics 2016; 17:78. [PMID: 26860211 PMCID: PMC4746802 DOI: 10.1186/s12859-016-0931-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/29/2016] [Indexed: 01/22/2023] Open
Abstract
Background Repositioning approved drug and small molecules in novel therapeutic areas is of key interest to the pharmaceutical industry. A number of promising computational techniques have been developed to aid in repositioning, however, the majority of available methodologies require highly specific data inputs that preclude the use of many datasets and databases. There is a clear unmet need for a generalized methodology that enables the integration of multiple types of both gene expression data and database schema. Results ksRepo eliminates the need for a single microarray platform as input and allows for the use of a variety of drug and chemical exposure databases. We tested ksRepo’s performance on a set of five prostate cancer datasets using the Comparative Toxicogenomics Database (CTD) as our database of gene-compound interactions. ksRepo successfully predicted significance for five frontline prostate cancer therapies, representing a significant enrichment from over 7000 CTD compounds, and achieved specificity similar to other repositioning methods. Conclusions We present ksRepo, which enables investigators to use any data inputs for computational drug repositioning. ksRepo is implemented in a series of four functions in the R statistical environment under a BSD3 license. Source code is freely available at http://github.com/adam-sam-brown/ksRepo. A vignette is provided to aid users in performing ksRepo analysis.
Collapse
Affiliation(s)
- Adam S Brown
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Sek Won Kong
- Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Han J, Li C, Yang H, Xu Y, Zhang C, Ma J, Shi X, Liu W, Shang D, Yao Q, Zhang Y, Su F, Feng L, Li X. A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways. J R Soc Interface 2015; 12:20140937. [PMID: 25551156 DOI: 10.1098/rsif.2014.0937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI).
Collapse
|
28
|
Stegeman S, Moya L, Selth LA, Spurdle AB, Clements JA, Batra J. A genetic variant of MDM4 influences regulation by multiple microRNAs in prostate cancer. Endocr Relat Cancer 2015; 22:265-76. [PMID: 25670033 DOI: 10.1530/erc-15-0013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oncogene MDM4, also known as MDMX or HDMX, contributes to cancer susceptibility and progression through its capacity to negatively regulate a range of genes with tumour-suppressive functions. As part of a recent genome-wide association study it was determined that the A-allele of the rs4245739 SNP (A>C), located in the 3'-UTR of MDM4, is associated with an increased risk of prostate cancer. Computational predictions revealed that the rs4245739 SNP is located within a predicted binding site for three microRNAs (miRNAs): miR-191-5p, miR-887 and miR-3669. Herein, we show using reporter gene assays and endogenous MDM4 expression analyses that miR-191-5p and miR-887 have a specific affinity for the rs4245739 SNP C-allele in prostate cancer. These miRNAs do not affect MDM4 mRNA levels, rather they inhibit its translation in C-allele-containing PC3 cells but not in LNCaP cells homozygous for the A-allele. By analysing gene expression datasets from patient cohorts, we found that MDM4 is associated with metastasis and prostate cancer progression and that targeting this gene with miR-191-5p or miR-887 decreases in PC3 cell viability. This study is the first, to our knowledge, to demonstrate regulation of the MDM4 rs4245739 SNP C-allele by two miRNAs in prostate cancer, and thereby to identify a mechanism by which the MDM4 rs4245739 SNP A-allele may be associated with an increased risk for prostate cancer.
