1
|
Luo D, Kumfu S, Chattipakorn N, Chattipakorn SC. Targeting fibroblast growth factor receptor (FGFR) with inhibitors in head and neck cancers: Their roles, mechanisms and challenges. Biochem Pharmacol 2025; 235:116845. [PMID: 40044050 DOI: 10.1016/j.bcp.2025.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and aggressive type of cancer with significant rates of morbidity and mortality. Traditional treatment options, including radiotherapy, chemotherapy, and surgery, are widely used, but their effectiveness can be uncertain. As research in cancer therapies evolves, molecular-targeted therapies are increasingly recognized as promising alternatives for managing malignant tumors. Fibroblast growth factor receptors (FGFRs) have been shown to be one of the essential components in the pathways in the progression of HNSCC. This review aims to summarize and discuss the structure, functions, signaling pathways, abnormal alterations of FGFRs, and their roles in tumorigenesis and development. We have accumulated information from in vitro, in vivo, and clinical studies regarding FGFR inhibitors in HNSCC. However, the efficacy of FGFR inhibitors as a cancer therapy is limited, which may be due to the resistance to FGFR inhibitors. In this review we also discuss the potential mechanisms of FGFR inhibitor resistance in HNSCC. By enriching our understanding of the treatment with and resistance of FGFR inhibitors in HNSCC, researchers may unveil new therapeutic targets or strategies to enhance the efficacy of FGFR inhibitors in this context.
Collapse
Affiliation(s)
- Daowen Luo
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac, Electrophysiology Research Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Center of Excellence in Cardiac, Electrophysiology Research Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac, Electrophysiology Research Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac, Electrophysiology Research Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Liu J, Wang Z. The landscape of FGFR-TACC fusion in adult glioblastoma: From bench to bedside. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108536. [PMID: 40246063 DOI: 10.1016/j.mrrev.2025.108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Glioblastoma (GBM) is a lethal central nervous system tumor, characterized by extensive genomic alterations and high intra-tumoral heterogeneity. Gene fusions, derived from chromosomal translocations, deletions, and inversions, were increasingly recognized as key carcinogenic events, with the highest frequency of FGFR-TACC fusion in glioblastoma. As reported, FGFR3-TACC3 fusion mostly coexists with wild-type IDH status, and associates with better prognosis. Mechanistically, FGFR3-TACC3 fusions can constitutively activate non-canonical FGFR downstream pathways, induce aneuploidy, and participate in mitochondrial metabolism, thereby promoting cell proliferation and tumorigenesis. These functions, whether based on FGFR3 phosphorylation or not, are predominantly attributed to the specific domain of TACC3 that involved in regulating the localization and activation of fusion products. Several preclinical studies and clinical trials are being performed to evaluate the efficacy and safety of the FGFR-TACC fusion as a personalised therapeutic target, including the treatments with tyrosine kinase inhibitors, metabolic inhibitors, HSP90 inhibitors, coiled-coil peptide-mimetics, and targeted protein degraders. A subset of populations with FGFR-TACC-positive glioblastoma, after refined molecular screening strategies, may benefit from targeted therapies. Despite major progress in biotechnology, our understanding on the role of fusion events in glioblastoma represented by the FGFR-TACC is still in its infancy. Here, we highlight recent progress on FGFR-TACC fusion in human glioblastoma, emphasizing their molecular mechanisms and potential clinical value.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiotherapy, Tianjin First Central Hospital, Nankai University, Tianjin 300384, China
| | - Zheng Wang
- Department of Radiotherapy, Tianjin First Central Hospital, Nankai University, Tianjin 300384, China.
| |
Collapse
|
3
|
Al-Obaidy KI, Cheng L. Application of RNA sequencing in urologic malignancies: Advances and challenges. Urol Oncol 2025:S1078-1439(25)00092-4. [PMID: 40121105 DOI: 10.1016/j.urolonc.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025]
Abstract
RNA sequencing became a key tool in identifying the differences between cells and their functions, aiding in the recognition of the functional elements disrupted during the disease process. In urologic malignancies, many studies aiming to provide comprehensive molecular classifications through the assessment of RNA expression or fusion analysis have been published. The distinctive presence of these molecular alterations related to cancer development, growth, and survival and the discoveries of these breakthrough studies provide insight into the development of personalized management and aid in the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Khaleel I Al-Obaidy
- McLaren Pathology Group, McLaren Health Care, Flint, MI; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI.
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, The Legorreta Cancer Center at Brown University, and Brown University Health, Providence, RI.
| |
Collapse
|
4
|
Snow AJD, Wijesiriwardena T, Lane BJ, Farrell B, Dowdle PC, Katan M, Muench SP, Breeze AL. Cell-free expression and SMA copolymer encapsulation of a functional receptor tyrosine kinase disease variant, FGFR3-TACC3. Sci Rep 2025; 15:2958. [PMID: 39848978 PMCID: PMC11758000 DOI: 10.1038/s41598-025-86194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Despite their high clinical relevance, obtaining structural and biophysical data on transmembrane proteins has been hindered by challenges involved in their expression and extraction in a homogeneous, functionally-active form. The inherent enzymatic activity of receptor tyrosine kinases (RTKs) presents additional challenges. Oncogenic fusions of RTKs with heterologous partners represent a particularly difficult-to-express protein subtype due to their high flexibility, aggregation propensity and the lack of a known method for extraction within the native lipid environment. One such protein is the fibroblast growth factor receptor 3 fused with transforming acidic coiled-coil-containing protein 3 (FGFR3-TACC3), which has failed to express to sufficient quality or functionality in traditional expression systems. Cell-free protein expression (CFPE) is a burgeoning arm of synthetic biology, enabling the rapid and efficient generation of recombinant proteins. This platform is characterised by utilising an optimised solution of cellular machinery to facilitate protein synthesis in vitro. In doing so, CFPE can act as a surrogate system for a range of proteins that are otherwise difficult to express through traditional host cell-based approaches. Here, functional FGFR3-TACC3 was expressed through a novel cell-free expression system in under 48 h. The resultant protein was reconstituted using SMA copolymers with a specific yield of 300 µg/mL of lysate. Functionally, the protein demonstrated significant kinase domain phosphorylation (t < 0.0001). Currently, there is no published, high-resolution structure of any full-length RTK. These findings form a promising foundation for future research on oncogenic RTKs and the application of cell-free systems for synthesising functional membrane proteins.
Collapse
Affiliation(s)
- Alexander J D Snow
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tharushi Wijesiriwardena
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Brendan Farrell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Polly C Dowdle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
5
|
Jiang Z, Meyer AN, Yang W, Donoghue DJ. The oncogenic fusion protein EML4-NTRK3 requires three salt bridges for stability and biological activity. Heliyon 2024; 10:e36278. [PMID: 39253179 PMCID: PMC11381775 DOI: 10.1016/j.heliyon.2024.e36278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Aim of study Chromosomal translocations involving neurotrophic receptor tyrosine kinases (NTRKs) have been identified in 20 % of soft tissue sarcomas. This work focuses on the EML4-NTRK3 translocation identified in cases of Infantile Fibrosarcoma, which contains the coiled-coil multimerization domain of Echinoderm Microtubule-like protein 4 (EML4) fused with the tyrosine kinase domain of Neurotrophic Receptor Tyrosine Kinase 3 (NTRK3). The aim of the study was to test the importance of tyrosine kinase activity and multimerization for the oncogenic activity of EML4-NTRK3. Methods These studies examined EML4-NTRK3 proteins containing a kinase-dead or WT kinase domain, together with mutations in specific salt bridge residues within the coiled-coil domain. Biological activity was assayed using focus assays in NIH3T3 cells. The MAPK/ERK, JAK/STAT3 and PI3K/AKT pathways were analyzed for downstream activation of signaling pathways. Localization of EML4-NTRK3 proteins was examined by immunofluorescence microscopy, and the ability of the EML4 coiled-coil domain to drive protein multimerization was examined by biochemical assays. Results Activation of EML4-NTRK3 relies on both the tyrosine kinase activity of NTRK3 and salt-bridge stabilization within the coiled-coil domain of EML4. The tyrosine kinase activity of NTRK3 is essential for the biological activation of EML4-NTRK3. Furthermore, EML4-NTRK3 activates downstream signaling pathways MAPK/ERK, JAK/STAT3 and PKC/PLCγ. The disruption of three specific salt bridge interactions within the EML4 coiled-coil domain of EML4-NTRK3 blocks downstream activation, biological activity, and the ability to hetero-multimerize with EML4. We also demonstrate that EML4-NTRK3 is localized in the cytoplasm and fails to associate with microtubules. Concluding statement These data suggest potential therapeutic strategies for Infantile Fibrosarcoma cases bearing EML4-NTRK3 fusion through inhibition of salt bridge interactions and disruption of multimerization.
Collapse
Affiliation(s)
- Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
- UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093-0367, USA
| |
Collapse
|
6
|
Wang B, Bao EH, Jiang BL, Yang L, Liu Y, Xia L, Wang JH, Wang L, Zhu PY. Signal mining and gender differences analysis of adverse events in NMIBC treatment with gemcitabine and BCG bladder instillation based on the FAERS database. Expert Opin Drug Saf 2024. [PMID: 39096111 DOI: 10.1080/14740338.2024.2388212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To explore safety differences and perform a gender-based analysis of adverse events related to gemcitabine and Bacillus Calmette-Guérin (BCG) vaccine using the U.S. FDA Adverse Event Reporting System (FAERS) database. METHODS Using the Reporting Odds Ratio (ROR) and Proportional Reporting Ratio (PRR) methods, adverse events associated with gemcitabine and BCG were mined from FAERS database reports spanning from Q1 2004 to Q3 2023. RESULTS The study extracted 37,855 reports with gemcitabine and 5,455 reports with BCG as the primary suspected drugs. Adverse events were more prevalent in males (male-to-female ratio: gemcitabine 1.10, BCG 4.25). Differences in high-frequency adverse events among the top 20 signals were detected for both drugs. Both drugs affected similar organ systems, including potential pulmonary, ocular, and renal toxicity, with gemcitabine showing a broader range of adverse events. Gender analysis revealed fewer adverse reactions to gemcitabine in females, while males had fewer adverse reactions to BCG. CONCLUSION Differences in high-frequency adverse events between gemcitabine and BCG, including some not listed on drug labels, were observed. Both drugs affect similar organ systems, with gemcitabine showing a broader range of adverse events. Gender differences in adverse events were notable.
