1
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Jin K, Chu X, Qian J. Arginine and colorectal cancer: Exploring arginine-related therapeutic strategies and novel insights into cancer immunotherapies. Int Immunopharmacol 2025; 148:114146. [PMID: 39879835 DOI: 10.1016/j.intimp.2025.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Concerning the progression of societies and the evolution of lifestyle and dietary habits, the potential for the development of human malignancies, particularly colorectal cancer (CRC), has markedly escalated, positioning it as one of the most prevalent and lethal forms of cancer globally. Empirical evidence indicates that the metabolic processes of cancerous and healthy cells can significantly impact immune responses and the fate of tumors. Arginine, a multifaceted amino acid, assumes a crucial and paradoxical role in various metabolic pathways, as certain tumors exhibit arginine auxotrophy while others do not. Notably, CRC is classified as arginine non-auxotrophic, possessing the ability to synthesize arginine from citrulline. Systemic arginine deprivation and the inhibition of arginine uptake represent two prevalent therapeutic strategies in oncological treatment. However, given the divergent behaviors of tumors concerning the metabolism and synthesis of arginine, one of these therapeutic approaches-namely systemic arginine deprivation-does not apply to CRC. This review elucidates the characteristics of arginine uptake inhibition and systemic arginine deprivation alongside their respective benefits and limitations in CRC. Furthermore, the involvement of arginine in immunotherapeutic strategies is examined in light of the most recent discoveries on various human malignancies.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310003, China.
| | - Xiufeng Chu
- Department of General Surgery, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
3
|
Luo X, McAndrews KM, Kalluri R. Natural and Bioengineered Extracellular Vesicles in Diagnosis, Monitoring and Treatment of Cancer. ACS NANO 2025; 19:5871-5896. [PMID: 39869032 PMCID: PMC12002402 DOI: 10.1021/acsnano.4c11630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Extracellular vesicles (EVs) are cell derived nanovesicles which are implicated in both physiological and pathological intercellular communication, including the initiation, progression, and metastasis of cancer. The exchange of biomolecules between stromal cells and cancer cells via EVs can provide a window to monitor cancer development in real time for better diagnostic and interventional strategies. In addition, the process of secretion and internalization of EVs by stromal and cancer cells in the tumor microenvironment (TME) can be exploited for delivering therapeutics. EVs have the potential to provide a targeted, biocompatible, and efficient delivery platform for the treatment of cancer and other diseases. Natural as well as engineered EVs as nanomedicine have immense potential for disease intervention. Here, we provide an overview of current knowledge of EVs' function in cancer progression, diagnostic and therapeutic applications for EVs in the cancer setting, as well as current EV engineering strategies.
Collapse
Affiliation(s)
- Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
4
|
Suga A, Minegishi Y, Yamamoto M, Ueda K, Iwata T. Compound heterozygous mutations in a mouse model of Leber congenital amaurosis reveal the role of CCT2 in photoreceptor maintenance. Commun Biol 2024; 7:676. [PMID: 38830954 PMCID: PMC11148128 DOI: 10.1038/s42003-024-06384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
TRiC/CCT is a chaperonin complex required for the folding of cytoplasmic proteins. Although mutations in each subunit of TRiC/CCT are associated with various human neurodegenerative diseases, their impact in mammalian models has not yet been examined. A compound heterozygous mutation in CCT2 (p.[Thr400Pro]; p.[Arg516His]) is causal for Leber congenital amaurosis. Here, we generate mice carrying each mutation and show that Arg516His (R516H) homozygosity causes photoreceptor degeneration accompanied by a significant depletion of TRiC/CCT substrate proteins in the retina. In contrast, Thr400Pro (T400P) homozygosity results in embryonic lethality, and the compound heterozygous mutant (T400P/R516H) mouse showed aberrant cone cell lamination and died 2 weeks after birth. Finally, CCDC181 is identified as a interacting protein for CCTβ protein, and its localization to photoreceptor connecting cilia is compromised in the mutant mouse. Our results demonstrate the distinct impact of each mutation in vivo and suggest a requirement for CCTβ in ciliary maintenance.
