1
|
Cui Z, Kang H, Li H, Lee ED, Lee YS, Peterson CN, Long SR, Grandis JR, Johnson DE. CYLD Alterations Are Associated With Metastasis and Poor Prognosis in Human Papilloma Virus-Positive Head and Neck Cancer. Head Neck 2025; 47:606-614. [PMID: 39347568 PMCID: PMC11845079 DOI: 10.1002/hed.27944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/13/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Human papilloma virus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) is an emerging epidemic and a subset of HPV-positive patients experience aggressive disease with metastases. The CYLD gene is frequently altered in HPV-positive HNSCC, but the role of these alterations in disease progression is poorly understood. METHODS We identified 11 HPV-positive HNSCC patients with CYLD alterations and assessed their clinical course. We also characterized a unique, HPV-positive, metastatic, HNSCC patient-derived xenograft (PDX). RESULTS All 11 patients developed metastasis with reduced overall survival when compared with metastatic HPV-positive patients with wild-type CYLD. The metastatic PDX harbored a CYLD mutation (S371*) and exhibited reduced expression of connexin 43, a potentially antimetastatic protein. We also investigated the functional impact of the S371* mutation, as well as 2 CYLD mutations from our 11-patient cohort. CONCLUSION Our findings indicate that alterations in CYLD in HPV-positive HNSCC are associated with metastasis and poor prognosis.
Collapse
Affiliation(s)
- Zhibin Cui
- Department of Otolaryngology – Head and Neck Surgery, University of California at San Francisco; San Francisco, California, USA
| | - Hyunseok Kang
- Department of Medicine and University of California at San Francisco; San Francisco, California, USA
| | - Hua Li
- Department of Otolaryngology – Head and Neck Surgery, University of California at San Francisco; San Francisco, California, USA
| | - Eliot D. Lee
- Department of Otolaryngology – Head and Neck Surgery, University of California at San Francisco; San Francisco, California, USA
| | - Yoon Se Lee
- Department of Otolaryngology, Asan Medical Center, College of Medicine, University of Ulsan; Seoul, Korea
| | - Christopher N. Peterson
- Department of Otolaryngology – Head and Neck Surgery, University of California at San Francisco; San Francisco, California, USA
| | - Steven R. Long
- Department of Pathology, University of California at San Francisco; San Francisco, California, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology – Head and Neck Surgery, University of California at San Francisco; San Francisco, California, USA
| | - Daniel E. Johnson
- Department of Otolaryngology – Head and Neck Surgery, University of California at San Francisco; San Francisco, California, USA
| |
Collapse
|
2
|
Waas M, Karamboulas C, Wu BZ, Khan S, Poon S, Meens J, Govindarajan M, Khoo A, Mejia-Guerrero S, Ha A, Liu LY, Nixon KCJ, Walton J, Bratman SV, Huang SH, Goldstein D, Gaiti F, Ailles L, Kislinger T. Molecular correlates for HPV-negative head and neck cancer engraftment prognosticate patient outcomes. Nat Commun 2024; 15:10869. [PMID: 39738080 DOI: 10.1038/s41467-024-55203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
There is a pressing need to improve risk stratification and treatment selection for HPV-negative head and neck squamous cell carcinoma (HNSCC) due to the adverse side effects of treatment. One of the most important prognostic features is lymph nodes involvement. Previously, we demonstrated that tumor formation in patient-derived xenografts (i.e. engraftment) was associated with poor clinical outcomes in patients with HPV-negative HNSCC. However, assessing engraftment is challenging in clinical settings. Here, we perform transcriptomic and proteomic profiling of 88 HNSCC patients and find the relationship between engraftment and clinical outcomes is recapitulated by molecular phenotype. We identify LAMC2 and TGM3 as candidate prognostic biomarkers and validated their utility in an independent cohort containing 404 HPV-negative HNSCC patients. Strikingly, these markers significantly improve prediction of outcomes beyond nodal status alone and can significantly stratify patients without any nodal involvement. Overall, our study demonstrates how the molecular characteristics of engraftment can inform patient prognostication.
Collapse
Affiliation(s)
- Matthew Waas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Benson Z Wu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Poon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Meinusha Govindarajan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda Khoo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Annie Ha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Lydia Y Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kevin C J Nixon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Joseph Walton
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Scott V Bratman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, and Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Shao Hui Huang
- Radiation Medicine Program, Princess Margaret Cancer Centre, and Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - David Goldstein
- Department of Otolaryngology-Head and Neck Surgery, Princess Margaret Cancer Centre, and University of Toronto, Toronto, ON, Canada
| | - Federico Gaiti
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Chan XY, Chang KP, Yang CY, Liu CR, Hung CM, Huang CC, Liu HP, Wu CC. Upregulation of ENAH by a PI3K/AKT/β-catenin cascade promotes oral cancer cell migration and growth via an ITGB5/Src axis. Cell Mol Biol Lett 2024; 29:136. [PMID: 39511483 PMCID: PMC11545229 DOI: 10.1186/s11658-024-00651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Oral cancer accounts for 2% of cancer-related deaths globally, with over 90% of cases being oral cavity squamous cell carcinomas (OSCCs). Approximately 50% of patients with OSCC succumb to the disease within 5 years, primarily due to the advanced stage at which it is typically diagnosed. This underscores an urgent need to identify proteins related to OSCC progression to develop effective diagnostic and therapeutic strategies. METHODS To identify OSCC progression-related proteins, we conducted integrated proteome and transcriptome analyses on cancer tissues from patients and patient-derived xenograft (PDX) model mice. We investigated the role of protein-enabled homolog (ENAH), identified as an OSCC progression-associated protein, through proliferation, transwell migration, and invasion assays in OSCC cells. The mechanisms underlying ENAH-mediated functions were elucidated using gene knockdown and ectopic expression techniques in OSCC cells. RESULTS ENAH was identified as a candidate associated with OSCC progression based on integrated analyses, which showed increased ENAH levels in primary OSCC tissues compared with adjacent noncancerous counterparts, and sustained overexpression in the cancer tissues of PDX models. We confirmed that level of ENAH is increased in OSCC tissues and that its elevated expression correlates with poorer survival rates in patients with OSCC. Furthermore, the upregulation of ENAH in OSCC cells results from the activation of the GSK3β/β-catenin axis by the EGFR/PI3K/AKT cascade. ENAH expression enhances cell proliferation and mobility by upregulating integrin β5 in oral cancer cells. CONCLUSIONS The upregulation of ENAH through a PI3K/AKT/β-catenin signaling cascade enhances oral cancer cell migration and growth via the ITGB5/Src axis. These findings offer a new interpretation of the ENAH function in the OSCC progression and provide crucial information for developing new OSCC treatment strategies.
Collapse
Affiliation(s)
- Xiu-Ya Chan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Rou Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chu-Mi Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Chueh Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Ching Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Lee RH, Roy R, Li H, Hechmer A, Zhu TR, Izgutdina A, Olshen AB, Johnson DE, Grandis JR. Therapeutic implications of transcriptomics in head and neck cancer patient-derived xenografts. PLoS One 2023; 18:e0282177. [PMID: 36857322 PMCID: PMC9977000 DOI: 10.1371/journal.pone.0282177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
There are currently no clinical strategies utilizing tumor gene expression to inform therapeutic selection for patients with head and neck squamous cell carcinoma (HNSCC). One of the challenges in developing predictive biomarkers is the limited characterization of preclinical HNSCC models. Patient-derived xenografts (PDXs) are increasingly recognized as translationally relevant preclinical avatars for human tumors; however, the overall transcriptomic concordance of HNSCC PDXs with primary human HNSCC is understudied, especially in human papillomavirus-associated (HPV+) disease. Here, we characterized 64 HNSCC PDXs (16 HPV+ and 48 HPV-) at the transcriptomic level using RNA-sequencing. The range of human-specific reads per PDX varied from 64.6%-96.5%, with a comparison of the most differentially expressed genes before and after removal of mouse transcripts revealing no significant benefit to filtering out mouse mRNA reads in this cohort. We demonstrate that four previously established HNSCC molecular subtypes found in The Cancer Genome Atlas (TCGA) are also clearly recapitulated in HNSCC PDXs. Unsupervised hierarchical clustering yielded a striking natural division of HNSCC PDXs by HPV status, with C19orf57 (BRME1), a gene previously correlated with positive response to cisplatin in cervical cancer, among the most significantly differentially expressed genes between HPV+ and HPV- PDXs. In vivo experiments demonstrated a possible relationship between increased C19orf57 expression and superior anti-tumor responses of PDXs to cisplatin, which should be investigated further. These findings highlight the value of PDXs as models for HPV+ and HPV- HNSCC, providing a resource for future discovery of predictive biomarkers to guide treatment selection in HNSCC.
Collapse
Affiliation(s)
- Rex H. Lee
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Hua Li
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Aaron Hechmer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Tian Ran Zhu
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Adila Izgutdina
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Adam B. Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Daniel E. Johnson
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Jennifer R. Grandis
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Long Y, Xie B, Shen HC, Wen D. Translation Potential and Challenges of In Vitro and Murine Models in Cancer Clinic. Cells 2022; 11:cells11233868. [PMID: 36497126 PMCID: PMC9741314 DOI: 10.3390/cells11233868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
As one of the leading causes of death from disease, cancer continues to pose a serious threat to human health globally. Despite the development of novel therapeutic regimens and drugs, the long-term survival of cancer patients is still very low, especially for those whose diagnosis is not caught early enough. Meanwhile, our understanding of tumorigenesis is still limited. Suitable research models are essential tools for exploring cancer mechanisms and treatments. Herein we review and compare several widely used in vitro and in vivo murine cancer models, including syngeneic tumor models, genetically engineered mouse models (GEMM), cell line-derived xenografts (CDX), patient-derived xenografts (PDX), conditionally reprogrammed (CR) cells, organoids, and MiniPDX. We will summarize the methodology and feasibility of various models in terms of their advantages and limitations in the application prospects for drug discovery and development and precision medicine.
