1
|
Nauseef JT, Chu TR, Hooper WF, Alonso A, Oku A, Geiger H, Goldstein ZR, Shah M, Sigouros M, Manohar J, Steinsnyder Z, Winterkorn L, Robinson BD, Sboner A, Beltran H, Elemento O, Hajirasouliha I, Imielinski M, Nanus DM, Tagawa ST, Robine N, Mosquera JM. A complex phylogeny of lineage plasticity in metastatic castration resistant prostate cancer. NPJ Precis Oncol 2025; 9:91. [PMID: 40155466 PMCID: PMC11953479 DOI: 10.1038/s41698-025-00854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/25/2025] [Indexed: 04/01/2025] Open
Abstract
Aggressive variant and androgen receptor (AR)-independent castration resistant prostate cancers (CRPC) represent the most significant diagnostic and therapeutic challenges in prostate cancer. This study examined a case of simultaneous progression of both adenocarcinoma and squamous tumors from the same common origin. Using whole-genome and transcriptome sequencing from 17 samples collected over >6 years, we established the clonal relationship of all samples, defined shared complex structural variants, and demonstrated both divergent and convergent evolution at AR. Squamous CRPC-associated circulating tumor DNA was identified at clinical progression prior to biopsy detection of any squamous differentiation. Dynamic changes in the detection rate of histology-specific clones in circulation reflected histology-specific sensitivity to treatment. This dataset serves as an illustration of non-neuroendocrine transdifferentiation and highlights the importance of serial sampling at progression in CRPC for the detection of emergent non-adenocarcinoma histologies with implications for the treatment of lineage plasticity and transdifferentiation in metastatic CRPC.
Collapse
Affiliation(s)
- Jones T Nauseef
- Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | | | | | - Alicia Alonso
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ali Oku
- New York Genome Center, New York, NY, USA
| | | | | | | | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Brian D Robinson
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Iman Hajirasouliha
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Marcin Imielinski
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Scott T Tagawa
- Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Bugoye FC, Torrorey-Sawe R, Biegon R, Dharsee N, Mafumiko F, Kibona H, Aboud S, Patel K, Mining S. Exploring therapeutic applications of PTEN, TMPRSS2:ERG fusion, and tumour molecular subtypes in prostate cancer management. Front Oncol 2025; 15:1521204. [PMID: 40165885 PMCID: PMC11956161 DOI: 10.3389/fonc.2025.1521204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Background Prostate cancer is defined by the suppression of genes that suppress tumours and the activation of proto-oncogenes. These are the hallmarks of prostate cancer, and they have been linked to numerous genomic variations, which lead to unfavourable treatment outcomes. Prostate cancer can be categorised into various risk groups of tumour molecular subtypes grounded in the idea of genomic structural variations connected to TMPRSS2:ERG fusion and loss of PTEN. Research suggests that certain genomic alterations may be more prevalent or exhibit different patterns in prostate cancer tumours across populations. Studies have reported a higher frequency of PTEN loss and TMPRSS2:ERG fusion in prostate tumours of Black/African American men, which may contribute to the more aggressive nature of the disease in this population. Thus, therapeutically important information can be obtained from these structural variations, including correlations with poor prognosis and disease severity. Methods Peer-reviewed articles from 1998 to 2024 were sourced from PubMed and Google Scholar. During the review process, the following search terms were employed: "Tumour suppressor genes OR variations OR alterations OR oncogenes OR diagnostics OR ethnicity OR biomarkers OR prostate cancer genomics OR prostate cancer structural variations OR tumour and molecular subtypes OR therapeutic implications OR immunotherapy OR immunogenetics." Results There was a total of 13,012 results for our search query: 5,903 publications from Google Scholar with the patent and citation unchecked filer options, and 7127 articles from PubMed with the abstract, free full text, and full-text options selected. Unpublished works were not involved. Except for four articles published between 1998 and 1999, all other selected articles published in 2000 and later were considered. However, papers with irrelevant information or redundant or duplicate content were not chosen for this review. Thus, 134 met the inclusion criteria and were ultimately retained for this review. Conclusion This review extracted 134 relevant articles about genomic structure variations in prostate cancer. Our findings demonstrate the importance of PTEN and TMPRSS2:ERG fusion and tumour molecular subtyping in prostate cancer precision medicine.
Collapse
Affiliation(s)
- Fidelis Charles Bugoye
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Rispah Torrorey-Sawe
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Richard Biegon
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Nazima Dharsee
- Clinical Research, Training and Consultancy Unit, Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Fidelice Mafumiko
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
| | - Herry Kibona
- Department of Urology, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Said Aboud
- Head Office, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Kirtika Patel
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Simeon Mining
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| |
Collapse
|
3
|
Ajayi AF, Hamed MA, Onaolapo MC, Fiyinfoluwa OH, Oyeniran OI, Oluwole DT. Defining the genetic profile of prostate cancer. Urol Oncol 2025; 43:164-177. [PMID: 39690078 DOI: 10.1016/j.urolonc.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 12/19/2024]
Abstract
Several studies indicated that prostate cancer has a hereditary component. In particular, a significant risk of prostate cancer has been linked to a tight familial lineage. However, to provide insight into how prostate cancer is inherited, characterising its genetic profile is essential. The current body of research on the analysis of genetic mutations in prostate cancer was reviewed to achieve this. This paper reports on the effects and underlying processes of prostate cancer that have been linked to decreased male fertility. Many research approaches used have resulted in the discovery of unique inheritance patterns and manifest traits, the onset and spread of prostate cancer have also been linked to many genes. Studies have specifically examined Androgen Receptor gene variants about prostate cancer risk and disease progression. Research has shown that genetic and environmental variables are important contributors to prostate cancer, even if the true origins of the disease are not fully recognised or established. Researchers studying the genetics of prostate cancer are using genome-wide association studies more and more because of their outstanding effectiveness in revealing susceptibility loci for prostate cancer. Genome-Wide Association Studies provides a detailed method for identifying the distinct sequence of a gene that is associated with cancer risk. Surgical procedures and radiation treatments are 2 of the treatment options for prostate cancer. Notwithstanding the compelling evidence shown in this work, suggests that more research must be done to detect the gene alterations and the use of genetic variants in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria; The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - Moyinoluwa Comfort Onaolapo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Ogundipe Helen Fiyinfoluwa
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Biomedical operations, Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | | | - David Tolulope Oluwole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Department of Physiology, College of Health Sciences, Crescent University, Abeokuta, Ogun State, Nigeria.