Collapse
Affiliation(s)
- Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Yuriko Minegishi
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Megumi Yamamoto
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan.
| |
Collapse
|
5
|
Li W, Zhu J, Li J, Jiang Y, Sun J, Xu Y, Pan H, Zhou Y, Zhu J. Research advances of tissue-derived extracellular vesicles in cancers. J Cancer Res Clin Oncol 2024; 150:184. [PMID: 38598014 PMCID: PMC11006789 DOI: 10.1007/s00432-023-05596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/23/2023] [Indexed: 04/11/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) can mediate cell-to-cell communication and affect various physiological and pathological processes in both parent and recipient cells. Currently, extensive research has focused on the EVs derived from cell cultures and various body fluids. However, insufficient attention has been paid to the EVs derived from tissues. Tissue EVs can reflect the microenvironment of the specific tissue and the cross-talk of communication among different cells, which can provide more accurate and comprehensive information for understanding the development and progression of diseases. METHODS We review the state-of-the-art technologies involved in the isolation and purification of tissue EVs. Then, the latest research progress of tissue EVs in the mechanism of tumor occurrence and development is presented. And finally, the application of tissue EVs in the clinical diagnosis and treatment of cancer is anticipated. RESULTS We evaluate the strengths and weaknesses of various tissue processing and EVs isolation methods, and subsequently analyze the significance of protein characterization in determining the purity of tissue EVs. Furthermore, we focus on outlining the importance of EVs derived from tumor and adipose tissues in tumorigenesis and development, as well as their potential applications in early tumor diagnosis, prognosis, and treatment. CONCLUSION When isolating and characterizing tissue EVs, the most appropriate protocol needs to be specified based on the characteristics of different tissues. Tissue EVs are valuable in the diagnosis, prognosis, and treatment of tumors, and the potential risks associated with tissue EVs need to be considered as therapeutic agents.
Collapse
Affiliation(s)
- Wei Li
- Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, People's Republic of China
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Jingyao Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiayuan Li
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Yiyun Jiang
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Jiuai Sun
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Yan Xu
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Hongzhi Pan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 200120, People's Republic of China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Jun Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
6
|
Robles J, Prakash A, Vizcaíno JA, Casal JI. Integrated meta-analysis of colorectal cancer public proteomic datasets for biomarker discovery and validation. PLoS Comput Biol 2024; 20:e1011828. [PMID: 38252632 PMCID: PMC10833860 DOI: 10.1371/journal.pcbi.1011828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/01/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The cancer biomarker field has been an object of thorough investigation in the last decades. Despite this, colorectal cancer (CRC) heterogeneity makes it challenging to identify and validate effective prognostic biomarkers for patient classification according to outcome and treatment response. Although a massive amount of proteomics data has been deposited in public data repositories, this rich source of information is vastly underused. Here, we attempted to reuse public proteomics datasets with two main objectives: i) to generate hypotheses (detection of biomarkers) for their posterior/downstream validation, and (ii) to validate, using an orthogonal approach, a previously described biomarker panel. Twelve CRC public proteomics datasets (mostly from the PRIDE database) were re-analysed and integrated to create a landscape of protein expression. Samples from both solid and liquid biopsies were included in the reanalysis. Integrating this data with survival annotation data, we have validated in silico a six-gene signature for CRC classification at the protein level, and identified five new blood-detectable biomarkers (CD14, PPIA, MRC2, PRDX1, and TXNDC5) associated with CRC prognosis. The prognostic value of these blood-derived proteins was confirmed using additional public datasets, supporting their potential clinical value. As a conclusion, this proof-of-the-concept study demonstrates the value of re-using public proteomics datasets as the basis to create a useful resource for biomarker discovery and validation. The protein expression data has been made available in the public resource Expression Atlas.
