1
|
Resar LMS, Luo LZ. High Mobility Group A1 Chromatin Keys: Unlocking the Genome During MPN Progression. Int J Mol Sci 2025; 26:2125. [PMID: 40076747 PMCID: PMC11899949 DOI: 10.3390/ijms26052125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Patients with chronic, indolent myeloproliferative neoplasms (MPNs) are at risk for transformation to highly lethal leukemia, although targetable mechanisms driving progression remain elusive. We discovered that the High Mobility Group A1 (HMGA1) gene is up-regulated with MPN progression in patients and required for evolution into myelofibrosis (MF) or acute myeloid leukemia (AML) in preclinical models. HMGA1 encodes the HMGA1 epigenetic regulators that modulate the chromatin state during embryogenesis and tissue regeneration. While HMGA1 is silenced in most differentiated cells, it becomes aberrantly re-expressed in JAK2 mutant (JAK2-V617F) MPN, with the highest levels after transformation to secondary MF or AML. Here, we review recent work highlighting HMGA1 function in MPN progression. Though underlying mechanisms continue to emerge, increasing evidence suggests that HMGA1 functions as a "chromatin key" required to "unlock" regions of the genome involved in clonal expansion and progression in MPN. Together, these findings illuminate HMGA1 as a driver of MPN progression and a promising therapeutic target.
Collapse
Affiliation(s)
- Linda M. S. Resar
- Departments of Medicine (Hematology), Oncology, Pathology and Institute for Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | |
Collapse
|
2
|
Kumazoe M, Tachibana H. MicroRNA mediates the effects of food factors. Biosci Biotechnol Biochem 2025; 89:174-178. [PMID: 39462142 DOI: 10.1093/bbb/zbae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Food factors elicit physiological effects by interfering with the central dogma system, including DNA methylation, replication, transcription, and translation. MicroRNAs (miRNAs) are noncoding short RNAs that are ∼20 nucleotides long and play a crucial role in the regulation of mRNA levels and translation processes. Importantly, miRNAs can be delivered to different locations in nanovesicles. However, little is known about their roles as mediators of the effects of food factors. This review introduces recent findings on the role of miRNAs in the beneficial effects of food factors, including green tea polyphenols and soybean isoflavones, and discusses the importance of miRNAs as mediators of the beneficial effects of food.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Nohman AI, Schwarm FP, Stein M, Schänzer A, Koch C, Uhl E, Kolodziej M. Significantly higher expression of high-mobility group AT hook protein 2 (HMGA2) in the border zone of glioblastoma. J Neurosurg Sci 2024; 68:668-675. [PMID: 36987772 DOI: 10.23736/s0390-5616.22.05903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND High-mobility group AT-hook protein 2 (HMGA2) is a gene regulatory protein that is correlated with metastatic potential and poor prognosis. It has been shown that HMGA2 is overexpressed in various tumors such as lung cancer or pancreatic cancer. The invasive character and highly aggressive structure of glioblastoma let us to investigate HMGA2 expression in the border zone of the tumor more closely. We compared HMGA2 expression between glioblastoma and normal brain tissue. In addition, we analyzed and compared HMGA2 expression in the border and center zones of tumors. Correlation tests between HMGA expression and clinical parameters such as MGMT-status and survival were performed. METHODS Samples from 23 patients with WHO grade 4 glioblastomas were analyzed for HMGA2 expression using quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) and correlated with clinical parameters. The areas from the tumor center and border were analyzed separately. Two normal brain tissue specimens were used as the controls. RESULTS Our results confirm that HMGA2 is higher expressed in glioblastoma compared to healthy brain tissue (qPCR, P=0.013; IHC, P=0.04). Moreover, immunohistochemistry revealed significantly higher HMGA2 expression in the border zone of the tumor than in the tumor center zone (P=0.012). Survival analysis revealed a tendency for shorter survival when HMGA2 was highly expressed in the border zone. CONCLUSIONS The results reveal an overexpression of HMGA2 in the border zone of glioblastomas; thus, the expression cluster of HMGA2 seems to be heterogenous and thorough borough surgical resection of the vital and aggressive border cells might be important to inhibit the invasive character of the tumor.
Collapse
Affiliation(s)
- Amin I Nohman
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany -
- Unit of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht Karl University Hospital of Heidelberg, Heidelberg, Germany -
| | - Frank P Schwarm
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | - Marco Stein
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | - Anne Schänzer
- Department of Neuropathology, Justus-Liebig University Giessen, Giessen, Germany
| | - Christian Koch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Eberhard Uhl
- Department of Neurosurgery, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
4
|
Lim C, Seo D. Assessment of the carcinogenic potential of particulate matter generated from 3D printing devices in Balb/c 3T3-1-1 cells. Sci Rep 2024; 14:23981. [PMID: 39402095 PMCID: PMC11473660 DOI: 10.1038/s41598-024-75491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/07/2024] [Indexed: 10/17/2024] Open
Abstract
Recently, there have been reports of sarcoma occurring in a Korean science teachers who used a 3D printer with acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) filaments for educational purposes. However, limited toxicological research data on 3D printing make it challenging to confirm a causal relationship between 3D printing and cancer. Therefore, occupational accidents involving teachers who have developed sarcoma have not been officially recognized. To address this gap, we aimed to evaluate the carcinogenic potential of particulate matter produced from ABS and PLA filaments commonly used in 3D printing. We created a generator mimicking 3D printing to generate particulate matter, which was used as an experimental material. The collected particulate matter was exposed to an in vitro system to investigate genetic damage, effects on cell transformation, and changes in carcinogenesis-related genes. Various assays, such as the comet assay, cell transformation assays, microarray analysis, and glucose consumption measurement, were employed. Cytotoxicity tests performed to determine the exposure concentration for the comet assay showed that cell viability was 83.6, 62.6, 42.0, and 10.2% for ABS at exposure concentrations of 50, 100, 200, and 400 µg/mL, respectively. PLA showed 91.7, 80.3, 65.1, and 60.8% viability at exposure concentrations of 50, 100, 200, and 400 µg/mL, respectively. Therefore, 50 µg/mL was set as the highest concentration for both ABS and PLA, and 25 and 12.5 µg/mL were set as the medium and low concentrations, respectively. The comet assay showed no changes in genetic damage caused by the particulate matter. Cytotoxicity results performed to establish exposure concentrations in the transformation assay showed that ABS showed cell viability of 88.0, 77.4, 84.7, and 85.5% at concentrations of 1.25, 2.5, 5, and 10 µg/mL, respectively, but few cells survived at concentrations above 20 µg/mL. PLA showed minimal cytotoxicity up to a concentration of 20 µg/ml. Therefore, in the cell transformation assay, a concentration of 10 µg/mL for ABS and 20 µg/mL for PLA was set as the highest exposure concentration, followed by medium and low exposure concentrations with a common ratio of 2. In cell transformation assays, only one transformed focus each was observed for both ABS and PLA particulate matter-exposed cells. The microarray assay revealed changes in gene expression, with a 41.7% change at 10 µg/mL for ABS and an 18.6% change at 20 µg/mL for PLA compared to the positive control group. Analysis of carcinogenesis-related gene expression changes on days 1, 7, and 25 of the promotion phase revealed that in cells exposed to 5 µg/mL of ABS, RBM3 gene expression increased by 3.66, 3.26, and 3.74 times, respectively, while MPP6 gene expression decreased by 0.33, 0.28, and 0.38 times, respectively, compared to the negative control group. Additionally, the measurement of glucose consumption showed that it increased in cells exposed to ABS and PLA particulate matter. Our findings suggest that the carcinogenic potential of ABS- and PLA-derived particulate matter in 3D printing cannot be completely ruled out. Therefore, further research in other test systems and analysis of additional parameters related to carcinogenesis, are deemed necessary to evaluate the carcinogenic risk of 3D printers using these materials.
Collapse
Affiliation(s)
- CheolHong Lim
- Inhalation Toxicity Research Center, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, 30, Expro-ro 339 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - DongSeok Seo
- Inhalation Toxicity Research Center, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, 30, Expro-ro 339 beon-gil, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Yang Y, Gao C, Li Q, Liu Y, Cao J. HMGA2-mediated glutamine metabolism is required for Cd-induced cell growth and cell migration. Toxicology 2024; 507:153899. [PMID: 39032683 DOI: 10.1016/j.tox.2024.153899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Cadmium (Cd) exposure significantly increases the risk of lung cancer. The demand for glutamine is increasing in cancers, including lung cancer. In this study, we investigated the role of glutamine metabolism in Cd-induced cell growth and migration. Firstly, we found that 2 μM Cd-treatment up-regulated the expression of ASCT2 (alanine, serine, cysteine-preferring transporter 2) and ASNS (asparagine synthetase) while downregulating mitochondrial glutaminase GLS1 in A549 cells. The same results were obtained in male BALB/c mice treated with 0.5 and 1 mg Cd/kg body weight. Subsequently, both glutamine deprivation and transfection with siASCT2 revealed that glutamine played a role in Cd-induced cell growth and migration. Furthermore, using 4-PBA (5 mM), an inhibitor of endoplasmic reticulum (ER) stress, Tm (0.1 μg/ml), an inducer of ER stress, siHMGA2, and over-expressing HMGA2 plasmids we demonstrated that ER stress/HMGA2 axis was involved in inducing ASCT2 and ASNS, while inhibiting GLS1. Additionally, the chromatin immunoprecipitation assay using an HMGA2 antibody revealed the direct binding of the HMGA2 to the promoter sequences of the ASCT2, ASNS, and GLS1 genes. Finally, dual luciferase reporter assay determined that HMGA2 increased the transcription of ASCT2 and ASNS while inhibiting the transcription of GLS1. Overall, we found that ER stress-induced HMGA2 controls glutamine metabolism by transcriptional regulation of ASCT2, ASNS and GLS1 to accelerate cell growth and migration during exposure to Cd at low concentrations. This study innovatively revealed the mechanism of Cd-induced cell growth which offers a fresh perspective on preventing Cd toxicity through glutamine metabolism.
Collapse
Affiliation(s)
- Yanqiu Yang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Chunpeng Gao
- Multi-Disciplinary Treatment (MDT) office, Dalian Municipal Central Hospital, Dalian 116003, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
6
|
Khazem F, Zetoune AB. Decoding high mobility group A2 protein expression regulation and implications in human cancers. Discov Oncol 2024; 15:322. [PMID: 39085703 PMCID: PMC11291832 DOI: 10.1007/s12672-024-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
High Mobility Group A2 (HMGA2) oncofetal proteins are a distinct category of Transcription Factors (TFs) known as "architectural factors" due to their lack of direct transcriptional activity. Instead, they modulate the three-dimensional structure of chromatin by binding to AT-rich regions in the minor grooves of DNA through their AT-hooks. This binding allows HMGA2 to interact with other proteins and different regions of DNA, thereby regulating the expression of numerous genes involved in carcinogenesis. Consequently, multiple mechanisms exist to finely control HMGA2 protein expression at various transcriptional levels, ensuring precise concentration adjustments to maintain cellular homeostasis. During embryonic development, HMGA2 protein is highly expressed but becomes absent in adult tissues. However, recent studies have revealed its re-elevation in various cancer types. Extensive research has demonstrated the involvement of HMGA2 protein in carcinogenesis at multiple levels. It intervenes in crucial processes such as cell cycle regulation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, cancer cell stemness, and DNA damage repair mechanisms, ultimately promoting cancer cell survival. This comprehensive review provides insights into the HMGA2 protein, spanning from the genetic regulation to functional protein behavior. It highlights the significant mechanisms governing HMGA2 gene expression and elucidates the molecular roles of HMGA2 in the carcinogenesis process.