Collapse
Affiliation(s)
- Ben Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, China
| | - Er-Hao Bao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, China
| | - Bing-Lei Jiang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, China
| | - Lin Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, China
| | - Ying Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, China
| | - Long Xia
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, China
| | - Jia-Hao Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, China
| | - Li Wang
- Department of Urology, Lanzhou University Second Hospital, China
| | - Ping-Yu Zhu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, China
| |
Collapse
|
7
|
Bogale DE. The roles of FGFR3 and c-MYC in urothelial bladder cancer. Discov Oncol 2024; 15:295. [PMID: 39031286 PMCID: PMC11264706 DOI: 10.1007/s12672-024-01173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024] Open
Abstract
Bladder cancer is one of the most frequently occurring cancers worldwide. At diagnosis, 75% of urothelial bladder cancer cases have non-muscle invasive bladder cancer while 25% have muscle invasive or metastatic disease. Aberrantly activated fibroblast growth factor receptor (FGFR)-3 has been implicated in the pathogenesis of bladder cancer. Activating mutations of FGFR3 are observed in around 70% of NMIBC cases and ~ 15% of MIBCs. Activated FGFR3 leads to ligand-independent receptor dimerization and activation of downstream signaling pathways that promote cell proliferation and survival. FGFR3 is an important therapeutic target in bladder cancer, and clinical studies have shown the benefit of FGFR inhibitors in a subset of bladder cancer patients. c-MYC is a well-known major driver of carcinogenesis and is one of the most commonly deregulated oncogenes identified in human cancers. Studies have shown that the antitumor effects of FGFR inhibition in FGFR3 dependent bladder cancer cells and other FGFR dependent cancers may be mediated through c-MYC, a key downstream effector of activated FGFR that is involved tumorigenesis. This review will summarize the current general understanding of FGFR signaling and MYC alterations in cancer, and the role of FGFR3 and MYC dysregulation in the pathogenesis of urothelial bladder cancer with the possible therapeutic implications.
Collapse
Affiliation(s)
- Dereje E Bogale
- School of Medicine, Department of Oncology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
8
|
Metellus P, Camilla C, Bialecki E, Beaufils N, Vellutini C, Pellegrino E, Tomasini P, Ahluwalia MS, Mansouri A, Nanni I, Ouafik L. The landscape of cancer-associated transcript fusions in adult brain tumors: a longitudinal assessment in 140 patients with cerebral gliomas and brain metastases. Front Oncol 2024; 14:1382394. [PMID: 39087020 PMCID: PMC11288828 DOI: 10.3389/fonc.2024.1382394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Background Oncogenic fusions of neurotrophic receptor tyrosine kinase NTRK1, NTRK2, or NTRK3 genes have been found in different types of solid tumors. The treatment of patients with TRK fusion cancer with a first-generation TRK inhibitor (such as larotrectinib or entrectinib) is associated with high response rates (>75%), regardless of tumor histology and presence of metastases. Due to the efficacy of TRK inhibitor therapy of larotrectinib and entrectinib, it is clinically important to identify patients accurately and efficiently with TRK fusion cancer. In this retrospective study, we provide unique data on the incidence of oncogenic NTRK gene fusions in patients with brain metastases (BM) and gliomas. Methods 140 samples fixed and paraffin-embedded tissue (FFPE) of adult patients (59 of gliomas [17 of WHO grade II, 20 of WHO grade III and 22 glioblastomas] and 81 of brain metastasis (BM) of different primary tumors) are analyzed. Identification of NTRK gene fusions is performed using next-generation sequencing (NGS) technology using Focus RNA assay kit (Thermo Fisher Scientific). Results We identified an ETV6 (5)::NTRK3 (15) fusion event using targeted next-generation sequencing (NGS) in one of 59 glioma patient with oligodendroglioma-grade II, IDH-mutated and 1p19q co-deleted at incidence of 1.69%. Five additional patients harboring TMPRSS (2)::ERG (4) were identified in pancreatic carcinoma brain metastasis (BM), prostatic carcinoma BM, endometrium BM and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted. A FGFR3 (17)::TACC3 (11) fusion was identified in one carcinoma breast BM. Aberrant splicing to produce EGFR exons 2-7 skipping mRNA, and MET exon 14 skipping mRNA were identified in glioblastoma and pancreas carcinoma BM, respectively. Conclusions This study provides data on the incidence of NTRK gene fusions in brain tumors, which could strongly support the relevance of innovative clinical trials with specific targeted therapies (larotrectinib, entrectinib) in this population of patients. FGFR3 (17)::TACC3 (11) rearrangement was detected in breast carcinoma BM with the possibility of using some specific targeted therapies and TMPRSS (2)::ERG (4) rearrangements occur in a subset of patients with, prostatic carcinoma BM, endometrium BM, and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted, where there are yet no approved ERG-directed therapies.
Collapse
Affiliation(s)
- Philippe Metellus
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Clara Camilla
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Emilie Bialecki
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Nathalie Beaufils
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Christine Vellutini
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
| | - Eric Pellegrino
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Pascale Tomasini
- Aix Marseille Univ, APHM, Oncologie multidisciplinaire et innovations thérapeutiques, Marseille, France
- Aix-Marseille Univ, Centre national de Recherche Scientifique (CNRS), Inserm, CRCM, Marseille, France
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, PA, United States
| | - Isabelle Nanni
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - L’Houcine Ouafik
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| |
Collapse
|
9
|
Yang W, Meyer AN, Jiang Z, Jiang X, Donoghue DJ. Critical domains for NACC2-NTRK2 fusion protein activation. PLoS One 2024; 19:e0301730. [PMID: 38935636 PMCID: PMC11210774 DOI: 10.1371/journal.pone.0301730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Neurotrophic receptor tyrosine kinases (NTRKs) belong to the receptor tyrosine kinase (RTK) family. NTRKs are responsible for the activation of multiple downstream signaling pathways that regulate cell growth, proliferation, differentiation, and apoptosis. NTRK-associated mutations often result in oncogenesis and lead to aberrant activation of downstream signaling pathways including MAPK, JAK/STAT, and PLCγ1. This study characterizes the NACC2-NTRK2 oncogenic fusion protein that leads to pilocytic astrocytoma and pediatric glioblastoma. This fusion joins the BTB domain (Broad-complex, Tramtrack, and Bric-a-brac) domain of NACC2 (Nucleus Accumbens-associated protein 2) with the transmembrane helix and tyrosine kinase domain of NTRK2. We focus on identifying critical domains for the biological activity of the fusion protein. Mutations were introduced in the charged pocket of the BTB domain or in the monomer core, based on a structural comparison of the NACC2 BTB domain with that of PLZF, another BTB-containing protein. Mutations were also introduced into the NTRK2-derived portion to allow comparison of two different breakpoints that have been clinically reported. We show that activation of the NTRK2 kinase domain relies on multimerization of the BTB domain in NACC2-NTRK2. Mutations which disrupt BTB-mediated multimerization significantly reduce kinase activity and downstream signaling. The ability of these mutations to abrogate biological activity suggests that BTB domain inhibition could be a potential treatment for NACC2-NTRK2-induced cancers. Removal of the transmembrane helix leads to enhanced stability of the fusion protein and increased activity of the NACC2-NTRK2 fusion, suggesting a mechanism for the oncogenicity of a distinct NACC2-NTRK2 isoform observed in pediatric glioblastoma.
Collapse
Affiliation(s)
- Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Xuan Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- UCSD Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
10
|
Shang S, Zhang L, Liu K, Lv M, Zhang J, Ju D, Wei D, Sun Z, Wang P, Yuan J, Zhu Z. Landscape of targeted therapies for advanced urothelial carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:641-677. [PMID: 38966172 PMCID: PMC11220318 DOI: 10.37349/etat.2024.00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Bladder cancer (BC) is the tenth most common malignancy globally. Urothelial carcinoma (UC) is a major type of BC, and advanced UC (aUC) is associated with poor clinical outcomes and limited survival rates. Current options for aUC treatment mainly include chemotherapy and immunotherapy. These options have moderate efficacy and modest impact on overall survival and thus highlight the need for novel therapeutic approaches. aUC patients harbor a high tumor mutation burden and abundant molecular alterations, which are the basis for targeted therapies. Erdafitinib is currently the only Food and Drug Administration (FDA)-approved targeted therapy for aUC. Many potential targeted therapeutics aiming at other molecular alterations are under investigation. This review summarizes the current understanding of molecular alterations associated with aUC targeted therapy. It also comprehensively discusses the related interventions for treatment in clinical research and the potential of using novel targeted drugs in combination therapy.
Collapse
Affiliation(s)
- Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Maoxin Lv
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming 65000, Yunnan, China
| | - Jie Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- College of Life Sciences, Northwest University, Xi’an 710068, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zelong Sun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Pinxiao Wang
- School of Clinical Medicine, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| |
Collapse
|
11
|
Liu X, Lin L, Cai Q, Sheng H, Zeng R, Zhao Y, Qiu X, Liu H, Huang L, Liang W, He J. Construction and Validation of a Prognostic Model Based on Novel Senescence-Related Genes in Non-Small Cell Lung Cancer Patients with Drug Sensitivity and Tumor Microenvironment. Adv Biol (Weinh) 2023; 7:e2300190. [PMID: 37518773 DOI: 10.1002/adbi.202300190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Cellular senescence contributes to cancer pathogenesis and immune regulation. Using the LASSO Cox regression, we developed a 12-gene prognostic signature for lung adenocarcinoma (LUAD) from The Cancer Genome Atlas (TCGA) and a Gene Expression Omnibus (GEO) dataset. We assessed gene expression, drug sensitivity, immune infiltration, and conducted cell line experiments. High-risk LUAD patients showed increased mortality risk and shorter survival (P < 0.001). Senescence-related gene analysis indicated differences in protein phosphorylation and DNA methylation between normal individuals and LUAD patients. The high-risk group showed a positive association with PD-L1 expression (P = 0.003). Single-cell sequencing data suggested PEBP1 might significantly impact T cell infiltration. We predicted potential sensitive compounds for 12 senescence genes and found GAPDH promoted cell line proliferation. We established a novel prognostic system based on a newly identified senescence gene. High-risk patients had elevated immunosuppressive markers, and PEBP1 might influence T cell infiltration significantly. GAPDH, expressed at higher levels in tumors, could affect cancer progression. Our drug prediction model may guide treatment selection.