Collapse
Affiliation(s)
- Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Protein Alternatives SL, Tres Cantos, Madrid, Spain
| | - Ananth Prakash
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - J. Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
7
|
Komatsu H, Usui Y, Tsubota K, Fujii R, Yamaguchi T, Maruyama K, Wakita R, Asakage M, Hamada K, Yamakawa N, Nezu N, Ueda K, Goto H. Vitreous Humor Proteomic Profile in Patients With Vitreoretinal Lymphoma. Invest Ophthalmol Vis Sci 2023; 64:2. [PMID: 38038618 PMCID: PMC10697174 DOI: 10.1167/iovs.64.15.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
Purpose Vitreoretinal lymphoma is a high-grade malignant non-Hodgkin lymphoma with poor prognosis. The objective of this study was to elucidate the proteome profile of the vitreous in patients with vitreoretinal lymphoma (VRL), aiming to advance understanding of the pathophysiology of VRL. Methods Comprehensive proteomic analyses of vitreous humor using liquid chromatography with tandem mass spectrometry were performed for 10 patients with VRL, 10 control patients with idiopathic epiretinal membrane or macular hole, and 10 patients with ocular sarcoidosis. Differentially expressed proteins (DEPs) were identified by comparing VRL with controls and sarcoidosis, and functional pathway analysis was performed. Finally, vitreous concentrations of representative DEPs that were significantly upregulated in proteomics study were measured by ELISA using a separate cohort. Results In total, 1594 proteins were identified in the vitreous humor of VRL, control, and sarcoidosis samples. Also, 282 DEPs were detected in VRL, 249 upregulated and 33 downregulated, compared with controls. Enrichment pathway analysis showed alterations in proteasome-related pathways. Compared to controls and sarcoidosis, 14 DEPs in VRL showed significant upregulation. In the validation study, ELISA confirmed significantly higher vitreous concentrations of PSAT1, YWHAG, and 20S/26S proteasome complex in VRL compared with controls and sarcoidosis. Among the upregulated DEPs, vitreous PITHD1 and NCSTN concentrations correlated positively with vitreous IL-10 concentrations. Conclusions This study highlights aberrations in protein expression pattern in the vitreous of patients with VRL. The DEPs identified in this study may play pivotal roles in VRL pathogenesis, providing insights to enhance understanding of VRL pathophysiology and contribute to the development of VRL biomarkers.
Collapse
Affiliation(s)
- Hiroyuki Komatsu
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Kinya Tsubota
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Risa Fujii
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryo Wakita
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Masaki Asakage
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Kazuki Hamada
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Naoyuki Yamakawa
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Naoya Nezu
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Pourali G, Zafari N, Fiuji H, Batra J, Nazari E, Khazaei M, Hassanian SM, Vahabi M, Kiani M, Ghayour-Mobarhan M, Peters GJ, Ferns GA, Lam AKY, Giovannetti E, Avan A. Extracellular vesicles: Emerging mediators of cell communication in gastrointestinal cancers exhibiting metabolic abnormalities. Cytokine Growth Factor Rev 2023; 73:101-113. [PMID: 37573251 DOI: 10.1016/j.cytogfr.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
There is a complex interaction between pro-tumoural and anti-tumoural networks in the tumour microenvironment (TME). Throughout tumourigenesis, communication between malignant cells and various cells of the TME contributes to metabolic reprogramming. Tumour Dysregulation of metabolic pathways offer an evolutional advantage in the TME and enhance the tumour progression, invasiveness, and metastasis. Therefore, understanding these interactions within the TME is crucial for the development of innovative cancer treatments. Extracellular vesicles (EVs) serve as carriers of various materials that include microRNAs, proteins, and lipids that play a vital role in the communication between tumour cells and non-tumour cells. EVs are actively involved in the metabolic reprogramming process. This review summarized recent findings regarding the involvement of EVs in the metabolic reprogramming of various cells in the TME of gastrointestinal cancers. Additionally, we highlight identified microRNAs involved in the reprogramming process in this group of cancers and explained the abnormal tumour metabolism targeted by exosomal cargos as well as the novel potential therapeutic approaches.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands
| | - Jyotsna Batra
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Center for genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahrou Vahabi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands
| | - MohammadAli Kiani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Professor In Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Alfred King-Yin Lam
- Pathology, School of Medicine and Dentistry, Gold Coast campus, Griffith University, Gold Coast, QLD 4222, Australia
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq,; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
9
|
Wong SWK, Tey SK, Mao X, Fung HL, Xiao Z, Wong DKH, Mak L, Yuen M, Ng IO, Yun JP, Gao Y, Yam JWP. Small Extracellular Vesicle-Derived vWF Induces a Positive Feedback Loop between Tumor and Endothelial Cells to Promote Angiogenesis and Metastasis in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302677. [PMID: 37387563 PMCID: PMC10502836 DOI: 10.1002/advs.202302677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular malignancy by which its growth and dissemination are largely driven by the modulation of tumor-derived small extracellular vesicles (sEVs). Proteomic profiling of circulating sEVs of control individuals and HCC patients identifies von Willibrand factor (vWF) to be upregulated progressively along HCC stages. Elevated sEV-vWF levels are found in a larger cohort of HCC-sEV samples and metastatic HCC cell lines compared to their respective normal counterparts. Circulating sEVs of late-stage HCC patients markedly augment angiogenesis, tumor-endothelial adhesion, pulmonary vascular leakiness, and metastasis, which are significantly compromised by anti-vWF antibody. The role of vWF is further corroborated by the enhanced promoting effect of sEVs collected from vWF-overexpressing cells. sEV-vWF modulates endothelial cells through an elevated level of vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Mechanistically, secreted FGF2 elicits a positive feedback response in HCC via the FGFR4/ERK1 signaling pathway. The co-administration of anti-vWF antibody or FGFR inhibitor significantly improves the treatment outcome of sorafenib in a patient-derived xenograft mouse model. This study reveals mutual stimulation between HCC and endothelial cells by tumor-derived sEVs and endothelial angiogenic factors, facilitating angiogenesis and metastasis. It also provides insights into a new therapeutic strategy involving blocking tumor-endothelial intercellular communication.