| |
Collapse
|
4
|
Borbiev T, Babcock K, Sinopole K, Chesnut GT, Petrovics G. Ancestry-Specific DNA Damage Repair Gene Mutations and Prostate Cancer. Cancers (Basel) 2025; 17:682. [PMID: 40002276 PMCID: PMC11853348 DOI: 10.3390/cancers17040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
This review is intended to reflect the currently available literature on both clinically significant germline mutations in DNA damage repair (DDR) genes as well as the importance of ancestral diversity in the pathogenesis of prostate cancer (PCa). The second most prevalent cancer worldwide in men is PCa, causing significant morbidity and mortality in its advanced stage. Emerging data highlight the substantial role of germline mutations of DDR genes in PCa pathogenesis, especially in progression to aggressive forms of the disease. Germline genetic testing is recognized as a necessary tool for efficient, individualized patient care. NCCR guidelines recommend inquiring about the family history of PCa and known germline variants and, if indicated, proceeding with germline multigene testing followed by post-test genetic counseling. Depending on the germline mutations in HR repair genes or in MMR genes, specific treatment options may provide clinical benefit. We will discuss specific germline mutations that are involved in PCa progression and prognosis in racially diverse populations.
Collapse
Affiliation(s)
- Talaibek Borbiev
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.B.); (G.T.C.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Kevin Babcock
- Internal Medicine, Alexander T. Augusta Military Medicine Center, Fort Belvoir, VA 22060, USA;
| | - Kayleigh Sinopole
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Gregory T. Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.B.); (G.T.C.)
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.B.); (G.T.C.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| |
Collapse
|
5
|
Hoang Nguyen KH, Le NV, Nguyen PH, Nguyen HHT, Hoang DM, Huynh CD. Human immune system: Exploring diversity across individuals and populations. Heliyon 2025; 11:e41836. [PMID: 39911431 PMCID: PMC11795082 DOI: 10.1016/j.heliyon.2025.e41836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
The immune response is an intricate system that involves the complex connection of cellular and molecular components, each with distinct functional specialisations. It has a distinct capacity to adjust and mould the immune response in accordance with specific stimuli, influenced by both genetic and environmental factors. The presence of genetic diversity, particularly across different ethnic and racial groups, significantly contributes to the impact of incidence of diseases, disease susceptibility, autoimmune disorders, and cancer risks in specific regions and certain populations. Environmental factors, including geography and socioeconomic status, further modulate the variety of the immune system responses. These, in turn, affect the susceptibility to infectious diseases and development of autoimmune disorders. Despite the complexity of the relationship, there remains a gap in understanding the specificity of immune indices across races, immune reference ranges among populations, highlighting the need for deeper understanding of immune diversity for personalized approaches in diagnostics and therapeutics. This review systematically organizes these findings, with the goal of emphasizing the potential of targeted interventions to address health disparities and advance translational research, enabling a more comprehensive strategy. This approach promises significant advancements in identifying specific immunological conditions, focusing on personalized interventions, through both genetic and environmental factors.
Collapse
Affiliation(s)
| | - Nghi Vinh Le
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | | - Hien Hau Thi Nguyen
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam
| | - Duy Mai Hoang
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | |
Collapse
|
6
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
7
|
Micale L, Vourlia A, Fusco C, Pracella R, Karagiannis DC, Nardella G, Vaccaro L, Leone MP, Gramazio A, Dentici ML, Aiello C, Novelli A, Xenou L, Sui Y, Eichler EE, Cacchiarelli D, Mavrothalassitis G, Castori M. Heterozygous variants disrupting the interaction of ERF with activated ERK1/2 cause microcephaly, developmental delay, and skeletal anomalies. Eur J Hum Genet 2024:10.1038/s41431-024-01721-9. [PMID: 39668184 DOI: 10.1038/s41431-024-01721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 10/17/2024] [Indexed: 12/14/2024] Open
Abstract
Heterozygous deleterious null alleles and specific missense variants in the DNA-binding domain of the ETS2 repressor factor (ERF) cause craniosynostosis, while the recurrent p.(Tyr89Cys) missense variant is associated with Chitayat syndrome. Exome and whole transcriptome sequencing revealed the ERF de novo in-frame indel c.911_913del selectively removing the serine of the FSF motif, which interacts with the extracellular signal-regulated kinases (ERKs), in a 10-year-old girl with microcephaly, multiple congenital joint dislocations, generalized joint hypermobility, and Pierre-Robin sequence. Three additional cases with developmental delay variably associated with microcephaly, Pierre-Robin sequence and minor skeletal anomalies were detected carrying heterozygous de novo non-truncating alleles (two with c.911_913del and one with the missense c.907 T > A change) in the same FSF motif. Protein affinity maps, co-immunoprecipitation experiments and subcellular distribution showed that both the variants impair the interaction between ERF and activated ERK1/2 and increase ERF nuclear localization, affecting ERF repressor activity that may lead to developmental defects. Our work expands the phenotypic spectrum of ERF-related disorders to a pleiotropic condition with microcephaly, developmental delay and skeletal anomalies, that we termed MIDES syndrome, and adds to the understanding of the relevance of the ERF-ERK interaction in human development and disease.
Collapse
Affiliation(s)
- Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy.
| | - Aikaterini Vourlia
- IMBB, FORTH, 71003, Heraklion, Crete, Greece
- Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy
| | | | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy
| | - Lorenzo Vaccaro
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Pia Leone
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy
| | - Antonio Gramazio
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Lisa Dentici
- Rare Diseases and Medical Genetics, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Chiara Aiello
- Translational Cytogenetics, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenetics, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Lydia Xenou
- IMBB, FORTH, 71003, Heraklion, Crete, Greece
| | - Yang Sui
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Davide Cacchiarelli
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale, Naples, Italy
| | - George Mavrothalassitis
- IMBB, FORTH, 71003, Heraklion, Crete, Greece.
- Medical School, University of Crete, 71003, Heraklion, Crete, Greece.