Collapse
Affiliation(s)
- Yuan Long
- Shanghai LIDE Biotech Co., Ltd., Shanghai 201203, China
| | - Bin Xie
- Shanghai LIDE Biotech Co., Ltd., Shanghai 201203, China
| | - Hong C. Shen
- China Innovation Center of Roche, Roche R & D Center, Shanghai 201203, China
- Correspondence: (H.C.S.); (D.W.); Tel.: +86-21-68585628 (D.W.)
| | - Danyi Wen
- Shanghai LIDE Biotech Co., Ltd., Shanghai 201203, China
- Correspondence: (H.C.S.); (D.W.); Tel.: +86-21-68585628 (D.W.)
| |
Collapse
|
6
|
Bonartsev AP, Lei B, Kholina MS, Menshikh KA, Svyatoslavov DS, Samoylova SI, Sinelnikov MY, Voinova VV, Shaitan KV, Kirpichnikov MP, Reshetov IV. Models of head and neck squamous cell carcinoma using bioengineering approaches. Crit Rev Oncol Hematol 2022; 175:103724. [PMID: 35609774 DOI: 10.1016/j.critrevonc.2022.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
The use of bioengineering methods and approaches is extremely promising for the development of experimental models of cancer, especially head and neck squamous cell carcinomas (HNSCC) that are characterized by early metastasis and rapid progression., for testing novel anticancer drugs and diagnostics. This review summarizes the most relevant HNSCC tumor models used to this day as well as future directions for improved modeling of the malignant disease. Apart from conventional 2D-cell cultivation methods and in vivo animal cancer models a number of bioengineering techniques of modeling HNSCC tumors were reported: genetic-engineering, ethanol/tobacco exposure experiment, spheroids, hydrogel-based cell culture, scaffold-based cell culture, microfluidics, bone-tumor niche cell culture, cancer and normal cells co-culture, cancer cells, and bacteria co-culture. An organized set of these models can constitute a system of HNSCC experimental modeling, which gives potential towards developing the newest approaches in the diagnosis, prevention, and treatment of HNSCC.
Collapse
Affiliation(s)
- Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Bo Lei
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Margarita S Kholina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Ksenia A Menshikh
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Dmitriy S Svyatoslavov
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| | - Svetlana I Samoylova
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| | - Mikhail Y Sinelnikov
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Konstantin V Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Mikhail P Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Igor V Reshetov
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| |
Collapse
|
7
|
Precision Medicine in Head and Neck Cancers: Genomic and Preclinical Approaches. J Pers Med 2022; 12:jpm12060854. [PMID: 35743639 PMCID: PMC9224778 DOI: 10.3390/jpm12060854] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancers (HNCs) represent the sixth most widespread malignancy worldwide. Surgery, radiotherapy, chemotherapeutic and immunotherapeutic drugs represent the main clinical approaches for HNC patients. Moreover, HNCs are characterised by an elevated mutational load; however, specific genetic mutations or biomarkers have not yet been found. In this scenario, personalised medicine is showing its efficacy. To study the reliability and the effects of personalised treatments, preclinical research can take advantage of next-generation sequencing and innovative technologies that have been developed to obtain genomic and multi-omic profiles to drive personalised treatments. The crosstalk between malignant and healthy components, as well as interactions with extracellular matrices, are important features which are responsible for treatment failure. Preclinical research has constantly implemented in vitro and in vivo models to mimic the natural tumour microenvironment. Among them, 3D systems have been developed to reproduce the tumour mass architecture, such as biomimetic scaffolds and organoids. In addition, in vivo models have been changed over the last decades to overcome problems such as animal management complexity and time-consuming experiments. In this review, we will explore the new approaches aimed to improve preclinical tools to study and apply precision medicine as a therapeutic option for patients affected by HNCs.
Collapse
|
8
|
den bossche VV, Zaryouh H, Vara-Messler M, Vignau J, Machiels JP, Wouters A, Schmitz S, Corbet C. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat 2022; 60:100806. [DOI: 10.1016/j.drup.2022.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
9
|
Jin N, Keam B, Cho J, Lee MJ, Kim HR, Torosyan H, Jura N, Ng PK, Mills GB, Li H, Zeng Y, Barbash Z, Tarcic G, Kang H, Bauman JE, Kim MO, VanLandingham NK, Swaney DL, Krogan NJ, Johnson DE, Grandis JR. Therapeutic implications of activating noncanonical PIK3CA mutations in head and neck squamous cell carcinoma. J Clin Invest 2021; 131:e150335. [PMID: 34779417 PMCID: PMC8592538 DOI: 10.1172/jci150335] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Alpelisib selectively inhibits the p110α catalytic subunit of PI3Kα and is approved for treatment of breast cancers harboring canonical PIK3CA mutations. In head and neck squamous cell carcinoma (HNSCC), 63% of PIK3CA mutations occur at canonical hotspots. The oncogenic role of the remaining 37% of PIK3CA noncanonical mutations is incompletely understood. We report a patient with HNSCC with a noncanonical PIK3CA mutation (Q75E) who exhibited a durable (12 months) response to alpelisib in a phase II clinical trial. Characterization of all 32 noncanonical PIK3CA mutations found in HNSCC using several functional and phenotypic assays revealed that the majority (69%) were activating, including Q75E. The oncogenic impact of these mutations was validated in 4 cellular models, demonstrating that their activity was lineage independent. Further, alpelisib exhibited antitumor effects in a xenograft derived from a patient with HNSCC containing an activating noncanonical PIK3CA mutation. Structural analyses revealed plausible mechanisms for the functional phenotypes of the majority of the noncanonical PIK3CA mutations. Collectively, these findings highlight the importance of characterizing the function of noncanonical PIK3CA mutations and suggest that patients with HNSCC whose tumors harbor activating noncanonical PIK3CA mutations may benefit from treatment with PI3Kα inhibitors.
Collapse
Affiliation(s)
- Nan Jin
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Janice Cho
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Michelle J. Lee
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Cancer Center, Seoul, South Korea
| | | | - Natalia Jura
- Cardiovascular Research Institute and
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Patrick K.S. Ng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Gordon B. Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Hua Li
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Yan Zeng
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | | | | | - Hyunseok Kang
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Julie E. Bauman
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Mi-Ok Kim
- Department of Epidemiology and Biostatistics and
| | - Nathan K. VanLandingham
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Danielle L. Swaney
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Daniel E. Johnson
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Bouhaddou M, Lee RH, Li H, Bhola NE, O'Keefe RA, Naser M, Zhu TR, Nwachuku K, Duvvuri U, Olshen AB, Roy R, Hechmer A, Bolen J, Keysar SB, Jimeno A, Mills GB, Vandenberg S, Swaney DL, Johnson DE, Krogan NJ, Grandis JR. Caveolin-1 and Sox-2 are predictive biomarkers of cetuximab response in head and neck cancer. JCI Insight 2021; 6:151982. [PMID: 34546978 PMCID: PMC8564908 DOI: 10.1172/jci.insight.151982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) inhibitor cetuximab is the only FDA-approved oncogene-targeting therapy for head and neck squamous cell carcinoma (HNSCC). Despite variable treatment response, no biomarkers exist to stratify patients for cetuximab therapy in HNSCC. Here, we applied unbiased hierarchical clustering to reverse-phase protein array molecular profiles from patient-derived xenograft (PDX) tumors and revealed 2 PDX clusters defined by protein networks associated with EGFR inhibitor resistance. In vivo validation revealed unbiased clustering to classify PDX tumors according to cetuximab response with 88% accuracy. Next, a support vector machine classifier algorithm identified a minimalist biomarker signature consisting of 8 proteins — caveolin-1, Sox-2, AXL, STING, Brd4, claudin-7, connexin-43, and fibronectin — with expression that strongly predicted cetuximab response in PDXs using either protein or mRNA. A combination of caveolin-1 and Sox-2 protein levels was sufficient to maintain high predictive accuracy, which we validated in tumor samples from patients with HNSCC with known clinical response to cetuximab. These results support further investigation into the combined use of caveolin-1 and Sox-2 as predictive biomarkers for cetuximab response in the clinic.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology and.,Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA.,J. David Gladstone Institutes, San Francisco, California, USA
| | - Rex H Lee
- Department of Otolaryngology - Head and Neck Surgery and
| | - Hua Li
- Department of Otolaryngology - Head and Neck Surgery and
| | - Neil E Bhola
- Department of Otolaryngology - Head and Neck Surgery and
| | | | - Mohammad Naser
- Histology and Biomarkers Core, Helen Diller Family Comprehensive Cancer Center Biorepository and Tissue Biomarker Technology, University of California, San Francisco, San Francisco, California, USA
| | - Tian Ran Zhu
- Department of Otolaryngology - Head and Neck Surgery and
| | | | - Umamaheswar Duvvuri
- Department of Otolaryngology and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam B Olshen
- Computational Biology and Informatics Core and.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Ritu Roy
- Computational Biology and Informatics Core and
| | | | - Jennifer Bolen
- Histology and Biomarkers Core, Helen Diller Family Comprehensive Cancer Center Biorepository and Tissue Biomarker Technology, University of California, San Francisco, San Francisco, California, USA
| | - Stephen B Keysar
- Department of Medicine, University of Colorado Hospital, Aurora, Colorado, USA
| | - Antonio Jimeno
- Department of Medicine, University of Colorado Hospital, Aurora, Colorado, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Scott Vandenberg
- Histology and Biomarkers Core, Helen Diller Family Comprehensive Cancer Center Biorepository and Tissue Biomarker Technology, University of California, San Francisco, San Francisco, California, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology and.,Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA.,J. David Gladstone Institutes, San Francisco, California, USA
| | | | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology and.,Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA.,J. David Gladstone Institutes, San Francisco, California, USA
| | | |
Collapse
|
11
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
12
|
Humtsoe JO, Kim HS, Leonard B, Ling S, Keam B, Marchionni L, Afsari B, Considine M, Favorov AV, Fertig EJ, Kang H, Ha PK. Newly Identified Members of FGFR1 Splice Variants Engage in Cross-talk with AXL/AKT Axis in Salivary Adenoid Cystic Carcinoma. Cancer Res 2021; 81:1001-1013. [PMID: 33408119 DOI: 10.1158/0008-5472.can-20-1780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Adenoid cystic carcinoma (ACC) is the second most common malignancy of the salivary gland. Although characterized as an indolent tumor, ACC often leads to incurable metastatic disease. Patients with ACC respond poorly to currently available therapeutic drugs and factors contributing to the limited response remain unknown. Determining the role of molecular alterations frequently occurring in ACC may clarify ACC tumorigenesis and advance the development of effective treatment strategies. Applying Splice Expression Variant Analysis and outlier statistics on RNA sequencing of primary ACC tumors and matched normal salivary gland tissues, we identified multiple alternative splicing events (ASE) of genes specific to ACC. In ACC cells and patient-derived xenografts, FGFR1 was a uniquely expressed ASE. Detailed PCR analysis identified three novel, truncated, intracellular domain-lacking FGFR1 variants (FGFR1v). Cloning and expression analysis suggest that the three FGFR1v are cell surface proteins, that expression of FGFR1v augmented pAKT activity, and that cells became more resistant to pharmacologic FGFR1 inhibitor. FGFR1v-induced AKT activation was associated with AXL function, and inhibition of AXL activity in FGFR1v knockdown cells led to enhanced cytotoxicity in ACC. Moreover, cell killing effect was increased by dual inhibition of AXL and FGFR1 in ACC cells. This study demonstrates that these previously undescribed FGFR1v cooperate with AXL and desensitize cells to FGFR1 inhibitor, which supports further investigation into combined FGFR1 and AXL inhibition as an effective ACC therapy.This study identifies several FGFR1 variants that function through the AXL/AKT signaling pathway independent of FGF/FGFR1, desensitizing cells to FGFR1 inhibitor suggestive of a potential resistance mechanism in ACC. SIGNIFICANCE: This study identifies several FGFR1 variants that function through the AXL/AKT signaling pathway independent of FGF/FGFR1, desensitizing cells to FGFR1 inhibitor, suggestive of a potential resistance mechanism in ACC.