Collapse
Affiliation(s)
- Samuel Wan Ki Wong
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Sze Keong Tey
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of SurgerySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Xiaowen Mao
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Hiu Ling Fung
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Zhi‐Jie Xiao
- Research CentreThe Seventh Affiliated HospitalSun Yat‐sen University518107ShenzhenP. R. China
| | - Danny Ka Ho Wong
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Lung‐Yi Mak
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Man‐Fung Yuen
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Irene Oi‐Lin Ng
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Jing Ping Yun
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery IIZhuJiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| |
Collapse
|
10
|
Jiang C, Jiang Z, Sha G, Wang D, Tang D. Small extracellular vesicle-mediated metabolic reprogramming: from tumors to pre-metastatic niche formation. Cell Commun Signal 2023; 21:116. [PMID: 37208722 DOI: 10.1186/s12964-023-01136-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Metastasis, the spread of a tumor or cancer from the primary site of the body to a secondary site, is a multi-step process in cancer progression, accounting for various obstacles in cancer treatment and most cancer-related deaths. Metabolic reprogramming refers to adaptive metabolic changes that occur in cancer cells in the tumor microenvironment (TME) to enhance their survival ability and metastatic potential. Stromal cell metabolism also changes to stimulate tumor proliferation and metastasis. Metabolic adaptations of tumor and non-tumor cells exist not only in the TME but also in the pre-metastatic niche (PMN), a remote TME conducive for tumor metastasis. As a novel mediator in cell-to-cell communication, small extracellular vesicles (sEVs), which have a diameter of 30-150 nm, reprogram metabolism in stromal and cancer cells within the TME by transferring bioactive substances including proteins, mRNAs and miRNAs (microRNAs). sEVs can be delivered from the primary TME to PMN, affecting PMN formation in stroma rewriting, angiogenesis, immunological suppression and matrix cell metabolism by mediating metabolic reprogramming. Herein, we review the functions of sEVs in cancer cells and the TME, how sEVs facilitate PMN establishment to trigger metastasis via metabolic reprogramming, and the prospective applications of sEVs in tumor diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Chuwen Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
11
|
Takeda M, Sakamoto H, Shibasaki N, Fukui T, Magaribuchi T, Sumiyoshi T, Utsunomiya N, Sawada A, Goto T, Kobayashi T, Ueda K, Yamasaki T, Ogawa O, Akamatsu S. Extracellular vesicles secreted from bone metastatic renal cell carcinoma promote angiogenesis and endothelial gap formation in bone marrow in a time-dependent manner in a preclinical mouse model. Front Oncol 2023; 13:1139049. [PMID: 37064121 PMCID: PMC10091619 DOI: 10.3389/fonc.2023.1139049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionBone is a major metastatic site of renal cell carcinoma (RCC). Recently, it is well recognized that bone metastatic tumor cells remodel bone marrow vasculature. However, the precise mechanism underlying cell-cell communication between bone metastatic RCC and the cells in bone marrow remains unknown. Extracellular vesicles (EVs) reportedly play crucial roles in intercellular communication between metastatic tumor cells and bone marrow. Therefore, we conducted the current study to clarify the histological alteration in vascular endothelium in bone marrow induced by EVs secreted from bone metastatic RCC cells as well as association between angiogenesis in bone marrow and bone metastasis formation.Materials and methodsWe established a bone metastatic RCC cell line (786-O BM) by in vivo selection and observed phenotypic changes in tissues when EVs were intravenously injected into immunodeficient mice. Proteomic analysis was performed to identify the protein cargo of EVs that could contribute to histological changes in bone. Tissue exudative EVs (Te-EVs) from cancer tissues of patients with bone metastatic RCC (BM-EV) and those with locally advanced disease (LA-EV) were compared for in vitro function and protein cargo.ResultsTreatment of mice with EVs from 786-O BM promoted angiogenesis in the bone marrow in a time-dependent manner and increased the gaps of capillary endothelium. 786-O BM EVs also promoted tube formation in vitro. Proteomic analysis of EVs identified aminopeptidase N (APN) as a candidate protein that enhances angiogenesis. APN knockdown in 786-O BM resulted in reduced angiogenesis in vitro and in vivo. When parental 786-O cells were intracardially injected 12 weeks after treatment with786-O BM EVs, more bone metastasis developed compared to those treated with EVs from parental 786-O cells. In patient samples, BM-EVs contained higher APN compared to LA-EV. In addition, BM-EVs promoted tube formation in vitro compared to LA-EVs.ConclusionEVs from bone metastatic RCC promote angiogenesis and gap formation in capillary endothelium in bone marrow in a time-dependent manner.