Collapse
Affiliation(s)
- Xiwen Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- School of Clinical Medicine, Henan University, Kaifeng, 475000, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Hongxu Sheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Ruiqi Zeng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Yi Zhao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Xinyi Qiu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- First Clinical School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Huiting Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Linchong Huang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- The First People's Hospital of Zhaoqing, Zhaoqing, 526000, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- Southern Medical University, Guangzhou, 510120, China
| |
Collapse
|
12
|
Saatci O, Sahin O. TACC3: a multi-functional protein promoting cancer cell survival and aggressiveness. Cell Cycle 2023; 22:2637-2655. [PMID: 38197196 PMCID: PMC10936615 DOI: 10.1080/15384101.2024.2302243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
TACC3 is the most oncogenic member of the transforming acidic coiled-coil domain-containing protein (TACC) family. It is one of the major recruitment factors of distinct multi-protein complexes. TACC3 is localized to spindles, centrosomes, and nucleus, and regulates key oncogenic processes, including cell proliferation, migration, invasion, and stemness. Recently, TACC3 inhibition has been identified as a vulnerability in highly aggressive cancers, such as cancers with centrosome amplification (CA). TACC3 has spatiotemporal functions throughout the cell cycle; therefore, targeting TACC3 causes cell death in mitosis and interphase in cancer cells with CA. In the clinics, TACC3 is highly expressed and associated with worse survival in multiple cancers. Furthermore, TACC3 is a part of one of the most common fusions of FGFR, FGFR3-TACC3 and is important for the oncogenicity of the fusion. A detailed understanding of the regulation of TACC3 expression, its key partners, and molecular functions in cancer cells is vital for uncovering the most vulnerable tumors and maximizing the therapeutic potential of targeting this highly oncogenic protein. In this review, we summarize the established and emerging interactors and spatiotemporal functions of TACC3 in cancer cells, discuss the potential of TACC3 as a biomarker in cancer, and therapeutic potential of its inhibition.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Liu L, Sun FZ, Zhang PY, Xiao Y, Ni HX. Development and validation a model for predicting overall survival of bladder cancer with lung metastasis: a population-based study. Eur J Med Res 2023; 28:279. [PMID: 37559152 PMCID: PMC10413495 DOI: 10.1186/s40001-023-01261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Although the number of patients with bladder cancer and lung metastasis is increasing there is no accurate model for predicting survival in these patients. METHODS Patients enrolled in the Surveillance, Epidemiology, and End Results database between 2010 and 2015 were selected for the study. Univariate and multivariate Cox regression were used to determine independent prognostic factors, followed by development of a nomogram based on the multivariate Cox regression models. The consistency index, receiver operating characteristic curve, and calibration curve were used to validate the prognostic nomogram. RESULTS 506 eligible bladder cancer patients with lung metastasis were enrolled in the study and then divided randomly into training and validation sets (n = 356 vs. n = 150). Multivariate Cox regression analysis indicated that age at diagnosis, primary site, histological type, surgery of the primary site, chemotherapy, bone metastasis, and liver metastasis were prognostic factors for overall survival (OS) in patients with lung metastasis in the training set. The C-index of the nomogram OS was 0.699 and 0.747 in the training and validation sets, respectively. ROC curve estimation of the nomogram in the training and validation sets showed acceptable accuracy for classifying 1-year survival, with an area under the curve (AUC) of 0.766 and 0.717, respectively. More importantly, the calibration plot showed the nomogram had favorable predictive accuracy in both the training and validation sets. CONCLUSIONS The prognostic nomogram created in our study provides an individualized diagnosis, remedy, and risk evaluation for survival in patients with bladder cancer and lung metastasis. The nomogram would therefore enable clinicians to make more precise treatment decisions for patients with bladder cancer and lung metastasis.
Collapse
Affiliation(s)
- Liang Liu
- Department of Urology, Baoding No.1 Central Hospital, No.320 Changcheng North Street, Lianchi District, Baoding, 071000, Hebei, China.
- Prostate & Andrology Key Laboratory of Baoding, Baoding, China.
| | - Fu-Zhen Sun
- Department of Surgery and Urology, Hebei General Hospital, Shijiazhuang, China
| | - Pan-Ying Zhang
- Department of Surgery and Urology, Hebei General Hospital, Shijiazhuang, China
| | - Yu Xiao
- Psychosomatic Medical Center, The Fourth People's Hospital of Chengdu, Chengdu, China
- Psychosomatic Medical Center, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Xin Ni
- Department of Urology, Baoding No.1 Central Hospital, No.320 Changcheng North Street, Lianchi District, Baoding, 071000, Hebei, China
| |
Collapse
|
14
|
Brown LM, Ekert PG, Fleuren EDG. Biological and clinical implications of FGFR aberrations in paediatric and young adult cancers. Oncogene 2023:10.1038/s41388-023-02705-7. [PMID: 37130917 DOI: 10.1038/s41388-023-02705-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Rare but recurrent mutations in the fibroblast growth factor receptor (FGFR) pathways, most commonly in one of the four FGFR receptor tyrosine kinase genes, can potentially be targeted with broad-spectrum multi-kinase or FGFR selective inhibitors. The complete spectrum of these mutations in paediatric cancers is emerging as precision medicine programs perform comprehensive sequencing of individual tumours. Identification of patients most likely to benefit from FGFR inhibition currently rests on identifying activating FGFR mutations, gene fusions, or gene amplification events. However, the expanding use of transcriptome sequencing (RNAseq) has identified that many tumours overexpress FGFRs, in the absence of any genomic aberration. The challenge now presented is to determine when this indicates true FGFR oncogenic activity. Under-appreciated mechanisms of FGFR pathway activation, including alternate FGFR transcript expression and concomitant FGFR and FGF ligand expression, may mark those tumours where FGFR overexpression is indicative of a dependence on FGFR signalling. In this review, we provide a comprehensive and mechanistic overview of FGFR pathway aberrations and their functional consequences in paediatric cancer. We explore how FGFR over expression might be associated with true receptor activation. Further, we discuss the therapeutic implications of these aberrations in the paediatric setting and outline current and emerging therapeutic strategies to treat paediatric patients with FGFR-driven cancers.
Collapse
Affiliation(s)
- Lauren M Brown
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Ascione CM, Napolitano F, Esposito D, Servetto A, Belli S, Santaniello A, Scagliarini S, Crocetto F, Bianco R, Formisano L. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat Rev 2023; 115:102530. [PMID: 36898352 DOI: 10.1016/j.ctrv.2023.102530] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Bladder cancer is a heterogeneous malignancy and is responsible for approximately 3.2% of new diagnoses of cancer per year (Sung et al., 2021). Fibroblast Growth Factor Receptors (FGFRs) have recently emerged as a novel therapeutic target in cancer. In particular, FGFR3 genomic alterations are potent oncogenic drivers in bladder cancer and represent predictive biomarkers of response to FGFR inhibitors. Indeed, overall ∼50% of bladder cancers have somatic mutations in the FGFR3 -coding sequence (Cappellen et al., 1999; Turner and Grose, 2010). FGFR3 gene rearrangements are typical alterations in bladder cancer (Nelson et al., 2016; Parker et al., 2014). In this review, we summarize the most relevant evidence on the role of FGFR3 and the state-of-art of anti-FGFR3 treatment in bladder cancer. Furthermore, we interrogated the AACR Project GENIE to investigate clinical and molecular features of FGFR3-altered bladder cancers. We found that FGFR3 rearrangements and missense mutations were associated with a lower fraction of mutated genome, compared to the FGFR3 wild-type tumors, as also observed in other oncogene-addicted cancers. Moreover, we observed that FGFR3 genomic alterations are mutually exclusive with other genomic aberrations of canonical bladder cancer oncogenes, such as TP53 and RB1. Finally, we provide an overview of the treatment landscape of FGFR3-altered bladder cancer, discussing future perspectives for the management of this disease.
Collapse
Affiliation(s)
- Claudia Maria Ascione
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Stefania Belli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Antonio Santaniello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Sarah Scagliarini
- Division of Oncology, Azienda Ospedaliera di Rilievo Nazionale A. Cardarelli, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
16
|
Wang CG, Peiris MN, Meyer AN, Nelson KN, Donoghue DJ. Oncogenic driver FGFR3-TACC3 requires five coiled-coil heptads for activation and disulfide bond formation for stability. Oncotarget 2023; 14:133-145. [PMID: 36780330 PMCID: PMC9924825 DOI: 10.18632/oncotarget.28359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
FGFR3-TACC3 represents an oncogenic fusion protein frequently identified in glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck squamous cell carcinoma, gallbladder cancer, and cervical cancer. Various exon breakpoints of FGFR3-TACC3 have been identified in cancers; these were analyzed to determine the minimum contribution of TACC3 for activation of the FGFR3-TACC3 fusion protein. While TACC3 exons 11 and 12 are dispensable for activity, our results show that FGFR3-TACC3 requires exons 13-16 for biological activity. A detailed analysis of exon 13, which consists of 8 heptads forming a coiled coil, further defined the minimal region for biological activity as consisting of 5 heptads from exon 13, in addition to exons 14-16. These conclusions were supported by transformation assays of biological activity, examination of MAPK pathway activation, analysis of disulfide-bonded FGFR3-TACC3, and by examination of the Endoglycosidase H-resistant portion of FGFR3-TACC3. These results demonstrate that clinically identified FGFR3-TACC3 fusion proteins differ in their biological activity, depending upon the specific breakpoint. This study further suggests the TACC3 dimerization domain of FGFR3-TACC3 as a novel target in treating FGFR translocation driven cancers.