Collapse
Affiliation(s)
- Joseph O Humtsoe
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Hyun-Su Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Brandon Leonard
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Shizhang Ling
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of South Korea
| | - Luigi Marchionni
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland
| | - Bahman Afsari
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland
| | - Michael Considine
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland
| | - Alexander V Favorov
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elana J Fertig
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland.,Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Hyunseok Kang
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California.
| |
Collapse
|
13
|
Lee TW, Lai A, Harms JK, Singleton DC, Dickson BD, Macann AMJ, Hay MP, Jamieson SMF. Patient-Derived Xenograft and Organoid Models for Precision Medicine Targeting of the Tumour Microenvironment in Head and Neck Cancer. Cancers (Basel) 2020; 12:E3743. [PMID: 33322840 PMCID: PMC7763264 DOI: 10.3390/cancers12123743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Patient survival from head and neck squamous cell carcinoma (HNSCC), the seventh most common cause of cancer, has not markedly improved in recent years despite the approval of targeted therapies and immunotherapy agents. Precision medicine approaches that seek to individualise therapy through the use of predictive biomarkers and stratification strategies offer opportunities to improve therapeutic success in HNSCC. To enable precision medicine of HNSCC, an understanding of the microenvironment that influences tumour growth and response to therapy is required alongside research tools that recapitulate the features of human tumours. In this review, we highlight the importance of the tumour microenvironment in HNSCC, with a focus on tumour hypoxia, and discuss the fidelity of patient-derived xenograft and organoids for modelling human HNSCC and response to therapy. We describe the benefits of patient-derived models over alternative preclinical models and their limitations in clinical relevance and how these impact their utility in precision medicine in HNSCC for the discovery of new therapeutic agents, as well as predictive biomarkers to identify patients' most likely to respond to therapy.
Collapse
Affiliation(s)
- Tet Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Amy Lai
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Julia K. Harms
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Benjamin D. Dickson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Andrew M. J. Macann
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Radiation Oncology, Auckland City Hospital, Auckland 1023, New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
14
|
Tabbò F, Guerrera F, van den Berg A, Gaudiano M, Maletta F, Bessone L, Nottegar A, Costardi L, de Wijn R, Ruijtenbeek R, Delsedime L, Sapino A, Ruffini E, Hilhorst R, Inghirami G. Kinomic profiling of tumour xenografts derived from patients with non-small cell lung cancer confirms their fidelity and reveals potentially actionable pathways. Eur J Cancer 2020; 144:17-30. [PMID: 33316635 DOI: 10.1016/j.ejca.2020.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION High fidelity between non-small cell lung cancer (NSCLC) primary tumours and patient-derived tumour xenografts (PDTXs) is of paramount relevance to spur their application. Extensive proteomic and kinomic analysis of these preclinical models are missing and may inform about their functional status, in terms of phosphopeptides and hyperactive signalling pathways. METHODS We investigated tumour xenografts derived from patients with NSCLC to identify hyperactive signalling pathways. Fresh tumour fragments from 81 NSCLC surgical samples were implanted in Nod/Scid/Gamma mice, and engrafted tumours were compared with primary specimens by morphology, immunohistochemistry, gene mutation analyses, and kinase activity profiling. Four different tyrosine and serine/threonine kinase inhibitors were tested against primary tumour and PDTX lysates using the PamGene peptide microarray platform. RESULTS The engraftment rate was 33%, with successful engraftment being more associated with poor clinical outcomes. Genomic profiles led to the recognition of hotspot mutations, some of which were initially undetected in donor samples. Kinomic analyses showed that characteristics of primary tumours were retained in PDTXs, and tyrosine kinase inhibitors (TKIs) responses of individual PDTX lines were either expected, based on the genetic status, or alternatively defined suitable targets unpredictable by single-genome fingerprints. CONCLUSIONS Collectively, PDTXs mostly resembled their parental NSCLC. Combining genomic and kinomic analyses of tumour xenografts derived from patients with NSCLC, we identified patients' specific targetable pathways, confirming PDTXs as a preclinical tool for biomarker identification and therapeutic algorithm'' improvement.
Collapse
Affiliation(s)
- Fabrizio Tabbò
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Turin, Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10021, USA.
| | - Francesco Guerrera
- Department of Thoracic Surgery, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | | | - Marcello Gaudiano
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Turin, Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Francesca Maletta
- Pathology Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Luca Bessone
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Turin, Torino, Italy
| | - Alessia Nottegar
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Lorena Costardi
- Department of Thoracic Surgery, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Rik de Wijn
- PamGene International BV, 's-Hertogenbosch, the Netherlands
| | - Rob Ruijtenbeek
- PamGene International BV, 's-Hertogenbosch, the Netherlands; Genmab, Utrecht, the Netherlands
| | - Luisa Delsedime
- Pathology Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Anna Sapino
- Department of of Medical Sciences, University of Turin, Torino, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Enrico Ruffini
- Department of Thoracic Surgery, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Riet Hilhorst
- PamGene International BV, 's-Hertogenbosch, the Netherlands
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Turin, Torino, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10021, USA
| |
Collapse
|
15
|
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers 2020; 6:92. [PMID: 33243986 PMCID: PMC7944998 DOI: 10.1038/s41572-020-00224-3] [Citation(s) in RCA: 2223] [Impact Index Per Article: 444.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Most head and neck cancers are derived from the mucosal epithelium in the oral cavity, pharynx and larynx and are known collectively as head and neck squamous cell carcinoma (HNSCC). Oral cavity and larynx cancers are generally associated with tobacco consumption, alcohol abuse or both, whereas pharynx cancers are increasingly attributed to infection with human papillomavirus (HPV), primarily HPV-16. Thus, HNSCC can be separated into HPV-negative and HPV-positive HNSCC. Despite evidence of histological progression from cellular atypia through various degrees of dysplasia, ultimately leading to invasive HNSCC, most patients are diagnosed with late-stage HNSCC without a clinically evident antecedent pre-malignant lesion. Traditional staging of HNSCC using the tumour-node-metastasis system has been supplemented by the 2017 AJCC/UICC staging system, which incorporates additional information relevant to HPV-positive disease. Treatment is generally multimodal, consisting of surgery followed by chemoradiotherapy (CRT) for oral cavity cancers and primary CRT for pharynx and larynx cancers. The EGFR monoclonal antibody cetuximab is generally used in combination with radiation in HPV-negative HNSCC where comorbidities prevent the use of cytotoxic chemotherapy. The FDA approved the immune checkpoint inhibitors pembrolizumab and nivolumab for treatment of recurrent or metastatic HNSCC and pembrolizumab as primary treatment for unresectable disease. Elucidation of the molecular genetic landscape of HNSCC over the past decade has revealed new opportunities for therapeutic intervention. Ongoing efforts aim to integrate our understanding of HNSCC biology and immunobiology to identify predictive biomarkers that will enable delivery of the most effective, least-toxic therapies.
Collapse
Affiliation(s)
- Daniel E. Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Barbara Burtness
- Department of Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - C. René Leemans
- Department of Otolaryngology-Head and Neck Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Julie E. Bauman
- Department of Medicine-Hematology/Oncology, University of Arizona, Tucson, AZ, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA, USA,
| |
Collapse
|
16
|
Schuch LF, Silveira FM, Wagner VP, Borgato GB, Rocha GZ, Castilho RM, Vargas PA, Martins MD. Head and neck cancer patient-derived xenograft models - A systematic review. Crit Rev Oncol Hematol 2020; 155:103087. [PMID: 32992152 DOI: 10.1016/j.critrevonc.2020.103087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) involve the direct surgical transfer of fresh human tumor samples to immunodeficient mice. This systematic review aimed to identify publications of head and neck cancer PDX (HNC-PDX) models, describing the main methodological characteristics and outcomes. METHODS An electronic search was undertaken in four databases, including publications having used HNC-PDX. Data were analyzed descriptively. RESULTS 63 articles were yielded. The nude mouse was one most commonly animal model used (38.8 %), and squamous cell carcinoma accounted for the majority of HNC-PDX (80.6 %). Tumors were mostly implanted in the flank (86.3 %), and the latency period ranged from 30 to 401 days. The successful rate ranged from 17 % to 100 %. Different drugs and pathways were identified. CONCLUSION HNC-PDX appears to significantly recapitulate the morphology of the original HNC and represents a valuable method in translational research for the assessment of the in vivo effect of novel therapies for HNC.
Collapse
Affiliation(s)
- Lauren F Schuch
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Felipe M Silveira
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Vivian P Wagner
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Gabriell B Borgato
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Guilherme Z Rocha
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, United States; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Pablo A Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Manoela D Martins
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil; Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Preclinical models of head and neck squamous cell carcinoma for a basic understanding of cancer biology and its translation into efficient therapies. CANCERS OF THE HEAD & NECK 2020; 5:9. [PMID: 32714605 PMCID: PMC7376675 DOI: 10.1186/s41199-020-00056-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Comprehensive molecular characterization of head and neck squamous cell carcinoma (HNSCC) has led to the identification of distinct molecular subgroups with fundamental differences in biological properties and clinical behavior. Despite improvements in tumor classification and increased understanding about the signaling pathways involved in neoplastic transformation and disease progression, current standard-of-care treatment for HNSCC mostly remains to be based on a stage-dependent strategy whereby all patients at the same stage receive the same treatment. Preclinical models that closely resemble molecular HNSCC subgroups that can be exploited for dissecting the biological function of genetic variants and/or altered gene expression will be highly valuable for translating molecular findings into improved clinical care. In the present review, we merge and discuss existing and new information on established cell lines, primary two- and three-dimensional ex vivo tumor cultures from HNSCC patients, and animal models. We review their value in elucidating the basic biology of HNSCC, molecular mechanisms of treatment resistance and their potential for the development of novel molecularly stratified treatment.
Collapse
|
18
|
Copper-dependent ATP7B up-regulation drives the resistance of TMEM16A-overexpressing head-and-neck cancer models to platinum toxicity. Biochem J 2020; 476:3705-3719. [PMID: 31790150 DOI: 10.1042/bcj20190591] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors' platinum resistance identifies novel approach to treating these tumors.