Collapse
Affiliation(s)
- Masashi Takeda
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromasa Sakamoto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noboru Shibasaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Fukui
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Takayuki Sumiyoshi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriaki Utsunomiya
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsuro Sawada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshinari Yamasaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Shusuke Akamatsu,
| |
Collapse
|
12
|
Wang X, Huang D, Wu J, Li Z, Yi X, Zhong T. The Biological Effect of Small Extracellular Vesicles on Colorectal Cancer Metastasis. Cells 2022; 11:cells11244071. [PMID: 36552835 PMCID: PMC9777375 DOI: 10.3390/cells11244071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is a malignancy that seriously threatens human health, and metastasis from CRC is a major cause of death and poor prognosis for patients. Studying the potential mechanisms of small extracellular vesicles (sEVs) in tumor development may provide new options for early and effective diagnosis and treatment of CRC metastasis. In this review, we systematically describe how sEVs mediate epithelial mesenchymal transition (EMT), reconfigure the tumor microenvironment (TME), modulate the immune system, and alter vascular permeability and angiogenesis to promote CRC metastasis. We also discuss the current difficulties in studying sEVs and propose new ideas.
Collapse
Affiliation(s)
- Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: ; Tel.: +86-07978266042
| |
Collapse
|
13
|
Chen X, Xia Q, Sun N, Zhou H, Xu Z, Yang X, Yan R, Li P, Li T, Qin X, Yang H, Wu C, You F, Liao X, Li S, Liu Y. Shear stress enhances anoikis resistance of cancer cells through ROS and NO suppressed degeneration of Caveolin-1. Free Radic Biol Med 2022; 193:95-107. [PMID: 36243211 DOI: 10.1016/j.freeradbiomed.2022.10.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) acquire enhanced anti-anoikis abilities after experiencing flow shear stress in the circulatory system. Our previous study demonstrated that low shear stress (LSS) promotes anoikis resistance of human breast carcinoma cells via caveolin-1 (Cav-1)-dependent extrinsic and intrinsic apoptotic pathways. However, the underlying mechanism how LSS enhanced Cav-1 expression in suspended cancer cells remains unclear. Herein, we found that LSS induced redox signaling was involved in the regulation of Cav-1 level and anoikis resistance in suspension cultured cancer cells. Exposure of human breast carcinoma MDA-MB-231 cells to LSS (2 dyn/cm2) markedly induced ROS and •NO generation, which promoted the cell viability and reduced the cancer cell apoptosis. Furthermore, ROS and •NO scavenging inhibited the upregulation of Cav-1 by interfering ubiquitination, and suppressed the anoikis resistance of suspended tumor cells. These findings provide new insight into the mechanism by which LSS-stimulated ROS and •NO generation increases Cav-1 stabilization in suspended cancer cells through inhibition of ubiquitination and proteasomal degradation, which could be a potential target for therapy of metastatic tumors.
Collapse
Affiliation(s)
- Xiangyan Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Qiong Xia
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Ningwei Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Hailei Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Zhihao Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Xi Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Ran Yan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Ping Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, PR China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China.