Collapse
Affiliation(s)
- Shane Stegeman
- School of Biomedical SciencesInstitute of Health and Biomedical Innovation, Translational Research Institute Pty Ltd, Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaDame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, Adelaide Prostate Cancer Research CentreSchool of MedicineFreemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia 5005, AustraliaMolecular Cancer Epidemiology LaboratoryGenetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Leire Moya
- School of Biomedical SciencesInstitute of Health and Biomedical Innovation, Translational Research Institute Pty Ltd, Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaDame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, Adelaide Prostate Cancer Research CentreSchool of MedicineFreemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia 5005, AustraliaMolecular Cancer Epidemiology LaboratoryGenetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Luke A Selth
- School of Biomedical SciencesInstitute of Health and Biomedical Innovation, Translational Research Institute Pty Ltd, Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaDame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, Adelaide Prostate Cancer Research CentreSchool of MedicineFreemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia 5005, AustraliaMolecular Cancer Epidemiology LaboratoryGenetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia School of Biomedical SciencesInstitute of Health and Biomedical Innovation, Translational Research Institute Pty Ltd, Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaDame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, Adelaide Prostate Cancer Research CentreSchool of MedicineFreemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia 5005, AustraliaMolecular Cancer Epidemiology LaboratoryGenetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Amanda B Spurdle
- School of Biomedical SciencesInstitute of Health and Biomedical Innovation, Translational Research Institute Pty Ltd, Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaDame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, Adelaide Prostate Cancer Research CentreSchool of MedicineFreemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia 5005, AustraliaMolecular Cancer Epidemiology LaboratoryGenetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Judith A Clements
- School of Biomedical SciencesInstitute of Health and Biomedical Innovation, Translational Research Institute Pty Ltd, Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaDame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, Adelaide Prostate Cancer Research CentreSchool of MedicineFreemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia 5005, AustraliaMolecular Cancer Epidemiology LaboratoryGenetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Jyotsna Batra
- School of Biomedical SciencesInstitute of Health and Biomedical Innovation, Translational Research Institute Pty Ltd, Australian Prostate Cancer Research Centre - Queensland, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, AustraliaDame Roma Mitchell Cancer Research LaboratoriesSchool of Medicine, Adelaide Prostate Cancer Research CentreSchool of MedicineFreemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia 5005, AustraliaMolecular Cancer Epidemiology LaboratoryGenetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| |
Collapse
|
29
|
Zhang Y, Tong T. FOXA1 antagonizes EZH2-mediated CDKN2A repression in carcinogenesis. Biochem Biophys Res Commun 2014; 453:172-8. [DOI: 10.1016/j.bbrc.2014.09.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 12/26/2022]
|
30
|
Yang CC, Chung A, Ku CY, Brill LM, Williams R, Wolf DA. Systems analysis of the prostate tumor suppressor NKX3.1 supports roles in DNA repair and luminal cell differentiation. F1000Res 2014; 3:115. [PMID: 25177484 PMCID: PMC4141641 DOI: 10.12688/f1000research.3818.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 11/20/2022] Open
Abstract
NKX3.1 is a homeobox transcription factor whose function as a prostate tumor suppressor remains insufficiently understood because neither the transcriptional program governed by NKX3.1, nor its interacting proteins have been fully revealed. Using affinity purification and mass spectrometry, we have established an extensive NKX3.1 interactome which contains the DNA repair proteins Ku70, Ku80, and PARP, thus providing a molecular underpinning to previous reports implicating NKX3.1 in DNA repair. Transcriptomic profiling of NKX3.1-negative prostate epithelial cells acutely expressing NKX3.1 revealed a rapid and complex response that is a near mirror image of the gene expression signature of human prostatic intraepithelial neoplasia (PIN). Pathway and network analyses suggested that NKX3.1 actuates a cellular reprogramming toward luminal cell differentiation characterized by suppression of pro-oncogenic c-MYC and interferon-STAT signaling and activation of tumor suppressor pathways. Consistently, ectopic expression of NKX3.1 conferred a growth arrest depending on TNFα and JNK signaling. We propose that the tumor suppressor function of NKX3.1 entails a transcriptional program that maintains the differentiation state of secretory luminal cells and that disruption of NKX3.1 contributes to prostate tumorigenesis by permitting luminal cell de-differentiation potentially augmented by defects in DNA repair.
Collapse
Affiliation(s)
- Chih-Cheng Yang
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Alicia Chung
- Genentech Inc., South San Francisco, CA 94080, USA
| | - Chia-Yu Ku
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Laurence M Brill
- NCI-designated Cancer Center Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Roy Williams
- Informatics and Data Management Core, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Dieter A Wolf
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA; NCI-designated Cancer Center Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA; San Diego Center for Systems Biology, La Jolla, CA 92093-0375, USA
| |
Collapse