Collapse
Affiliation(s)
- Clark G. Wang
- 1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA,2Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Malalage N. Peiris
- 1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - April N. Meyer
- 1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Katelyn N. Nelson
- 1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel J. Donoghue
- 1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA,3Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA,Correspondence to:Daniel J. Donoghue, email:
| |
Collapse
|
17
|
Aepala MR, Peiris MN, Jiang Z, Yang W, Meyer AN, Donoghue DJ. Nefarious NTRK oncogenic fusions in pediatric sarcomas: Too many to Trk. Cytokine Growth Factor Rev 2022; 68:93-106. [PMID: 36153202 DOI: 10.1016/j.cytogfr.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
Neurotrophic Tyrosine Receptor Kinase (NTRK) genes undergo chromosomal translocations to create novel open reading frames coding for oncogenic fusion proteins; the N-terminal portion, donated by various partner genes, becomes fused to the tyrosine kinase domain of either NTRK1, NTRK2, or NTRK3. NTRK fusion proteins have been identified as driver oncogenes in a wide variety of tumors over the past three decades, including Pediatric Gliomas, Papillary Thyroid Carcinoma, Spitzoid Neoplasms, Glioblastoma, and additional tumors. Importantly, NTRK fusions function as drivers of pediatric sarcomas, accounting for approximately 15% of childhood cancers including Infantile Fibrosarcoma (IFS), a subset of pediatric soft tissue sarcoma (STS). While tyrosine kinase inhibitors (TKIs), such as larotrectinib and entrectinib, have demonstrated profound results against NTRK fusion-positive cancers, acquired resistance to these TKIs has resulted in the formation of gatekeeper, solvent-front, and compound mutations. We present a comprehensive compilation of oncogenic fusions involving NTRKs focusing specifically on pediatric STS, examining their biological signaling pathways and mechanisms of activation. The importance of an obligatory dimerization or multimerization domain, invariably donated by the N-terminal fusion partner, is discussed using characteristic fusions that occur in pediatric sarcomas. In addition, examples are presented of oncogenic fusion proteins in which the N-terminal partners may contribute additional biological activities beyond an oligomerization domain. Lastly, therapeutic approaches to the treatment of pediatric sarcoma will be presented, using first generation and second-generation agents such as selitrectinib and repotrectinib.
Collapse
Affiliation(s)
- Megha R Aepala
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
18
|
FGFR3-TACCs3 Fusions and Their Clinical Relevance in Human Glioblastoma. Int J Mol Sci 2022; 23:ijms23158675. [PMID: 35955806 PMCID: PMC9369421 DOI: 10.3390/ijms23158675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Oncogenic fusion genes have emerged as successful targets in several malignancies, such as chronic myeloid leukemia and lung cancer. Fusion of the fibroblast growth receptor 3 and the transforming acidic coiled coil containing protein—FGFR3-TACC3 fusion—is prevalent in 3–4% of human glioblastoma. The fusion protein leads to the constitutively activated kinase signaling of FGFR3 and thereby promotes cell proliferation and tumor progression. The subgroup of FGFR3-TACC3 fusion-positive glioblastomas presents with recurrent clinical and histomolecular characteristics, defining a distinctive subtype of IDH-wildtype glioblastoma. This review aims to provide an overview of the available literature on FGFR3-TACC3 fusions in glioblastoma and possible implications for actual clinical practice.
Collapse
|
19
|
Proteomic analysis reveals dual requirement for Grb2 and PLCγ1 interactions for BCR-FGFR1-Driven 8p11 cell proliferation. Oncotarget 2022; 13:659-676. [PMID: 35574218 PMCID: PMC9093983 DOI: 10.18632/oncotarget.28228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Translocation of Fibroblast Growth Factor Receptors (FGFRs) often leads to aberrant cell proliferation and cancer. The BCR-FGFR1 fusion protein, created by chromosomal translocation t(8;22)(p11;q11), contains Breakpoint Cluster Region (BCR) joined to Fibroblast Growth Factor Receptor 1 (FGFR1). BCR-FGFR1 represents a significant driver of 8p11 myeloproliferative syndrome, or stem cell leukemia/lymphoma, which progresses to acute myeloid leukemia or T-cell lymphoblastic leukemia/lymphoma. Mutations were introduced at Y177F, the binding site for adapter protein Grb2 within BCR; and at Y766F, the binding site for the membrane associated enzyme PLCγ1 within FGFR1. We examined anchorage-independent cell growth, overall cell proliferation using hematopoietic cells, and activation of downstream signaling pathways. BCR-FGFR1-induced changes in protein phosphorylation, binding partners, and signaling pathways were dissected using quantitative proteomics to interrogate the protein interactome, the phosphoproteome, and the interactome of BCR-FGFR1. The effects on BCR-FGFR1-stimulated cell proliferation were examined using the PLCγ1 inhibitor U73122, and the irreversible FGFR inhibitor futibatinib (TAS-120), both of which demonstrated efficacy. An absolute requirement is demonstrated for the dual binding partners Grb2 and PLCγ1 in BCR-FGFR1-driven cell proliferation, and new proteins such as ECSIT, USP15, GPR89, GAB1, and PTPN11 are identified as key effectors for hematopoietic transformation by BCR-FGFR1.
Collapse
|
20
|
Gabler L, Jaunecker CN, Katz S, van Schoonhoven S, Englinger B, Pirker C, Mohr T, Vician P, Stojanovic M, Woitzuck V, Laemmerer A, Kirchhofer D, Mayr L, LaFranca M, Erhart F, Grissenberger S, Wenninger-Weinzierl A, Sturtzel C, Kiesel B, Lang A, Marian B, Grasl-Kraupp B, Distel M, Schüler J, Gojo J, Grusch M, Spiegl-Kreinecker S, Donoghue DJ, Lötsch D, Berger W. Fibroblast growth factor receptor 4 promotes glioblastoma progression: a central role of integrin-mediated cell invasiveness. Acta Neuropathol Commun 2022; 10:65. [PMID: 35484633 PMCID: PMC9052585 DOI: 10.1186/s40478-022-01363-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma (GBM) is characterized by a particularly invasive phenotype, supported by oncogenic signals from the fibroblast growth factor (FGF)/ FGF receptor (FGFR) network. However, a possible role of FGFR4 remained elusive so far. Several transcriptomic glioma datasets were analyzed. An extended panel of primary surgical specimen-derived and immortalized GBM (stem)cell models and original tumor tissues were screened for FGFR4 expression. GBM models engineered for wild-type and dominant-negative FGFR4 overexpression were investigated regarding aggressiveness and xenograft formation. Gene set enrichment analyses of FGFR4-modulated GBM models were compared to patient-derived datasets. Despite widely absent in adult brain, FGFR4 mRNA was distinctly expressed in embryonic neural stem cells and significantly upregulated in glioblastoma. Pronounced FGFR4 overexpression defined a distinct GBM patient subgroup with dismal prognosis. Expression levels of FGFR4 and its specific ligands FGF19/FGF23 correlated both in vitro and in vivo and were progressively upregulated in the vast majority of recurrent tumors. Based on overexpression/blockade experiments in respective GBM models, a central pro-oncogenic function of FGFR4 concerning viability, adhesion, migration, and clonogenicity was identified. Expression of dominant-negative FGFR4 resulted in diminished (subcutaneous) or blocked (orthotopic) GBM xenograft formation in the mouse and reduced invasiveness in zebrafish xenotransplantation models. In vitro and in vivo data consistently revealed distinct FGFR4 and integrin/extracellular matrix interactions. Accordingly, FGFR4 blockade profoundly sensitized FGFR4-overexpressing GBM models towards integrin/focal adhesion kinase inhibitors. Collectively, FGFR4 overexpression contributes to the malignant phenotype of a highly aggressive GBM subgroup and is associated with integrin-related therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Lisa Gabler
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Carola Nadine Jaunecker
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Sonja Katz
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Sushilla van Schoonhoven
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Bernhard Englinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Christine Pirker
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas Mohr
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Mirjana Stojanovic
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Valentin Woitzuck
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anna Laemmerer
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lisa Mayr
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Mery LaFranca
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | | | | | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Brigitte Marian
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Bettina Grasl-Kraupp
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Julia Schüler
- Charles River Discovery Research Services Germany GmbH, Freiburg, Germany
| | - Johannes Gojo
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Grusch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University Linz, Wagner-Jauregg-Weg 15, 4020, Linz and Altenberger Strasse 69, 4020, Linz, Austria
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, 92093-0367, USA
| | - Daniela Lötsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria.
- Comprehensive Cancer Center-Central Nervous System Tumor Unit, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
21
|
Li T, Mehraein-Ghomi F, Forbes ME, Namjoshi SV, Ballard EA, Song Q, Chou PC, Wang X, Parker Kerrigan BC, Lang FF, Lesser G, Debinski W, Yang X, Zhang W. HSP90-CDC37 functions as a chaperone for the oncogenic FGFR3-TACC3 fusion. Mol Ther 2022; 30:1610-1627. [PMID: 35151844 PMCID: PMC9077375 DOI: 10.1016/j.ymthe.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
The FGFR3-TACC3 (F3-T3) fusion gene was discovered as an oncogenic molecule in glioblastoma and bladder cancers, and has subsequently been found in many cancer types. Notably, F3-T3 was found to be highly expressed in both untreated and matched recurrence glioblastoma under the concurrent radiotherapy and temozolomide (TMZ) treatment, suggesting that targeting F3-T3 is a valid strategy for treatment. Here, we show that the F3-T3 protein is a client of heat shock protein 90 (HSP90), forming a ternary complex with the cell division cycle 37 (CDC37). Deprivation of HSP90 or CDC37 disrupts the formation of the ternary complex, which destabilizes glycosylated F3-T3, and thereby suppresses F3-T3 oncogenic activity. Gliomas harboring F3-T3 are resistant to TMZ chemotherapy. HSP90 inhibitors sensitized F3-T3 glioma cells to TMZ via the inhibition of F3-T3 activation and potentiated TMZ-induced DNA damage. These results demonstrate that F3-T3 oncogenic function is dependent on the HSP90 chaperone system and suggests a new clinical option for targeting this genetic aberration in cancer.
Collapse
Affiliation(s)
- Tao Li
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Farideh Mehraein-Ghomi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - M Elizabeth Forbes
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Sanjeev V Namjoshi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - E Ashley Ballard
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Ping-Chieh Chou
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | | | - Frederick F Lang
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Glenn Lesser
- Department of Internal Medicine-Section of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing 102218, China.
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| |
Collapse
|
22
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Thomas J, Sonpavde G. Molecularly Targeted Therapy towards Genetic Alterations in Advanced Bladder Cancer. Cancers (Basel) 2022; 14:1795. [PMID: 35406567 PMCID: PMC8997162 DOI: 10.3390/cancers14071795] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the introduction of immune checkpoint inhibitors and antibody-drug conjugates to the management of advanced urothelial carcinoma, the disease is generally incurable. The increasing incorporation of next-generation sequencing of tumor tissue into the characterization of bladder cancer has led to a better understanding of the somatic genetic aberrations potentially involved in its pathogenesis. Genetic alterations have been observed in kinases, such as FGFRs, ErbBs, PI3K/Akt/mTOR, and Ras-MAPK, and genetic alterations in critical cellular processes, such as chromatin remodeling, cell cycle regulation, and DNA damage repair. However, activating mutations or fusions of FGFR2 and FGFR3 remains the only validated therapeutically actionable alteration, with erdafitinib as the only targeted agent currently approved for this group. Bladder cancer is characterized by genomic heterogeneity and a high tumor mutation burden. This review highlights the potential relevance of aberrations and discusses the current status of targeted therapies directed at them.