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, Italy
| |
Collapse
|
8
|
Ahmed D, Mohammed EAA, Ahmed MEM, Abdalla YMO, Hadad I, Elimam AA, Mohammed YA, Elhassan MMA, Ismail AM, Abdoun AO, Cacciatore S, Zerbini LF. Epidemiologic study on prostate cancer in Sudanese men across African ethnic groups. Sci Rep 2024; 14:29646. [PMID: 39609498 PMCID: PMC11605049 DOI: 10.1038/s41598-024-77475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
This study sought to investigate the demographic and clinical characteristics of Sudanese men diagnosed with prostate cancer (PCa) to highlight differences in diagnosis among the three major ethnolinguistic groups. A total of 532 patients with confirmed PCa diagnosis through biopsy were enrolled from six medical centers in Sudan. The majority of patients, comprising 84.2% (448/532), were diagnosed with advanced-stage disease, with a Grade group above 3. There were no discernible differences in PCa aggressiveness among the ethnolinguistic groups. However, higher levels of prostate-specific antigen (PSA) were observed in the Niger-Congo group, where 55.2% had PSA values exceeding 50 ng/ml. Patients from this group were also diagnosed at a younger age. In contrast, 90.5% of Afro-Asiatic patients are over 60 years old. Further analysis conducted within an age-matched subgroup of patients (n = 273) revealed a higher incidence of perineural invasion in the Afro-Asiatic group. This research represents the first investigation of PCa across different African ethnic groups and associates a higher incidence of perineural invasion with a specific ethnic group. While recent efforts have been made to establish African-relevant risk models to mitigate PCa health disparities, there remains a need for further investigation into genetically distinct populations within the African continent.
Collapse
Affiliation(s)
- Dalia Ahmed
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Science, Al-Neelain University, Khartoum, Sudan
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Omdurman, Sudan
- International Centre for Genetic Engineering and Biotechnology, Bioinformatics Unit, Cape Town, South Africa
| | - Elsadig Ahmed Adam Mohammed
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Science, National Ribat University, Khartoum, Sudan
- Department of Histology and Cytology, National Ribat University Hospital, Khartoum, Sudan
| | - Mohamed Elimam Mohamed Ahmed
- Urology Department, Faculty of Medicine, University of Gezira, Wad Medani, Sudan
- Gezira Hospital for Renal Disease and Surgery, Wad Medani, Sudan
| | - Yassin Mohamed Osman Abdalla
- Urology Department, Faculty of Medicine, University of Gezira, Wad Medani, Sudan
- Gezira Hospital for Renal Disease and Surgery, Wad Medani, Sudan
| | - Ibrahin Hadad
- Department of Histopathology and Cytology, Medical Laboratory Unit, Omdurman Teaching Hospital, Omdurman, Sudan
| | - Alsmawal Awad Elimam
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Science, Al-Neelain University, Khartoum, Sudan
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Science, National Ribat University, Khartoum, Sudan
- Department of Histopathology and Cytology, Medical Laboratory Unit, Omdurman Teaching Hospital, Omdurman, Sudan
| | - Yousif Abdelhameed Mohammed
- Clinical Chemistry Department, Faculty of Medical Laboratory Science, University of Gezira, Wad Medani, Sudan
| | | | - Amar Mohamed Ismail
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
- Department of Biomedical Science, Faculty of Pharmacy, Omar Al-Mokhtar University, Al Bayda, Libya
| | - Asim Osman Abdoun
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology, Bioinformatics Unit, Cape Town, South Africa.
| | - Luiz Fernando Zerbini
- Cancer Genomics, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.
| |
Collapse
|
9
|
Diossy M, Tisza V, Li H, Sahgal P, Zhou J, Sztupinszki Z, Young D, Nousome D, Kuo C, Jiang J, Chen Y, Ebner R, Sesterhenn IA, Moncur JT, Chesnut GT, Petrovics G, Klus GT, Valcz G, Nuzzo PV, Ribli D, Börcsök J, Prosz A, Krzystanek M, Ried T, Szuts D, Rizwan K, Kaochar S, Pathania S, D'Andrea AD, Csabai I, Srivastava S, Freedman ML, Dobi A, Spisak S, Szallasi Z. Frequent CHD1 deletions in prostate cancers of African American men is associated with rapid disease progression. NPJ Precis Oncol 2024; 8:208. [PMID: 39294262 PMCID: PMC11411125 DOI: 10.1038/s41698-024-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
We analyzed genomic data from the prostate cancer of African- and European American men to identify differences contributing to racial disparity of outcome. We also performed FISH-based studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CHD1-deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. Subclonal deletion of CHD1 was nearly three times as frequent in prostate tumors of African American than in European American men and it associates with rapid disease progression. CHD1 deletion was not associated with HR deficiency associated mutational signatures or HR deficiency as detected by RAD51 foci formation. This was consistent with the moderate increase of olaparib and talazoparib sensitivity with several CHD1 deficient cell lines showing talazoparib sensitivity in the clinically relevant concentration range. CHD1 loss may contribute to worse disease outcome in African American men.
Collapse
Affiliation(s)
- Miklos Diossy
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hua Li
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Pranshu Sahgal
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zsofia Sztupinszki
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Claire Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Jiji Jiang
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | | | | | | | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Gregory T Klus
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gabor Valcz
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Pier Vitale Nuzzo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dezso Ribli
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | | | - Aurel Prosz
- Danish Cancer Institute, Copenhagen, Denmark
| | | | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David Szuts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinza Rizwan
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA.
| | - Sandor Spisak
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark.