Collapse
Affiliation(s)
- Farah Khazem
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
| | | |
Collapse
|
7
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Gaudreau-Lapierre A, Klonisch T, Nicolas H, Thanasupawat T, Trinkle-Mulcahy L, Hombach-Klonisch S. Nuclear High Mobility Group A2 (HMGA2) Interactome Revealed by Biotin Proximity Labeling. Int J Mol Sci 2023; 24:ijms24044246. [PMID: 36835656 PMCID: PMC9966875 DOI: 10.3390/ijms24044246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) has important functions in chromatin remodeling, and genome maintenance and protection. Expression of HMGA2 is highest in embryonic stem cells, declines during cell differentiation and cell aging, but it is re-expressed in some cancers, where high HMGA2 expression frequently coincides with a poor prognosis. The nuclear functions of HMGA2 cannot be explained by binding to chromatin alone but involve complex interactions with other proteins that are incompletely understood. The present study used biotin proximity labeling, followed by proteomic analysis, to identify the nuclear interaction partners of HMGA2. We tested two different biotin ligase HMGA2 constructs (BioID2 and miniTurbo) with similar results, and identified known and new HMGA2 interaction partners, with functionalities mainly in chromatin biology. These HMGA2 biotin ligase fusion constructs offer exciting new possibilities for interactome discovery research, enabling the monitoring of nuclear HMGA2 interactomes during drug treatments.
Collapse
Affiliation(s)
- Antoine Gaudreau-Lapierre
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hannah Nicolas
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: ; Tel.: +1-204-789-3982; Fax: +1-204-789-3920
| |
Collapse
|
9
|
Ohmori K, Kamei A, Watanabe Y, Abe K. Gene Expression over Time during Cell Transformation Due to Non-Genotoxic Carcinogen Treatment of Bhas 42 Cells. Int J Mol Sci 2022; 23:ijms23063216. [PMID: 35328637 PMCID: PMC8954493 DOI: 10.3390/ijms23063216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
The Bhas 42 cell transformation assay (Bhas 42 CTA) is the first Organization for Economic Cooperation and Development (OECD)-certificated method used as a specific tool for the detection of the cell-transformation potential of tumor-promoting compounds, including non-genotoxic carcinogens (NGTxCs), as separate from genotoxic carcinogens. This assay offers the great advantage of enabling the phenotypic detection of oncotransformation. A key benefit of using the Bhas 42 CTA in the study of the cell-transformation mechanisms of tumor-promoting compounds, including non-genotoxic carcinogens, is that the cell-transformation potential of the chemical can be detected directly without treatment with a tumor-initiating compound since Bhas 42 cell line was established by transfecting the v-Ha-ras gene into a mouse fibroblast cloned cell line. Here, we analyzed the gene expression over time, using DNA microarrays, in Bhas 42 cells treated with the tumor-promoting compound 12-O-tetradecanoylphorbol-13-acetate (TPA), and NGTxC, with a total of three repeat experiments. This is the first paper to report on gene expression over time during the process of cell transformation with only a tumor-promoting compound. Pathways that were activated or inactivated during the process of cell transformation in the Bhas 42 cells treated with TPA were related not only directly to RAS but also to various pathways in the hallmarks of cancer.
Collapse
Affiliation(s)
- Kiyomi Ohmori
- Chemical Division, Kanagawa Prefectural Institute of Public Health, Chigasaki 2530087, Japan
- Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 2408501, Japan
- Correspondence: or ; Tel./Fax: +81-046-783-4400 or +81-045-339-4448
| | - Asuka Kamei
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki 2100821, Japan; (A.K.); (K.A.)
| | - Yuki Watanabe
- Health and Anti-Aging Project, Kanagawa Academy of Science and Technology, Kawasaki 2130012, Japan;
| | - Keiko Abe
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki 2100821, Japan; (A.K.); (K.A.)
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan
| |
Collapse
|
10
|
Huang L, Yi X, Yu X, Wang Y, Zhang C, Qin L, Guo D, Zhou S, Zhang G, Deng Y, Bao X, Wang D. High-Throughput Strategies for the Discovery of Anticancer Drugs by Targeting Transcriptional Reprogramming. Front Oncol 2021; 11:762023. [PMID: 34660328 PMCID: PMC8518531 DOI: 10.3389/fonc.2021.762023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Transcriptional reprogramming contributes to the progression and recurrence of cancer. However, the poorly elucidated mechanisms of transcriptional reprogramming in tumors make the development of effective drugs difficult, and gene expression signature is helpful for connecting genetic information and pharmacologic treatment. So far, there are two gene-expression signature-based high-throughput drug discovery approaches: L1000, which measures the mRNA transcript abundance of 978 "landmark" genes, and high-throughput sequencing-based high-throughput screening (HTS2); they are suitable for anticancer drug discovery by targeting transcriptional reprogramming. L1000 uses ligation-mediated amplification and hybridization to Luminex beads and highlights gene expression changes by detecting bead colors and fluorescence intensity of phycoerythrin signal. HTS2 takes advantage of RNA-mediated oligonucleotide annealing, selection, and ligation, high throughput sequencing, to quantify gene expression changes by directly measuring gene sequences. This article summarizes technological principles and applications of L1000 and HTS2, and discusses their advantages and limitations in anticancer drug discovery.
Collapse
Affiliation(s)
- Lijun Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiankuo Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lixia Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dale Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyi Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanbin Zhang
- Department of Infectious Diseases, 404 Hospital of Mianyang, Mianyang, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Yun Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xilinqiqige Bao
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Mei J, Dlamini MB, Gao Z, Jiang L, Li Q, Geng C, Shi X, Liu Y, Kong Y, Cao J. A requirement for autophagy in HMGA2-induced metabolic reprogramming to support Cd-induced migration. Toxicology 2021; 462:152928. [PMID: 34481905 DOI: 10.1016/j.tox.2021.152928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 02/04/2023]
Abstract
High mobility group A2 (HMGA2) is closely related to the occurrence, development and prognosis of tumors. But the mechanism is unclear. Metabolic reprogramming is a dominant way to meet anabolic and energy requirements of tumor cells for their survival, growth and proliferation. Here, we investigated the role of metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis mediated by HMGA2/autophagy axis in cadmium (Cd, CdCl2)-induced migration. First, we found that Cd induced glycolysis and reduced OXPHOS in vivo (0.5 and 1 mg/kg, i.p. or 0.8 and 1.6 μM, i.t.) and in vitro (2 μM in A549 cells and 0.05 μM in HELF cells). Then, genetic knockdown of HMGA2 restored Cd-reduced mitochondrial mass and OXPHOS and inhibited Cd-increased glycolysis, indicating that HMGA2 was involved in Cd-induced metabolic reprogramming. 2-Deoxy-d-glucose (2DG, 5 mM), the inhibitor of glycolysis decreased Cd/HMGA2-induced cell migration and restored Cd/HMGA2-decreased OXPHOS and mitochondrial mass. Inhibition of autophagy by 3-Methyladenine (3MA, 3 mM) elucidated an essential role of autophagy in HMGA2-induced glycolysis, migration, and HMGA2-reduced OXPHOS. Overall, our study demonstrated that autophagy was required for HMGA2-mediated metabolic reprogramming, which was critical for Cd-induced migration. Targeting HMGA2 and autophagy-dependent reprogrammed metabolism may be an effective way to inhibit Cd-induced cell migration.
Collapse
Affiliation(s)
- Junjie Mei
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Mongameli B Dlamini
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Chengyan Geng
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
12
|
Abedi Gaballu F, Cho WCS, Dehghan G, Zarebkohan A, Baradaran B, Mansoori B, Abbaspour-Ravasjani S, Mohammadi A, Sheibani N, Aghanejad A, Ezzati Nazhad Dolatabadi J. Silencing of HMGA2 by siRNA Loaded Methotrexate Functionalized Polyamidoamine Dendrimer for Human Breast Cancer Cell Therapy. Genes (Basel) 2021; 12:1102. [PMID: 34356120 PMCID: PMC8303903 DOI: 10.3390/genes12071102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
The transcription factor high mobility group protein A2 (HMGA2) plays an important role in the pathogenesis of some cancers including breast cancer. Polyamidoamine dendrimer generation 4 is a kind of highly branched polymeric nanoparticle with surface charge and highest density peripheral groups that allow ligands or therapeutic agents to attach it, thereby facilitating target delivery. Here, methotrexate (MTX)- modified polyamidoamine dendrimer generation 4 (G4) (G4/MTX) was generated to deliver specific small interface RNA (siRNA) for suppressing HMGA2 expression and the consequent effects on folate receptor (FR) expressing human breast cancer cell lines (MCF-7, MDA-MB-231). We observed that HMGA2 siRNA was electrostatically adsorbed on the surface of the G4/MTX nanocarrier for constructing a G4/MTX-siRNA nano-complex which was verified by changing the final particle size and zeta potential. The release of MTX and siRNA from synthesized nanocomplexes was found in a time- and pH-dependent manner. We know that MTX targets FR. Interestingly, G4/MTX-siRNA demonstrates significant cellular internalization and gene silencing efficacy when compared to the control. Besides, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated selective cell cytotoxicity depending on the folate receptor expressing in a dose-dependent manner. The gene silencing and protein downregulation of HMGA2 by G4/MTX-siRNA was observed and could significantly induce cell apoptosis in MCF-7 and MDA-MB-231 cancer cells compared to the control group. Based on the findings, we suggest that the newly developed G4/MTX-siRNA nano-complex may be a promising strategy to increase apoptosis induction through HMGA2 suppression as a therapeutic target in human breast cancer.
Collapse
Affiliation(s)
- Fereydoon Abedi Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran; (F.A.G.); (B.B.); (B.M.)
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | | | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran; (F.A.G.); (B.B.); (B.M.)
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran; (F.A.G.); (B.B.); (B.M.)
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | | | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nader Sheibani
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA;
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran;
| | | |
Collapse
|
13
|
Bonner MA, Morales-Hernández A, Zhou S, Ma Z, Condori J, Wang YD, Fatima S, Palmer LE, Janke LJ, Fowler S, Sorrentino BP, McKinney-Freeman S. 3' UTR-truncated HMGA2 overexpression induces non-malignant in vivo expansion of hematopoietic stem cells in non-human primates. Mol Ther Methods Clin Dev 2021; 21:693-701. [PMID: 34141824 PMCID: PMC8181581 DOI: 10.1016/j.omtm.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Vector-mediated mutagenesis remains a major safety concern for many gene therapy clinical protocols. Indeed, lentiviral-based gene therapy treatments of hematologic disease can result in oligoclonal blood reconstitution in the transduced cell graft. Specifically, clonal expansion of hematopoietic stem cells (HSCs) highly expressing HMGA2, a chromatin architectural factor found in many human cancers, is reported in patients undergoing gene therapy for hematologic diseases, raising concerns about the safety of these integrations. Here, we show for the first time in vivo multilineage and multiclonal expansion of non-human primate HSCs expressing a 3' UTR-truncated version of HMGA2 without evidence of any hematologic malignancy >7 years post-transplantation, which is significantly longer than most non-human gene therapy pre-clinical studies. This expansion is accompanied by an increase in HSC survival, cell cycle activation of downstream progenitors, and changes in gene expression led by the upregulation of IGF2BP2, a mRNA binding regulator of survival and proliferation. Thus, we conclude that prolonged ectopic expression of HMGA2 in hematopoietic progenitors is not sufficient to drive hematologic malignancy and is not an acute safety concern in lentiviral-based gene therapy clinical protocols.