Collapse
|
19
|
Guo J, Xu G, Mao C, Wei R. Low Expression of Smurf1 Enhances the Chemosensitivity of Human Colorectal Cancer to Gemcitabine and Cisplatin in Patient-Derived Xenograft Models. Transl Oncol 2020; 13:100804. [PMID: 32512228 PMCID: PMC7281823 DOI: 10.1016/j.tranon.2020.100804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the side effects, chemotherapy is one of the most common treatments in colorectal cancer (CRC). An open-ended question about CRC chemotherapy, which has been discussed quite often, is with respect to the validation of prognostic or predictive factors. It is believed that personalized chemotherapy can improve the treatment outcome of patients with colorectal tumors. Though, Smurf1 is highly expressed in multiple tumors and plays a critical role in the occurrence and development of multiple cancers, it's role in the susceptibility of CRC response to chemotherapy is still unknown, Therefore, the study aimed to understand the role of Smurf1 in the susceptibility of CRC response to chemotherapy. The study showed that the knockdown of Smurf1 increases gemcitabine and cisplatin-induced HCT116 cells apoptosis in vitro. Furthermore, in vivo experiments showed that tumors that had low Smurf1 expression exhibited enhanced gemcitabine, cisplatin, and gemcitabine plus cisplatin anti-tumor effects in HCT116 cell-derived xenograft (CDX) models and patient-derived xenograft (PDX) models. In conclusion, the results indicated that Smurf1 inhibits the chemosensitivity of CRC to gemcitabine, cisplatin, and gemcitabine plus cisplatin. Therefore, downregulati1ng the Smurf1 expression is a potential strategy to increase the efficacy of gemcitabine and cisplatin in CRC patients.
Collapse
Affiliation(s)
- Jing Guo
- Beijing Municipal Key Laboratory of Advanced Energy Materials and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China; Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA
| | - Guiying Xu
- Beijing Municipal Key Laboratory of Advanced Energy Materials and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA.
| | - Rongfei Wei
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China; Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing 100021, China; Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing 100021, China.
| |
Collapse
|
20
|
Kulkarni S, Abdulla R, Jose M, Adyanthaya S, B Rex DA, Patil AH, Pinto SM, Subbannayya Y. Omics data-driven analysis identifies laminin-integrin-mediated signaling pathway as a determinant for cell differentiation in oral squamous cell carcinoma. INDIAN J PATHOL MICR 2020; 62:529-536. [PMID: 31611435 DOI: 10.4103/ijpm.ijpm_1_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background In recent years, high-throughput omics technologies have been widely used globally to identify potential biomarkers and therapeutic targets in various cancers. However, apart from large consortiums such as The Cancer Genome Atlas, limited attempts have been made to mine existing datasets pertaining to cancers. Methods and Results In the current study, we used an omics data analysis approach wherein publicly available protein expression data were integrated to identify functionally important proteins that revealed consistent dysregulated expression in head and neck squamous cell carcinomas. Our analysis revealed members of the integrin family of proteins to be consistently altered in expression across disparate datasets. Additionally, through association evidence and network analysis, we also identified members of the laminin family to be significantly altered in head and neck cancers. Members of both integrin and laminin families are known to be involved in cell-extracellular matrix adhesion and have been implicated in tumor metastatic processes in several cancers. To this end, we carried out immunohistochemical analyses to validate the findings in a cohort (n = 50) of oral cancer cases. Laminin-111 expression (composed of LAMA1, LAMB1, and LAMC1) was found to correlate with cell differentiation in oral cancer, showing a gradual decrease from well differentiated to poorly differentiated cases. Conclusion This study serves as a proof-of-principle for the mining of multiple omics datasets coupled with selection of functionally important group of molecules to provide novel insights into tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Spoorti Kulkarni
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Riaz Abdulla
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, India
| | - Maji Jose
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, India
| | - Soniya Adyanthaya
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, India
| | - D A B Rex
- Center for Systems Biology and Molecular Medicine Yenepoya (Deemed to be University), Mangalore, India
| | - Arun H Patil
- Center for Systems Biology and Molecular Medicine Yenepoya (Deemed to be University), Mangalore, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
21
|
Oral Cavity Squamous Cell Carcinoma Xenografts Retain Complex Genotypes and Intertumor Molecular Heterogeneity. Cell Rep 2020; 24:2167-2178. [PMID: 30134176 PMCID: PMC6417872 DOI: 10.1016/j.celrep.2018.07.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022] Open
Abstract
Herein, we report an oral cavity squamous cell carcinoma (OCSCC) patient-derived xenograft (PDX) platform, with genomic annotation useful for co-clinical trial and mechanistic studies. Genomic analysis included whole-exome sequencing (WES) and transcriptome sequencing (RNA-seq) on 16 tumors and matched PDXs and additional whole-genome sequencing (WGS) on 9 of these pairs as a representative subset of a larger OCSCC PDX repository (n = 63). In 12 models with high purity, more than 90% of variants detected in the tumor were retained in the matched PDX. The genomic landscape across these PDXs reflected OCSCC molecular heterogeneity, including previously described basal, mesenchymal, and classical molecular subtypes. To demonstrate the integration of PDXs into a clinical trial framework, we show that pharmacological intervention in PDXs parallels clinical response and extends patient data. Together, these data describe a repository of OCSCC-specific PDXs and illustrate conservation of primary tumor genotypes, intratumoral heterogeneity, and co-clinical trial application. Campbell et al. report the genomic fidelity of patient-derived xenograft models from oral cavity squamous cell carcinomas. These models conserve the mutation and expression profile of their matched tumors, validating their use for co-clinical trial and mechanistic studies.
Collapse
|
22
|
Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:212. [PMID: 32158692 PMCID: PMC7052016 DOI: 10.3389/fonc.2020.00212] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Preclinical animal models of oral squamous cell carcinoma (OSCC) have been extensively studied in recent years. Investigating the pathogenesis and potential therapeutic strategies of OSCC is required to further progress in this field, and a suitable research animal model that reflects the intricacies of cancer biology is crucial. Of the animal models established for the study of cancers, mouse tumor-bearing models are among the most popular and widely deployed for their high fertility, low cost, and molecular and physiological similarity to humans, as well as the ease of rearing experimental mice. Currently, the different methods of establishing OSCC mouse models can be divided into three categories: chemical carcinogen-induced, transplanted and genetically engineered mouse models. Each of these methods has unique advantages and limitations, and the appropriate application of these techniques in OSCC research deserves our attention. Therefore, this review comprehensively investigates and summarizes the tumorigenesis mechanisms, characteristics, establishment methods, and current applications of OSCC mouse models in published papers. The objective of this review is to provide foundations and considerations for choosing suitable model establishment methods to study the relevant pathogenesis, early diagnosis, and clinical treatment of OSCC.
Collapse
Affiliation(s)
- Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yongbin Mou
| | - Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Yanhong Ni
| |
Collapse
|
23
|
Karamboulas C, Bruce JP, Hope AJ, Meens J, Huang SH, Erdmann N, Hyatt E, Pereira K, Goldstein DP, Weinreb I, Su J, O'Sullivan B, Tiedemann R, Liu FF, Pugh TJ, Bratman SV, Xu W, Ailles L. Patient-Derived Xenografts for Prognostication and Personalized Treatment for Head and Neck Squamous Cell Carcinoma. Cell Rep 2019; 25:1318-1331.e4. [PMID: 30380421 DOI: 10.1016/j.celrep.2018.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/02/2018] [Accepted: 09/28/2018] [Indexed: 12/23/2022] Open
Abstract
Overall survival remains very poor for patients diagnosed as having head and neck squamous cell carcinoma (HNSCC). Identification of additional biomarkers and novel therapeutic strategies are important for improving patient outcomes. Patient-derived xenografts (PDXs), generated by implanting fresh tumor tissue directly from patients into immunodeficient mice, recapitulate many of the features of their corresponding clinical cancers, including histopathological and molecular profiles. Using a large collection of PDX models of HNSCC, we demonstrate that rapid engraftment into immunocompromised mice is highly prognostic and show that genomic deregulation of the G1/S checkpoint pathway correlates with engraftment. Furthermore, CCND1 and CDKN2A genomic alterations are predictive of response to the CDK4and CDK6 inhibitor abemaciclib. Overall, our study supports the pursuit of CDK4 and CDK6 inhibitors as a therapeutic strategy for a substantial proportion of HNSCC patients and demonstrates the potential of using PDX models to identify targeted therapies that will benefit patients who have the poorest outcomes.
Collapse
Affiliation(s)
- Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrew J Hope
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Shao Hui Huang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Natalie Erdmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Elzbieta Hyatt
- Hospital for Sick Children, Program in Genetics and Genome Biology, Toronto, ON M5G 0A4, Canada
| | - Keira Pereira
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - David P Goldstein
- Department of Otolaryngology-Head and Neck Surgery, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Ilan Weinreb
- Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Jie Su
- Division of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Brian O'Sullivan
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Rodger Tiedemann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Fei-Fei Liu
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott V Bratman
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
24
|
Meister KS, Godse NR, Khan NI, Hedberg ML, Kemp C, Kulkarni S, Alvarado D, LaVallee T, Kim S, Grandis JR, Duvvuri U. HER3 targeting potentiates growth suppressive effects of the PI3K inhibitor BYL719 in pre-clinical models of head and neck squamous cell carcinoma. Sci Rep 2019; 9:9130. [PMID: 31235758 PMCID: PMC6591241 DOI: 10.1038/s41598-019-45589-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
BYL719 is a PI3K inhibitor that has demonstrated efficacy in the treatment of head and neck squamous cell carcinoma. BYL719 exerts its therapeutic effect by suppressing AKT and other proliferative signaling mechanisms. Despite PI3K inhibition and AKT suppression, residual activity of protein S6, a core marker of proliferative activation, has been observed. HER3, either via dimerization or activation by its ligand neurgeulin (NRG), is known to activate PI3K. Thus, we hypothesized that co-targeting HER3 and PI3K would lead to greater suppression of the PI3K-AKT signaling pathway and greater tumor suppression than with BYL719 alone. We investigated biochemical expression and activation of the HER3-PI3K-AKT-S6 pathway in HNSCC cell lines and patient-derived xenografts (PDXs). Antitumor effects of HER3 and PI3K inhibitors alone and in combination were evaluated in cell culture and murine models. Treatment of HNSCC cell lines with BYL719 significantly reduced AKT activation and suppressed tumor growth. However, S6 was persistently activated despite suppression of AKT. Combination treatment with KTN3379, a monoclonal antibody targeted against HER3, and BYL719 led to enhanced suppression of in vitro and in vivo cancer growth and durable suppression of AKT and S6. Therefore, inhibition of HER3 with KTN3379 enhanced the effects of PI3K inhibition in pre-clinical HNSCC models. These data support co-targeting HER3 and PI3K for the treatment of HSNCC.