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- 2nd Department of Pathology and Department of Bioinformatics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Gupta A, Roy AM. Racial and Ethnic Disparities in Survival Outcomes of Metastatic Renal Cell Carcinoma Patients Receiving Immunotherapy. Clin Genitourin Cancer 2024; 22:102104. [PMID: 38834500 DOI: 10.1016/j.clgc.2024.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) have significantly improved survival outcomes of metastatic renal cell carcinoma (mRCC). However, ethnic and racial minorities are often underrepresented in ICI clinical trials, leading to limited knowledge about ICI-specific survival outcomes for mRCC across different racial and ethnic groups. We investigated the impact of race and ethnicity on the ICI-specific survival outcomes of mRCC. MATERIALS We used The National Cancer Database (NCDB) to retrieve the data of 4858 mRCC patients diagnosed from 2014 to 2019 and receiving ICI-based regimens. We then compared survival outcomes using the Kaplan-Meier method and the Log-rank test. We analyzed the data using univariate and multivariable Cox regression analysis, adjusted for age, sex, comorbidity index, treatment centers, and grade. RESULTS White and Asian patients had significantly longer median overall survival (mOS) than African American (AA) patients (23.2 [95% CI 21.6, 24.7; P = .001] and 22.2 [95% CI 16.4, 55.1; P = .047] vs. 14.8 [95% CI 11.9, 19.2] months, respectively). After adjustment, White patients had significantly longer median OS (adjusted hazard ratio [HR] 0.71 [95% CI 0.58, 0.84]; P = .001). There was no significant difference in the mOS between Hispanic and non-Hispanic patients (P = .39). CONCLUSION Black race is an independent predictor of ICI-related survival in mRCC patients, independent of sociodemographics, clinicopathological, and treatment-related factors. Future research is required to understand the underlying reasons for these disparities, including potential genetic or biological differences and social and environmental factors.
Collapse
Affiliation(s)
- Amol Gupta
- Department of Medicine, The Johns Hopkins Hospital, Baltimore, MD.
| | - Arya Mariam Roy
- Department of Medicine, Division of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
11
|
Gong J, Kim DM, Freeman MR, Kim H, Ellis L, Smith B, Theodorescu D, Posadas E, Figlin R, Bhowmick N, Freedland SJ. Genetic and biological drivers of prostate cancer disparities in Black men. Nat Rev Urol 2024; 21:274-289. [PMID: 37964070 DOI: 10.1038/s41585-023-00828-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/16/2023]
Abstract
Black men with prostate cancer have historically had worse outcomes than white men with prostate cancer. The causes of this disparity in outcomes are multi-factorial, but a potential basis is that prostate cancers in Black men are biologically distinct from prostate cancers in white men. Evidence suggests that genetic and ancestral factors, molecular pathways involving androgen and non-androgen receptor signalling, inflammation, epigenetics, the tumour microenvironment and tumour metabolism are contributing factors to the racial disparities observed. Key genetic and molecular pathways linked to prostate cancer risk and aggressiveness have potential clinical relevance. Describing biological drivers of prostate cancer disparities could inform efforts to improve outcomes for Black men with prostate cancer.
Collapse
Affiliation(s)
- Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Daniel M Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bethany Smith
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin Posadas
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil Bhowmick
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Section of Urology, Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
12
|
Szallasi Z, Diossy M, Tisza V, Li H, Sahgal P, Zhou J, Sztupinszki Z, Young D, Nuosome D, Kuo C, Jiang J, Chen Y, Ebner R, Sesterhenn I, Moncur J, Chesnut G, Petrovics G, T Klus G, Valcz G, Nuzzo P, Ribli D, Börcsök J, Prósz A, Krzystanek M, Ried T, Szüts D, Rizwan K, Kaochar S, Pathania S, D'Andrea A, Csabai I, Srivastava S, Freedman M, Dobi A, Spisak S. Increased frequency of CHD1 deletions in prostate cancers of African American men is associated with rapid disease progression without inducing homologous recombination deficiency. RESEARCH SQUARE 2024:rs.3.rs-3995251. [PMID: 38645014 PMCID: PMC11030533 DOI: 10.21203/rs.3.rs-3995251/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
We analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CRISPR edited, CHD1 deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. We found that subclonal deletion of CHD1 is nearly three times as frequent in prostate tumors of African American men than in men of European ancestry and it associates with rapid disease progression. We further showed that CHD1 deletion is not associated with homologous recombination deficiency associated mutational signatures in prostate cancer. In prostate cancer cell line models CHD1 deletion did not induce HR deficiency as detected by RAD51 foci formation assay or mutational signatures, which was consistent with the moderate increase of olaparib sensitivity. CHD1 deficient prostate cancer cells, however, showed higher sensitivity to talazoparib. CHD1 loss may contribute to worse outcome of prostate cancer in African American men. A deeper understanding of the interaction between CHD1 loss and PARP inhibitor sensitivity will be needed to determine the optimal use of targeted agents such as talazoparib in the context of castration resistant prostate cancer.
Collapse
Affiliation(s)
| | | | - Viktoria Tisza
- Institute of Enzymology, Research Centre for Natural Sciences
| | - Hua Li
- Center for Prostate Cancer Research
| | | | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Denise Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Darryl Nuosome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Claire Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Jiji Jiang
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Yongmei Chen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department Uniformed Services University of the Health Sciences, Bethesda, MD
| | | | | | - Joel Moncur
- Joint Pathology Center, Silver Spring, Maryland, USA
| | - Gregory Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Gyorgy Petrovics
- Computational Health Informatics Program, Boston Children's Hospital, USA, Harvard Medical School, Boston, USA
| | | | - Gábor Valcz
- ELKH Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Pier Nuzzo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dezso Ribli
- Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary
| | | | | | | | | | - Dávid Szüts
- HUN-REN Research Centre for Natural Sciences
| | - Kinza Rizwan
- Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, USA
| | | | | | | | - Shib Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Matthew Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Sandor Spisak
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network
| |
Collapse
|
13
|