Collapse
Affiliation(s)
- Melissa A. Bonner
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Sheng Zhou
- Experimental Cell Therapeutics Lab, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhijun Ma
- Department of Bone Marrow Transplant and Cell Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jose Condori
- Experimental Cell Therapeutics Lab, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Soghra Fatima
- Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lance E. Palmer
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Laura J. Janke
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephanie Fowler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brian P. Sorrentino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
14
|
Tan S, Chen J. Small interfering-high mobility group A2 attenuates epithelial-mesenchymal transition in thymic cancer cells via the Wnt/β-catenin pathway. Oncol Lett 2021; 22:586. [PMID: 34122637 PMCID: PMC8190778 DOI: 10.3892/ol.2021.12847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/29/2021] [Indexed: 01/30/2023] Open
Abstract
Thymus carcinoma is one of the thymic epithelial neoplasms with high metastasis, which does not have any good treatment at present. High mobility group A2 (HMGA2) is highly expressed in a variety of malignant tumors, such as lung cancer, colon cancer and ovarian cancer and is closely related to tumor invasion and metastasis. The present study aimed to investigate the effect and mechanism of HMGA2 on epithelial-mesenchymal transition (EMT) in thymic cancer cells. IU-TAB-1, A549, HCT-116 and 293T cells were screened by testing the protein expression level of HMGA2 though western blotting and subjected to HMGA2 interference [small interfering (si)-HMGA2]. Cell proliferation was evaluated using the Cell Counting Kit-8 assay. Cell migration and invasion were detected using the Transwell assay. Cell apoptosis was examined using flow cytometry and β-catenin expression was observed by immunofluorescence. The levels of E-cadherin, vimentin, Wnt3a, Wnt5a and β-catenin proteins were determined by western blotting. Among the four cell lines tested, IU-TAB-1 cells demonstrated the highest expression of HMGA2 (P<0.05) and were hence selected for subsequent experiments. Compared with the control group (untransfected cells), si-HMGA2 resulted in significantly decreased proliferation, migration and invasion of IU-TAB-1 cells, whereas apoptosis was increased (P<0.05). The protein expression of vimentin, Wnt3a, Wnt5a and β-catenin was significantly decreased by si-HMGA2 compared with the control group (P<0.05), whereas E-cadherin expression was increased (P<0.05). After treatment with si-HMGA2 in combination with Wnt/β-catenin agonists (SKL2001) or inhibitors (XAV-939), EMT was respectively enhanced or inhibited in IU-TAB-1 cells. Overall, si-HMGA2 may attenuate EMT in thymic cancer cells and the mechanism may be related to the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Sheng Tan
- Department of Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jili Chen
- Department of Ophthalmology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
15
|
Tan S, Chen J. si-MALAT1 attenuates thymic cancer cell proliferation and promotes apoptosis via the miR-145-5p/HMGA2 pathway. Oncol Lett 2021; 22:585. [PMID: 34122636 PMCID: PMC8190774 DOI: 10.3892/ol.2021.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/15/2021] [Indexed: 11/05/2022] Open
Abstract
Metastasis-associated-lung-adenocarcinoma-transcript-1 (MALAT1) is a long non-coding RNA that is considered a potential tumor marker. The present study aimed to investigate the effect and mechanism of MALAT1 on cell proliferation and apoptosis in thymic cancer cells. IU-TAB-1, A549, HCT-116 and 293T cells were screened by reverse transcription-quantitative PCR to assess high-mobility group AT-hook 2 (HMGA2) expression in various types of cancer cells and were transfected with small interfering (si)RNA targeting MALAT1 (si-MALAT1). Cell proliferation was evaluated by Cell Counting Kit-8 assay. Cell apoptosis and cell cycle were examined using flow cytometry. The protein expression of cyclin D1, cyclin E, Bax, Bcl-2 and HMGA2 was determined by western blot analysis, while the associations between MALAT1 and microRNA (miR)-145-5p and between HMGA2 and miR-145-5p were determined by luciferase reporter assay. Among the four cell lines evaluated, IU-TAB-1 showed the highest expression of MALAT1; thus, IU-TAB-1 cells were selected for subsequent experiments. Compared with the findings in the control group, si-MALAT1 significantly decreased the cell proliferation of IU-TAB-1 cells, whereas the apoptosis levels and number of cells in G2 phase were increased. The protein expression levels of cyclin D1, cyclin E, Bcl-2 and HMGA2 were significantly decreased in the si-MALAT1 group compared with those in the control group, while Bax levels were significantly increased. After treatment with si-MALAT1 in combination with miR-145-5p mimics or inhibitors, cell proliferation and apoptosis were respectively enhanced and inhibited in IU-TAB-1 cells. miR-145-5p inhibited the luciferase activity of IU-TAB-1 cells transfected with the MALAT1 or HMGA2 3' untranslated region. In conclusion, si-MALAT1 significantly attenuated cell proliferation and apoptosis via the miR-145-5p/HMGA2 pathway in thymic cancer cells.
Collapse
Affiliation(s)
- Sheng Tan
- Department of Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jili Chen
- Department of Ophthalmology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
16
|
Xu S, Xiong J, Wu M, Yang Y, Jiang J, Ni H, Zhao Y, Wang Y. Trdmt1 3'-untranslated region functions as a competing endogenous RNA in leukemia HL-60 cell differentiation. ACTA ACUST UNITED AC 2020; 54:e9869. [PMID: 33331537 PMCID: PMC7727116 DOI: 10.1590/1414-431x20209869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Severe blockage in myeloid differentiation is the hallmark of acute myeloid leukemia (AML). Trdmt1 plays an important role in hematopoiesis. However, little is known about the function of Trdmt1 in AML cell differentiation. In the present study, Trdmt1 was up-regulated and miR-181a was down-regulated significantly during human leukemia HL-60 cell differentiation after TAT-CT3 fusion protein treatment. Accordingly, miR-181a overexpression in HL-60 cells inhibited granulocytic maturation. In addition, our "rescue" assay demonstrated that Trdmt1 3'-untranslated region promoted myeloid differentiation of HL-60 cells by sequestering miR-181a and up-regulating C/EBPα (a critical factor for normal myelopoiesis) via its competing endogenous RNA (ceRNA) activity on miR-181a. These findings revealed an unrecognized role of Trdmt1 as a potential ceRNA for therapeutic targets in AML.
Collapse
Affiliation(s)
- Sha Xu
- Institute of Translational Medicine, Navy Medical University, Shanghai, China.,Department of Embryology and Histology, Navy Medical University, Shanghai, China
| | - Jun Xiong
- Department of Embryology and Histology, Navy Medical University, Shanghai, China
| | - Minjuan Wu
- Department of Embryology and Histology, Navy Medical University, Shanghai, China
| | - Yu Yang
- Institute of Translational Medicine, Navy Medical University, Shanghai, China
| | - Junfeng Jiang
- Department of Embryology and Histology, Navy Medical University, Shanghai, China
| | - Haitao Ni
- Department of Embryology and Histology, Navy Medical University, Shanghai, China
| | - Yunpeng Zhao
- Department of Embryology and Histology, Navy Medical University, Shanghai, China
| | - Yue Wang
- Department of Embryology and Histology, Navy Medical University, Shanghai, China
| |
Collapse
|
17
|
Xu J, Fang X, Long L, Wang S, Qian S, Lyu J. HMGA2 promotes breast cancer metastasis by modulating Hippo-YAP signaling pathway. Cancer Biol Ther 2020; 22:5-11. [PMID: 33307962 DOI: 10.1080/15384047.2020.1832429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women, and triple-negative breast cancer (TNBC) accounts for about 15-20% of all breast cancer. High mobility group AT-hook 2 (HMGA2) is overexpressed in some tumors and closely associated with patients' prognosis. However, the mechanisms involved in the regulation of HMGA2 in TNBC still remain unclear. METHODS In this study, HMGA2 level in TNBC cell lines was analyzed by western blot. After knockdown of HMGA2 expression by RNA interference in TNBC cell lines MDA-MB-231 and SUM149, wound healing and transwell assays were conducted to examine the effects of HMGA2 on migration and invasion. Tumor metastasis was assessed in amouse xenograft model invivo. Furthermore, expression levels of epithelial-mesenchymal transition (EMT) biomarkers and involvement of the Hippo-YAP pathway were detected by western blot. RESULTS Compared to normal breast epithelial cells, the expression levels of HMGA2 were significantly increased in TNBC cell lines (all P< .05). Downregulation of HMGA2 dramatically inhibited the migration and invasion of MDA-MB-231 and SUM149 cells (all P< .01) invitro, and suppressed the tumor metastasis of nude mice xenograft model invivo. Western blot analysis revealed alterations in EMT biomarkers: the expression of mesenchymal markers N-cadherin, Vimentin and Snail were decreased, while the expression of epithelial marker E-cadherin was increased. Downregulated expression of HMGA2 attenuated Hippo-YAP related protein expression and the stability of YAP. CONCLUSIONS HMGA2 is highly expressed in TNBC cells. Downregulation of HMGA2 inhibits the migration and invasion of TNBC and invivo tumor metastasis mediated through inhibition of EMT and Hippo-YAP pathway.
Collapse
Affiliation(s)
- Jianxin Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Xuejiao Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Luye Long
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Sixuan Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Shihan Qian
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Lee C, Kim JK. Chromatin regulators in retinoblastoma: Biological roles and therapeutic applications. J Cell Physiol 2020; 236:2318-2332. [PMID: 32840881 PMCID: PMC7891620 DOI: 10.1002/jcp.30022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
Retinoblastoma (RB) is a pediatric ocular tumor mostly occurring due to the biallelic loss of RB1 gene in the developing retina. Early studies of genomic aberrations in RB have provided a valuable insight into how RB can progress following the tumor-initiating RB1 mutations and have established a notion that inactivation of RB1 gene is critical to initiate RB but this causative genetic lesion alone is not sufficient for malignant progression. With the advent of high-throughput sequencing technologies, we now have access to the comprehensive genomic and epigenetic landscape of RB and have come to appreciate that RB tumorigenesis requires both genetic and epigenetic alterations that might be directly or indirectly driven by RB1 loss. This integrative perspective on RB tumorigenesis has inspired research efforts to better understand the types and functions of epigenetic mechanisms contributing to RB development, leading to the identification of multiple epigenetic regulators misregulated in RB in recent years. A complete understanding of the intricate network of genetic and epigenetic factors in modulation of gene expression during RB tumorigenesis remains a major challenge but would be crucial to translate these findings into therapeutic interventions. In this review, we will provide an overview of chromatin regulators identified to be misregulated in human RB among the numerous epigenetic factors implicated in RB development. For a subset of these chromatin regulators, recent findings on their functions in RB development and potential therapeutic applications are discussed.