Collapse
Affiliation(s)
- Kara S Meister
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Neal R Godse
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Nayel I Khan
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Matthew L Hedberg
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Carolyn Kemp
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Sucheta Kulkarni
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | | | | | - Seungwon Kim
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head & Neck Surgery, University of California-San Francisco, San Francisco, CA, USA
| | - Umamaheswar Duvvuri
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
| |
Collapse
|
25
|
Patient-Derived Xenograft Models of Breast Cancer and Their Application. Cells 2019; 8:cells8060621. [PMID: 31226846 PMCID: PMC6628218 DOI: 10.3390/cells8060621] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, patient-derived xenograft (PDX) models of many types of tumors including breast cancer have emerged as a powerful tool for predicting drug efficacy and for understanding tumor characteristics. PDXs are established by the direct transfer of human tumors into highly immunodeficient mice and then maintained by passaging from mouse to mouse. The ability of PDX models to maintain the original features of patient tumors and to reflect drug sensitivity has greatly improved both basic and clinical study outcomes. However, current PDX models cannot completely predict drug efficacy because they do not recapitulate the tumor microenvironment of origin, a failure which puts emphasis on the necessity for the development of the next generation PDX models. In this article, we summarize the advantages and limitations of current PDX models and discuss the future directions of this field.
Collapse
|
26
|
Leonard BC, Lee ED, Bhola NE, Li H, Sogaard KK, Bakkenist CJ, Grandis JR, Johnson DE. ATR inhibition sensitizes HPV - and HPV + head and neck squamous cell carcinoma to cisplatin. Oral Oncol 2019; 95:35-42. [PMID: 31345392 DOI: 10.1016/j.oraloncology.2019.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Cisplatin is commonly used in the treatment of head and neck squamous cell carcinoma (HNSCC), and the repair of cisplatin-induced DNA damage involves activation of the DNA damage response protein ataxia telangiectasia and Rad3-related (ATR). Resistance to cisplatin therapy exacerbates adverse toxicities and is associated with poor outcomes. Since repair of cisplatin-induced DNA damage contributes to resistance, we hypothesized that inhibition of ATR using AZD6738, a well-tolerated and orally-bioavailable inhibitor, would enhance the sensitivity of HNSCC cells and tumors to cisplatin. MATERIALS AND METHODS A panel of human papilloma virus-negative (HPV-) and HPV+ HNSCC cell lines were treated with cisplatin in the absence or presence of AZD6738, and effects on cell viability, colony formation, apoptosis signaling, and DNA damage were assessed. The impact of co-treatment with cisplatin plus AZD6738 on the growth of HPV- and HPV+ cell line- and patient-derived xenograft tumors was also examined. RESULTS Inhibition of ATR with AZD6738 enhanced cisplatin-induced growth inhibition of HNSCC cell lines and tumors, in association with increased apoptosis signaling and DNA damage. Both HPV- and HPV+ models were sensitized to cisplatin by ATR inhibition. CONCLUSION Inhibition of ATR promotes sensitization to cisplatin in preclinical in vitro and in vivo models of HPV- and HVP+ HNSCC, supporting clinical evaluation of this strategy in this disease.
Collapse
Affiliation(s)
- Brandon C Leonard
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - Eliot D Lee
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - Neil E Bhola
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - Hua Li
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - Kristian K Sogaard
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - Christopher J Bakkenist
- Departments of Radiation Oncology and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of California, San Francisco, CA, USA
| | - Daniel E Johnson
- Department of Otolaryngology, University of California, San Francisco, CA, USA.
| |
Collapse
|
27
|
Adeola HA, Papagerakis S, Papagerakis P. Systems Biology Approaches and Precision Oral Health: A Circadian Clock Perspective. Front Physiol 2019; 10:399. [PMID: 31040792 PMCID: PMC6476986 DOI: 10.3389/fphys.2019.00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the pathophysiological and metabolic processes in humans are temporally controlled by a master circadian clock located centrally in the hypothalamic suprachiasmatic nucleus of the brain, as well as by specialized peripheral oscillators located in other body tissues. This circadian clock system generates a rhythmical diurnal transcriptional-translational cycle in clock genes and protein expression and activities regulating numerous downstream target genes. Clock genes as key regulators of physiological function and dysfunction of the circadian clock have been linked to various diseases and multiple morbidities. Emerging omics technologies permits largescale multi-dimensional investigations of the molecular landscape of a given disease and the comprehensive characterization of its underlying cellular components (e.g., proteins, genes, lipids, metabolites), their mechanism of actions, functional networks and regulatory systems. Ultimately, they can be used to better understand disease and interpatient heterogeneity, individual profile, identify personalized targetable key molecules and pathways, discover novel biomarkers and genetic alterations, which collectively can allow for a better patient stratification into clinically relevant subgroups to improve disease prediction and prevention, early diagnostic, clinical outcomes, therapeutic benefits, patient's quality of life and survival. The use of “omics” technologies has allowed for recent breakthroughs in several scientific domains, including in the field of circadian clock biology. Although studies have explored the role of clock genes using circadiOmics (which integrates circadian omics, such as genomics, transcriptomics, proteomics and metabolomics) in human disease, no such studies have investigated the implications of circadian disruption in oral, head and neck pathologies using multi-omics approaches and linking the omics data to patient-specific circadian profiles. There is a burgeoning body of evidence that circadian clock controls the development and homeostasis of oral and maxillofacial structures, such as salivary glands, teeth and oral epithelium. Hence, in the current era of precision medicine and dentistry and patient-centered health care, it is becoming evident that a multi-omics approach is needed to improve our understanding of the role of circadian clock-controlled key players in the regulation of head and neck pathologies. This review discusses current knowledge on the role of the circadian clock and the contribution of omics-based approaches toward a novel precision health era for diagnosing and treating head and neck pathologies, with an emphasis on oral, head and neck cancer and Sjögren's syndrome.
Collapse
Affiliation(s)
- Henry A Adeola
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa
| | - Silvana Papagerakis
- Laboratory of Oral, Head & Neck Cancer-Personalized Diagnostics and Therapeutics, Division of Head and Neck Surgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
28
|
Tan X, Tong J, Wang YJ, Fletcher R, Schoen RE, Yu J, Shen L, Zhang L. BET Inhibitors Potentiate Chemotherapy and Killing of SPOP-Mutant Colon Cancer Cells via Induction of DR5. Cancer Res 2019; 79:1191-1203. [PMID: 30674532 DOI: 10.1158/0008-5472.can-18-3223] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Abstract
Bromodomain and extraterminal domain (BET) family proteins such as BRD4 are epigenetic readers that control expression of a number of oncogenic proteins. Targeting this family of proteins has recently emerged as a promising anticancer approach. BET inhibitors (BETi), either alone or in combination with other anticancer agents, have exhibited efficacy in a variety of tumors. However, the molecular mechanisms underlying differential response to BETi are not well understood. In this study, we report that death receptor 5 (DR5), a key component of the extrinsic apoptotic pathway, is markedly induced in response to BRD4 depletion and BETi treatment in colorectal cancer cells. Induction of DR5, following BET inhibition, was mediated by endoplasmic reticulum stress and CHOP-dependent transcriptional activation. Enhanced DR5 induction was necessary for the chemosensitization and apoptotic effects of BETi and was responsible for increased BETi sensitivity in colorectal cancer cells containing a mutation in speckle-type POZ protein (SPOP), a subunit of BRD4 E3 ubiquitin ligase. In a colorectal cancer xenograft model, BETi combined with chemotherapy suppressed the tumor growth in a DR5-dependent manner and potently inhibited patient-derived xenograft tumor growth with enhanced DR5 induction and apoptosis. These findings suggest that BETi alone or in combination with chemotherapy is effective against colorectal cancer due to enhanced DR5 induction and apoptosis. DR5 induction may also serve as a useful marker for designing personalized treatment and improved colorectal cancer combination therapies.Significance: These findings reveal how BET inhibition sensitizes chemotherapy and kills a subset of colon cancer cells with specific genetic alterations and may provide a new molecular marker for improving colon cancer therapies.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yi-Jun Wang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rochelle Fletcher
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert E Schoen
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China.
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Karamboulas C, Ailles L. Patient-derived xenografts: a promising resource for preclinical cancer research. Mol Cell Oncol 2019; 6:1558684. [PMID: 30788424 PMCID: PMC6370391 DOI: 10.1080/23723556.2018.1558684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 11/01/2022]
Abstract
Patient-derived xenograft tumors retain molecular and histopathological features of the originating tumor and are useful preclinical tools for drug discovery and assessment. We recently reported that 'rapid' engraftment of head and neck squamous cell carcinoma samples is highly prognostic and correlates with deregulation of the G1/S checkpoint. Tumors with genetic alterations in cyclinD1 (CCND1) and/or cyclin-dependent kinase inhibitor 2A (CDKN2A) are more likely to respond to abemaciclib.
Collapse
Affiliation(s)
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
DeBord LC, Pathak RR, Villaneuva M, Liu HC, Harrington DA, Yu W, Lewis MT, Sikora AG. The chick chorioallantoic membrane (CAM) as a versatile patient-derived xenograft (PDX) platform for precision medicine and preclinical research. Am J Cancer Res 2018; 8:1642-1660. [PMID: 30210932 PMCID: PMC6129484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023] Open
Abstract
Patient-derived xenografts (PDX) are an increasingly valuable tool in oncology, providing biologically faithful models of many different cancer types, and potential platforms for the development of precision oncology approaches. However, PDX have primarily been established in immunodeficient rodent models, with accompanying cost and efficiency constraints that pose barriers to more widespread adoption. The chicken egg chorioallantoic membrane (CAM) is an alternative in vivo PDX model. We provide here a comprehensive review of studies that grafted primary human tissue, as opposed to cell lines, onto the CAM. Twenty publications met our criteria of having inoculated patient-derived tumor tissue onto the CAM. Successful engraftment has been reported for over a dozen tumor subtypes, supporting the appropriateness of the CAM as a PDX platform. Resemblance of xenografts to the original patient tumor, increased vascularity of the CAM following engraftment, and micrometastasis into the chick mesenchyme were frequently reported. Application of standard or experimental cancer therapies to xenografts has also been undertaken, with the discovery of both synergistic drug effects and positive associations between the assay and clinical outcome. The CAM provides opportunities for RNA and DNA based sequencing of patient tumors, and the ability to efficiently (in 5-10 days) test multiple targeted therapies on fragments derived from the same tumor. While routine use of the CAM-based PDX model would benefit from a more-complete understanding of the stromal environment of CAM xenografts and interaction with the developing avian immune system, current literature supports the model's potential as an efficient, scalable precision medicine platform.