|
31
|
Li Y, Vongsangnak W, Chen L, Shen B. Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression. BMC Med Genomics 2014; 7 Suppl 1:S3. [PMID: 25080090 PMCID: PMC4110715 DOI: 10.1186/1755-8794-7-s1-s3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Abstract
Prostate cancer natural course is variable and it is difficult to determine prognosis on the basis of limited clinical information. In order to distinguish between aggressive and indolent tumors, genomic analysis, proteomic studies, and biomarker measurement were applied. Identification of single nucleotide polymorphisms may help to assess prostate cancer risk, however, it is questionable whether single nucleotide polymorphisms may predict a good or bad prognosis. Results of genomic and proteomic analyses between different laboratories may be difficult to compare because of non-standardized procedures which may be responsible for variant results. One of the early changes in prostate tumor tissues which may indicate a bad prognosis is high phosphorylation of Akt. A biomarker which is specific for prostate cancer is the TMPRSS2-ERG fusion which occurs in about 50% of tumors. Experimental studies indicate that this gene fusion may promote malignant phenotype. Biomarkers which could distinguish between latent and aggressive tumors may be detected in prostate tissue, serum, and urine. In summary, there is a limited progress in the field of prognostic biomarkers because of prostate cancer heterogeneity and missing unification of diagnostic procedures.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria,
| |
Collapse
|
33
|
Azad A, Tran B, Sengupta S, Lawrentschuk N. Gene expression profiling of localized prostate cancer: getting answers to the questions that really matter. J Clin Oncol 2013; 31:3295-6. [PMID: 23940217 DOI: 10.1200/jco.2013.51.0420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Arun Azad
- Austin Health, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
34
|
Rapa I, Volante M, Migliore C, Farsetti A, Berruti A, Vittorio Scagliotti G, Giordano S, Papotti M. Human ASH-1 promotes neuroendocrine differentiation in androgen deprivation conditions and interferes with androgen responsiveness in prostate cancer cells. Prostate 2013; 73:1241-9. [PMID: 23657976 DOI: 10.1002/pros.22679] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/03/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neuroendocrine differentiation in prostate cancer is a dynamic process associated to the onset of hormone-refractory disease in vivo. The molecular mechanisms underlying this process are poorly recognized. Our study aimed at testing in vitro the role of hASH-1, a transcription factor implicated in neuroendocrine differentiation, in the onset of neuroendocrine phenotype in prostate cancer cells. METHODS Androgen sensitive LNCAP, androgen insensitive PC-3, and three immortalized prostate cancer cell lines were cultured in standard and androgen deprivation conditions. Expression of hASH-1 was modulated by either specific lentiviral transduction or shRNA interference. Inhibitors of WNT-11, a WNT family member associated to the development of neuroendocrine differentiation in prostate cancer, were also used. Cell viability was measured using the MTS method. Neuroendocrine phenotype was assessed by morphology, immunohistochemistry and real time PCR for several neuroendocrine markers. RESULTS hASH-1 was up-modulated by androgen deprivation in LNCaP cells and in androgen-sensitive immortalized prostate cancer cells, and associated with the onset of a neuroendocrine phenotype. Silencing of hASH-1 prevented neuroendocrine differentiation, as did also the selective interference with the WNT-11 pathway. Moreover, hASH-1 over-expression in LNCaP cells was sufficient to promote neuroendocrine differentiation and increased cell viability at basal and androgen-deprived growth conditions. CONCLUSION In summary, the present data support previous evidence that the acquisition of a neuroendocrine phenotype is linked to androgen responsiveness profiles and suggest a pivotal role of hASH-1 transcription factor, whose activity might be explored as a potential therapeutic target in prostate cancer, with special reference to hormone refractory disease.
Collapse
Affiliation(s)
- Ida Rapa
- Department of Oncology at San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
James SR, Cedeno CD, Sharma A, Zhang W, Mohler JL, Odunsi K, Wilson EM, Karpf AR. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics 2013; 8:849-63. [PMID: 23839233 DOI: 10.4161/epi.25500] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MAGEA11 is a cancer germline (CG) antigen and androgen receptor co-activator. Its expression in cancers other than prostate, and its mechanism of activation, has not been reported. In silico analyses reveal that MAGEA11 is frequently expressed in human cancers, is increased during tumor progression, and correlates with poor prognosis and survival. In prostate and epithelial ovarian cancers (EOC), MAGEA11 expression was associated with promoter and global DNA hypomethylation, and with activation of other CG genes. Pharmacological or genetic inhibition of DNA methyltransferases (DNMTs) and/or histone deacetylases (HDACs) activated MAGEA11 in a cell line specific manner. MAGEA11 promoter activity was directly repressed by DNA methylation, and partially depended on Sp1, as pharmacological or genetic targeting of Sp1 reduced MAGEA11 promoter activity and endogenous gene expression. Importantly, DNA methylation regulated nucleosome occupancy specifically at the -1 positioned nucleosome of MAGEA11. Methylation of a single Ets site near the transcriptional start site (TSS) correlated with -1 nucleosome occupancy and, by itself, strongly repressed MAGEA11 promoter activity. Thus, DNA methylation regulates nucleosome occupancy at MAGEA11, and this appears to function cooperatively with sequence-specific transcription factors to regulate gene expression. MAGEA11 regulation is highly instructive for understanding mechanisms regulating CG antigen genes in human cancer.