Collapse
Affiliation(s)
- Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jong Kyong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Minervini A, Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. HMGA Proteins in Hematological Malignancies. Cancers (Basel) 2020; 12:E1456. [PMID: 32503270 PMCID: PMC7353061 DOI: 10.3390/cancers12061456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The high mobility group AT-Hook (HMGA) proteins are a family of nonhistone chromatin remodeling proteins known as "architectural transcriptional factors". By binding the minor groove of AT-rich DNA sequences, they interact with the transcription apparatus, altering the chromatin modeling and regulating gene expression by either enhancing or suppressing the binding of the more usual transcriptional activators and repressors, although they do not themselves have any transcriptional activity. Their involvement in both benign and malignant neoplasias is well-known and supported by a large volume of studies. In this review, we focus on the role of the HMGA proteins in hematological malignancies, exploring the mechanisms through which they enhance neoplastic transformation and how this knowledge could be exploited to devise tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (A.M.); (N.C.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
20
|
De Martino M, Fusco A, Esposito F. HMGA and Cancer: A Review on Patent Literatures. Recent Pat Anticancer Drug Discov 2020; 14:258-267. [PMID: 31538905 DOI: 10.2174/1574892814666190919152001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The high mobility group A proteins modulate the transcription of numerous genes by interacting with transcription factors and/or altering the structure of chromatin. These proteins are involved in both benign and malignant neoplasias as a result of several pathways. A large amount of benign human mesenchymal tumors has rearrangements of HMGA genes. On the contrary, malignant tumors show unarranged HMGA overexpression that is frequently and causally related to neoplastic cell transformation. Here, we review the function of the HMGA proteins in human neoplastic disorders, the pathways by which they contribute to carcinogenesis and the new patents focused on targeting HMGA proteins. OBJECTIVE Current review was conducted to check the involvement of HMGA as a druggable target in cancer treatment. METHODS We reviewed the most recent patents focused on targeting HMGA in cancer treatment analyzing patent literature published during the last years, including the World Intellectual Property Organization (WIPO®), United States Patent Trademark Office (USPTO®), Espacenet®, and Google Patents. RESULTS HMGA proteins are intriguing targets for cancer therapy and are objects of different patents based on the use of DNA aptamers, inhibitors, oncolytic viruses, antisense molecules able to block their oncogenic functions. CONCLUSION Powerful strategies able to selectively interfere with HMGA expression and function could represent a helpful approach in the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy.,Department of Psychology, University of Campania, Caserta 81100, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy
| |
Collapse
|
21
|
Ouchi K, Miyachi M, Yagyu S, Kikuchi K, Kuwahara Y, Tsuchiya K, Iehara T, Hosoi H. Oncogenic role of HMGA2 in fusion-negative rhabdomyosarcoma cells. Cancer Cell Int 2020; 20:192. [PMID: 32489328 PMCID: PMC7247181 DOI: 10.1186/s12935-020-01282-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/19/2020] [Indexed: 11/21/2022] Open
Abstract
Background Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. There are two subtypes, fusion gene-positive RMS (FP-RMS) and fusion gene-negative RMS (FN-RMS), depending on the presence of a fusion gene, either PAX3-FOXO1 or PAX7-FOXO1. These fusion genes are thought to be oncogenic drivers of FP-RMS. By contrast, the underlying mechanism of FN-RMS has not been thoroughly investigated. It has recently been shown that HMGA2 is specifically positive in pathological tissue from FN-RMS, but the role of HMGA2 in FN-RMS remains to be clarified. Methods In this study, we used FN-RMS cell lines to investigate the function of HMGA2. Gene expression, cell growth, cell cycle, myogenic differentiation, tumor formation in vivo, and cell viability under drug treatment were assessed. Results We found that HMGA2 was highly expressed in FN-RMS cells compared with FP-RMS cells and that knockdown of HMGA2 in FN-RMS cells inhibited cell growth and induced G1 phase accumulation in the cell cycle and myogenic differentiation. Additionally, we showed using both gain-of-function and loss-of-function assays that HMGA2 was required for tumor formation in vivo. Consistent with these findings, the HMGA2 inhibitor netropsin inhibited the cell growth of FN-RMS. Conclusions Our results suggest that HMGA2 has important role in the oncogenicity of FP-RMS and may be a potential therapeutic target in patients with FN-RMS.
Collapse
Affiliation(s)
- Kazutaka Ouchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Ken Kikuchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Yasumichi Kuwahara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan.,Department of Molecular Biochemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Kunihiko Tsuchiya
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| |
Collapse
|
22
|
Segal M, Biscans A, Gilles ME, Anastasiadou E, De Luca R, Lim J, Khvorova A, Slack FJ. Hydrophobically Modified let-7b miRNA Enhances Biodistribution to NSCLC and Downregulates HMGA2 In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:267-277. [PMID: 31855835 PMCID: PMC6926262 DOI: 10.1016/j.omtn.2019.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) have increasingly been shown to be involved in human cancer, and interest has grown about the potential use of miRNAs for cancer therapy. miRNA levels are known to be altered in cancer cells, including in non-small cell lung cancer (NSCLC), a subtype of lung cancer that is the most prevalent form of cancer worldwide and that lacks effective therapies. The let-7 miRNA is involved in the regulation of oncogene expression in cells and directly represses cancer growth in the lung. let-7 is therefore a potential molecular target for tumor therapy. However, applications of RNA interference for cancer research have been limited by a lack of simple and efficient methods to deliver oligonucleotides (ONs) to cancer cells. In this study, we have used in vitro and in vivo approaches to show that HCC827 cells internalize hydrophobically modified let-7b miRNAs (hmiRNAs) added directly to the culture medium without the need for lipid formulation. We identified functional let-7b hmiRNAs targeting the HMGA2 mRNA, one of the let-7 target genes upregulated in NSCLC, and show that direct uptake in HCC827 cells induced potent and specific gene silencing in vitro and in vivo. Thus, hmiRNAs constitute a novel class of ONs that enable functional studies of genes involved in cancer biology and are potentially therapeutic molecules.
Collapse
Affiliation(s)
- Meirav Segal
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maud-Emmanuelle Gilles
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Eleni Anastasiadou
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Roberto De Luca
- HMS Initiative for RNA Medicine, Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Jihoon Lim
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Li K, Yang J, Chen J, Shi Y, Zhang Z, Chen W. High mobility group AT-hook 2 and c-MYC as potential prognostic factors in pancreatic ductal adenocarcinoma. Oncol Lett 2019; 19:1584-1592. [PMID: 31966084 DOI: 10.3892/ol.2019.11205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
The present study investigated if c-MYC and high mobility group AT-hook 2 (HMGA2) expression was associated with prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). A total of 102 patients undergoing surgery for PDAC were retrospectively reviewed. Immunohistochemistry was used to detect c-MYC and HMGA2 protein expression in PDAC and peritumoral tissue samples. Expression of c-MYC and HMGA2 was associated with clinicopathological characteristics and prognoses of patients with PDAC using multivariate analysis. HMGA2 and c-MYC protein expression was significantly higher in PDAC tissues compared with peritumoral tissue (P<0.001). HMGA2 and c-MYC expression was also significantly higher in patients with PDAC who had lymph node metastasis, invasion of regional tissues and tumor node metastasis (TNM) stage III or IV disease compared with those who had no lymph node metastasis, no invasion of regional tissues and TNM stage I or II disease (P<0.001). Multivariate logistic regression analysis was used to identify TNM stage (P=0.007) and invasion (P=0.003) as significant independent predictors of c-MYC expression (model AUC=0.8201), and lymph node metastasis (P=0.002) and invasion (P=0.003) as significant independent predictors of HMGA2 expression (model AUC=0.7638). Cox multivariate analysis showed that expression of c-MYC (P=0.019) and HMGA2 (P<0.001), TNM stage (P=0.014) and lymph node metastasis (P=0.032) were associated with reduced overall survival time. HMGA2 and c-MYC may be important biological markers and potential therapeutic targets involved in the tumorigenesis, metastasis, invasion and prognosis of PDAC.
Collapse
Affiliation(s)
- Ke Li
- Department of Radiology, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Jiafei Chen
- Department of Radiology, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yanshu Shi
- Department of Radiology, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Zhuoli Zhang
- Northwestern Quantitative Imaging Core Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wei Chen
- Department of Radiology, First Affiliated Hospital, Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
24
|
Huang YM, Cheng CH, Pan SL, Yang PM, Lin DY, Lee KH. Gene Expression Signature-Based Approach Identifies Antifungal Drug Ciclopirox As a Novel Inhibitor of HMGA2 in Colorectal Cancer. Biomolecules 2019; 9:biom9110688. [PMID: 31684108 PMCID: PMC6920845 DOI: 10.3390/biom9110688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Human high-mobility group A2 (HMGA2) encodes for a non-histone chromatin protein which influences a variety of biological processes, including the cell cycle process, apoptosis, the DNA damage repair process, and epithelial–mesenchymal transition. The accumulated evidence suggests that high expression of HMGA2 is related to tumor progression, poor prognosis, and a poor response to therapy. Thus, HMGA2 is an important molecular target for many types of malignancies. Our recent studies revealed the positive connections between heat shock protein 90 (Hsp90) and HMGA2 and that the Hsp90 inhibitor has therapeutic potential to inhibit HMGA2-triggered tumorigenesis. However, 43% of patients suffered visual disturbances in a phase I trial of the second-generation Hsp90 inhibitor, NVP-AUY922. To identify a specific inhibitor to target HMGA2, the Gene Expression Omnibus (GEO) database and the Library of Integrated Network-based Cellular Signatures (LINCS) L1000platform were both analyzed. We identified the approved small-molecule antifungal agent ciclopirox (CPX) as a novel potential inhibitor of HMGA2. In addition, CPX induces cytotoxicity of colorectal cancer (CRC) cells by induction of cell cycle arrest and apoptosis in vitro and in vivo through direct interaction with the AT-hook motif (a small DNA-binding protein motif) of HMGA2. In conclusion, this study is the first to report that CPX is a novel potential inhibitor of HMGA2 using a drug-repurposing approach, which can provide a potential therapeutic intervention in CRC patients.
Collapse
Affiliation(s)
- Yu-Min Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shiow-Lin Pan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Pei-Ming Yang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ding-Yen Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 003107, Taiwan.
| | - Kuen-Haur Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| |
Collapse
|
25
|
An Integrated Bioinformatics Analysis Repurposes an Antihelminthic Drug Niclosamide for Treating HMGA2-Overexpressing Human Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11101482. [PMID: 31581665 PMCID: PMC6826424 DOI: 10.3390/cancers11101482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Aberrant overexpression of high mobility group AT-hook 2 (HMGA2) is frequently found in cancers and HMGA2 has been considered an anticancer therapeutic target. In this study, a pan-cancer genomics survey based on Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) data indicated that HMGA2 was mainly overexpressed in gastrointestinal cancers including colorectal cancer. Intriguingly, HMGA2 overexpression had no prognostic impacts on cancer patients’ overall and disease-free survivals. In addition, HMGA2-overexpressing colorectal cancer cell lines did not display higher susceptibility to a previously identified HMGA2 inhibitor (netroposin). By microarray profiling of HMGA2-driven gene signature and subsequent Connectivity Map (CMap) database mining, we identified that S100 calcium-binding protein A4 (S100A4) may be a druggable vulnerability for HMGA2-overexpressing colorectal cancer. A repurposing S100A4 inhibitor, niclosamide, was found to reverse the HMGA2-driven gene signature both in colorectal cancer cell lines and patients’ tissues. In vitro and in vivo experiments validated that HMGA2-overexpressing colorectal cancer cells were more sensitive to niclosamide. However, inhibition of S100A4 by siRNAs and other inhibitors was not sufficient to exert effects like niclosamide. Further RNA sequencing analysis identified that niclosamide inhibited more cell-cycle-related gene expression in HMGA2-overexpressing colorectal cancer cells, which may explain its selective anticancer effect. Together, our study repurposes an anthelminthic drug niclosamide for treating HMGA2-overexpression colorectal cancer.