Collapse
Affiliation(s)
- Logan C DeBord
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of MedicineHouston, TX 77030, USA
| | - Ravi R Pathak
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of MedicineHouston, TX 77030, USA
| | - Mariana Villaneuva
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of MedicineHouston, TX 77030, USA
| | - Hsuan-Chen Liu
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of MedicineHouston, TX 77030, USA
| | - Daniel A Harrington
- The University of Texas Health Science Center at Houston, School of Dentistry, Department of Diagnostic and Biomedical SciencesHouston, TX 77054, USA
| | - Wendong Yu
- Department of Pathology, Baylor College of MedicineHouston, TX 77054, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77054, USA
| | - Andrew G Sikora
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of MedicineHouston, TX 77030, USA
| |
Collapse
|
31
|
Nitschinsk K, Idris A, McMillan N. Patient derived xenografts as models for head and neck cancer. Cancer Lett 2018; 434:114-119. [PMID: 30031118 DOI: 10.1016/j.canlet.2018.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Translational cancer research has benefitted significantly from the generation of preclinical models that recapitulate the native tumour environment. While conventional cell models have contributed substantially to the current understanding of cancer biology and therapeutic development, a missing link between cell culture and their clinical applications is evident. Patient derived xenograft (PDX) models represent this missing link as they enable the examination of patient tumour tissue in a native environment without significantly affecting the cellular complexity, genomics, and stromal architecture of the neoplasms. The use of PDXs to model head and neck cancer (HNC) begets the development of novel therapeutics, increased understanding of tumorigenesis and the advent of personalised treatments cancer patients. There has been an increase in attempts to generate viable PDXs for HNCs in recent years. This concise review summarizes the current developments in the field of PDXs for HNCs.
Collapse
Affiliation(s)
- Km Nitschinsk
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - A Idris
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Na McMillan
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
32
|
Leonard B, Brand TM, O'Keefe RA, Lee ED, Zeng Y, Kemmer JD, Li H, Grandis JR, Bhola NE. BET Inhibition Overcomes Receptor Tyrosine Kinase-Mediated Cetuximab Resistance in HNSCC. Cancer Res 2018; 78:4331-4343. [PMID: 29792310 DOI: 10.1158/0008-5472.can-18-0459] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 05/18/2018] [Indexed: 01/22/2023]
Abstract
Cetuximab, the FDA-approved anti-EGFR antibody for head and neck squamous cell carcinoma (HNSCC), has displayed limited efficacy due to the emergence of intrinsic and acquired resistance. We and others have demonstrated that cetuximab resistance in HNSCC is driven by alternative receptor tyrosine kinases (RTK), including HER3, MET, and AXL. In an effort to overcome cetuximab resistance and circumvent toxicities associated with the administration of multiple RTK inhibitors, we sought to identify a common molecular target that regulates expression of multiple RTK. Bromodomain-containing protein-4 (BRD4) has been shown to regulate the transcription of various RTK in the context of resistance to PI3K and HER2 inhibition in breast cancer models. We hypothesized that, in HNSCC, targeting BRD4 could overcome cetuximab resistance by depleting alternative RTK expression. We generated independent models of cetuximab resistance in HNSCC cell lines and interrogated their RTK and BRD4 expression profiles. Cetuximab-resistant clones displayed increased expression and activation of several RTK, such as MET and AXL, as well as an increased percentage of BRD4-expressing cells. Both genetic and pharmacologic inhibition of BRD4 abrogated cell viability in models of acquired and intrinsic cetuximab resistance and was associated with a robust decrease in alternative RTK expression by cetuximab. Combined treatment with cetuximab and bromodomain inhibitor JQ1 significantly delayed acquired resistance and RTK upregulation in patient-derived xenograft models of HNSCC. These findings indicate that the combination of cetuximab and bromodomain inhibition may be a promising therapeutic strategy for patients with HNSCC.Significance: Inhibition of bromodomain protein BRD4 represents a potential therapeutic strategy to circumvent the toxicities and financial burden of targeting the multiple receptor tyrosine kinases that drive cetuximab resistance in HNSCC and NSCLC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/15/4331/F1.large.jpg Cancer Res; 78(15); 4331-43. ©2018 AACR.
Collapse
Affiliation(s)
- Brandon Leonard
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Toni M Brand
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Rachel A O'Keefe
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Eliot D Lee
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Yan Zeng
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jacquelyn D Kemmer
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hua Li
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Neil E Bhola
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
33
|
Brand TM, Hartmann S, Bhola NE, Li H, Zeng Y, O'Keefe RA, Ranall MV, Bandyopadhyay S, Soucheray M, Krogan NJ, Kemp C, Duvvuri U, LaVallee T, Johnson DE, Ozbun MA, Bauman JE, Grandis JR. Cross-talk Signaling between HER3 and HPV16 E6 and E7 Mediates Resistance to PI3K Inhibitors in Head and Neck Cancer. Cancer Res 2018; 78:2383-2395. [PMID: 29440171 PMCID: PMC6537867 DOI: 10.1158/0008-5472.can-17-1672] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/01/2017] [Accepted: 02/06/2018] [Indexed: 11/16/2022]
Abstract
Human papillomavirus (HPV) type 16 is implicated in approximately 75% of head and neck squamous cell carcinomas (HNSCC) that arise in the oropharynx, where viral expression of the E6 and E7 oncoproteins promote cellular transformation, tumor growth, and maintenance. An important oncogenic signaling pathway activated by E6 and E7 is the PI3K pathway, a key driver of carcinogenesis. The PI3K pathway is also activated by mutation or amplification of PIK3CA in over half of HPV(+) HNSCC. In this study, we investigated the efficacy of PI3K-targeted therapies in HPV(+) HNSCC preclinical models and report that HPV(+) cell line- and patient-derived xenografts are resistant to PI3K inhibitors due to feedback signaling emanating from E6 and E7. Receptor tyrosine kinase profiling indicated that PI3K inhibition led to elevated expression of the HER3 receptor, which in turn increased the abundance of E6 and E7 to promote PI3K inhibitor resistance. Targeting HER3 with siRNA or the mAb CDX-3379 reduced E6 and E7 abundance and enhanced the efficacy of PI3K-targeted therapies. Together, these findings suggest that cross-talk between HER3 and HPV oncoproteins promotes resistance to PI3K inhibitors and that cotargeting HER3 and PI3K may be an effective therapeutic strategy in HPV(+) tumors.Significance: These findings suggest a new therapeutic combination that may improve outcomes in HPV(+) head and neck cancer patients. Cancer Res; 78(9); 2383-95. ©2018 AACR.
Collapse
Affiliation(s)
- Toni M Brand
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Stefan Hartmann
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Neil E Bhola
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hua Li
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Yan Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Rachel A O'Keefe
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Max V Ranall
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Carolyn Kemp
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Michelle A Ozbun
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Julie E Bauman
- Division of Hematology/Oncology, University of Arizona Cancer Center, Tucson, Arizona
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
34
|
Barbhuiya MA, Kashyap MK, Puttamallesh VN, Kumar RV, Wu X, Pandey A, Gowda H. Identification of spleen tyrosine kinase as a potential therapeutic target for esophageal squamous cell carcinoma using reverse phase protein arrays. Oncotarget 2018; 9:18422-18434. [PMID: 29719615 PMCID: PMC5915082 DOI: 10.18632/oncotarget.24853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/06/2018] [Indexed: 02/07/2023] Open
Abstract
The vast majority of esophageal cancers in China, India and Iran are esophageal squamous cell carcinomas (ESCC). A timely diagnosis provides surgical removal as the main therapeutic option for patients with ESCC. Currently, there are no targeted therapies available for ESCC. We carried out reverse phase protein array-based protein expression profiling of seven ESCC-derivedcell lines and a non-neoplastic esophageal epithelial cell line (Het-1A) to identify differentially expressed proteins in ESCC. SYK non-receptortyrosine kinase was overexpressed in six out of seven ESCC cell lines that were used in the study. We evaluated the role of SYK in ESCC using the pharmacological inhibitor entospletinib (GS-9973) and siRNA-based knock down studies. Entospletinib is a selective inhibitor of SYK, which is currently being evaluated in phase II clinical trials for hematological malignancies. Using in vivo subcutaneous tumor xenografts in mice, we demonstrate that treatment with entospletinib significantly inhibits tumor growth. Further clinical studies are needed to prove the efficacy of entospletinib as a targeted therapeutic agent for treating ESCC.
Collapse
Affiliation(s)
- Mustafa A. Barbhuiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manoj K. Kashyap
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, India
| | - Vinuth N. Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Rekha Vijay Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
35
|
Barbhuiya MA, Kashyap MK, Puttamallesh VN, Kumar RV, Wu X, Pandey A, Gowda H. Identification of spleen tyrosine kinase as a potential therapeutic target for esophageal squamous cell carcinoma using reverse phase protein arrays. Oncotarget 2018. [PMID: 29719615 DOI: 10.18632/oncotarget.24853,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The vast majority of esophageal cancers in China, India and Iran are esophageal squamous cell carcinomas (ESCC). A timely diagnosis provides surgical removal as the main therapeutic option for patients with ESCC. Currently, there are no targeted therapies available for ESCC. We carried out reverse phase protein array-based protein expression profiling of seven ESCC-derivedcell lines and a non-neoplastic esophageal epithelial cell line (Het-1A) to identify differentially expressed proteins in ESCC. SYK non-receptortyrosine kinase was overexpressed in six out of seven ESCC cell lines that were used in the study. We evaluated the role of SYK in ESCC using the pharmacological inhibitor entospletinib (GS-9973) and siRNA-based knock down studies. Entospletinib is a selective inhibitor of SYK, which is currently being evaluated in phase II clinical trials for hematological malignancies. Using in vivo subcutaneous tumor xenografts in mice, we demonstrate that treatment with entospletinib significantly inhibits tumor growth. Further clinical studies are needed to prove the efficacy of entospletinib as a targeted therapeutic agent for treating ESCC.