Collapse
Affiliation(s)
- Smitha R James
- Department of Pharmacology and Therapeutics; Roswell Park Cancer Institute; Buffalo, NY USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Spallotta F, Tardivo S, Nanni S, Rosati JD, Straino S, Mai A, Vecellio M, Valente S, Capogrossi MC, Farsetti A, Martone J, Bozzoni I, Pontecorvi A, Gaetano C, Colussi C. Detrimental effect of class-selective histone deacetylase inhibitors during tissue regeneration following hindlimb ischemia. J Biol Chem 2013; 288:22915-29. [PMID: 23836913 DOI: 10.1074/jbc.m113.484337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone deacetylase inhibitors (DIs) are promising drugs for the treatment of several pathologies including ischemic and failing heart where they demonstrated efficacy. However, adverse side effects and cardiotoxicity have also been reported. Remarkably, no information is available about the effect of DIs during tissue regeneration following acute peripheral ischemia. In this study, mice made ischemic by femoral artery excision were injected with the DIs MS275 and MC1568, selective for class I and IIa histone deacetylases (HDACs), respectively. In untreated mice, soon after damage, class IIa HDAC phosphorylation and nuclear export occurred, paralleled by dystrophin and neuronal nitric-oxide synthase (nNOS) down-regulation and decreased protein phosphatase 2A activity. Between 14 and 21 days after ischemia, dystrophin and nNOS levels recovered, and class IIa HDACs relocalized to the nucleus. In this condition, the MC1568 compound increased the number of newly formed muscle fibers but delayed their terminal differentiation, whereas MS275 abolished the early onset of the regeneration process determining atrophy and fibrosis. The selective DIs had differential effects on the vascular compartment: MC1568 increased arteriogenesis whereas MS275 inhibited it. Capillarogenesis did not change. Chromatin immunoprecipitations revealed that class IIa HDAC complexes bind promoters of proliferation-associated genes and of class I HDAC1 and 2, highlighting a hierarchical control between class II and I HDACs during tissue regeneration. Our findings indicate that class-selective DIs interfere with normal mouse ischemic hindlimb regeneration and suggest that their use could be limited by alteration of the regeneration process in peripheral ischemic tissues.
Collapse
Affiliation(s)
- Francesco Spallotta
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, 20138 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Park JT, Kato M, Yuan H, Castro N, Lanting L, Wang M, Natarajan R. FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J Biol Chem 2013; 288:22469-80. [PMID: 23788640 DOI: 10.1074/jbc.m113.453043] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glomerular hypertrophy is a hallmark of diabetic nephropathy. Akt kinase activated by transforming growth factor-β1 (TGF-β) plays an important role in glomerular mesangial hypertrophy. However, the mechanisms of Akt activation by TGF-β are not fully understood. Recently, miR-200 and its target FOG2 were reported to regulate the activity of phosphatidylinositol 3-kinase (the upstream activator of Akt) in insulin signaling. Here, we show that TGF-β activates Akt in glomerular mesangial cells by inducing miR-200b and miR-200c, both of which target FOG2, an inhibitor of phosphatidylinositol 3-kinase activation. FOG2 expression was reduced in the glomeruli of diabetic mice as well as TGF-β-treated mouse mesangial cells (MMC). FOG2 knockdown by siRNAs in MMC activated Akt and increased the protein content/cell ratio suggesting hypertrophy. A significant increase of miR-200b/c levels was detected in diabetic mouse glomeruli and TGF-β-treated MMC. Transfection of MMC with miR-200b/c mimics significantly decreased the expression of FOG2. Conversely, miR-200b/c inhibitors attenuated TGF-β-induced decrease in FOG2 expression. Furthermore, miR-200b/c mimics increased the protein content/cell ratio, whereas miR-200b/c inhibitors abrogated the TGF-β-induced increase in protein content/cell. In addition, down-regulation of FOG2 by miR-200b/c could activate not only Akt but also ERK, which was also through PI3K activation. These data suggest a new mechanism for TGF-β-induced Akt activation through FOG2 down-regulation by miR-200b/c, which can lead to glomerular mesangial hypertrophy in the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Jung Tak Park
- Division of Molecular Diabetes Research, Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Nanni S, Aiello A, Re A, Guffanti A, Benvenuti V, Colussi C, Castro-Vega LJ, Felsani A, Londono-Vallejo A, Capogrossi MC, Bacchetti S, Gaetano C, Pontecorvi A, Farsetti A. Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer. PLoS One 2013; 8:e62522. [PMID: 23658738 PMCID: PMC3643940 DOI: 10.1371/journal.pone.0062522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/22/2013] [Indexed: 01/07/2023] Open
Abstract
In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa.