Collapse
|
26
|
Gorbounov M, Carleton NM, Asch-Kendrick RJ, Xian L, Rooper L, Chia L, Cimino-Mathews A, Cope L, Meeker A, Stearns V, Veltri RW, Bae YK, Resar LMS. High mobility group A1 (HMGA1) protein and gene expression correlate with ER-negativity and poor outcomes in breast cancer. Breast Cancer Res Treat 2019; 179:25-35. [DOI: 10.1007/s10549-019-05419-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
|
27
|
Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review). Int J Oncol 2019; 55:775-788. [PMID: 31432151 DOI: 10.3892/ijo.2019.4856] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 11/06/2022] Open
Abstract
The high mobility group A2 (HMGA2) protein is a non‑histone architectural transcription factor that modulates the transcription of several genes by binding to AT‑rich sequences in the minor groove of B‑form DNA and alters the chromatin structure. As a result, HMGA2 influences a variety of biological processes, including the cell cycle process, DNA damage repair process, apoptosis, senescence, epithelial‑mesenchymal transition and telomere restoration. In addition, the overexpression of HMGA2 is a feature of malignancy, and its elevated expression in human cancer predicts the efficacy of certain chemotherapeutic agents. Accumulating evidence has suggested that the detection of HMGA2 can be used as a routine procedure in clinical tumour analysis.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuping Mo
- Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
28
|
Cai F, Dai C, Chen S, Wu Q, Liu X, Hong Y, Wang Z, Li L, Yan W, Wang R, Zhang J. CXCL12-regulated miR-370-3p functions as a tumor suppressor gene by targeting HMGA2 in nonfunctional pituitary adenomas. Mol Cell Endocrinol 2019; 488:25-35. [PMID: 30853598 DOI: 10.1016/j.mce.2019.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/26/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
Silencing of noncoding genes within the imprinted DLK1-MEG3 locus is exclusive to human nonfunctional pituitary adenomas (NFPAs), but the exact mechanism is still unclear. This study was designed to demonstrate the impact of CXCL12 on the expression of miRNAs within this locus and phenotypic alterations of NFPAs. Human NFPA samples were collected for screening differentially expressed miRNAs by CXCL12. Target mRNAs of the miRNAs were predicted and verified in vitro. Tumor phenotypic alterations were also tested. Another 51 NFPA samples were enrolled to examine the correlation and clinical features. The expression of miR-370 was decreased by CXCL12 treatment in NFPAs. miR-370-3p was predicted and verified to target HMGA2 as a tumor suppressor gene. Overexpression of HMGA2 inhibited its antitumor function. miR-370-3p was downregulated and HMGA2 was upregulated significantly in High grade NFPAs. In conclusion, the CXCL12/miR-370-3p/HMGA2 signaling pathway is involved in tumor growth and invasiveness of NFPAs.
Collapse
Affiliation(s)
- Feng Cai
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Congxin Dai
- The Dept. of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shasha Chen
- Zhejiang Provincial Key Lab of Geriatrics, Dept. of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang Province, PR China
| | - Qun Wu
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Xiaohai Liu
- The Dept. of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuan Hong
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Zhen Wang
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Li Li
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Wei Yan
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China
| | - Renzhi Wang
- The Dept. of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Jianmin Zhang
- The Dept. of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, The City of Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
29
|
Sun J, Qiao Y, Song T, Wang H. MiR‑495 suppresses cell proliferation by directly targeting HMGA2 in lung cancer. Mol Med Rep 2018; 19:1463-1470. [PMID: 30569167 PMCID: PMC6390076 DOI: 10.3892/mmr.2018.9773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 10/01/2018] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to investigate the expression of microRNA-495 (miR-495) in non-small cell lung cancer (NSCLC) tissues and cells, as well as its function on the proliferation of lung cancer cells. The expression of miR-495 in 122 pairs of NSCLC tissues and matched paracarcinoma tissues, as well as in human lung cancer cell lines (A549, H460, H1650, H520 and SK-MES-1) and the normal human pulmonary bronchial epithelial cell line 16HBE was determined using reverse transcription quantitative polymerase chain reaction (RT-qPCR). As predicted by bioinformatics analysis, high mobility group A2 (HMGA2) may be a potential target gene of miR-495. In addition, the regulatory function of miR-495 on its target gene HMGA2 was evaluated using a dual-luciferase reporter assay, RT-qPCR and western blotting. Furthermore, the effect of miR-495 on the proliferation of A549 lung cancer cells was investigated using a Cell Counting Kit-8 (CCK-8) assay. The results demonstrated that the expression of miR-495 in NSCLC tissues and cells was significantly downregulated compared with the control. In addition, downregulated expression of miR-495 was associated with tumor differentiation, lymph node metastasis and tumor, node and metastasis staging. Additionally, a dual-luciferase reporter assay revealed that miR-495 could directly associated with the 3′-untranslated region of HMGA2. Upregulated expression of miR-495 significantly downregulated the mRNA and protein expression levels of HMGA2 in A549 cells. Furthermore, the results of CCK-8 assay revealed that upregulated expression of miR-495 significantly suppressed the proliferation of A549 cells; HMGA2 overexpression reversed this inhibition. In summary, the findings of the present study demonstrated that miR-495 was downregulated in NSCLC tissues and cells. In addition, miR-495 suppressed the proliferation of lung cancer cells by directly targeting HMGA2.
Collapse
Affiliation(s)
- Jiangtao Sun
- Department of Oncology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Yanping Qiao
- Department of Hematology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Tao Song
- Department of Endocrinology, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Haiwen Wang
- Department of Cardio‑Thoracic Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
30
|
Mohammadi A, Mansoori B, Savadi P, Khaze V, Minouei M, McMillan NAJ, Hallaj-Nezhadi S, Baradaran B. Targeting of high mobility group A2 by small interfering RNA-loaded nanoliposome-induced apoptosis and migration inhibition in gastrointestinal cancer cells. J Cell Biochem 2018; 120:9203-9212. [PMID: 30507008 DOI: 10.1002/jcb.28196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Considering the complex nature of gastrointestinal cancer, different methods including surgery, radiotherapy, and chemotherapy are considered for the treatment. Novel strategies including silencing of oncogenes using safe delivery systems could be considered as a novel approach in colorectal cancer treatment. The aim of this study was to investigate the silencing effect of high mobility group A2 (HMGA2) small interfering RNA (siRNA)-loaded nanoliposomes on gastrointestinal cancers. METHODS The siRNA-lipoplexes were prepared using dioleoyl trimethylammonium propane (DOTAP)/cholesterol (Chol)/1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) through the freeze-drying of a monophase solution method. The size, polydispersity index (PDI), and zeta-potential of nanoliposomes were determined using Zetasizer analyzer. The morphology of the nanoliposomes was determined by transmission electron microscopy (TEM). The agarose gel-retardation assay was carried out to confirm the loading of siRNAs into liposome. The silencing of the HMGA2 in cancer cells was evaluated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The effect of liposomes on cell cytotoxicity was studied by MTT assay. The inhibitory effect of siRNA-loaded liposomes was evaluated by a wound-healing assay. The apoptosis induction was investigated via the annexin V/propidium iodide assay. RESULTS The size, PDI, and zeta-potential of the prepared liposomes were found to be 350 nm, 0.67, and 86.3 mV, respectively. They were spherical in shape and could efficiently associate with siRNA. The results of gene silencing showed that the optimum condition of HMGA2 silencing was 80 pmol HMGA2 and 24 hours after treatment in each cancer cell lines. MTT assays indicated that silencing of HMGA2 in optimal condition could reduce the viability of the cancer cells more than 60% in the three cell lines. The result of the apoptosis assay showed more than 50% of the cell deaths related to the apoptosis in all three cell lines. The gene expression evaluation confirmed that apoptosis was induced via the intrinsic pathway inducing both caspase-3 and -9 expressions. Also, the reduction in Bcl2 expression confirmed the activation apoptosis pathway in the treated cancer cells. The wound-healing assay showed the suppression of cancer cell migration after treatment with the prepared nanoliposomes. CONCLUSION The results of this study showed the HMGA2 siRNA-loaded nanoliposomes could be effective in the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouria Savadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Minouei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nigel A J McMillan
- School of Medical Sciences and Menzies Health Institute Queensland, Griffith University, Southport, Australia
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Wang WY, Cao YX, Zhou X, Wei B, Zhan L, Fu LT. HMGA2 gene silencing reduces epithelial-mesenchymal transition and lymph node metastasis in cervical cancer through inhibiting the ATR/Chk1 signaling pathway. Am J Transl Res 2018; 10:3036-3052. [PMID: 30416649 PMCID: PMC6220229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/18/2018] [Indexed: 06/09/2023]
Abstract
Many cervical cancer (CC) patients suffer from cancer invasion and lymph node metastasis, resulting in poor therapeutic outcome. Evidence has indicated the involvement of misexpressed high-mobility group AT-hook 2 (HMGA2) in poor survival of cancer patients. This study hereby aims to investigate the role of HMGA2 in CC cell biological functions via the ATR/Chk1 signaling pathway. The cell line with the highest HMGA2 expression was selected to establish cell lines with wild-type and stable HMGA2 silencing. The underlying regulatory mechanisms of HMGA2 in CC cells were analyzed with the treatment of the ATR/Chk1 signaling pathway activator, inhibitor, shRNA against HMGA2 or pcDNA-HMGA2 plasmids, followed by quantification of expression levels of ATR, Chk1, Bcl-2, Bax, MMP-2, MMP-9, E-cadherin and N-cadherin. CC cell apoptosis, proliferation, migration, invasion and lymph node metastasis in nude mice were evaluated. The HeLa cell line with the highest HMGA2 expression was selected. HMGA2 inhibited the activation of the ATR/Chk1 signaling pathway. Notably, HMGA2 silencing or inhibition of the ATR/Chk1 signaling pathway inhibited epithelial mesenchymal transition (EMT), CC cell proliferation, invasion, migration, tumorigenicity and lymph node metastasis while promoting apoptosis, indicated by reduced expression of Bcl-2, MMP-2, MMP-9 and N-cadherin, with increased expression of E-cadherin and Bax. Collectively, our study provides evidence that HMGA2 gene silencing inhibits the activation of the ATR/Chk1 signaling pathway, whereby repressing EMT, proliferation, migration and invasion of CC cells and lymph node metastasis, and promoting CC cell apoptosis.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical UniversityHefei 230601, Anhui Province, P. R. China
- Teaching and Research Group of Obstetrics and Gynecology, Anhui Medical UniversityHefei 230032, Anhui Province, P. R. China
| | - Yun-Xia Cao
- Teaching and Research Group of Obstetrics and Gynecology, Anhui Medical UniversityHefei 230032, Anhui Province, P. R. China
| | - Xiao Zhou
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical UniversityHefei 230601, Anhui Province, P. R. China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical UniversityHefei 230601, Anhui Province, P. R. China
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical UniversityHefei 230601, Anhui Province, P. R. China
| | - Liu-Tao Fu
- Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical UniversityHefei 230601, Anhui Province, P. R. China
| |
Collapse
|
32
|
Hmga2 is dispensable for pancreatic cancer development, metastasis, and therapy resistance. Sci Rep 2018; 8:14008. [PMID: 30228296 PMCID: PMC6143627 DOI: 10.1038/s41598-018-32159-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Expression of the chromatin-associated protein HMGA2 correlates with progression, metastasis and therapy resistance in pancreatic ductal adenocarcinoma (PDAC). Hmga2 has also been identified as a marker of a transient subpopulation of PDAC cells that has increased metastatic ability. Here, we characterize the requirement for Hmga2 during growth, dissemination, and metastasis of PDAC in vivo using conditional inactivation of Hmga2 in well-established autochthonous mouse models of PDAC. Overall survival, primary tumour burden, presence of disseminated tumour cells in the peritoneal cavity or circulating tumour cells in the blood, and presence and number of metastases were not significantly different between mice with Hmga2-wildtype or Hmga2-deficient tumours. Treatment of mice with Hmga2-wildtype and Hmga2-deficient tumours with gemcitabine did not uncover a significant impact of Hmga2-deficiency on gemcitabine sensitivity. Hmga1 and Hmga2 overlap in their expression in both human and murine PDAC, however knockdown of Hmga1 in Hmga2-deficient cancer cells also did not decrease metastatic ability. Thus, Hmga2 remains a prognostic marker which identifies a metastatic cancer cell state in primary PDAC, however Hmga2 has limited if any direct functional impact on PDAC progression and therapy resistance.