Collapse
Affiliation(s)
- Mustafa A Barbhuiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manoj K Kashyap
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, India
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Rekha Vijay Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute of Bioinformatics, International Technology Park, Bangalore, India.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
36
|
Lu D, Luo P, Zhang J, Ye Y, Wang Q, Li M, Zhou H, Xie M, Wang B. Patient-derived tumor xenografts of lung squamous cell carcinoma alter long non-coding RNA profile but not responsiveness to cisplatin. Oncol Lett 2018; 15:8589-8603. [PMID: 29805594 PMCID: PMC5950531 DOI: 10.3892/ol.2018.8401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/20/2018] [Indexed: 12/24/2022] Open
Abstract
Lung squamous cell carcinoma (LSCC), the second most common type of lung cancer, has received limited attention. Patient-derived tumor xenografts (PDTXs) are useful preclinical models to reproduce the diverse heterogeneity of cancer, but it is important to identify potential variations during their establishment. A total of 18 PDTXs were established from 37 the surgical specimens and 16 were serially passaged to third generation. Second- and third-generation xenografts had a faster growth rate in mice. The tumor implantation success rate was associated with poorer differentiation, larger tumor volume and higher expression of Ki-67. The xenografts largely retained histological and key immunophenotypic features (including p53, p63, cytokeratin5/6, and E-cadherin). However, increased Ki-67 expression was identified in partial xenografts. Long non-coding RNA (lncRNA) and mRNA expression in third-generation xenografts differed from that of matched primary tumors. Gene Ontology and pathway analysis showed that mRNAs involved in cell cycle, and metabolism regulation were generally upregulated in xenografts, while those associated with immune responses were typically downregulated. Furthermore, the responses of xenografts to cisplatin were consistent with clinical outcome. In the present study, PDTXs of SCC were successfully established, and closely resembled their original tumor regarding their immunophenotype and response to cisplatin. Overall, PDTXS of LSCC altered the lncRNA profile and increased the proliferative activity of cancer cells, whilst retaining responsiveness to cisplatin.
Collapse
Affiliation(s)
- Dapeng Lu
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Peng Luo
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Ju Zhang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yuanyuan Ye
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Qi Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Ming Li
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Hangcheng Zhou
- Department of Pathology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Mingran Xie
- Department of Thoracic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Baolong Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
37
|
Braekeveldt N, Bexell D. Patient-derived xenografts as preclinical neuroblastoma models. Cell Tissue Res 2017; 372:233-243. [PMID: 28924803 PMCID: PMC5915499 DOI: 10.1007/s00441-017-2687-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/27/2017] [Indexed: 11/26/2022]
Abstract
The prognosis for children with high-risk neuroblastoma is often poor and survivors can suffer from severe side effects. Predictive preclinical models and novel therapeutic strategies for high-risk disease are therefore a clinical imperative. However, conventional cancer cell line-derived xenografts can deviate substantially from patient tumors in terms of their molecular and phenotypic features. Patient-derived xenografts (PDXs) recapitulate many biologically and clinically relevant features of human cancers. Importantly, PDXs can closely parallel clinical features and outcome and serve as excellent models for biomarker and preclinical drug development. Here, we review progress in and applications of neuroblastoma PDX models. Neuroblastoma orthotopic PDXs share the molecular characteristics, neuroblastoma markers, invasive properties and tumor stroma of aggressive patient tumors and retain spontaneous metastatic capacity to distant organs including bone marrow. The recent identification of genomic changes in relapsed neuroblastomas opens up opportunities to target treatment-resistant tumors in well-characterized neuroblastoma PDXs. We highlight and discuss the features and various sources of neuroblastoma PDXs, methodological considerations when establishing neuroblastoma PDXs, in vitro 3D models, current limitations of PDX models and their application to preclinical drug testing.
Collapse
Affiliation(s)
- Noémie Braekeveldt
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404:C3, SE-223 81, Lund, Sweden
| | - Daniel Bexell
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404:C3, SE-223 81, Lund, Sweden.
| |
Collapse
|
38
|
Klinghammer K, Otto R, Raguse JD, Albers AE, Tinhofer I, Fichtner I, Leser U, Keilholz U, Hoffmann J. Basal subtype is predictive for response to cetuximab treatment in patient-derived xenografts of squamous cell head and neck cancer. Int J Cancer 2017; 141:1215-1221. [PMID: 28560858 DOI: 10.1002/ijc.30808] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 02/02/2023]
Abstract
Cetuximab is the single targeted therapy approved for the treatment of head and neck cancer (HNSCC). Predictive biomarkers have not been established and patient stratification based on molecular tumor profiles has not been possible. Since EGFR pathway activation is pronounced in basal subtype, we hypothesized this activation could be a predictive signature for an EGFR directed treatment. From our patient-derived xenograft platform of HNSCC, 28 models were subjected to Affymetrix gene expression studies on HG U133+ 2.0. Based on the expression of 821 genes, the subtype of each of the 28 models was determined by integrating gene expression profiles through centroid-clustering with previously published gene expression data by Keck et al. The models were treated in groups of 5-6 animals with docetaxel, cetuximab, everolimus, cis- or carboplatin and 5-fluorouracil. Response was evaluated by comparing tumor volume at treatment initiation and after 3 weeks of treatment (RTV). Tumors distributed over the 3 signature-defined subtypes: 5 mesenchymal/inflamed phenotype (MS), 15 basal type (BA), 8 classical type (CL). Cluster analysis revealed a strong correlation between response to cetuximab and the basal subtype. RTV MS 3.32 vs. BA 0.78 (MS vs. BA, unpaired t-test, p 0.0002). Cetuximab responders were distributed as following: 1/5 in MS, 5/8 in CL and 13/15 in the BA group. Activity of classical chemotherapies did not differ between the subtypes. In conclusion basal subtype was associated with response to EGFR directed therapy in head and neck squamous cell cancer patient-derived xenografts.
Collapse
Affiliation(s)
| | - Raik Otto
- WBI, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan-Dirk Raguse
- Department of Maxillio-Facial Surgery, Charité, Berlin, Germany
| | | | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité, Berlin, Germany
| | - Iduna Fichtner
- Experimental Pharmacology & Oncology GmbH, Berlin, Germany
| | - Ulf Leser
- WBI, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Jens Hoffmann
- Experimental Pharmacology & Oncology GmbH, Berlin, Germany
| |
Collapse
|
39
|
Affolter A, Hess J. [Preclinical models in head and neck tumors : Evaluation of cellular and molecular resistance mechanisms in the tumor microenvironment]. HNO 2017; 64:860-869. [PMID: 27837212 DOI: 10.1007/s00106-016-0276-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because head and neck squamous cell carcinomas (HNSCC) are characterized by a distinct intertumorigenic and intratumorigenic heterogeneity, they often show substantial differences in the response to established therapy strategies. At present, a multitude of biologics and new pharmacological compounds for targeted therapies are available that allow more efficient and less toxic treatment. There is increasing pressure to establish predictive assays not only for ex ante analysis of the individual patient response to combined chemoradiotherapy and targeted therapies but also for investigation of the efficacy of new drugs. In this respect it is essential to maintain the pathophysiological tissue composition as it is known that paracrine tumor-stroma cell interactions may influence tumor reactivity to treatment. More complex models for individualized sensitivity testing have recently been described and the results are promising to pave the way for personalized cancer therapy. This review article focuses on different systems for maintaining the tumor microenvironment and hence the individual cellular composition, such as 3D organotypic models, organotypic multicellular spheroids, patient-derived xenografts and ex vivo tissue cultures and discusses the advantages and disadvantages in terms of translation into clinical application.
Collapse
Affiliation(s)
- A Affolter
- Hals-Nasen-Ohren-Klinik des Universitätsklinikums Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.
| | - J Hess
- Hals-Nasen-Ohren-Klinik des Universitätsklinikums Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland
| |
Collapse
|
40
|
Facompre ND, Sahu V, Montone KT, Harmeyer KM, Nakagawa H, Rustgi AK, Weinstein GS, Gimotty PA, Basu D. Barriers to generating PDX models of HPV-related head and neck cancer. Laryngoscope 2017; 127:2777-2783. [PMID: 28561270 DOI: 10.1002/lary.26679] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES/HYPOTHESIS Delineate factors impacting the creation and use of patient-derived xenografts (PDXs) of human papilloma virus-related (HPV+) head and neck squamous cell carcinomas (HNSCCs). STUDY DESIGN Laboratory-based translational study. METHODS Fifty-one surgically resected HNSCCs, including 31 HPV + cancers, were implanted into NOD/SCID/IL-2Rγ-/- (NSG) mice using standardized methodology. Clinical and pathologic factors were tested for association with engraftment. The gross, histologic, and molecular features of established HPV + PDXs were analyzed in comparison to their tumors of origin. RESULTS Negative HPV status and perineural invasion (PNI) were independent, additive factors associated with increased PDX formation. Epstein-Barr virus-positive (EBV+) human large B-cell lymphomas grew from 32% of HPV + HNSCC cases that failed to engraft. Successfully established HPV + PDXs retained basaloid histology and often developed cystic growth patterns typical of HPV + nodal metastases. They also maintained elevated p16INK4A levels and expression of E6/E7 viral oncogene transcripts. CONCLUSION Reduced engraftment by HPV + tumors lacking PNI likely results in selection biases in HNSCC PDX models. Formation of EBV + lymphomas in NSG mice further reduces the generation of HPV + models and must be ruled out before long-term use of PDXs. Nevertheless, the retention of distinctive pathologic traits and viral oncogene expression by HPV + PDXs provides a viable in vivo platform for basic and translational studies as well as a resource for generating advanced in vitro models. LEVEL OF EVIDENCE NA. Laryngoscope, 127:2777-2783, 2017.
Collapse
Affiliation(s)
- Nicole D Facompre
- Department of Otorhinolaryngology-Head and Neck Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Varun Sahu
- Department of Otorhinolaryngology-Head and Neck Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Kathleen T Montone
- Department of Otorhinolaryngology-Head and Neck Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.,Department of Pathology, The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Kayla M Harmeyer
- Department of Otorhinolaryngology-Head and Neck Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Hiroshi Nakagawa
- Department of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Anil K Rustgi
- Department of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Gregory S Weinstein
- Department of Otorhinolaryngology-Head and Neck Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Phyllis A Gimotty
- Department of Biostatistics and Epidemiology , The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Devraj Basu
- Department of Otorhinolaryngology-Head and Neck Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.,Philadelphia VA Medical Center, Philadelphia, Pennsylvania, U.S.A.,Wistar Institute, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
41
|
Huang KL, Li S, Mertins P, Cao S, Gunawardena HP, Ruggles KV, Mani DR, Clauser KR, Tanioka M, Usary J, Kavuri SM, Xie L, Yoon C, Qiao JW, Wrobel J, Wyczalkowski MA, Erdmann-Gilmore P, Snider JE, Hoog J, Singh P, Niu B, Guo Z, Sun SQ, Sanati S, Kawaler E, Wang X, Scott A, Ye K, McLellan MD, Wendl MC, Malovannaya A, Held JM, Gillette MA, Fenyö D, Kinsinger CR, Mesri M, Rodriguez H, Davies SR, Perou CM, Ma C, Reid Townsend R, Chen X, Carr SA, Ellis MJ, Ding L. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun 2017; 8:14864. [PMID: 28348404 PMCID: PMC5379071 DOI: 10.1038/ncomms14864] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
Recent advances in mass spectrometry (MS) have enabled extensive analysis of cancer proteomes. Here, we employed quantitative proteomics to profile protein expression across 24 breast cancer patient-derived xenograft (PDX) models. Integrated proteogenomic analysis shows positive correlation between expression measurements from transcriptomic and proteomic analyses; further, gene expression-based intrinsic subtypes are largely re-capitulated using non-stromal protein markers. Proteogenomic analysis also validates a number of predicted genomic targets in multiple receptor tyrosine kinases. However, several protein/phosphoprotein events such as overexpression of AKT proteins and ARAF, BRAF, HSP90AB1 phosphosites are not readily explainable by genomic analysis, suggesting that druggable translational and/or post-translational regulatory events may be uniquely diagnosed by MS. Drug treatment experiments targeting HER2 and components of the PI3K pathway supported proteogenomic response predictions in seven xenograft models. Our study demonstrates that MS-based proteomics can identify therapeutic targets and highlights the potential of PDX drug response evaluation to annotate MS-based pathway activities. Patient-derived xenografts recapitulate major genomic signatures and transcriptome profiles of their original tumours. Here, the authors, performing proteomic and phosphoproteomic analyses of 24 breast cancer PDX models, demonstrate that druggable candidates can be identified based on a comprehensive proteogenomic profiling.