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
14
|
Muraoka S, Hirano M, Isoyama J, Ishida M, Tomonaga T, Adachi J. Automated Proteomics Sample Preparation of Phosphatidylserine-Positive Extracellular Vesicles from Human Body Fluids. ACS OMEGA 2022; 7:41472-41479. [PMID: 36406491 PMCID: PMC9670285 DOI: 10.1021/acsomega.2c05244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are ubiquitously secreted by almost every cell type and are present in all body fluids. Blood-derived EVs can be used as a promising source for biomarker monitoring in disease. EV proteomics is currently being analyzed in clinical specimens. However, their EV proteomics preparation methods are limited in throughput for human subjects. Here, we introduced a novel automated EV isolation and sample preparation method using a magnetic particle processing robot for automated 96-well processing of magnetic particles for EV proteomics analysis that can be started with a low volume of multiple clinical samples. The automation of EV purification reduced the coefficient of variation of protein quantification from 3.5 to 2.2% compared with manual purification, enabling the quantification of 1120 proteins in 1 h of MS analysis. This automated proteomics EV sample preparation is attractive for processing large cohort samples for biomarker development, validation, and routine testing.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Laboratory
of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health
and Nutrition, Osaka 567-0085, Japan
- Laboratory
of Clinical and Analytical Chemistry, Collaborative Research Center
for Health and Medicine, National Institute
of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Masayo Hirano
- Laboratory
of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health
and Nutrition, Osaka 567-0085, Japan
| | - Junko Isoyama
- Laboratory
of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health
and Nutrition, Osaka 567-0085, Japan
| | - Mimiko Ishida
- Laboratory
of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health
and Nutrition, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory
of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health
and Nutrition, Osaka 567-0085, Japan
| | - Jun Adachi
- Laboratory
of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health
and Nutrition, Osaka 567-0085, Japan
- Laboratory
of Clinical and Analytical Chemistry, Collaborative Research Center
for Health and Medicine, National Institute
of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory
of Proteomics and Drug Discovery, Graduate School of Pharmaceutical
Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Kugeratski FG, Santi A, Zanivan S. Extracellular vesicles as central regulators of blood vessel function in cancer. Sci Signal 2022; 15:eaaz4742. [PMID: 36166511 DOI: 10.1126/scisignal.aaz4742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors. EV-mediated signaling in endothelial cells can occur through the transfer of functional cargos such as miRNAs, lncRNAs, cirRNAs, and proteins. Moreover, membrane-bound proteins in EVs can elicit receptor-mediated signaling in endothelial cells. Together, these mechanisms reprogram endothelial cells and contribute to the sustained exacerbated angiogenic signaling typical of tumors, which, in turn, influences cancer progression. Targeting these angiogenesis-promoting EV-dependent mechanisms may offer additional strategies to normalize tumor vasculature. Here, we discuss the current knowledge pertaining to the contribution of cancer cell-derived EVs in mechanisms regulating blood vessel functions in tumors. Moreover, we discuss the translational opportunities in targeting the dysfunctional tumor vasculature using EVs and highlight the open questions in the field of EV biology that can be addressed using mass spectrometry-based proteomics analysis.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Sara Zanivan
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
16
|
Chen J, Zhu H, Yin Y, Jia S, Luo X. Colorectal cancer: Metabolic interactions reshape the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188797. [DOI: 10.1016/j.bbcan.2022.188797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023]
|
17
|
Comprehensive Proteomic Profiling of Vitreous Humor in Ocular Sarcoidosis Compared with Other Vitreoretinal Diseases. J Clin Med 2022; 11:jcm11133606. [PMID: 35806888 PMCID: PMC9267904 DOI: 10.3390/jcm11133606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Ocular sarcoidosis is an inflammatory disease that manifests as uveitis, and is often difficult to distinguish from other forms of uveitis based on nonspecific findings alone. Comprehensive proteomic analyses of vitreous humor using LC-MS/MS were performed in each patient with ocular sarcoidosis, vitreoretinal lymphoma (VRL), and controls with epiretinal membrane or macular hole. Differential expression proteins (DEPs) were identified by comparing with VRL and controls, and functional pathway analysis was performed. The candidate biomarker proteins for ocular sarcoidosis were validated using enzyme-linked immunosorbent assay. A total of 1590 proteins were identified in all samples. Of these, 290 and 174 DEPs were detected in vitreous of ocular sarcoidosis compared with controls and VRL, respectively. Enrichment pathway analysis revealed that pathways related to the immune system were most upregulated. Validation of two candidate biomarkers for ocular sarcoidosis, neutrophil gelatinase-associated lipocalin (NGAL) and junctional adhesion molecules B (JAMB), confirmed upregulated NGAL and JAMB protein expressions in ocular sarcoidosis compared to controls and VRL. The results of this study revealed that altered vitreous protein expression levels may discriminate ocular sarcoidosis from other uveitis diseases. Vitreous NGAL and JAMB are potential biomarkers and may serve as an auxiliary tool for the diagnosis of ocular sarcoidosis.