Collapse
|
33
|
Guo X, Shi J, Wen Y, Li M, Li Q, Li X, Li J. Increased high-mobility group A2 correlates with lymph node metastasis and prognosis of non-small cell lung cancer. Cancer Biomark 2018; 21:547-555. [PMID: 29278873 DOI: 10.3233/cbm-170401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND High-mobility group A2 (HMGA2) has been investigated to be associated with tumorigenesis; however, the expression pattern and clinical significance of HMGA2 in non-small cell lung cancer (NSCLC) remains poorly understood. The purpose of this study is to examine the expression of HMGA2 and to analyze its relationships with respect to clinico-pathological features and patient survival in NSCLC. METHODS The expression level of HMGA2 was examined by Western blot and immunohistochemistry in NSCLC cells and tissues. The relationship between HMGA2 expression and survival of NSCLC patients was calculated by a Kaplan-Meier method and the evaluation of risk factor was determined by the multiple regression analysis. RESULTS NSCLC tissues exhibited a higher expression level of HMGA2 compared to normal tissues (p< 0.05) and the expression level of HMGA2 was significantly associated with poor differentiation of NSCLC (p< 0.05), lymph node metastasis (p< 0.05) and advanced clinical stage (p< 0.05). Besides, HMGA2 was also confirmed to be elevated in NSCLC cells by Western blot. Moreover, increased expression of HMGA2 correlated with decreased survival of NSCLC patients (p< 0.05). CONCLUSIONS HMGA2 was highly expressed in NSCLC tissues and cells and its overexpression was correlated with low-grade differentiation, lymph node metastasis, advanced clinical stage and poor survival time of NSCLC, which suggested that it could serve as a potential molecular marker and prognostic index for NSCLC.
Collapse
|
34
|
Garabedian A, Bolufer A, Leng F, Fernandez-Lima F. Peptide Sequence Influence on the Conformational Dynamics and DNA binding of the Intrinsically Disordered AT-Hook 3 Peptide. Sci Rep 2018; 8:10783. [PMID: 30018295 PMCID: PMC6050235 DOI: 10.1038/s41598-018-28956-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022] Open
Abstract
The intrinsically disordered ATHP3 was studied at native conditions and in complex with DNA using single amino acid substitutions and high-resolution ion mobility spectrometry coupled to mass spectrometry (trapped IMS-MS). Results showed that ATHP3 can exist in multiple conformations at native conditions (at least 10 conformers were separated), with a variety of proline cis/trans orientations, side chain orientations and protonation sites. When in complex with AT rich DNA hairpins, the -RGRP- core is essential for stabilizing the ATHP3: DNA complex. In particular, the arginine in the sixth position plays an important role during binding to AT-rich regions of hairpin DNA, in good agreement with previous NMR and X-ray data. Mobility based correlation matrices are proposed as a way to reveal differences in structural motifs across the peptide mutants based on the conformational space and relative conformer abundance.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States
| | - Alexander Bolufer
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States. .,Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States.
| |
Collapse
|
35
|
Tian Y, Zhang N, Chen S, Ma Y, Liu Y. The long non-coding RNA LSINCT5 promotes malignancy in non-small cell lung cancer by stabilizing HMGA2. Cell Cycle 2018; 17:1188-1198. [PMID: 29883241 DOI: 10.1080/15384101.2018.1467675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can actively participate in tumorigenesis in various cancers. However, the involvement of lncRNA long stress induced non-coding transcripts 5 (LSINCT5) in non-small cell lung cancer (NSCLC) remains largely unknown. Here we showed a novel lncRNA signature in NSCLC through lncRNA profiling. Increased LSINCT5 expression positively correlates with malignant clinicopathological features and poor survival. LSINCT5 can promote migration and viability of various NSCLC cells in vitro and also enhance lung cancer progression in vivo. RNA immunoprecipitation followed by mass spectrometry has identified that LSINCT5 interacts with HMGA2. This physical interaction can increase the stability of HMGA2 by inhibiting proteasome-mediated degradation. Therefore, LSINCT5 may possibly contribute to NSCLC tumorigenesis by stabilizing the oncogenic factor of HMGA2. This novel LSINCT5/HMGA2 axis can modulate lung cancer progression and might be a promising target for pharmacological intervention.
Collapse
Affiliation(s)
- Yuheng Tian
- a Department of Respiratory, Luoyang Central Hospital , Zhengzhou University , Luoyang , China
| | - Nali Zhang
- a Department of Respiratory, Luoyang Central Hospital , Zhengzhou University , Luoyang , China
| | - Shuwen Chen
- a Department of Respiratory, Luoyang Central Hospital , Zhengzhou University , Luoyang , China
| | - Yuan Ma
- a Department of Respiratory, Luoyang Central Hospital , Zhengzhou University , Luoyang , China
| | - Yanyan Liu
- a Department of Respiratory, Luoyang Central Hospital , Zhengzhou University , Luoyang , China
| |
Collapse
|
36
|
Huang B, Yang J, Cheng Q, Xu P, Wang J, Zhang Z, Fan W, Wang P, Yu M. Prognostic Value of HMGA2 in Human Cancers: A Meta-Analysis Based on Literatures and TCGA Datasets. Front Physiol 2018; 9:776. [PMID: 29997523 PMCID: PMC6028738 DOI: 10.3389/fphys.2018.00776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/04/2018] [Indexed: 01/14/2023] Open
Abstract
Background: Emerging evidences have shown that the high-mobility group protein A2 (HMGA2) can aberrantly express in human cancers, and it could be an unfavorable prognostic factor in cancer patients. However, the prognostic value of HMGA2 was still unclear. Therefore, in this study, we explored the potential prognostic value of HMGA2 in human cancers by using meta-analysis based on published literatures and The Cancer Genome Atlas (TCGA) datasets. Methods: Through searching PubMed, Embase, Web of Science and Cochrane Library databases, we were able to identify the studies evaluating the prognostic value of HMGA2 in cancers. Then, UALCAN and TCGA datasets were used to validate the results of our meta-analysis. Results: In all, 15 types of cancers were included in this meta-analysis. Pooled results showed that high level of HMGA2 was significantly correlated with poor OS (HR = 1.88, 95% confidence interval (CI) = 1.68-2.11, P < 0.001) and poor DFS (HR = 2.49, 95% CI = 1.44-4.28, P = 0.001) in cancer patients. However, subgroup analyses revealed that the high expressed HMGA2 was associated with poor OS in head and neck cancer, gastric cancer and colorectal cancer, but not esophageal cancer and ovarian cancer. Based on TCGA datasets, we analyzed 9944 patients with 33 types of cancers. Significant association between HMGA2 overexpression and poor OS was found in 14 types of cancers. Taken together, consistent results were observed in clear cell renal cell carcinoma, esophageal adenocarcinoma, head and neck cancer, hepatocellular carcinoma, ovarian carcinoma, and pancreatic ductal adenocarcinoma. Conclusion: Our meta-analysis showed the significance of HMGA2 and its prognostic value in various cancers. High level of HMGA2 could be associated with poor OS in patients with clear cell renal cell carcinoma, head and neck cancer, hepatocellular carcinoma and pancreatic ductal adenocarcinoma, but not esophageal adenocarcinoma and ovarian carcinoma.
Collapse
Affiliation(s)
- Ben Huang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiayi Yang
- Hubei Provincial Shuiguohu High School, Wuhan, China
| | - Qingyuan Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peipei Xu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - June Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zheng Zhang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Xu L, Du B, Lu Q, Fan X, Tang K, Yang L, Liao W. miR-541 suppresses proliferation and invasion of squamous cell lung carcinoma cell lines via directly targeting high-mobility group AT-hook 2. Cancer Med 2018; 7:2581-2591. [PMID: 29659195 PMCID: PMC6010725 DOI: 10.1002/cam4.1491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
An increasing number of studies have demonstrated that micro-ribonucleic acids (miRNAs) are important tumor suppressors during carcinogenesis. However, the function of miRNA-541 (miR-541) in malignancies, especially lung cancer, has not been widely reported. In this study, miR-541 expression was significantly decreased in squamous cell lung carcinoma (SCLC) cancerous tissue and SCLC cell lines. To analyze miR-541 function in SCLC, we overexpressed miR-541 in SCLC cell lines (SK-MES-1 and H226). According to the CCK8, wound scratch, and transwell invasion assay results, miR-541 overexpression significantly inhibited SCLC cell proliferation, migration, and invasion ability. Next, using RT-PCR, Western blotting, immunocytochemistry, and luciferase assays, HMGA2 was identified, for the first time, as a direct regulatory target of miR-541 in SK-MES-1 and H226 cells. Furthermore, upregulating HMGA2 expression significantly alleviated the suppressive effects of miR-541 on SK-MES-1 and H226 cell proliferation, migration, and invasion. In summary, our study revealed that miR-541 inhibited SCLC proliferation and invasion by directly targeting HMGA2.