Collapse
Affiliation(s)
- Jonathan Thomas
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Guru Sonpavde
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| |
Collapse
|
24
|
Relitti N, Saraswati AP, Carullo G, Papa A, Monti A, Benedetti R, Passaro E, Brogi S, Calderone V, Butini S, Gemma S, Altucci L, Campiani G, Doti N. Design and Synthesis of New Oligopeptidic Parvulin Inhibitors. ChemMedChem 2022; 17:e202200050. [PMID: 35357776 PMCID: PMC9321596 DOI: 10.1002/cmdc.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Indexed: 11/12/2022]
Abstract
Pin1 catalyzes the cis-trans isomerization of pThr-Pro or pSer-Pro amide bonds of different proteins involved in several physio/pathological processes. In this framework, recent research activity is directed towards the identification of new selective Pin1 inhibitors. Here, we developed a set ( 5a - p ) of peptide-based Pin1 inhibitors. Direct-binding experiments allowed the identification of the peptide-based inhibitor 5k as a potent ligand of Pin1. Notably, 5k binds Pin1 with a higher affinity compared to Pin4. The comparative analysis of molecular models of Pin1 and Pin4 with the selected compound, gave a rational explanation of the biochemical activity, and pinpointed the chemical elements that, if opportunely modified, may further improve inhibitory potency, pharmacological properties and selectivity of future peptide-based Parvulin inhibitors. Since 5k showed a limited cell penetration and no antiproliferative activity, it was conjugated to a polyarginine stretch, known to promote cell penetration of peptides, to obtain R8-5k derivative, which displayed an anti-proliferative effect on cancer cell lines compared to non-tumor cells. The effect of R8 on cell proliferation was also investigated. This work doubts the application of the R8 strategy for the development of cell penetrating antiproliferative peptides since it is not inert.
Collapse
Affiliation(s)
- Nicola Relitti
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | | | - Gabriele Carullo
- University of Siena: Universita degli Studi di Siena, DBCF, 2, Aldo Moro, 53100 Siena Italy, 53100, Siena, ITALY
| | - Alessandro Papa
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | | | - Rosaria Benedetti
- University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli, Medicine, ITALY
| | - Eugenia Passaro
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Simone Brogi
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Vincenzo Calderone
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Stefania Butini
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | - Sandra Gemma
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | - Lucia Altucci
- University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli, Medicine, ITALY
| | - Giuseppe Campiani
- Universita degli Studi di Siena, Dipartimento di Biotecnologie, Via Aldo Moro 2, 53100, Siena, ITALY
| | - Nunzianna Doti
- CNR: Consiglio Nazionale delle Ricerche, Bioimaging, ITALY
| |
Collapse
|
25
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
26
|
Chen L, Zhang Y, Yin L, Cai B, Huang P, Li X, Liang G. Fibroblast growth factor receptor fusions in cancer: opportunities and challenges. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:345. [PMID: 34732230 PMCID: PMC8564965 DOI: 10.1186/s13046-021-02156-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play critical roles in many biological processes and developmental functions. Chromosomal translocation of FGFRs result in the formation of chimeric FGFR fusion proteins, which often cause aberrant signaling leading to the development and progression of human cancer. Due to the high recurrence rate and carcinogenicity, oncogenic FGFR gene fusions have been identified as promising therapeutic targets. Erdafitinib and pemigatinib, two FGFR selective inhibitors targeting FGFR fusions, have been approved by the U.S. Food and Drug Administration (FDA) to treat patients with urothelial cancer and cholangiocarcinoma, respectively. Futibatinib, a third-generation FGFR inhibitor, is under phase III clinical trials in patients with FGFR gene rearrangements. Herein, we review the current understanding of the FGF/FGFRs system and the oncogenic effect of FGFR fusions, summarize promising inhibitors under clinical development for patients with FGFR fusions, and highlight the challenges in this field.
Collapse
Affiliation(s)
- Lingfeng Chen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China. .,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China.
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Guang Liang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China. .,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
27
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
28
|
Al-Obaidy KI, Cheng L. Fibroblast growth factor receptor ( FGFR) gene: pathogenesis and treatment implications in urothelial carcinoma of the bladder. J Clin Pathol 2021; 74:491-495. [PMID: 33731335 DOI: 10.1136/jclinpath-2020-207115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/12/2020] [Accepted: 01/24/2021] [Indexed: 11/03/2022]
Abstract
Dysregulation of fibroblast growth factor receptors (FGFRs) has been implicated in several human malignancies, including urothelial carcinoma. In urothelial carcinoma, the oncogenic role of mutated FGFR is mediated by the RAS-mitogen-activated protein kinase pathway, resembling the effects observed with activated HRAS Activating somatic mutations of FGFR3 are clustered in three hotspots in exons 7, 10 and 15, and are almost always missense mutations leading to amino acid substitution in the external, transmembrane or intracellular regions of the receptor. A fusion of FGFR3 to transforming acid coiled-coil containing protein 3, FGFR3 amplification and alternative splicing leading to aberrant FGFR3 activation are less common molecular alterations. In April 2020, the Food and Drug Administration (FDA) approved the first targeted FGFR therapy, erdafitinib, in patients with locally advanced or metastatic bladder cancer who have progressed on platinum-based chemotherapy. Herein, we reviewed the normal structure and function of FGFR We also explored its role in the development of urothelial carcinoma and major developments in the FGFR-targeted therapy.
Collapse
Affiliation(s)
- Khaleel I Al-Obaidy
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Liang Cheng
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA .,Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Sobhani N, Fassl A, Mondani G, Generali D, Otto T. Targeting Aberrant FGFR Signaling to Overcome CDK4/6 Inhibitor Resistance in Breast Cancer. Cells 2021; 10:293. [PMID: 33535617 PMCID: PMC7912842 DOI: 10.3390/cells10020293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) is the most common cause of cancer-related death in women worldwide. Therapies targeting molecular pathways altered in BC had significantly enhanced treatment options for BC over the last decades, which ultimately improved the lives of millions of women worldwide. Among various molecular pathways accruing substantial interest for the development of targeted therapies are cyclin-dependent kinases (CDKs)-in particular, the two closely related members CDK4 and CDK6. CDK4/6 inhibitors indirectly trigger the dephosphorylation of retinoblastoma tumor suppressor protein by blocking CDK4/6, thereby blocking the cell cycle transition from the G1 to S phase. Although the CDK4/6 inhibitors abemaciclib, palbociclib, and ribociclib gained FDA approval for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative BC as they significantly improved progression-free survival (PFS) in randomized clinical trials, regrettably, some patients showed resistance to these therapies. Though multiple molecular pathways could be mechanistically responsible for CDK4/6 inhibitor therapy resistance, one of the most predominant ones seems to be the fibroblast growth factor receptor (FGFR) pathway. FGFRs are involved in many aspects of cancer formation, such as cell proliferation, differentiation, and growth. Importantly, FGFRs are frequently mutated in BC, and their overexpression and/or hyperactivation correlates with CDK4/6 inhibitor resistance and shortened PFS in BC. Intriguingly, the inhibition of aberrant FGFR activity is capable of reversing the resistance to CDK4/6 inhibitors. This review summarizes the molecular background of FGFR signaling and discusses the role of aberrant FGFR signaling during cancer development in general and during the development of CDK4/6 inhibitor resistance in BC in particular, together with other possible mechanisms for resistance to CDK4/6 inhibitors. Subsequently, future directions on novel therapeutic strategies targeting FGFR signaling to overcome such resistance during BC treatment will be further debated.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Giuseppina Mondani
- Department Breast Oncoplastic Surgery Royal Cornwall Hospital, Treliske, Truro TR13LJ, UK;
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, 34149 Trieste, Italy;
| | - Tobias Otto
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
30
|
Abstract
The identification of mutations in FGFR3 in bladder tumors in 1999 led to major interest in this receptor and during the subsequent 20 years much has been learnt about the mutational profiles found in bladder cancer, the phenotypes associated with these and the potential of this mutated protein as a target for therapy. Based on mutational and expression data, it is estimated that >80% of non-muscle-invasive bladder cancers (NMIBC) and ∼40% of muscle-invasive bladder cancers (MIBC) have upregulated FGFR3 signalling, and these frequencies are likely to be even higher if alternative splicing of the receptor, expression of ligands and changes in regulatory mechanisms are taken into account. Major efforts by the pharmaceutical industry have led to development of a range of agents targeting FGFR3 and other FGF receptors. Several of these have entered clinical trials, and some have presented very encouraging early results in advanced bladder cancer. Recent reviews have summarised the drugs and related clinical trials in this area. This review will summarise what is known about the effects of FGFR3 and its mutant forms in normal urothelium and bladder tumors, will suggest when and how this protein contributes to urothelial cancer pathogenesis and will highlight areas that may benefit from further study.
Collapse
Affiliation(s)
- Margaret A. Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James’s, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
31
|
Meyer AN, Modaff P, Wang CG, Wohler E, Sobreira NL, Donoghue DJ, Pauli RM. Typical achondroplasia secondary to a unique insertional variant of FGFR3 with in vitro demonstration of its effect on FGFR3 function. Am J Med Genet A 2020; 185:798-805. [PMID: 33368972 DOI: 10.1002/ajmg.a.62043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
We describe an individual in whom clinical and radiographic features are typical for achondroplasia, but in whom the common variants of FGFR3 that result in achondroplasia are absent. Whole exome sequencing demonstrated a novel, de novo 6 base pair tandem duplication in FGFR3 that results in the insertion of Ser-Phe after position Leu324. in vitro studies showed that this variant results in aberrant dimerization, excessive spontaneous phosphorylation of FGFR3 dimers and excessive, ligand-independent tyrosine kinase activity. Together, these data suggest that this variant leads to constitutive disulfide bond-mediated dimerization, and that this, surprisingly, occurs to an extent similar to the neonatal lethal thanatophoric dysplasia type I Ser249Cys variant.