Collapse
Affiliation(s)
- Simona Nanni
- Department of Experimental Oncology, National Cancer Institute Regina Elena, Rome, Italy
- Medical Pathology Institute, Catholic University, Rome, Italy
| | - Aurora Aiello
- Medical Pathology Institute, Catholic University, Rome, Italy
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
| | - Agnese Re
- Medical Pathology Institute, Catholic University, Rome, Italy
- University of Messina, Messina, Italy
| | | | - Valentina Benvenuti
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
| | - Claudia Colussi
- Medical Pathology Institute, Catholic University, Rome, Italy
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
| | | | - Armando Felsani
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
- Genomnia srl, Lainate, Milan, Italy
| | | | | | - Silvia Bacchetti
- Department of Experimental Oncology, National Cancer Institute Regina Elena, Rome, Italy
| | - Carlo Gaetano
- Goethe University, Frankfurt, Germany
- * E-mail: (CG); (AF)
| | | | - Antonella Farsetti
- Department of Experimental Oncology, National Cancer Institute Regina Elena, Rome, Italy
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
- * E-mail: (CG); (AF)
| |
Collapse
|
39
|
Fiandalo MV, Wu W, Mohler JL. The role of intracrine androgen metabolism, androgen receptor and apoptosis in the survival and recurrence of prostate cancer during androgen deprivation therapy. Curr Drug Targets 2013; 14:420-40. [PMID: 23565755 PMCID: PMC3991464 DOI: 10.2174/1389450111314040004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 11/22/2022]
Abstract
Prostate cancer (CaP) is the most frequently diagnosed cancer and leading cause of cancer death in American men. Almost all men present with advanced CaP and some men who fail potentially curative therapy are treated with androgen deprivation therapy (ADT). ADT is not curative and CaP recurs as the lethal phenotype. The goal of this review is to apply our current understanding of CaP and castration-recurrent CaP (CR-CaP) to earlier studies that characterized ADT and the molecular mechanisms that facilitate the transition from androgen-stimulated CaP to CR-CaP. Reexamination of earlier studies also may provide a better understanding of how more newly recognized mechanisms, such as intracrine metabolism, may be involved with the early events that allow CaP survival after initiation of ADT and subsequent development of CR-CaP.
Collapse
Affiliation(s)
- Michael V. Fiandalo
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Wenjie Wu
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - James L. Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
40
|
Samusik N, Krukovskaya L, Meln I, Shilov E, Kozlov AP. PBOV1 is a human de novo gene with tumor-specific expression that is associated with a positive clinical outcome of cancer. PLoS One 2013; 8:e56162. [PMID: 23418531 PMCID: PMC3572036 DOI: 10.1371/journal.pone.0056162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 01/10/2013] [Indexed: 01/20/2023] Open
Abstract
PBOV1 is a known human protein-coding gene with an uncharacterized function. We have previously found that PBOV1 lacks orthologs in non-primate genomes and is expressed in a wide range of tumor types. Here we report that PBOV1 protein-coding sequence is human-specific and has originated de novo in the primate evolution through a series of frame-shift and stop codon mutations. We profiled PBOV1 expression in multiple cancer and normal tissue samples and found that it was expressed in 19 out of 34 tumors of various origins but completely lacked expression in any of the normal adult or fetal human tissues. We found that, unlike the cancer/testis antigens that are typically controlled by CpG island-containing promoters, PBOV1 was expressed from a GC-poor TATA-containing promoter which was not influenced by CpG demethylation and was inactive in testis. Our analysis of public microarray data suggests that PBOV1 activation in tumors could be dependent on the Hedgehog signaling pathway. Despite the recent de novo origin and the lack of identifiable functional signatures, a missense SNP in the PBOV1 coding sequence has been previously associated with an increased risk of breast cancer. Using publicly available microarray datasets, we found that high levels of PBOV1 expression in breast cancer and glioma samples were significantly associated with a positive outcome of the cancer disease. We also found that PBOV1 was highly expressed in primary but not in recurrent high-grade gliomas, suggesting the presence of a negative selection against PBOV1-expressing cancer cells. Our findings could contribute to the understanding of the mechanisms behind de novo gene origin and the possible role of tumors in this process.
Collapse
Affiliation(s)
- Nikolay Samusik
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany.