Collapse
Affiliation(s)
- Li Xu
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghai200433China
| | - Bin Du
- Department of Thoracic SurgeryChengdu Military General HospitalChengdu610083SichuanChina
| | - Qi‐Jue Lu
- Department of Thoracic SurgeryChanghai HospitalSecond Military Medical UniversityShanghai200438China
| | - Xiao‐Wen Fan
- Department of Thoracic SurgeryChengdu Military General HospitalChengdu610083SichuanChina
| | - Ke Tang
- Department of Thoracic SurgeryChengdu Military General HospitalChengdu610083SichuanChina
| | - Lie Yang
- Department of Thoracic SurgeryChengdu Military General HospitalChengdu610083SichuanChina
| | - Wei‐Lin Liao
- Department of Thoracic SurgeryChengdu Military General HospitalChengdu610083SichuanChina
| |
Collapse
|
38
|
Zhang S, Zhang H, Yu L. HMGA2 promotes glioma invasion and poor prognosis via a long-range chromatin interaction. Cancer Med 2018; 7:3226-3239. [PMID: 29733521 PMCID: PMC6051173 DOI: 10.1002/cam4.1534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
To identify the function and underlying mechanisms of HMGA2 on the prognosis and invasion of gliomas, HMGA2 was detected by immunohistochemistry. The Kaplan‐Meier and Cox's regression analysis results showed that higher HMGA2 level predicted the poorer outcomes of glioma patients. ChIP‐qPCR, DNA electrophoretic mobility shift assay, chromosome conformation capture, and co‐immunoprecipitation were applied to identify HMGA2‐activated target sites, which were further verified by mRNA and protein expression detection. Transwell and orthotopic implantation were used to investigate the roles of HMGA2 in glioma cells. HMGA2 shRNA transfection inhibited glioblastoma invasion. Mechanistically, we first discovered that HMGA2, together with GCN5, facilitated the invasion of glioma cells via inducing chromatin conformational remodeling of the MMP2 gene promoter and epigenetically activating MMP2 gene transcription. Our results indicated that HMGA2, as a novel GCN5 recognition partner and histone acetylation modulator, may be novel prognostic indicator and promising glioma treatment target.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huibian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
Resar L, Chia L, Xian L. Lessons from the Crypt: HMGA1-Amping up Wnt for Stem Cells and Tumor Progression. Cancer Res 2018; 78:1890-1897. [PMID: 29618461 DOI: 10.1158/0008-5472.can-17-3045] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
High mobility group A1 (HMGA1) chromatin remodeling proteins are enriched in aggressive cancers and stem cells, although their common function in these settings has remained elusive until now. Recent work in murine intestinal stem cells (ISC) revealed a novel role for Hmga1 in enhancing self-renewal by amplifying Wnt signaling, both by inducing genes expressing Wnt agonist receptors and Wnt effectors. Surprisingly, Hmga1 also "builds" a stem cell niche by upregulating Sox9, a factor required for differentiation to Paneth cells; these cells constitute an epithelial niche by secreting Wnt and other factors to support ISCs. HMGA1 is also highly upregulated in colon cancer compared with nonmalignant epithelium and SOX9 becomes overexpressed during colon carcinogenesis. Intriguingly, HMGA1 is overexpressed in diverse cancers with poor outcomes, where it regulates developmental genes. Similarly, HMGA1 induces genes responsible for pluripotency and self-renewal in embryonic stem cells. These findings demonstrate that HMGA1 maintains Wnt and other developmental transcriptional networks and suggest that HMGA1 overexpression fosters carcinogenesis and tumor progression through dysregulation of these pathways. Studies are now needed to determine more precisely how HMGA1 modulates chromatin structure to amplify developmental genes and how to disrupt this process in cancer therapy. Cancer Res; 78(8); 1890-7. ©2018 AACR.
Collapse
Affiliation(s)
- Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Departments of Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lionel Chia
- Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lingling Xian
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Abstract
microRNAs (miRs) are targets for genomic aberrations and emerging treatments against cancer. It has been demonstrated that targeting miR-569 may potentially benefit patients with ovarian or breast cancer. However, the exact roles of miR-569 remain unclear in human lung cancer cells. Using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), it was demonstrated that miR-569 expression was consistently decreased in lung cancer cells. As well as cell proliferation and migration inhibition, apoptosis and cell arrest at the G1 phase were induced following reversion of miR-569 expression in lung cancer cells. The present study demonstrated that miR-569 was able to downregulate FOS and high mobility group A2 mRNA and protein expression using RT-qPCR and western blot analysis. The observed role of miRNA-569 in lung cancer cells in the present study suggested that it may be a novel and promising therapeutic target, and a novel biomarker for detecting lung cancer.
Collapse
Affiliation(s)
- Yi Ping Zheng
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Linxia Wu
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Jie Gao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Yanfu Wang
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
41
|
Ding J, Aronow BJ, Kaminski N, Kitzmiller J, Whitsett JA, Bar-Joseph Z. Reconstructing differentiation networks and their regulation from time series single-cell expression data. Genome Res 2018; 28:383-395. [PMID: 29317474 PMCID: PMC5848617 DOI: 10.1101/gr.225979.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
Generating detailed and accurate organogenesis models using single-cell RNA-seq data remains a major challenge. Current methods have relied primarily on the assumption that descendant cells are similar to their parents in terms of gene expression levels. These assumptions do not always hold for in vivo studies, which often include infrequently sampled, unsynchronized, and diverse cell populations. Thus, additional information may be needed to determine the correct ordering and branching of progenitor cells and the set of transcription factors (TFs) that are active during advancing stages of organogenesis. To enable such modeling, we have developed a method that learns a probabilistic model that integrates expression similarity with regulatory information to reconstruct the dynamic developmental cell trajectories. When applied to mouse lung developmental data, the method accurately distinguished different cell types and lineages. Existing and new experimental data validated the ability of the method to identify key regulators of cell fate.
Collapse
Affiliation(s)
- Jun Ding
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Joseph Kitzmiller
- Section of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Jeffrey A Whitsett
- Section of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
42
|
Luo Y, Li B, Zhang G, He Y, Bae JH, Hu F, Cui R, Liu R, Wang Z, Wang L. Integrated Oncogenomic Profiling of Copy Numbers and Gene Expression in Lung Adenocarcinomas without EGFR Mutations or ALK Fusion. J Cancer 2018; 9:1096-1105. [PMID: 29581789 PMCID: PMC5868177 DOI: 10.7150/jca.23909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Targeted therapies based on EGFR mutations or on the ALK fusion oncogene have become the standard treatment for certain patients with lung adenocarcinoma (LUAD). However, most LUAD patients have no EGFR mutation or ALK fusion, and their oncogenetic alterations remain to be characterized. Here we conducted an integrated analysis of public datasets to assess the genomic alterations of 23 highly lung cancer-associated genes. The copy numbers of these genes were measured in ten micro-dissected, paired tumors and normal lung tissues of LUAD patients without EGFR mutations or ALK fusion. The copy numbers of PTEN, RB1, HMGA2, and PTPRD were lower in tumors compared with those for normal tissues. Although there were reduced mRNA levels of PTEN and RB1 in tumors, there was a correlation between copy number and expression only for PTEN. In addition, analysis of the copy number alterations of these 23 genes revealed correlations between EMSY/CCND1, EMSY/PIK3CA, CCND1/CDKN2A, and CCND1/PIK3CA. Our exploration of integrated copy number and gene expression analysis gives priority to the PTEN-PIK3CA and RB1-CCND1 pathways in developing therapeutic strategies for LUAD patients without EGFR mutations or ALK fusion.
Collapse
Affiliation(s)
- Yanzhuo Luo
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.,Department of Cardiac Surgery, The First Hospital Affiliated to Jiamusi University, Jiamusi, Heilongjiang, 154002, China
| | - Bingjin Li
- Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Guangxin Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yuxiao He
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110003, China
| | - Jeeyoo Hope Bae
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Fengping Hu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Ranji Cui
- Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| |
Collapse
|
43
|
Natarajan S, Begum F, Gim J, Wark L, Henderson D, Davie JR, Hombach-Klonisch S, Klonisch T. High Mobility Group A2 protects cancer cells against telomere dysfunction. Oncotarget 2017; 7:12761-82. [PMID: 26799419 PMCID: PMC4914320 DOI: 10.18632/oncotarget.6938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 11/25/2022] Open
Abstract
The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) plays important roles in the repair and protection of genomic DNA in embryonic stem cells and cancer cells. Here we show that HMGA2 localizes to mammalian telomeres and enhances telomere stability in cancer cells. We present a novel interaction of HMGA2 with the key shelterin protein TRF2. We found that the linker (L1) region of HMGA2 contributes to this interaction but the ATI-L1-ATII molecular region of HMGA2 is required for strong interaction with TRF2. This interaction was independent of HMGA2 DNA-binding and did not require the TRF2 interacting partner RAP1 but involved the homodimerization and hinge regions of TRF2. HMGA2 retained TRF2 at telomeres and reduced telomere-dysfunction despite induced telomere stress. Silencing of HMGA2 resulted in (i) reduced binding of TRF2 to telomere DNA as observed by ChIP, (ii) increased telomere instability and (iii) the formation of telomere dysfunction-induced foci (TIF). This resulted in increased telomere aggregation, anaphase bridges and micronuclei. HMGA2 prevented ATM-dependent pTRF2T188 phosphorylation and attenuated signaling via the telomere specific ATM-CHK2-CDC25C DNA damage signaling axis. In summary, our data demonstrate a unique and novel role of HMGA2 in telomere protection and promoting telomere stability in cancer cells. This identifies HMGA2 as a new therapeutic target for the destabilization of telomeres in HMGA2+ cancer cells.
Collapse
Affiliation(s)
- Suchitra Natarajan
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Farhana Begum
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jeonga Gim
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Landon Wark
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Dana Henderson
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - James R Davie
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.,Department of Biochemistry and Medical Genetics, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Obstetrics, Gynecology and Reproductive Medicine, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Surgery, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology and Infectious Diseases, College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
44
|
Wu C, Jiang Y, Ren J, Cui Y, Ma S. Dissecting gene-environment interactions: A penalized robust approach accounting for hierarchical structures. Stat Med 2017; 37:437-456. [PMID: 29034484 DOI: 10.1002/sim.7518] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/30/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022]
Abstract
Identification of gene-environment (G × E) interactions associated with disease phenotypes has posed a great challenge in high-throughput cancer studies. The existing marginal identification methods have suffered from not being able to accommodate the joint effects of a large number of genetic variants, while some of the joint-effect methods have been limited by failing to respect the "main effects, interactions" hierarchy, by ignoring data contamination, and by using inefficient selection techniques under complex structural sparsity. In this article, we develop an effective penalization approach to identify important G × E interactions and main effects, which can account for the hierarchical structures of the 2 types of effects. Possible data contamination is accommodated by adopting the least absolute deviation loss function. The advantage of the proposed approach over the alternatives is convincingly demonstrated in both simulation and a case study on lung cancer prognosis with gene expression measurements and clinical covariates under the accelerated failure time model.
Collapse
Affiliation(s)
- Cen Wu
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38111, USA
| | - Jie Ren
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, 619 Red Cedar Rd, East Lansing, MI 48824, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale University, 60 College Street, New Haven, CT 06520, USA
| |
Collapse
|
45
|
Clinicopathological and prognostic significance of HMGA2 overexpression in gastric cancer: a meta-analysis. Oncotarget 2017; 8:100478-100489. [PMID: 29245994 PMCID: PMC5725036 DOI: 10.18632/oncotarget.19001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/18/2017] [Indexed: 12/29/2022] Open
Abstract
Background High mobility group protein A2 (HMGA2) overexpression has been reported to be closely related to tumor progression [1-4] and indicate significantly worse overall survival in gastric cancer [5-8]. However, a final consensus regarding this issue has not yet been reached. Thus, we conducted a meta-analysis to evaluate the association between HMGA2 expression and prognosis of gastric cancer patients. Methods The Cochrane Library, Embase, PubMed, Web of Science and China Biology Medicine databases were searched to identify eligible literature published prior to September 2016. In the included studies, the level of HMGA2 amplification was evaluated by immunohistochemistry. We performed a meta-analysis, and pooled relative risk (RRs), hazard ratio (HRs), and 95% confidence intervals (CIs) were analyzed using Review Manager 5.3. Results Six studies [5-7, 9-11] involving 712 gastric cancer patients were included and stratified by HMGA2 amplification magnitude. The results of the analysis indicated that higher HMGA2 levels were associated with several clinicopathological parameters and predicted poor prognosis in terms of overall survival (OS). Conclusions The results of the present study indicate that higher HMGA2 levels were significantly associated with TNM stage, lymph node status, vascular invasion, and poor OS in patients with gastric cancer. In conclusion, HMGA2 may serve as a promising prognostic biomarker in gastric cancer.