Collapse
|
18
|
Fridman ES, Ginini L, Gil Z. The Role of Extracellular Vesicles in Metabolic Reprogramming of the Tumor Microenvironment. Cells 2022; 11:cells11091433. [PMID: 35563739 PMCID: PMC9104192 DOI: 10.3390/cells11091433] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) includes a network of cancerous and non-cancerous cells, together with associated blood vessels, the extracellular matrix, and signaling molecules. The TME contributes to cancer progression during various phases of tumorigenesis, and interactions that take place within the TME have become targets of focus in cancer therapy development. Extracellular vesicles (EVs) are known to be conveyors of genetic material, proteins, and lipids within the TME. One of the hallmarks of cancer is its ability to reprogram metabolism to sustain cell growth and proliferation in a stringent environment. In this review, we provide an overview of TME EV involvement in the metabolic reprogramming of cancer and stromal cells, which favors cancer progression by enhancing angiogenesis, proliferation, metastasis, treatment resistance, and immunoevasion. Targeting the communication mechanisms and systems utilized by TME-EVs is opening a new frontier in cancer therapy.
Collapse
Affiliation(s)
- Eran S. Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel; (E.S.F.); (L.G.)
| | - Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel; (E.S.F.); (L.G.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel
- Correspondence: ; Tel.: +972-4-854-2480
| |
Collapse
|
19
|
Muraoka S, Hirano M, Isoyama J, Nagayama S, Tomonaga T, Adachi J. Comprehensive proteomic profiling of plasma and serum phosphatidylserine-positive extracellular vesicles reveals tissue-specific proteins. iScience 2022; 25:104012. [PMID: 35340435 PMCID: PMC8941215 DOI: 10.1016/j.isci.2022.104012] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) are ubiquitously secreted by almost all tissues and carry many cargoes, including proteins, RNAs, and lipids, which are related to various biological processes. EVs are shed from tissues into the blood and expected to be used as biomarkers for diseases. Here, we isolated EVs from EDTA plasma and serum of six healthy subjects by an affinity capture isolation method, and a total of 4,079 proteins were successfully identified by comprehensive EV proteomics. Our reliable and detailed catalog of the differential expression profiles of EV proteins in plasma and serum between healthy individuals could be useful as a reference for biomarker discovery. Furthermore, tissue-specific protein groups co-regulated between blood EVs from healthy individuals were identified. These EV proteins are expected to be used for more specific and sensitive enrichment of tissue-specific EVs and for screening and monitoring of disease without diagnostic imaging in patient blood in the future. Catalog of EV proteome created by state-of-the-art proteome analysis technologies Plasma and serum EV proteome profiles showed a difference in healthy individuals Novel standard reference proteins in plasma and serum EVs were identified Tissue-specific EV marker candidates were presented by the informatics approach
Collapse
Affiliation(s)
- Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Masayo Hirano
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Corresponding author
| |
Collapse
|
20
|
Cancer extracellular vesicles, tumoroid models, and tumor microenvironment. Semin Cancer Biol 2022; 86:112-126. [PMID: 35032650 DOI: 10.1016/j.semcancer.2022.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Cancer extracellular vesicles (EVs), or exosomes, promote tumor progression through enhancing tumor growth, initiating epithelial-to-mesenchymal transition, remodeling the tumor microenvironment, and preparing metastatic niches. Three-dimensionally (3D) cultured tumoroids / spheroids aim to reproduce some aspects of tumor behavior in vitro and show increased cancer stem cell properties. These properties are transferred to their EVs that promote tumor growth. Moreover, recent tumoroid models can be furnished with aspects of the tumor microenvironment, such as vasculature, hypoxia, and extracellular matrix. This review summarizes tumor tissue culture and engineering platforms compatible with EV research. For example, the combination experiments of 3D-tumoroids and EVs have revealed multifunctional proteins loaded in EVs, such as metalloproteinases and heat shock proteins. EVs or exosomes are able to transfer their cargo molecules to recipient cells, whose fates are often largely altered. In addition, the review summarizes approaches to EV labeling technology using fluorescence and luciferase, useful for studies on EV-mediated intercellular communication, biodistribution, and metastatic niche formation.