Collapse
Affiliation(s)
- April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Peggy Modaff
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Clark G Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nara L Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA.,UCSD Moores Cancer Center, La Jolla, California, USA
| | - Richard M Pauli
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Pederzoli F, Bandini M, Marandino L, Ali SM, Madison R, Chung J, Ross JS, Necchi A. Targetable gene fusions and aberrations in genitourinary oncology. Nat Rev Urol 2020; 17:613-625. [PMID: 33046892 DOI: 10.1038/s41585-020-00379-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Gene fusions result from either structural chromosomal rearrangement or aberrations caused by splicing or transcriptional readthrough. The precise and distinctive presence of fusion genes in neoplastic tissues and their involvement in multiple pathways central to cancer development, growth and survival make them promising targets for personalized therapy. In genitourinary malignancies, rearrangements involving the E26 transformation-specific family of transcription factors have emerged as very frequent alterations in prostate cancer, especially the TMPRSS2-ERG fusion. In renal malignancies, Xp11 and t(6;11) translocations are hallmarks of a distinct pathological group of tumours described as microphthalmia-associated transcription factor family translocation-associated renal cell carcinomas. Novel druggable fusion events have been recognized in genitourinary malignancies, leading to the activation of several clinical trials. For instance, ALK-rearranged renal cell carcinomas have shown responses to alectinib and crizotinib. Erdafitinib has been tested for the treatment of FGFR-rearranged bladder cancer. Other anti-fibroblast growth factor receptor 3 (FGFR3) compounds are showing promising results in the treatment of bladder cancer, including infigratinib and pemigatinib, and all are currently in clinical trials.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy.
| | - Marco Bandini
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Marandino
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siraj M Ali
- Foundation Medicine Inc., Cambridge, MA, USA
| | | | - Jon Chung
- Foundation Medicine Inc., Cambridge, MA, USA
| | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, MA, USA.,Upstate Medical University, Syracuse, NY, USA
| | - Andrea Necchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
33
|
Li F, Meyer AN, Peiris MN, Nelson KN, Donoghue DJ. Oncogenic fusion protein FGFR2-PPHLN1: Requirements for biological activation, and efficacy of inhibitors. Transl Oncol 2020; 13:100853. [PMID: 32854034 PMCID: PMC7451725 DOI: 10.1016/j.tranon.2020.100853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
AIM OF STUDY Chromosomal translocations such as t(10;12)(q26,q12) are associated with intrahepatic cholangiocarcinoma, a universally fatal category of liver cancer. This translocation creates the oncogenic fusion protein of Fibroblast Growth Factor Receptor 2 joined to Periphilin 1. The aims of this study were to identify significant features required for biological activation, analyze the activation of downstream signaling pathways, and examine the efficacy of the TKIs BGJ398 and TAS-120, and of the MEK inhibitor Trametinib. METHODS These studies examined FGFR2-PPHLN1 proteins containing a kinase-dead, kinase-activated, or WT kinase domain in comparison with analogous FGFR2 proteins. Biological activity was assayed using soft agar colony formation in epithelial RIE-1 cells and focus assays in NIH3T3 cells. The MAPK/ERK, JAK/STAT3 and PI3K/AKT signaling pathways were examined for activation. Membrane association was analyzed by indirect immunofluorescence comparing proteins altered by deletion of the signal peptide, or by addition of a myristylation signal. RESULTS Biological activity of FGFR2-PPHLN1 required an active FGFR2-derived tyrosine kinase domain, and a dimerization domain contributed by PPHLN1. Strong activation of canonical MAPK/ERK, JAK/STAT3 and PI3K/AKT signaling pathways was observed. The efficacy of the tyrosine kinase inhibitors BGJ398 and TAS-120 was examined individually and combinatorially with the MEK inhibitor Trametinib; heterogeneous responses were observed in a mutation-specific manner. A requirement for membrane localization of the fusion protein was also demonstrated. CONCLUDING STATEMENT Our study collectively demonstrates the potent transforming potential of FGFR2-PPHLN1 in driving cellular proliferation. We discuss the importance of sequencing-based, mutation-specific personalized therapeutics in treating FGFR2 fusion-positive intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Fangda Li
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Katelyn N Nelson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
34
|
Erdogan B, St Clair RM, Cammarata GM, Zaccaro T, Ballif BA, Lowery LA. Investigating the impact of the phosphorylation status of tyrosine residues within the TACC domain of TACC3 on microtubule behavior during axon growth and guidance. Cytoskeleton (Hoboken) 2020; 77:277-291. [PMID: 32543081 DOI: 10.1002/cm.21622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 11/10/2022]
Abstract
Axon guidance is a critical process in forming the connections between a neuron and its target. The growth cone steers the growing axon toward the appropriate direction by integrating extracellular guidance cues and initiating intracellular signal transduction pathways downstream of these cues. The growth cone generates these responses by remodeling its cytoskeletal components. Regulation of microtubule dynamics within the growth cone is important for making guidance decisions. TACC3, as a microtubule plus-end binding (EB) protein, modulates microtubule dynamics during axon outgrowth and guidance. We have previously shown that Xenopus laevis embryos depleted of TACC3 displayed spinal cord axon guidance defects, while TACC3-overexpressing spinal neurons showed increased resistance to Slit2-induced growth cone collapse. Tyrosine kinases play an important role in relaying guidance signals to downstream targets during pathfinding events via inducing tyrosine phosphorylation. Here, in order to investigate the mechanism behind TACC3-mediated axon guidance, we examined whether tyrosine residues that are present in TACC3 have any role in regulating TACC3's interaction with microtubules or during axon outgrowth and guidance behaviors. We find that the phosphorylatable tyrosines within the TACC domain are important for the microtubule plus-end tracking behavior of TACC3. Moreover, TACC domain phosphorylation impacts axon outgrowth dynamics such as growth length and growth persistency. Together, our results suggest that tyrosine phosphorylation of TACC3 affects TACC3's microtubule plus-end tracking behavior as well as its ability to mediate axon growth dynamics in cultured embryonic neural tube explants.
Collapse
Affiliation(s)
- Burcu Erdogan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA.,Harvard Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, USA
| | - Riley M St Clair
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | | | - Timothy Zaccaro
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Laura Anne Lowery
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Lima NC, Atkinson E, Bunney TD, Katan M, Huang PH. Targeting the Src Pathway Enhances the Efficacy of Selective FGFR Inhibitors in Urothelial Cancers with FGFR3 Alterations. Int J Mol Sci 2020; 21:E3214. [PMID: 32370101 PMCID: PMC7246793 DOI: 10.3390/ijms21093214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Selective FGFR inhibitors such as infigratinib (BGJ398) and erdafitinib (JNJ-42756493) have been evaluated in clinical trials for cancers with FGFR3 molecular alterations, particularly in urothelial carcinoma patients. However, a substantial proportion of these patients (up to 50%) display intrinsic resistance to these drugs and receive minimal clinical benefit. There is thus an unmet need for alternative therapeutic strategies to overcome primary resistance to selective FGFR inhibitors. In this study, we demonstrate that cells expressing cancer-associated activating FGFR3 mutants and the FGFR3-TACC3 fusion showed primary resistance to infigratinib in long-term colony formation assays in both NIH-3T3 and urothelial carcinoma models. We find that expression of these FGFR3 molecular alterations resulted in elevated constitutive Src activation compared to wildtype FGFR3 and that cells co-opted this pathway as a means to achieve intrinsic resistance to infigratinib. Targeting the Src pathway with low doses of the kinase inhibitor dasatinib synergistically sensitized multiple urothelial carcinoma lines harbouring endogenous FGFR3 alterations to infigratinib. Our data provide preclinical rationale that supports the use of dasatinib in combination with selective FGFR inhibitors as a means to overcome intrinsic drug resistance in the salvage therapy setting in urothelial cancer patients with FGFR3 molecular alterations.
Collapse
Affiliation(s)
- Nadia Carvalho Lima
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| | - Eliza Atkinson
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| | - Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; (T.D.B.); (M.K.)
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; (T.D.B.); (M.K.)
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| |
Collapse
|
36
|
Pan T, Li YG, Li KY, Chen C, Xu K, Yuan DY, Zou B, Meng Z. Identification of a novel fusion gene, TRIM52-RACK1, in oral squamous cell carcinoma. Mol Cell Probes 2020; 52:101568. [PMID: 32251686 DOI: 10.1016/j.mcp.2020.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/25/2022]
Abstract
Gene fusion is caused by the linkage of previously separate genes or sequences. Recently, an increasing number of novel fusion genes have been identified and associated with tumor progression, and several of them have been suggested as promising targets for tumor therapy. However, there are hardly any studies reporting the association of fusion genes with the progression of oral squamous cell carcinoma (OSCC). In this study, we identified a total of 11 fused genes in OSCC cells. We further analyzed the structure of one fused gene, TRIM52-RACK1, and detected its function in tumor progression in vitro. We found that TRIM52-RACK1 was caused by a deletion of 181,257,187-181,247,386 at 5q35.3 and it promoted OSCC cell proliferation, migration, and invasion. Therefore, TRIM52-RACK1 can be a promising target for tumor therapy in OSCC.
Collapse
Affiliation(s)
- Tao Pan
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China
| | - Yong-Guo Li
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China
| | - Ke-Yi Li
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China
| | - Cheng Chen
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China
| | - Kai Xu
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China
| | - Dao-Ying Yuan
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China
| | - Bo Zou
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China.
| | - Zhen Meng
- Key Lab of Precision Biomedicine & Department of Stomatology, Liaocheng People's Hospital, College of Stomatology, Shandong First Medical University, China; Medical College, Liaocheng University, China.
| |
Collapse
|
37
|
Georgiou V, Gkretsi V. The role of fibroblast growth factors and their receptors in gliomas: the mutations involved. Rev Neurosci 2020; 30:543-554. [PMID: 30379640 DOI: 10.1515/revneuro-2018-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/10/2018] [Indexed: 11/15/2022]
Abstract
The central nervous system (CNS) comprises of neurons, which are responsible for impulse transmission, and glial cells, which surround neurons providing protection and nutrition. Glial cells are categorized into astrocytes, oligodendrocytes, microglial cells, and ependymal cells. Tumors forming from glial cells are called gliomas, and they are classified accordingly into astrocytomas, oligodendrogliomas, and ependymomas. Gliomas are characterized by high mortality rates and degree of malignancy, heterogeneity, and resistance to treatment. Among the molecular players implicated in glioma pathogenesis are members of the fibroblast growth factor (FGF) superfamily as well as their receptors (FGFRs). In the present study, we provide a review of the literature on the role of FGFs and FGFRs in glioma pathogenesis. We also demonstrate that FGFs, and particularly FGF1 and FGF2, bear a variety of mutations in gliomas, while FGFRs are also crucially involved. In fact, several studies show that in gliomas, FGFRs bear mutations, mainly in the tyrosine kinase domains. Specifically, it appears that FGFR1-TACC1 and FGFR3-TACC3 fusions are common in these receptors. A better understanding of the mutations and the molecular players involved in glioma formation will benefit the scientific community, leading to the development of more effective and innovative therapeutic approaches.