Miyahira AK, Soule HR. The 29th Annual Prostate Cancer Foundation Scientific Retreat Report. Prostate 2024; 84:113-130. [PMID: 37915138 DOI: 10.1002/pros.24640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The 29th Annual Prostate Cancer Foundation (PCF) Scientific Retreat was held from October 27 to 29, 2022, at the Omni La Costa Resort in Carlsbad, CA. This was the first-ever hybrid PCF Retreat. METHODS The Annual PCF Scientific Retreat is a prominent international scientific gathering centered on groundbreaking, unpublished, and influential studies in basic, translational, and clinical prostate cancer research. It also covers research from related fields with a strong potential for influencing prostate cancer research and patient care. RESULTS Key areas of research that were focused on at the 2022 PCF Retreat included: (i) the contributions of molecular and genomic factors to prostate cancer disparities; (ii) novel clinical trial updates; (iii) lessons from primary prostate cancer; (iv) lessons from single-cell studies; (v) genetic, epigenetic, epitranscriptomic and posttranslational mechanisms and clinical heterogeneity in prostate cancer; (vi) biology of neuroendocrine and lineage-plastic prostate cancer; (vii) next generation prostate cancer theranostics and combination therapies; (viii) the biology and therapeutic potential of targeting phosphoinositide 3-kinases pathways; (ix) combining immunomodulatory treatments for prostate cancer; (x) novel gamma delta (γδ) T-cell therapy platforms for oncology; and (xi) lessons from other cancers. CONCLUSIONS This article provides a summary of the presentations from the 2022 PCF Scientific Retreat. By disseminating this knowledge, we hope to enhance our understanding of the present research landscape and guide future strides in both prostate cancer research and patient care.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
14
|
Dairo O, DePaula Oliveira L, Schaffer E, Vidotto T, Mendes AA, Lu J, Huynh SV, Hicks J, Sowalsky AG, De Marzo AM, Joshu CE, Hanratty B, Sfanos KS, Isaacs WB, Haffner MC, Lotan TL. FASN Gene Methylation is Associated with Fatty Acid Synthase Expression and Clinical-genomic Features of Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:152-163. [PMID: 38112617 PMCID: PMC10795515 DOI: 10.1158/2767-9764.crc-23-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Fatty acid synthase (FASN) catalyzes the synthesis of long-chain saturated fatty acids and is overexpressed during prostatic tumorigenesis, where it is the therapeutic target in several ongoing trials. However, the mechanism of FASN upregulation in prostate cancer remains unclear. Here, we examine FASN gene CpG methylation pattern by InfiniumEPIC profiling and whole-genome bisulfite sequencing across multiple racially diverse primary and metastatic prostate cancer cohorts, comparing with FASN protein expression as measured by digitally quantified IHC assay and reverse phase protein array analysis or FASN gene expression. We demonstrate that the FASN gene body is hypomethylated and overexpressed in primary prostate tumors compared with benign tissue, and FASN gene methylation is significantly inversely correlated with FASN protein or gene expression in both primary and metastatic prostate cancer. Primary prostate tumors with ERG gene rearrangement have increased FASN expression and we find evidence of FASN hypomethylation in this context. FASN expression is also significantly increased in prostate tumors from carriers of the germline HOXB13 G84E mutation compared with matched controls, consistent with a report that HOXB13 may contribute to epigenetic regulation of FASN in vitro. However, in contrast to previous studies, we find no significant association of FASN expression or methylation with self-identified race in models that include ERG status across two independent primary tumor cohorts. Taken together, these data support a potential epigenetic mechanism for FASN regulation in the prostate which may be relevant for selecting patients responsive to FASN inhibitors. SIGNIFICANCE Here, we leverage multiple independent primary and metastatic prostate cancer cohorts to demonstrate that FASN gene body methylation is highly inversely correlated with FASN gene and protein expression. This finding may shed light on epigenetic mechanisms of FASN regulation in prostate cancer and provides a potentially useful biomarker for selecting patients in future trials of FASN inhibitors.
Collapse
Affiliation(s)
- Oluwademilade Dairo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Ethan Schaffer
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Adrianna A. Mendes
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sophie Vo Huynh
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jessica Hicks
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Adam G. Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, NCI, Bethesda, Maryland
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Corrine E. Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Brian Hanratty
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Karen S. Sfanos
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - William B. Isaacs
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Kensler KH, Johnson R, Morley F, Albrair M, Dickerman BA, Gulati R, Holt SK, Iyer HS, Kibel AS, Lee JR, Preston MA, Vassy JL, Wolff EM, Nyame YA, Etzioni R, Rebbeck TR. Prostate cancer screening in African American men: a review of the evidence. J Natl Cancer Inst 2024; 116:34-52. [PMID: 37713266 PMCID: PMC10777677 DOI: 10.1093/jnci/djad193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Prostate cancer is the most diagnosed cancer in African American men, yet prostate cancer screening regimens in this group are poorly guided by existing evidence, given underrepresentation of African American men in prostate cancer screening trials. It is critical to optimize prostate cancer screening and early detection in this high-risk group because underdiagnosis may lead to later-stage cancers at diagnosis and higher mortality while overdiagnosis may lead to unnecessary treatment. METHODS We performed a review of the literature related to prostate cancer screening and early detection specific to African American men to summarize the existing evidence available to guide health-care practice. RESULTS Limited evidence from observational and modeling studies suggests that African American men should be screened for prostate cancer. Consideration should be given to initiating screening of African American men at younger ages (eg, 45-50 years) and at more frequent intervals relative to other racial groups in the United States. Screening intervals can be optimized by using a baseline prostate-specific antigen measurement in midlife. Finally, no evidence has indicated that African American men would benefit from screening beyond 75 years of age; in fact, this group may experience higher rates of overdiagnosis at older ages. CONCLUSIONS The evidence base for prostate cancer screening in African American men is limited by the lack of large, randomized studies. Our literature search supported the need for African American men to be screened for prostate cancer, for initiating screening at younger ages (45-50 years), and perhaps screening at more frequent intervals relative to men of other racial groups in the United States.