| | | | | | | | | |
Collapse
|
41
|
Yoshioka T, Otero J, Chen Y, Kim YM, Koutcher JA, Satagopan J, Reuter V, Carver B, de Stanchina E, Enomoto K, Greenberg NM, Scardino PT, Scher HI, Sawyers CL, Giancotti FG. β4 Integrin signaling induces expansion of prostate tumor progenitors. J Clin Invest 2013; 123:682-99. [PMID: 23348745 PMCID: PMC3561800 DOI: 10.1172/jci60720] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/25/2012] [Indexed: 02/03/2023] Open
Abstract
The contextual signals that regulate the expansion of prostate tumor progenitor cells are poorly defined. We found that a significant fraction of advanced human prostate cancers and castration-resistant metastases express high levels of the β4 integrin, which binds to laminin-5. Targeted deletion of the signaling domain of β4 inhibited prostate tumor growth and progression in response to loss of p53 and Rb function in a mouse model of prostate cancer (PB-TAg mice). Additionally, it suppressed Pten loss-driven prostate tumorigenesis in tissue recombination experiments. We traced this defect back to an inability of signaling-defective β4 to sustain self-renewal of putative cancer stem cells in vitro and proliferation of transit-amplifying cells in vivo. Mechanistic studies indicated that mutant β4 fails to promote transactivation of ErbB2 and c-Met in prostate tumor progenitor cells and human cancer cell lines. Pharmacological inhibition of ErbB2 and c-Met reduced the ability of prostate tumor progenitor cells to undergo self-renewal in vitro. Finally, we found that β4 is often coexpressed with c-Met and ErbB2 in human prostate cancers and that combined pharmacological inhibition of these receptor tyrosine kinases exerts antitumor activity in a mouse xenograft model. These findings indicate that the β4 integrin promotes prostate tumorigenesis by amplifying ErbB2 and c-Met signaling in tumor progenitor cells.
Collapse
Affiliation(s)
- Toshiaki Yoshioka
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Javier Otero
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Yu Chen
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Young-Mi Kim
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Jason A. Koutcher
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Jaya Satagopan
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Victor Reuter
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Brett Carver
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Elisa de Stanchina
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Katsuhiko Enomoto
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Norman M. Greenberg
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Peter T. Scardino
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Howard I. Scher
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Charles L. Sawyers
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Filippo G. Giancotti
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| |
Collapse
|
42
|
O'Hanlon Brown C, Waxman J. Current management of prostate cancer: dilemmas and trials. Br J Radiol 2013; 85 Spec No 1:S28-40. [PMID: 23118100 DOI: 10.1259/bjr/13017671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The past decade has witnessed significant advances in our understanding of the biology of prostate cancer. Androgen ablation/androgen receptor inhibition remains as the mainstay of treatment for advanced prostate cancer. Our understanding of the biology of prostate cancer has increased exponentially owing to advances in molecular biology. With this knowledge many intriguing issues have come to light, which clinicians and scientists alike strive to answer. These include why prostate cancer is so common, what drives the development of prostate cancer at a molecular level, why prostate cancer appears refractory to many families of cytotoxic chemotherapeutics, and why prostate cancer preferentially metastasizes to bone. Two clinical forms of prostate cancer have been identified: indolent organ confined disease, which elderly men often die of, and aggressive metastatic disease. A method of distinguishing between these two forms of the disease at an organ-confined stage remains elusive. Understanding the mechanisms of castrate resistance is a further issue of clinical importance. New trials of treatments, including molecular agents that target prostate cancer from a range of angles, have been instituted over the past 10-15 years. We can look at these trials not only as a chance to investigate the effectiveness of new treatments but also as an opportunity to further understand the complex biology of this disease.
Collapse
Affiliation(s)
- C O'Hanlon Brown
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, UK
| | | |
Collapse
|
43
|
Molecular signature of cancer at gene level or pathway level? Case studies of colorectal cancer and prostate cancer microarray data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:909525. [PMID: 23401724 PMCID: PMC3562646 DOI: 10.1155/2013/909525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/23/2012] [Indexed: 11/17/2022]
Abstract
With recent advances in microarray technology, there has been a flourish in genome-scale identification of molecular signatures for cancer. However, the differentially expressed genes obtained by different laboratories are highly divergent. The present discrepancy at gene level indicates a need for a novel strategy to obtain more robust signatures for cancer. In this paper we hypothesize that (1) the expression signatures of different cancer microarray datasets are more similar at pathway level than at gene level; (2) the comparability of the cancer molecular mechanisms of different individuals is related to their genetic similarities. In support of the hypotheses, we summarized theoretical and experimental evidences, and conducted case studies on colorectal and prostate cancer microarray datasets. Based on the above assumption, we propose that reliable cancer signatures should be investigated in the context of biological pathways, within a cohort of genetically homogeneous population. It is hoped that the hypotheses can guide future research in cancer mechanism and signature discovery.