Collapse
Affiliation(s)
- Vasiliki Georgiou
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University of Cyprus, 6, Diogenis Str, Engomi 2404, Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University of Cyprus, 6, Diogenis Str, Engomi 2404, Nicosia, Cyprus
| |
Collapse
|
38
|
Banella C, Ginevrino M, Catalano G, Fabiani E, Falconi G, Divona M, Curzi P, Panetta P, Voso MT, Noguera NI. Absence of FGFR3-TACC3 rearrangement in hematological malignancies with numerical chromosomal alteration. Hematol Oncol Stem Cell Ther 2020; 14:163-168. [PMID: 32199932 DOI: 10.1016/j.hemonc.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 10/24/2022] Open
Abstract
FGFR-TACC, found in different tumor types, is characterized by the fusion of a member of fibroblast grown factor receptor (FGFR) tyrosine kinase (TK) family to a member of the transforming acidic coiled-coil (TACC) proteins. Because chromosome numerical alterations, hallmarks of FGFR-TACC fusions are present in many hematological disorders and there are no data on the prevalence, we studied a series of patients with acute myeloid leukemia and myelodysplastic syndrome who presented numerical alterations using cytogenetic traditional analysis. None of the analyzed samples showed FGFR3-TACC3 gene fusion, so screening for this mutation at diagnosis is not recommended.
Collapse
Affiliation(s)
- C Banella
- Neuro-oncohematology Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - M Ginevrino
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Deparment of Molecular Medicine, University of Pavia, Pavia, Italy
| | - G Catalano
- Neuro-oncohematology Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - E Fabiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G Falconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - M Divona
- Policlinico Tor Vergata, Rome, Italy
| | - P Curzi
- Policlinico Tor Vergata, Rome, Italy
| | - P Panetta
- Policlinico Tor Vergata, Rome, Italy
| | - M T Voso
- Neuro-oncohematology Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - N I Noguera
- Neuro-oncohematology Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
39
|
Sobhani N, Fan C, O. Flores-Villanueva P, Generali D, Li Y. The Fibroblast Growth Factor Receptors in Breast Cancer: from Oncogenesis to Better Treatments. Int J Mol Sci 2020; 21:E2011. [PMID: 32188012 PMCID: PMC7139621 DOI: 10.3390/ijms21062011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Breast cancer (BC) is the most frequent form of malignancy and second only to lung cancer as cause of deaths in women. Notwithstanding many progresses made in the field, metastatic BC has a very poor prognosis. As therapies are becoming more personalized to meet the needs of patients, a better knowledge of the molecular biology leading to the disease unfolds the possibility to project more precise compounds or antibodies targeting definite alteration at the molecular level and functioning on such cancer-causing molecules expressed in cancer cells of patients, or present as antigens on the surface of cancer cell membranes. Fibroblast growth factor receptor (FGFR) is one of such druggable targets, activated by its own ligands -namely the Fibroblast Growth Factors (FGFs). This pathway provides a vast range of interesting molecular targets pursued at different levels of clinical investigation. Herein we provide an update on the knowledge of genetic alterations of the receptors in breast cancer, their role in tumorigenesis and the most recent drugs against this particular receptor for the treatment of the disease.
Collapse
Affiliation(s)
- Navid Sobhani
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada Di Fiume 447, 34149 Trieste, Italy;
| | - Chunmei Fan
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
| | - Pedro O. Flores-Villanueva
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada Di Fiume 447, 34149 Trieste, Italy;
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; (C.F.); (P.O.F.-V.)
| |
Collapse
|
40
|
Cooley LF, Glaser AP, Meeks JJ. Mutation signatures to Pan-Cancer Atlas: Investigation of the genomic landscape of muscle-invasive bladder cancer. Urol Oncol 2020; 40:279-286. [PMID: 32122728 DOI: 10.1016/j.urolonc.2020.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 10/24/2022]
Abstract
The Cancer Genome Atlas (TCGA) for bladder cancer was published in 2014 with updated annotation of over 400 patients with muscle-invasive bladder cancer (MIBC) in 2017. This tremendous work established the foundation of the genomic landscape of MIBC. The next steps to utilize information from The Cancer Genome Atlas is to (1) identify the causes of mutation, (2) determine the significant differences and sources of heterogeneity, and (3) apply these tools toward patient care. In this review, we discuss the full spectrum of the genomic landscape of MIBC toward the goal of therapeutic application.
Collapse
Affiliation(s)
- Lauren Folgosa Cooley
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alexander P Glaser
- Division of Urology, Department of Surgery, North Shore University Health System, Evanston, IL
| | - Joshua J Meeks
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL.
| |
Collapse
|
41
|
Bale TA. FGFR- gene family alterations in low-grade neuroepithelial tumors. Acta Neuropathol Commun 2020; 8:21. [PMID: 32085805 PMCID: PMC7035775 DOI: 10.1186/s40478-020-00898-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of fibroblast growth factor receptor (FGFR) gene family alterations as drivers of primary brain tumors has generated significant excitement, both as potential therapeutic targets as well as defining hallmarks of histologic entities. However, FGFR alterations among neuroepithelial lesions are not restricted to high or low grade, nor to adult vs. pediatric-type tumors. While it may be tempting to consider FGFR-altered tumors as a unified group, this underlying heterogeneity poses diagnostic and interpretive challenges. Therefore, understanding the underlying biology of tumors harboring specific FGFR alterations is critical. In this review, recent evidence for recurrent FGFR alterations in histologically and biologically low-grade neuroepithelial tumors (LGNTs) is examined (namely FGFR1 tyrosine kinase domain duplication in low grade glioma, FGFR1-TACC1 fusions in extraventricular neurocytoma [EVN], and FGFR2-CTNNA3 fusions in polymorphous low-grade neuroepithelial tumor of the young [PLNTY]). Additionally, FGFR alterations with less well-defined prognostic implications are considered (FGFR3-TACC3 fusions, FGFR1 hotspot mutations). Finally, a framework for practical interpretation of FGFR alterations in low grade glial/glioneuronal tumors is proposed.
Collapse
Affiliation(s)
- Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Street, New York, NY, 10065, USA.
| |
Collapse
|
42
|
Abstract
The discovery of fibroblast growth factor receptor (FGFR) gene family alterations as drivers of primary brain tumors has generated significant excitement, both as potential therapeutic targets as well as defining hallmarks of histologic entities. However, FGFR alterations among neuroepithelial lesions are not restricted to high or low grade, nor to adult vs. pediatric-type tumors. While it may be tempting to consider FGFR-altered tumors as a unified group, this underlying heterogeneity poses diagnostic and interpretive challenges. Therefore, understanding the underlying biology of tumors harboring specific FGFR alterations is critical. In this review, recent evidence for recurrent FGFR alterations in histologically and biologically low-grade neuroepithelial tumors (LGNTs) is examined (namely FGFR1 tyrosine kinase domain duplication in low grade glioma, FGFR1-TACC1 fusions in extraventricular neurocytoma [EVN], and FGFR2-CTNNA3 fusions in polymorphous low-grade neuroepithelial tumor of the young [PLNTY]). Additionally, FGFR alterations with less well-defined prognostic implications are considered (FGFR3-TACC3 fusions, FGFR1 hotspot mutations). Finally, a framework for practical interpretation of FGFR alterations in low grade glial/glioneuronal tumors is proposed.
Collapse
Affiliation(s)
- Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Street, New York, NY, 10065, USA.
| |
Collapse
|
43
|
Chew NJ, Nguyen EV, Su SP, Novy K, Chan HC, Nguyen LK, Luu J, Simpson KJ, Lee RS, Daly RJ. FGFR3 signaling and function in triple negative breast cancer. Cell Commun Signal 2020; 18:13. [PMID: 31987043 PMCID: PMC6986078 DOI: 10.1186/s12964-019-0486-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) accounts for 16% of breast cancers and represents an aggressive subtype that lacks targeted therapeutic options. In this study, mass spectrometry (MS)-based tyrosine phosphorylation profiling identified aberrant FGFR3 activation in a subset of TNBC cell lines. This kinase was therefore evaluated as a potential therapeutic target. Methods MS-based tyrosine phosphorylation profiling was undertaken across a panel of 24 TNBC cell lines. Immunoprecipitation and Western blot were used to further characterize FGFR3 phosphorylation. Indirect immunofluorescence and confocal microscopy were used to determine FGFR3 localization. The selective FGFR1–3 inhibitor, PD173074 and siRNA knockdowns were used to characterize the functional role of FGFR3 in vitro. The TCGA and Metabric breast cancer datasets were interrogated to identify FGFR3 alterations and how they relate to breast cancer subtype and overall patient survival. Results High FGFR3 expression and phosphorylation were detected in SUM185PE cells, which harbor a FGFR3-TACC3 gene fusion. Low FGFR3 phosphorylation was detected in CAL51, MFM-223 and MDA-MB-231 cells. In SUM185PE cells, the FGFR3-TACC3 fusion protein contributed the majority of phosphorylated FGFR3, and largely localized to the cytoplasm and plasma membrane, with staining at the mitotic spindle in a small subset of cells. Knockdown of the FGFR3-TACC3 fusion and wildtype FGFR3 in SUM185PE cells decreased FRS2, AKT and ERK phosphorylation, and induced cell death. Knockdown of wildtype FGFR3 resulted in only a trend for decreased proliferation. PD173074 significantly decreased FRS2, AKT and ERK activation, and reduced SUM185PE cell proliferation. Cyclin A and pRb were also decreased in the presence of PD173074, while cleaved PARP was increased, indicating cell cycle arrest in G1 phase and apoptosis. Knockdown of FGFR3 in CAL51, MFM-223 and MDA-MB-231 cells had no significant effect on cell proliferation. Interrogation of public datasets revealed that increased FGFR3 expression in breast cancer was significantly associated with reduced overall survival, and that potentially oncogenic FGFR3 alterations (eg mutation and amplification) occur in the TNBC/basal, luminal A and luminal B subtypes, but are rare. Conclusions These results indicate that targeting FGFR3 may represent a therapeutic option for TNBC, but only for patients with oncogenic FGFR3 alterations, such as the FGFR3-TACC3 fusion. Video abstract.