Collapse
|
46
|
Yang F, Zhao L, Mei D, Jiang L, Geng C, Li Q, Yao X, Liu Y, Kong Y, Cao J. HMGA2 plays an important role in Cr (VI)-induced autophagy. Int J Cancer 2017; 141:986-997. [PMID: 28510366 DOI: 10.1002/ijc.30789] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/10/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
Cr (VI) is mutagenic and carcinogenic, but the mechanism is unclear. In this study, the involvement of high mobility group A2 (HMGA2) in Cr (VI)-induced autophagy was investigated. Cr (VI) treatment induced formation of autophagosomes, increased expression of LC3II, Atg12-Atg5, Atg4, Atg10, HMGA1 and HMGA2 proteins, and decreased the expression of p62 in A549 cells. Silencing of HMGA2 gene by siRNA blocked Cr (VI)-induced formation of autophagosomes, expression of LC3II, Atg12-Atg5, Atg10 and reduction of p62. Overexpression of HMGA2 in HEK 293 and HeLa cells could induce the expression of LC3II, Atg12-Atg5 and Atg10, and decrease the expression of p62. Although the protein level of Atg12-Atg5 conjugation changed after Cr (VI) treatment, silencing of HMGA2 and overexpression of HMGA2, both the proteins and mRNA levels of Atg12 and Atg5 were not changed significantly. ChIP assay demonstrated that HMGA2 protein directly bound to the promoter sequence of Atg10 gene, which modulated the conjugation of Atg12-Atg5. Interestingly, 3-MA markedly prevented Cr (VI)-induced cell growth of A549 cells. Our further in vivo study confirmed that the expression of HMGA1, HMGA2, LC3II, Atg12-Atg5, Atg4, Atg5, Atg7, Atg10, Atg12, Beclin 1 were increased and p62 was reduced in lung tissues of Cr (VI)-treated BALB/c mice. Combining, our data demonstrated that HMGA2 plays an important role in Cr (VI)-induced autophagy and the mechanism underlies Atg12-Atg5 conjugation modulated by HMGA2-dependent transcriptional regulation of Atg10. This suggests that HMGA2 might be an important biomarker in Cr (VI)-induced autophagy, cell-growth or other toxicities.
Collapse
Affiliation(s)
- Fan Yang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Lian Zhao
- Dalian Municipal Center for Disease Control & Prevention, Dalian, 116023, China
| | - Dan Mei
- Dalian Municipal Center for Disease Control & Prevention, Dalian, 116023, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Chengyan Geng
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, 116044, China
| |
Collapse
|
47
|
Kopparam J, Chiffelle J, Angelino P, Piersigilli A, Zangger N, Delorenzi M, Meylan E. RIP4 inhibits STAT3 signaling to sustain lung adenocarcinoma differentiation. Cell Death Differ 2017; 24:1761-1771. [PMID: 28574510 PMCID: PMC5596425 DOI: 10.1038/cdd.2017.81] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/30/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022] Open
Abstract
Loss of epithelial differentiation and extracellular matrix (ECM) remodeling are known to facilitate cancer progression and are associated with poor prognosis in patients with lung cancer. We have identified Receptor-interacting serine/threonine protein kinase 4 (RIP4) as a regulator of tumor differentiation in lung adenocarcinoma (AC). Bioinformatics analyses of human lung AC samples showed that poorly differentiated tumors express low levels of RIP4, whereas high levels are associated with better overall survival. In vitro, lung tumor cells expressing reduced RIP4 levels showed enhanced activation of STAT3 signaling and had a greater ability to invade through collagen. In contrast, overexpression of RIP4 inhibited STAT3 activation, which abrogated interleukin-6-dependent induction of lysyl oxidase, a collagen cross-linking enzyme. In an autochthonous mouse model of lung AC initiated by Kras(G12D) expression with loss of p53, Rip4 knockdown tumors progressed to a poorly differentiated state marked by an increase in Hmga2, reduced Ttf1, and enrichment of genes regulating extracellular remodeling and Jak-Stat signaling. Tail vein injections of cells overexpressing Rip4 showed a reduced potential to invade and form tumors, which was restored by co-expression of Stat3. Altogether, our work has identified that loss of RIP4 enhances STAT3 signaling in lung cancer cells, promoting the expression of ECM remodeling genes and cancer dedifferentiation.
Collapse
Affiliation(s)
- Jawahar Kopparam
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Johanna Chiffelle
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Paolo Angelino
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Alessandra Piersigilli
- Institute of Animal Pathology, University of Bern, Länggassstrasse 122, Bern CH-3012, Switzerland.,Histology Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Nadine Zangger
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.,Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland.,Ludwig Center for Cancer Research, University of Lausanne, Epalinges CH-1066, Switzerland.,Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1011, Switzerland
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
48
|
Xian L, Georgess D, Huso T, Cope L, Belton A, Chang YT, Kuang W, Gu Q, Zhang X, Senger S, Fasano A, Huso DL, Ewald AJ, Resar LMS. HMGA1 amplifies Wnt signalling and expands the intestinal stem cell compartment and Paneth cell niche. Nat Commun 2017; 8:15008. [PMID: 28452345 PMCID: PMC5414379 DOI: 10.1038/ncomms15008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/21/2017] [Indexed: 12/15/2022] Open
Abstract
High-mobility group A1 (Hmga1) chromatin remodelling proteins are enriched in intestinal stem cells (ISCs), although their function in this setting was unknown. Prior studies showed that Hmga1 drives hyperproliferation, aberrant crypt formation and polyposis in transgenic mice. Here we demonstrate that Hmga1 amplifies Wnt/β-catenin signalling to enhance self-renewal and expand the ISC compartment. Hmga1 upregulates genes encoding both Wnt agonist receptors and downstream Wnt effectors. Hmga1 also helps to 'build' an ISC niche by expanding the Paneth cell compartment and directly inducing Sox9, which is required for Paneth cell differentiation. In human intestine, HMGA1 and SOX9 are positively correlated, and both become upregulated in colorectal cancer. Our results define a unique role for Hmga1 in intestinal homeostasis by maintaining the stem cell pool and fostering terminal differentiation to establish an epithelial stem cell niche. This work also suggests that deregulated Hmga1 perturbs this equilibrium during intestinal carcinogenesis.
Collapse
Affiliation(s)
- Lingling Xian
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, Maryland 21205, USA
| | - Dan Georgess
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - Tait Huso
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, Maryland 21205, USA
| | - Leslie Cope
- Division of Biostatistics, Department of Oncology, The Johns Hopkins University School of Medicine, 550 North Broadway, Baltimore, Maryland 21205, USA
| | - Amy Belton
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, Maryland 21205, USA
| | - Yu-Ting Chang
- Department of Pathology, Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, Maryland 21205, USA
| | - Wenyong Kuang
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, Maryland 21205, USA
| | - Qihua Gu
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, Maryland 21205, USA
| | - Xiaoyan Zhang
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, Maryland 21205, USA
| | - Stefania Senger
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Harvard Medical School, Massachusetts General Hospital East, 16th Street, Building 114, Charlestown, Massachusetts 02114, USA
| | - Alessio Fasano
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Harvard Medical School, Massachusetts General Hospital East, 16th Street, Building 114, Charlestown, Massachusetts 02114, USA
| | - David L Huso
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Andrew J Ewald
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Linda M S Resar
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, Maryland 21205, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Pathology and Institute for Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
49
|
Sun J, Sun B, Zhu D, Zhao X, Zhang Y, Dong X, Che N, Li J, Liu F, Zhao N, Zhang D, Liu T, Lin X. HMGA2 regulates CD44 expression to promote gastric cancer cell motility and sphere formation. Am J Cancer Res 2017; 7:260-274. [PMID: 28337375 PMCID: PMC5336500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023] Open
Abstract
High mobility group AT-hook 2 (HMGA2) is a transcriptional modulator that mediates motility and self-renewal in cancer stem cells. Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. GC contains a population of stem-like cells that promote tumor invasion and resistance to therapy. In the current study, we investigated the expression of HMGA2 and the cancer stem cell marker CD44 in 200 GC samples and found that HMGA2 and CD44 were significantly associated with distant metastasis, histological differentiation and poor prognosis in GC patients. Positive clinical correlations of HMGA2 with CD44 were also observed in tissue sections. In vitro, overexpression of HMGA2 promoted GC sphere formation and migration in MKN74/MKN28 cells, whereas downregulation of HMGA2 decreased GC sphere formation and migration in MKN45/MGC803 cells. In addition, western blot and immunofluorescent analyses showed that HMGA2 increased the expression of the stem cell markers CD44, ALDH1, Sox2, and Oct4 and the EMT-related factors Snail and β-catenin. In a xenograft mouse model, overexpression of HMGA2 promoted tumor growth. Further immunohistochemical (IHC) analysis showed that HMGA2 increased the expression of CD44 and β-catenin, resulting in the promotion of tumor growth. Taken together, our findings indicate that HMGA2 promotes GC cancer stem cell induction and cell motility by regulating the expression of CD44. Therefore, targeting HMGA2 in GC may be therapeutically beneficial.
Collapse
Affiliation(s)
- Junying Sun
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, China
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical UniversityTianjin 300060, China
| | - Dongwang Zhu
- Department of Prosthodontics, Affiliated Stomatological Hospital, Tianjin Medical UniversityTianjin 300070, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, China
| | - Yanhui Zhang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical UniversityTianjin 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
| | - Na Che
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, China
| | - Jing Li
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, China
| | - Xian Lin
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, China
| |
Collapse
|
50
|
Héliot A, Landkocz Y, Roy Saint-Georges F, Gosset P, Billet S, Shirali P, Courcot D, Martin PJ. Smoker extracellular vesicles influence status of human bronchial epithelial cells. Int J Hyg Environ Health 2016; 220:445-454. [PMID: 28063900 DOI: 10.1016/j.ijheh.2016.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/09/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022]
Abstract
Cigarette smoking is a habit that has spread all over the world and is a significant risk factor for many diseases including cardiovascular disease, chronic obstructive pulmonary disease (COPD), asthma and lung cancer. Evaluation and understanding of tobacco health effects are of major interest worldwide and answer to important societal concerns. Identification of new biomarkers of exposure to tobacco smoke potentially implicated in COPD or lung carcinogenesis would allow a better observation of tobacco exposed population, thanks to screening establishment at reversible stages of pathological processes. In this study, we questioned whether cigarette smoking alters miRNA profiles of Extracellular Vesicles (EVs) present in human Broncho Alveolar Lavages (BALs), which could affect surrounding normal bronchial epithelial cells status. To this aim, BALs were carried out on 10 Smokers and 10 Non-Smokers, and EVs were isolated from the supernatants and characterized. We then compared the amount of 10 microRNAs (miRNAs) present in Smokers versus Non-Smokers BAL EVs and performed statistical analysis to discuss the biological significance by the smoking status and to evaluate BAL EV miRNAs as potential biomarkers of tobacco exposure. Finally, we tested the effects of smokers versus non-smokers EVs on human bronchial epithelial cells (BEAS-2B) to compare their influence on the cells status. Our study shows for the first time in human samples that smoking can alter lung EV profile that can influence surrounding bronchial epithelial cells.
Collapse
Affiliation(s)
- Amélie Héliot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| | | | - Pierre Gosset
- Anatomo-pathology service, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France.
| | - Sylvain Billet
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| | - Pirouz Shirali
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| | - Perrine J Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Université du Littoral Côte d'Opale (ULCO), Dunkerque, France.
| |
Collapse
|