Collapse
|
44
|
Roy J, Winter C, Isik Z, Schroeder M. Network information improves cancer outcome prediction. Brief Bioinform 2012; 15:612-25. [PMID: 23255167 DOI: 10.1093/bib/bbs083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Disease progression in cancer can vary substantially between patients. Yet, patients often receive the same treatment. Recently, there has been much work on predicting disease progression and patient outcome variables from gene expression in order to personalize treatment options. Despite first diagnostic kits in the market, there are open problems such as the choice of random gene signatures or noisy expression data. One approach to deal with these two problems employs protein-protein interaction networks and ranks genes using the random surfer model of Google's PageRank algorithm. In this work, we created a benchmark dataset collection comprising 25 cancer outcome prediction datasets from literature and systematically evaluated the use of networks and a PageRank derivative, NetRank, for signature identification. We show that the NetRank performs significantly better than classical methods such as fold change or t-test. Despite an order of magnitude difference in network size, a regulatory and protein-protein interaction network perform equally well. Experimental evaluation on cancer outcome prediction in all of the 25 underlying datasets suggests that the network-based methodology identifies highly overlapping signatures over all cancer types, in contrast to classical methods that fail to identify highly common gene sets across the same cancer types. Integration of network information into gene expression analysis allows the identification of more reliable and accurate biomarkers and provides a deeper understanding of processes occurring in cancer development and progression.
Collapse
|
45
|
|
46
|
Kang DD, Sibille E, Kaminski N, Tseng GC. MetaQC: objective quality control and inclusion/exclusion criteria for genomic meta-analysis. Nucleic Acids Res 2011; 40:e15. [PMID: 22116060 PMCID: PMC3258120 DOI: 10.1093/nar/gkr1071] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genomic meta-analysis to combine relevant and homogeneous studies has been widely applied, but the quality control (QC) and objective inclusion/exclusion criteria have been largely overlooked. Currently, the inclusion/exclusion criteria mostly depend on ad-hoc expert opinion or naïve threshold by sample size or platform. There are pressing needs to develop a systematic QC methodology as the decision of study inclusion greatly impacts the final meta-analysis outcome. In this article, we propose six quantitative quality control measures, covering internal homogeneity of coexpression structure among studies, external consistency of coexpression pattern with pathway database, and accuracy and consistency of differentially expressed gene detection or enriched pathway identification. Each quality control index is defined as the minus log transformed P values from formal hypothesis testing. Principal component analysis biplots and a standardized mean rank are applied to assist visualization and decision. We applied the proposed method to 4 large-scale examples, combining 7 brain cancer, 9 prostate cancer, 8 idiopathic pulmonary fibrosis and 17 major depressive disorder studies, respectively. The identified problematic studies were further scrutinized for potential technical or biological causes of their lower quality to determine their exclusion from meta-analysis. The application and simulation results concluded a systematic quality assessment framework for genomic meta-analysis.
Collapse
Affiliation(s)
- Dongwan D Kang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
47
|
Re A, Aiello A, Nanni S, Grasselli A, Benvenuti V, Pantisano V, Strigari L, Colussi C, Ciccone S, Mazzetti AP, Pierconti F, Pinto F, Bassi P, Gallucci M, Sentinelli S, Trimarchi F, Bacchetti S, Pontecorvi A, Lo Bello M, Farsetti A. Silencing of GSTP1, a prostate cancer prognostic gene, by the estrogen receptor-β and endothelial nitric oxide synthase complex. Mol Endocrinol 2011; 25:2003-16. [PMID: 22052999 DOI: 10.1210/me.2011-1024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently identified in prostate tumors (PCa) a transcriptional prognostic signature comprising a significant number of genes differentially regulated in patients with worse clinical outcome. Induction of up-regulated genes was due to chromatin remodeling by a combinatorial complex between estrogen receptor (ER)-β and endothelial nitric oxide synthase (eNOS). Here we show that this complex can also repress transcription of prognostic genes that are down-regulated in PCa, such as the glutathione transferase gene GSTP1. Silencing of GSTP1 is a common early event in prostate carcinogenesis, frequently caused by promoter hypermethylation. We validated loss of glutathione transferase (GST) P1-1 expression in vivo, in tissue microarrays from a retrospective cohort of patients, and correlated it with decreased disease-specific survival. Furthermore, we show that in PCa cultured cells ERβ/eNOS causes GSTP1 repression by being recruited at estrogen responsive elements in the gene promoter with consequential remodeling of local chromatin. Treatment with ERβ antagonist or its natural ligand 5α-androstane-3β,17β-diol, eNOS inhibitors or ERβ small interference RNA abrogated the binding and reversed GSTP1 silencing, demonstrating the direct involvement of the complex. In vitro, GSTP1 silencing by ERβ/eNOS was specific for cells from patients with worse clinical outcome where it appeared the sole mechanism regulating GSTP1 expression because no promoter hypermethylation was present. However, in vivo chromatin immunoprecipitation assays on fresh PCa tissues demonstrated that silencing by ERβ/eNOS can coexist with promoter hypermethylation. Our findings reveal that the ERβ/eNOS complex can exert transcriptional repression and suggest that this may represent an epigenetic event favoring inactivation of the GSTP1 locus by methylation. Moreover, abrogation of ERβ/eNOS function by 3β-adiol emphasizes the significance of circulating or locally produced sex steroid hormones or their metabolites in PCa biology with relevant clinical/therapeutic implications.