Collapse
|
21
|
Huang M, Lei Y, Zhong Y, Chung C, Wang M, Hu M, Deng L. New Insights Into the Regulatory Roles of Extracellular Vesicles in Tumor Angiogenesis and Their Clinical Implications. Front Cell Dev Biol 2021; 9:791882. [PMID: 34966744 PMCID: PMC8710745 DOI: 10.3389/fcell.2021.791882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis is required for tumor growth and development. Extracellular vesicles (EVs) are important signaling entities that mediate communication between diverse types of cells and regulate various cell biological processes, including angiogenesis. Recently, emerging evidence has suggested that tumor-derived EVs play essential roles in tumor progression by regulating angiogenesis. Thousands of molecules are carried by EVs, and the two major types of biomolecules, noncoding RNAs (ncRNAs) and proteins, are transported between cells and regulate physiological and pathological functions in recipient cells. Understanding the regulation of EVs and their cargoes in tumor angiogenesis has become increasingly important. In this review, we summarize the effects of tumor-derived EVs and their cargoes, especially ncRNAs and proteins, on tumor angiogenesis and their mechanisms, and we highlight the clinical implications of EVs in bodily fluids as biomarkers and as diagnostic, prognostic, and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Maohua Huang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chiwing Chung
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Mei Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Min Hu
- Department of Hepatobiliary Surgery, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
22
|
Chang LC, Hsu YC, Chiu HM, Ueda K, Wu MS, Kao CH, Shen TL. Exploration of the Proteomic Landscape of Small Extracellular Vesicles in Serum as Biomarkers for Early Detection of Colorectal Neoplasia. Front Oncol 2021; 11:732743. [PMID: 34589434 PMCID: PMC8473825 DOI: 10.3389/fonc.2021.732743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background Patient participation in colorectal cancer (CRC) screening via a stool test and colonoscopy is suboptimal, but participation can be improved by the development of a blood test. However, the suboptimal detection abilities of blood tests for advanced neoplasia, including advanced adenoma (AA) and CRC, limit their application. We aimed to investigate the proteomic landscape of small extracellular vesicles (sEVs) from the serum of patients with colorectal neoplasia and identify specific sEV proteins that could serve as biomarkers for early diagnosis. Materials and Methods We enrolled 100 patients including 13 healthy subjects, 12 non-AAs, 13 AAs, and 16 stage-I, 15 stage-II, 16 stage-III, and 15 stage-IV CRCs. These patients were classified as normal control, early neoplasia, and advanced neoplasia. The sEV proteome was explored by liquid chromatography-tandem mass spectrometry. Generalized association plots were used to integrate the clustering methods, visualize the data matrix, and analyze the relationship. The specific sEV biomarkers were identified by a decision tree via Orange3 software. Functional enrichment analysis was conducted by using the Ingenuity Pathway Analysis platform. Results The sEV protein matrix was identified from the serum of 100 patients and contained 3353 proteins, of which 1921 proteins from 98 patients were finally analyzed. Compared with the normal control, subjects with early and advanced neoplasia exhibited a distinct proteomic distribution in the data matrix plot. Six sEV proteins were identified, namely, GCLM, KEL, APOF, CFB, PDE5A, and ATIC, which properly distinguished normal control, early neoplasia, and advanced neoplasia patients from each other. Functional enrichment analysis revealed that APOF+ and CFB+ sEV associated with clathrin-mediated endocytosis signaling and the complement system, which have critical implications for CRC carcinogenesis. Conclusion Patients with colorectal neoplasia had a distinct sEV proteome expression pattern in serum compared with those patients who were healthy and did not have neoplasms. Moreover, the six identified specific sEV proteins had the potential to discriminate colorectal neoplasia between early-stage and advanced neoplasia. Collectively, our study provided a six-sEV protein biomarker panel for CRC diagnosis at early or advanced stages. Furthermore, the implication of the sEV proteome in CRC carcinogenesis via specific signaling pathways was explored.
Collapse
Affiliation(s)
- Li-Chun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Science and Engineering, National Central University, Taoyuan, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Koji Ueda
- Cancer Precision Medicine Center, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiun-How Kao
- Department of Statistics, Tamkang University, New Taipei City, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|