Collapse
Affiliation(s)
- Nicole J Chew
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shih-Ping Su
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Karel Novy
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Howard C Chan
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Lan K Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jennii Luu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Rachel S Lee
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
44
|
Casadei C, Dizman N, Schepisi G, Cursano MC, Basso U, Santini D, Pal SK, De Giorgi U. Targeted therapies for advanced bladder cancer: new strategies with FGFR inhibitors. Ther Adv Med Oncol 2019; 11:1758835919890285. [PMID: 31803255 PMCID: PMC6878604 DOI: 10.1177/1758835919890285] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Inhibitors of fibroblast growth factor receptor (FGFR) represent an outstanding treatment approach for selected patients with urothelial cancer (UC). These agents are changing the clinical approach to a subgroup of UC, the luminal-papillary subtype, characterized by FGFR mutations, fusions, or amplification. In this review, we provide an overview of the results of recent clinical trials on FGFR tyrosine kinase inhibitors (TKIs) currently in clinical development for the treatment of UC: erdafitinib, rogaratinib, infigratinib, and the monoclonal antibody vofatamab. The Food and Drug Administration recently granted accelerated approval to erdafitinib for patients with advanced UC with alterations of FGFR2 or FGFR3 after progression on platinum-based chemotherapy. We also look at future therapeutic options of combination regimens with immune-checkpoint inhibitors as strategies for improving the antitumor effects of this class of drug, and for preventing or delaying the development of resistance.
Collapse
Affiliation(s)
- Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Nazli Dizman
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Umberto Basso
- Medical Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sumanta K. Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli 40, Meldola, 47014, Italy
| |
Collapse
|
45
|
Overexpression of Chimeric RNA by Retroviral Transduction. Methods Mol Biol 2019. [PMID: 31728969 DOI: 10.1007/978-1-4939-9904-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cloning the open reading frame (ORF) of a protein-coding chimeric RNA into a mammalian expression vector is a simple, practiced way to study the function of the chimeric RNA. Here, we provide procedures for the insertion of the RRM2-C2orf48 fusion ORF into a mammalian expression vector, achieving the overexpression of the RRM2-C2orf48 fusion protein in a colon cancer cell line by retroviral transduction.
Collapse
|
46
|
Peiris MN, Meyer AN, Nelson KN, Bisom-Rapp EW, Donoghue DJ. Oncogenic fusion protein BCR-FGFR1 requires the breakpoint cluster region-mediated oligomerization and chaperonin Hsp90 for activation. Haematologica 2019; 105:1262-1273. [PMID: 31439673 PMCID: PMC7193502 DOI: 10.3324/haematol.2019.220871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Mutation and translocation of fibroblast growth factor receptors often lead to aberrant signaling and cancer. This work focuses on the t(8;22)(p11;q11) chromosomal translocation which creates the breakpoint cluster region (BCR) fibroblast growth factor receptor1 (FGFR1) (BCR-FGFR1) fusion protein. This fusion occurs in stem cell leukemia/lymphoma, which can progress to atypical chronic myeloid leukemia, acute myeloid leukemia, or B-cell lymphoma. This work focuses on the biochemical characterization of BCR-FGFR1 and identification of novel therapeutic targets. The tyrosine kinase activity of FGFR1 is required for biological activity as shown using transformation assays, interleukin-3 independent cell proliferation, and liquid chromatography/mass spectroscopy analyses. Furthermore, BCR contributes a coiled-coil oligomerization domain, also essential for oncogenic transformation by BCR-FGFR1. The importance of salt bridge formation within the coiled-coil domain is demonstrated, as disruption of three salt bridges abrogates cellular transforming ability. Lastly, BCR-FGFR1 acts as a client of the chaperonin heat shock protein 90 (Hsp90), suggesting that BCR-FGFR1 relies on Hsp90 complex to evade proteasomal degradation. Transformed cells expressing BCR-FGFR1 are sensitive to the Hsp90 inhibitor Ganetespib, and also respond to combined treatment with Ganetespib plus the FGFR inhibitor BGJ398. Collectively, these data suggest novel therapeutic approaches for future stem cell leukemia/lymphoma treatment: inhibition of BCR oligomerization by disruption of required salt bridges; and inhibition of the chaperonin Hsp90 complex.
Collapse
Affiliation(s)
- Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego
| | - Katelyn N Nelson
- Department of Chemistry and Biochemistry, University of California San Diego
| | - Ezra W Bisom-Rapp
- Department of Chemistry and Biochemistry, University of California San Diego
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego .,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
47
|
Kurt H, Eyüpoğlu AE, Sütlü T, Budak H, Yüce M. Plasmonic Selection of ssDNA Aptamers against Fibroblast Growth Factor Receptor. ACS COMBINATORIAL SCIENCE 2019; 21:578-587. [PMID: 31265241 DOI: 10.1021/acscombsci.9b00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we describe the selection of ssDNA aptamers targeting fibroblast growth factor receptor binding protein 3 K650E, which has roles in cell division, growth, and differentiation through the kinase cascade. The selection process was based on the label-free, real-time monitoring of binding interactions by surface plasmon resonance, allowing for convenient manipulation of the selection rounds. Next generation sequencing data provided four major motif families from which nine individual sequences were selected based on their abundance levels. Electrophoretic mobility shift assays revealed binding of the selected aptamers to the target protein without significant interference from fibroblast growth factor receptor binding protein 2, indicating the selectivity of the aptamers. The dissociation constant at equilibrium for the best aptamer candidate, SU-3, was found to be (28.2 ± 19.6) × 10-9 M (n = 5) using a single-cycle kinetic analysis method. Advantages of the experimental setup and potential applications of the selected aptamers are discussed.
Collapse
Affiliation(s)
- Hasan Kurt
- Istanbul Medipol University, School of Engineering and Natural Sciences, Beykoz, 34810 Istanbul, Turkey
- Nanosolar Plasmonics Ltd., Gebze, 41400 Kocaeli, Turkey
| | - Alp Ertunga Eyüpoğlu
- Sabanci University, Faculty of Engineering and Natural Sciences, Tuzla, 34956 Istanbul, Turkey
| | - Tolga Sütlü
- Sabanci University, SUNUM Nanotechnology Research Centre, Tuzla, 34956 Istanbul Turkey
| | - Hikmet Budak
- Montana State University, Cereal Genomics Lab, Bozeman, Montana 59717-2000, United States
| | - Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research Centre, Tuzla, 34956 Istanbul Turkey
| |
Collapse
|
48
|
di Martino E, Alder O, Hurst CD, Knowles MA. ETV5 links the FGFR3 and Hippo signalling pathways in bladder cancer. Sci Rep 2019; 9:5740. [PMID: 30952872 PMCID: PMC6450944 DOI: 10.1038/s41598-018-36456-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 11/14/2018] [Indexed: 12/29/2022] Open
Abstract
Activating mutations of fibroblast growth factor receptor 3 (FGFR3) are common in urothelial carcinoma of the bladder (UC). Silencing or inhibition of mutant FGFR3 in bladder cancer cell lines is associated with decreased malignant potential, confirming its important driver role in UC. However, understanding of how FGFR3 activation drives urothelial malignant transformation remains limited. We have previously shown that mutant FGFR3 alters the cell-cell and cell-matrix adhesion properties of urothelial cells, resulting in loss of contact-inhibition of proliferation. In this study, we investigate a transcription factor of the ETS-family, ETV5, as a putative effector of FGFR3 signalling in bladder cancer. We show that FGFR3 signalling induces a MAPK/ERK-mediated increase in ETV5 levels, and that this results in increased level of TAZ, a co-transcriptional regulator downstream of the Hippo signalling pathway involved in cell-contact inhibition. We also demonstrate that ETV5 is a key downstream mediator of the oncogenic effects of mutant FGFR3, as its knockdown in FGFR3-mutant bladder cancer cell lines is associated with reduced proliferation and anchorage-independent growth. Overall this study advances our understanding of the molecular alterations occurring during urothelial malignant transformation and indicates TAZ as a possible therapeutic target in FGFR3-dependent bladder tumours.
Collapse
Affiliation(s)
- Erica di Martino
- University of Leeds, Leeds Institute of Medical Research at St James's, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Olivia Alder
- University of Leeds, Leeds Institute of Medical Research at St James's, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Carolyn D Hurst
- University of Leeds, Leeds Institute of Medical Research at St James's, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Margaret A Knowles
- University of Leeds, Leeds Institute of Medical Research at St James's, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
49
|
Porębska N, Latko M, Kucińska M, Zakrzewska M, Otlewski J, Opaliński Ł. Targeting Cellular Trafficking of Fibroblast Growth Factor Receptors as a Strategy for Selective Cancer Treatment. J Clin Med 2018; 8:jcm8010007. [PMID: 30577533 PMCID: PMC6352210 DOI: 10.3390/jcm8010007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) in response to fibroblast growth factors (FGFs) transmit signals across the cell membrane, regulating important cellular processes, like differentiation, division, motility, and death. The aberrant activity of FGFRs is often observed in various diseases, especially in cancer. The uncontrolled FGFRs' function may result from their overproduction, activating mutations, or generation of FGFRs' fusion proteins. Besides their typical subcellular localization on the cell surface, FGFRs are often found inside the cells, in the nucleus and mitochondria. The intracellular pool of FGFRs utilizes different mechanisms to facilitate cancer cell survival and expansion. In this review, we summarize the current stage of knowledge about the role of FGFRs in oncogenic processes. We focused on the mechanisms of FGFRs' cellular trafficking-internalization, nuclear translocation, and mitochondrial targeting, as well as their role in carcinogenesis. The subcellular sorting of FGFRs constitutes an attractive target for anti-cancer therapies. The blocking of FGFRs' nuclear and mitochondrial translocation can lead to the inhibition of cancer invasion. Moreover, the endocytosis of FGFRs can serve as a tool for the efficient and highly selective delivery of drugs into cancer cells overproducing these receptors. Here, we provide up to date examples how the cellular sorting of FGFRs can be hijacked for selective cancer treatment.
Collapse
Affiliation(s)
- Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marta Latko
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marika Kucińska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Małgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
50
|
Katoh M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol 2018; 16:105-122. [DOI: 10.1038/s41571-018-0115-y] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|