Collapse
Affiliation(s)
- A Re
- Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Andres SA, Wittliff JL. Relationships of ESR1 and XBP1 expression in human breast carcinoma and stromal cells isolated by laser capture microdissection compared to intact breast cancer tissue. Endocrine 2011; 40:212-21. [PMID: 21858728 DOI: 10.1007/s12020-011-9522-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Results from investigations of human genomics which utilize intact tissue biopsy specimens maybe compromised due to a host of uncontrolled variables including cellular heterogeneity of a sample collected under diverse conditions, then processed and stored using different protocols. To determine the cellular origin and assess relationships of mRNA expression of two genes reported to be co-expressed in human breast carcinoma (estrogen receptor-α, ESR1 and X-box binding protein 1, XBP1), gene expression analyses were performed with intact tissue sections and compared with those of laser capture microdissection (LCM)-procured carcinoma and stromal cells from serial sections of the same tissue. Frozen sections of human breast carcinomas were first evaluated for structural integrity and pathology after hematoxylin and eosin (H&E) staining. Total RNA preparations from intact tissue sections and LCM-procured carcinoma and stromal cells were reverse transcribed for measurements of ESR1 and XBP1 expression by quantitative PCR (qPCR). These results were compared with those obtained from microarray analyses of LCM-procured carcinoma cells. Levels of ESR1 and XBP1 were detected in the intact breast cancer tissue sections suggesting coordinate gene expression. Although coordinate expression of these genes was observed in the LCM-procured carcinoma cells, it was not discerned in LCM-procured stromal cells. The origin of coordinate expression of ESR1 and XBP1 observed in whole tissue sections of human breast cancer biopsies is due principally to their co-expression in carcinoma cells and not in the surrounding stromal cells as substantiated using LCM-procured cells. Collectively, a microgenomic process was established from human tissue preparation to RNA characterization and analysis to identify molecular signatures of specific cell types predicting clinical behavior.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnosis
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Separation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Histocytochemistry
- Humans
- Laser Capture Microdissection
- Molecular Diagnostic Techniques
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/metabolism
- RNA, Neoplasm/isolation & purification
- RNA, Neoplasm/metabolism
- Regulatory Factor X Transcription Factors
- Reproducibility of Results
- Reverse Transcriptase Polymerase Chain Reaction
- Stromal Cells/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- X-Box Binding Protein 1
Collapse
Affiliation(s)
- Sarah A Andres
- Hormone Receptor Laboratory, Department of Biochemistry & Molecular Biology, Brown Cancer Center and the Institute for Molecular Diversity & Drug Design, University of Louisville, Health Sciences Center A Bldg.-Room 604, Louisville, KY 40292, USA
| | | |
Collapse
|
49
|
Predicting microRNA modulation in human prostate cancer using a simple String IDentifier (SID1.0). J Biomed Inform 2011; 44:615-20. [DOI: 10.1016/j.jbi.2011.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 02/09/2011] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
|
50
|
Nardinocchi L, Puca R, D'Orazi G. HIF-1α antagonizes p53-mediated apoptosis by triggering HIPK2 degradation. Aging (Albany NY) 2011; 3:33-43. [PMID: 21248371 PMCID: PMC3047137 DOI: 10.18632/aging.100254] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many human diseases are characterized by the development of tissue hypoxia. Hypoxia-inducible factor (HIF) is a transcription factor that regulates fundamental cellular processes in response to changes in oxygen concentration, such as angiogenesis, survival, and alterations in metabolism. The levels of HIF-1α subunit are increased in most solid tumors not only by low oxygen but also by growth factors and oncogenes and correlate with patient prognosis and treatment failure. The link between HIF-1α and apoptosis, a major determinant of cancer progression and treatment outcome, is poorly understood. Here we show that HIF-1α protects against drug-induced apoptosis by antagonizing the function of the tumor suppressor p53. HIF-1α upregulation induced proteasomal degradation of homeodomain-interacting protein kinase-2 (HIPK2), the p53 apoptotic activator. Inhibition of HIF-1α by siRNA, HIF-1α-dominant negative or by zinc re-established the HIPK2 levels and the p53-mediated chemosensitivity in tumor cells. Our findings identify a novel circuitry between HIF-1α and p53, and provide a paradigm for HIPK2 dictating cell response to antitumor therapies.
Collapse
Affiliation(s)
- Lavinia Nardinocchi
- Department of Experimental Oncology, Molecular Oncogenesis Laboratory, National Cancer Institute "Regina Elena", Rome, Italy
| | | | | |
Collapse
|