Collapse
Affiliation(s)
- Kevin H Kensler
- Department of Population Health Sciences, Weill Cornell Medical Center, New York, NY, USA
| | - Roman Johnson
- Center for Global Health, Massachusetts General Hospital, Boston, MA, USA
| | - Faith Morley
- Department of Population Health Sciences, Weill Cornell Medical Center, New York, NY, USA
| | - Mohamed Albrair
- Department of Global Health, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Barbra A Dickerman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Roman Gulati
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah K Holt
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Hari S Iyer
- Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Adam S Kibel
- Department of Urology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jenney R Lee
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Mark A Preston
- Department of Urology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jason L Vassy
- VA Boston Healthcare System, Boston, MA, USA
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Erika M Wolff
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Yaw A Nyame
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Ruth Etzioni
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Timothy R Rebbeck
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
16
|
Moreno CS, Winham CL, Alemozaffar M, Klein ER, Lawal IO, Abiodun-Ojo OA, Patil D, Barwick BG, Huang Y, Schuster DM, Sanda MG, Osunkoya AO. Integrated Genomic Analysis of Primary Prostate Tumor Foci and Corresponding Lymph Node Metastases Identifies Mutations and Pathways Associated with Metastasis. Cancers (Basel) 2023; 15:5671. [PMID: 38067373 PMCID: PMC10705102 DOI: 10.3390/cancers15235671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 02/12/2024] Open
Abstract
Prostate cancer is a highly heterogeneous disease and mortality is mainly due to metastases but the initial steps of metastasis have not been well characterized. We have performed integrative whole exome sequencing and transcriptome analysis of primary prostate tumor foci and corresponding lymph node metastases (LNM) from 43 patients enrolled in clinical trial. We present evidence that, while there are some cases of clonally independent primary tumor foci, 87% of primary tumor foci and metastases are descended from a common ancestor. We demonstrate that genes related to oxidative phosphorylation are upregulated in LNM and in African-American patients relative to White patients. We further show that mutations in TP53, FLT4, EYA1, NCOR2, CSMD3, and PCDH15 are enriched in prostate cancer metastases. These findings were validated in a meta-analysis of 3929 primary tumors and 2721 metastases and reveal a pattern of molecular alterations underlying the pathology of metastatic prostate cancer. We show that LNM contain multiple subclones that are already present in primary tumor foci. We observed enrichment of mutations in several genes including understudied genes such as EYA1, CSMD3, FLT4, NCOR2, and PCDH15 and found that mutations in EYA1 and CSMD3 are associated with a poor outcome in prostate cancer.
Collapse
Affiliation(s)
- Carlos S. Moreno
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; (C.L.W.); (A.O.O.)
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA
| | - Cynthia L. Winham
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; (C.L.W.); (A.O.O.)
| | - Mehrdad Alemozaffar
- Department of Urology, Emory University, Atlanta, GA 30322, USA (D.P.); (M.G.S.)
| | - Emma R. Klein
- Emory College of Arts and Sciences, Atlanta, GA 30322, USA
| | - Ismaheel O. Lawal
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA (O.A.A.-O.); (D.M.S.)
| | - Olayinka A. Abiodun-Ojo
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA (O.A.A.-O.); (D.M.S.)
| | - Dattatraya Patil
- Department of Urology, Emory University, Atlanta, GA 30322, USA (D.P.); (M.G.S.)
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Yijian Huang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA;
| | - David M. Schuster
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA (O.A.A.-O.); (D.M.S.)
| | - Martin G. Sanda
- Department of Urology, Emory University, Atlanta, GA 30322, USA (D.P.); (M.G.S.)
| | - Adeboye O. Osunkoya
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; (C.L.W.); (A.O.O.)
- Department of Urology, Emory University, Atlanta, GA 30322, USA (D.P.); (M.G.S.)
| |
Collapse
|
17
|
Roach M, Coleman PW, Kittles R. Prostate Cancer, Race, and Health Disparity: What We Know. Cancer J 2023; 29:328-337. [PMID: 37963367 DOI: 10.1097/ppo.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ABSTRACT Prostate cancer (PCa) in African American men is one of the most common cancers with a great disparity in outcomes. The higher incidence and tendency to present with more advanced disease have prompted investigators to postulate that this is a problem of innate biology. However, unequal access to health care and poorer quality of care raise questions about the relative importance of genetics versus social/health injustice. Although race is inconsistent with global human genetic diversity, we need to understand the sociocultural reality that race and racism impact biology. Genetic studies reveal enrichment of PCa risk alleles in populations of West African descent and population-level differences in tumor immunology. Structural racism may explain some of the differences previously reported in PCa clinical outcomes; fortunately, there is high-level evidence that when care is comparable, outcomes are comparable.
Collapse
Affiliation(s)
- Mack Roach
- From the Particle Therapy Research Program & Outreach, Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Pamela W Coleman
- Department of Surgery/Obstetrics-Gynecology, Howard University College of Medicine, Washington, DC
| | | |
Collapse
|
18
|
Hwang C, Henderson NC, Chu SC, Holland B, Cackowski FC, Pilling A, Jang A, Rothstein S, Labriola M, Park JJ, Ghose A, Bilen MA, Mustafa S, Kilari D, Pierro MJ, Thapa B, Tripathi A, Garje R, Ravindra A, Koshkin VS, Hernandez E, Schweizer MT, Armstrong AJ, McKay RR, Dorff TB, Alva AS, Barata PC. Biomarker-Directed Therapy in Black and White Men With Metastatic Castration-Resistant Prostate Cancer. JAMA Netw Open 2023; 6:e2334208. [PMID: 37721753 PMCID: PMC10507489 DOI: 10.1001/jamanetworkopen.2023.34208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Importance Black men have higher incidence and mortality from prostate cancer. Whether precision oncology disparities affect Black men with metastatic castration-resistant prostate cancer (mCRPC) is unknown. Objective To compare precision medicine data and outcomes between Black and White men with mCRPC. Design, Setting, and Participants This retrospective cohort study used data collected by the Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort (PROMISE) consortium, a multi-institutional registry with linked clinicogenomic data, from April 2020 to December 2021. Participants included Black and White patients with mCRPC with molecular data. Data were analyzed from December 2021 to May 2023. Exposures Database-reported race and ethnicity. Main Outcomes and Measures The primary outcome was the frequency of actionable molecular data, defined as the presence of mismatch repair deficiency (MMRD) or high microsatellite instability (MSI-H), homologous recombination repair deficiency, or tumor mutational burden of 10 mutations per megabase or greater. Secondary outcomes included the frequency of other alterations, the type and timing of genomic testing performed, and use of targeted therapy. Efficacy outcomes were prostate-specific antigen response rate, site-reported radiographic response, and overall survival. Results A total of 962 eligible patients with mCRPC were identified, including 204 Black patients (21.2%; median [IQR] age at diagnosis, 61 [55-67] years; 131 patients [64.2%] with Gleason scores 8-10; 92 patients [45.1%] with de novo metastatic disease) and 758 White patients (78.8%; median [IQR] age, 63 [57-69] years; 445 patients [58.7%] with Gleason scores 8-10; 310 patients [40.9%] with de novo metastatic disease). Median (IQR) follow-up from mCRPC was 26.6 (14.2-44.7) months. Blood-based molecular testing was more common in Black men (111 men [48.7%]) than White men (317 men [36.4%]; P < .001). Rates of actionable alterations were similar between groups (65 Black men [32.8%]; 215 White men [29.1%]; P = .35), but MMRD or MSI-H was more common in Black men (18 men [9.1]) than White men (36 men [4.9%]; P = .04). PTEN alterations were less frequent in Black men than White men (31 men [15.7%] vs 194 men [26.3%]; P = .003), as were TMPRSS alterations (14 men [7.1%] vs 155 men [21.0%]; P < .001). No other differences were seen in the 15 most frequently altered genes, including TP53, AR, CDK12, RB1, and PIK3CA. Matched targeted therapy was given less frequently in Black men than White men (22 men [33.5%] vs 115 men [53.5%]; P = .008). There were no differences in response to targeted therapy or survival between the two cohorts. Conclusions and Relevance This cohort study of men with mCRPC found higher frequency of MMRD or MSI-H and lower frequency of PTEN and TMPRSS alterations in Black men compared with White men. Although Black men received targeted therapy less frequently than White men, no differences were observed in clinical outcomes.