Collapse
Affiliation(s)
- Kuan-Lin Huang
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Shunqiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Philipp Mertins
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Song Cao
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Harsha P Gunawardena
- Department of Biochemistry &Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kelly V Ruggles
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Karl R Clauser
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Maki Tanioka
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jerry Usary
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Shyam M Kavuri
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ling Xie
- Department of Biochemistry &Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Christopher Yoon
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Jana W Qiao
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - John Wrobel
- Department of Biochemistry &Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Matthew A Wyczalkowski
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Petra Erdmann-Gilmore
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Jacqueline E Snider
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Jeremy Hoog
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Purba Singh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Beifung Niu
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Zhanfang Guo
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Sam Qiancheng Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Souzan Sanati
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Emily Kawaler
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016, USA
| | - Xuya Wang
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016, USA
| | - Adam Scott
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Kai Ye
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Department of Genetics, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Michael D McLellan
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Department of Genetics, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Anna Malovannaya
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jason M Held
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Michael A Gillette
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016, USA
| | | | - Mehdi Mesri
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Henry Rodriguez
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sherri R Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Cynthia Ma
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - R Reid Townsend
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Xian Chen
- Department of Biochemistry &Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Department of Genetics, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| |
Collapse
|
42
|
Klinghammer K, Walther W, Hoffmann J. Choosing wisely - Preclinical test models in the era of precision medicine. Cancer Treat Rev 2017; 55:36-45. [PMID: 28314175 DOI: 10.1016/j.ctrv.2017.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/03/2023]
Abstract
Through the introduction of a steadily growing variety of preclinical test models drug development and biomarker research has advanced. Next to classical used 2D cell line cultures, tissue-slice cultures, 3D organoid cell cultures, genetically engineered mouse models, cell line derived mouse models and patient derived xenografts may be selected for a specific question. All models harbor advantages and disadvantages. This review focuses on the available preclinical test models, novel developments such as humanized mice and discusses for which question a particular model should be employed.
Collapse
Affiliation(s)
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jens Hoffmann
- Experimental Pharmacology & Oncology GmbH, Berlin, Germany
| |
Collapse
|
43
|
Brand TM, Hartmann S, Bhola NE, Peyser ND, Li H, Zeng Y, Isaacson Wechsler E, Ranall MV, Bandyopadhyay S, Duvvuri U, LaVallee TM, Jordan RCK, Johnson DE, Grandis JR. Human Papillomavirus Regulates HER3 Expression in Head and Neck Cancer: Implications for Targeted HER3 Therapy in HPV + Patients. Clin Cancer Res 2016; 23:3072-3083. [PMID: 27986750 DOI: 10.1158/1078-0432.ccr-16-2203] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022]
Abstract
Purpose: Human papillomavirus (HPV) 16 plays an etiologic role in a growing subset of head and neck squamous cell carcinomas (HNSCC), where viral expression of the E6 and E7 oncoproteins is necessary for tumor growth and maintenance. Although patients with HPV+ tumors have a more favorable prognosis, there are currently no HPV-selective therapies. Recent studies identified differential receptor tyrosine kinase (RTK) profiles in HPV+ versus HPV- tumors. One such RTK, HER3, is overexpressed and interacts with phosphoinositide-3-kinase (PI3K) in HPV+ tumors. Therefore, we investigated the role of HPV oncoproteins in regulating HER3-mediated signaling and determined whether HER3 could be a molecular target in HPV+ HNSCC.Experimental Design: HER3 was investigated as a molecular target in HPV+ HNSCC using established cell lines, patient-derived xenografts (PDX), and human tumor specimens. A mechanistic link between HPV and HER3 was examined by augmenting E6 and E7 expression levels in HNSCC cell lines. The dependency of HPV+ and HPV- HNSCC models on HER3 was evaluated with anti-HER3 siRNAs and the clinical stage anti-HER3 monoclonal antibody KTN3379.Results: HER3 was overexpressed in HPV+ HNSCC, where it was associated with worse overall survival in patients with pharyngeal cancer. Further investigation indicated that E6 and E7 regulated HER3 protein expression and downstream PI3K pathway signaling. Targeting HER3 with siRNAs or KTN3379 significantly inhibited the growth of HPV+ cell lines and PDXs.Conclusions: This study uncovers a direct relationship between HPV infection and HER3 in HNSCC and provides a rationale for the clinical evaluation of targeted HER3 therapy for the treatment of HPV+ patients. Clin Cancer Res; 23(12); 3072-83. ©2016 AACR.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Cell Line, Tumor
- Elafin/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Viral/genetics
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/virology
- Human papillomavirus 16/pathogenicity
- Humans
- Mice
- Molecular Targeted Therapy
- Oncogene Proteins, Viral/genetics
- Papillomavirus E7 Proteins/genetics
- Papillomavirus Infections/genetics
- Papillomavirus Infections/virology
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/genetics
- Repressor Proteins/genetics
- Squamous Cell Carcinoma of Head and Neck
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Toni M Brand
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Stefan Hartmann
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Neil E Bhola
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Noah D Peyser
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hua Li
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Yan Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Erin Isaacson Wechsler
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Max V Ranall
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Sourav Bandyopadhyay
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Richard C K Jordan
- Departments of Orofacial Sciences and Pathology, University of California San Francisco, San Francisco, California
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
44
|
Swick AD, Stein AP, McCulloch TM, Hartig GK, Ong IM, Sampene E, Prabakaran PJ, Liu CZ, Kimple RJ. Defining the boundaries and expanding the utility of head and neck cancer patient derived xenografts. Oral Oncol 2016; 64:65-72. [PMID: 28024726 DOI: 10.1016/j.oraloncology.2016.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/11/2016] [Accepted: 11/27/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Patient derived xenografts (PDXs) represent an essential tool in oncologic research, and we sought to further expand our repertoire of head and neck squamous cell carcinoma (HNSCC) while determining potential boundaries for this system. METHODS We consented new patients for PDX development and determined if a 24-h time delay from tumor excision to xenograft implantation affected PDX establishment. We developed a tissue microarray (TMA) from formalin fixed, paraffin embedded PDXs and their subsequent passages and carried out quantitative immunohistochemistry for EGFR, pEGFR, pAkt, pERK and ERCC1. First and last passaged PDXs were compared via a paired t-test to examine for the stability of protein expression across passages. We performed a similar comparison of the mutational profile of the patient tumor and resulting xenografts using a targeted sequencing approach. RESULTS No patient/tumor characteristics influenced PDX take rate and the 24-h time delay from tumor excision to xenograft implantation did not affect PDX establishment, growth or histology. There was no significant difference in biomarker expression between the first and last passaged PDXs for EGFR, pEGFR, pAkt, and ERCC1. For pERK there was a significant difference (p=0.002), but further analysis demonstrated this only arose in three of 15 PDXs. Targeted sequencing revealed striking stability of passenger and likely driver mutations from patient to xenograft. CONCLUSIONS The stability of protein expression across PDX passages will hopefully allow greater investigation of predictive biomarkers in order to identify ones for further pre-clinical and clinical investigation.
Collapse
Affiliation(s)
- Adam D Swick
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Andrew P Stein
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Timothy M McCulloch
- Department of Otolaryngology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Gregory K Hartig
- Department of Otolaryngology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Emmanuel Sampene
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Prashanth J Prabakaran
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Cheng Z Liu
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
45
|
El-Bayoumy K, Chen KM, Zhang SM, Sun YW, Amin S, Stoner G, Guttenplan JB. Carcinogenesis of the Oral Cavity: Environmental Causes and Potential Prevention by Black Raspberry. Chem Res Toxicol 2016; 30:126-144. [DOI: 10.1021/acs.chemrestox.6b00306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Shang-Min Zhang
- Department
of Pathology, Yale University, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | | | | | - Gary Stoner
- Department
of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Joseph B. Guttenplan
- Department
of Basic Science, and Department of Environmental Medicine, New York University College of Dentistry and New York University School of Medicine, New York, New York 10010, United States
| |
Collapse
|
46
|
Ludwig ML, Birkeland AC, Hoesli R, Swiecicki P, Spector ME, Brenner JC. Changing the paradigm: the potential for targeted therapy in laryngeal squamous cell carcinoma. Cancer Biol Med 2016; 13:87-100. [PMID: 27144065 PMCID: PMC4850131 DOI: 10.28092/j.issn.2095-3941.2016.0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/17/2016] [Indexed: 01/05/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) remains a highly morbid and fatal disease. Historically, it has been a model example for organ preservation and treatment stratification paradigms. Unfortunately, survival for LSCC has stagnated over the past few decades. As the era of next-generation sequencing and personalized treatment for cancer approaches, LSCC may be an ideal disease for consideration of further treatment stratification and personalization. Here, we will discuss the important history of LSCC as a model system for organ preservation, unique and potentially targetable genetic signatures of LSCC, and methods for bringing stratified, personalized treatment strategies to the 21(st) century.
Collapse
Affiliation(s)
- Megan L. Ludwig
- Department of Otolaryngology, Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew C. Birkeland
- Department of Otolaryngology, Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rebecca Hoesli
- Department of Otolaryngology, Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul Swiecicki
- Department of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew E. Spector
- Department of Otolaryngology, Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - J. Chad Brenner
- Department of Otolaryngology, Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|