Collapse
Affiliation(s)
| | | | | | - Brandon Holland
- Wayne State University School of Medicine, Detroit, Michigan
| | - Frank C. Cackowski
- Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Detroit, Michigan
| | | | | | - Shoshana Rothstein
- Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Detroit, Michigan
| | - Matthew Labriola
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancer, Duke University, Durham, North Carolina
| | | | | | | | | | | | | | - Bicky Thapa
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | | - Vadim S. Koshkin
- University of California San Francisco, San Francisco, California
| | - Erik Hernandez
- University of California San Francisco, San Francisco, California
| | | | - Andrew J. Armstrong
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancer, Duke University, Durham, North Carolina
| | - Rana R. McKay
- University of California San Diego, La Jolla, California
| | | | | | - Pedro C. Barata
- Tulane University, New Orleans, Louisiana
- University Hospitals Seidman Cancer Center, Cleveland, Ohio
| |
Collapse
|
19
|
Ravindran F, Jain A, Desai S, Menon N, Srivastava K, Bawa PS, Sateesh K, Srivatsa N, Raghunath SK, Srinivasan S, Choudhary B. Whole-exome sequencing of Indian prostate cancer reveals a novel therapeutic target: POLQ. J Cancer Res Clin Oncol 2023; 149:2451-2462. [PMID: 35737091 DOI: 10.1007/s00432-022-04111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Prostate cancer is the second most common cancer diagnosed worldwide and the third most common cancer among men in India. This study's objective was to characterise the mutational landscape of Indian prostate cancer using whole-exome sequencing to identify population-specific polymorphisms. METHODS Whole-exome sequencing was performed of 58 treatment-naive primary prostate tumors of Indian origin. Multiple computational and statistical analyses were used to profile the known common mutations, other deleterious mutations, driver genes, prognostic biomarkers, and gene signatures unique to each clinical parameter. Cox analysis was performed to validate survival-associated genes. McNemar test identified genes significant to recurrence and receiver-operating characteristic (ROC) analysis was conducted to determine its accuracy. OncodriveCLUSTL algorithm was used to deduce driver genes. The druggable target identified was modeled with its known inhibitor using Autodock. RESULTS TP53 was the most commonly mutated gene in our cohort. Three novel deleterious variants unique to the Indian prostate cancer subtype were identified: POLQ, FTHL17, and OR8G1. COX regression analysis identified ACSM5, a mitochondrial gene responsible for survival. CYLC1 gene, which encodes for sperm head cytoskeletal protein, was identified as an unfavorable prognostic biomarker indicative of recurrence. The novel POLQ mutant, also identified as a driver gene, was evaluated as the druggable target in this study. POLQ, a DNA repair enzyme implicated in various cancer types, is overexpressed and is associated with a poor prognosis. The mutant POLQ was subjected to structural analysis and modeled with its known inhibitor novobiocin resulting in decreased binding efficiency necessitating the development of a better drug. CONCLUSION In this pilot study, the molecular profiling using multiple computational and statistical analyses revealed distinct polymorphisms in the Indian prostate cancer cohort. The mutational signatures identified provide a valuable resource for prognostic stratification and targeted treatment strategies for Indian prostate cancer patients. The DNA repair enzyme, POLQ, was identified as the druggable target in this study.
Collapse
Affiliation(s)
- Febina Ravindran
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - Anika Jain
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, India
| | - Navjoth Menon
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - Kriti Srivastava
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - Pushpinder Singh Bawa
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - K Sateesh
- Healthcare Global Enterprises Ltd, Cancer Centre, Bangalore, India
| | - N Srivatsa
- Healthcare Global Enterprises Ltd, Cancer Centre, Bangalore, India
| | - S K Raghunath
- Healthcare Global Enterprises Ltd, Cancer Centre, Bangalore, India
| | - Subhashini Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India.
| |
Collapse
|
20
|
Batai K, Chen Y, Rheinheimer BA, Arora A, Pandey R, Heimark RL, Bracamonte ER, Ellis NA, Lee BR. Clear cell renal cell carcinoma molecular variations in non-Hispanic White and Hispanic patients. Cancer Med 2023. [PMID: 37081700 DOI: 10.1002/cam4.5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The United States is becoming increasingly diverse, but few molecular studies have assessed the progression of clear cell renal cell carcinoma (ccRCC) in diverse patient populations. This study examined ccRCC molecular variations in non-Hispanic White (NHW) and Hispanic patients and their effect on the association of gene expression with high-grade (Grade 3 or 4) ccRCC and overall mortality. METHODS A total of 156 patients were included in VHL sequencing and/or TempO-Seq analysis. DESeq2 was used to identify the genes associated with high-grade ccRCC. Logistic regression analysis was performed to assess whether race and ethnicity was associated with high/moderate impact VHL somatic mutations and the ccA/ccB subtype. Cox regression analysis was performed to assess association of molecular subtype and gene expression with overall mortality. RESULTS NHWs had moderate or high impact mutations in the VHL gene at a higher frequency than Hispanics (40.2% vs. 27.4%), while Hispanics had a higher frequency of the ccA subtype than NHWs (61.9% vs. 45.8%). ccA was more common in patients with BMI≥35 (65.2%) than in those with BMI < 25 (45.0%). There were 11 differentially expressed genes between high- and low-grade tumors. The Haptoglobin (HP) gene was most significantly overexpressed in high- compared to low-grade ccRCC in all samples (p-adj = 1.7 × 10-12 ). When stratified by subtype, the 11 genes were significantly differentially expressed in the ccB subtype, but none of them were significant after adjusting for multiple testing in ccA. Finally, patients with the ccB subtype had a significantly increased risk of overall mortality (HR 4.87; p = 0.01) compared to patients with ccA, and patients with high HP expression and ccB, had a significantly increased risk of mortality compared to those with low HP expression and ccA (HR 6.45, p = 0.04). CONCLUSION This study reports ccRCC molecular variations in Hispanic patients who were previously underrepresented.
Collapse
Affiliation(s)
- Ken Batai
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Yuliang Chen
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | | | - Amit Arora
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ronald L Heimark
- Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | | | - Nathan A Ellis
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Benjamin R Lee
- Department of Urology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
21
|
Conway JR, Tewari AK, Camp SY, Han S, Crowdis J, He MX, Nyame YA, AlDubayan SH, Schultz N, Szallasi Z, Pomerantz MM, Freedman ML, Fong L, Nelson PS, Brown M, Salari K, Allen EV. Analysis of evolutionary dynamics and clonal architecture in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533974. [PMID: 36993558 PMCID: PMC10055322 DOI: 10.1101/2023.03.23.533974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The extent to which clinical and genomic characteristics associate with prostate cancer clonal architecture, tumor evolution, and therapeutic response remains unclear. Here, we reconstructed the clonal architecture and evolutionary trajectories of 845 prostate cancer tumors with harmonized clinical and molecular data. We observed that tumors from patients who self-reported as Black had more linear and monoclonal architectures, despite these men having higher rates of biochemical recurrence. This finding contrasts with prior observations relating polyclonal architecture to adverse clinical outcomes. Additionally, we utilized a novel approach to mutational signature analysis that leverages clonal architecture to uncover additional cases of homologous recombination and mismatch repair deficiency in primary and metastatic tumors and link the origin of mutational signatures to specific subclones. Broadly, prostate cancer clonal architecture analysis reveals novel biological insights that may be immediately clinically actionable and provide multiple opportunities for subsequent investigation. Statement of significance Tumors from patients who self-reported as Black demonstrate linear and monoclonal evolutionary trajectories yet experience higher rates of biochemical recurrence. In addition, analysis of clonal and subclonal mutational signatures identifies additional tumors with potentially actionable alterations such as deficiencies in mismatch repair and homologous recombination.
Collapse
|
22
|
Vidotto T, Imada EL, Faisal F, Murali S, Mendes AA, Kaur H, Zheng S, Xu J, Schaeffer EM, Isaacs WB, Sfanos KS, Marchionni L, Lotan TL. Association of self-identified race and genetic ancestry with the immunogenomic landscape of primary prostate cancer. JCI Insight 2023; 8:e162409. [PMID: 36752203 PMCID: PMC9977441 DOI: 10.1172/jci.insight.162409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023] Open
Abstract
The genomic and immune landscapes of prostate cancer differ by self-identified race. However, few studies have examined the genome-wide copy number landscape and immune content of matched cohorts with genetic ancestry data and clinical outcomes. Here, we assessed prostate cancer somatic copy number alterations (sCNA) and tumor immune content of a grade-matched, surgically treated cohort of 145 self-identified Black (BL) and 145 self-identified White (WH) patients with genetic ancestry estimation. A generalized linear model adjusted with age, preoperative prostate-specific antigen (PSA), and Gleason Grade Group and filtered for germline copy number variations (gCNV) identified 143 loci where copy number varied significantly by percent African ancestry, clustering on chromosomes 6p, 10q, 11p, 12p, and 17p. Multivariable Cox regression models adjusted for age, preoperative PSA levels, and Gleason Grade Group revealed that chromosome 8q gains (including MYC) were significantly associated with biochemical recurrence and metastasis, independent of genetic ancestry. Finally, Treg density in BL and WH patients was significantly correlated with percent genome altered, and these findings were validated in the TCGA cohort. Taken together, our findings identify specific sCNA linked to genetic ancestry and outcome in primary prostate cancer and demonstrate that Treg infiltration varies by global sCNA burden in primary disease.
Collapse
Affiliation(s)
- Thiago Vidotto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eddie L. Imada
- Department of Pathology, Weill-Cornell School of Medicine, New York, New York, USA
| | - Farzana Faisal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjana Murali
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adrianna A. Mendes
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harsimar Kaur
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Siqun Zheng
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Edward M. Schaeffer
- Department of Urology, Northwestern University School of Medicine, Chicago, Illinois, USA
| | | | - Karen S. Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luigi Marchionni
- Department of Pathology, Weill-Cornell School of Medicine, New York, New York, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology and
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Montero-Ovalle W, Sanabria-Salas MC, Mesa-López de Mesa J, Varela-Ramírez R, Segura-Moreno YY, Sánchez-Villalobos SA, Nuñez-Lemus M, Serrano ML. Determination of TMPRSS2-ERG, SPOP, FOXA1, and IDH1 prostate cancer molecular subtypes in Colombian patients and their possible implications for prognosis. Cell Biol Int 2023; 47:1017-1030. [PMID: 36740223 DOI: 10.1002/cbin.12000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/30/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is one of cancer with of the highest incidence and mortality worldwide. Current disease prognostic markers do not differentiate aggressive from indolent PCa with sufficient certainty, and characterization by molecular subtypes has been sought to allow a better classification. TMPRSS2-ERG, SPOP, FOXA1, and IDH1 molecular subtypes have been described, but the association of these subtypes with prognosis in PCa is unclear; their frequency in Colombian patients is also unknown. Formalin-fixed and paraffin-embedded samples of radical prostatectomy from 112 patients with PCa were used. The TMPRSS2-ERG subtype was assessed with fluorescent in situ hybridization. The mutations in SPOP, FOXA1, and IDH1 in hot-spot regions were evaluated using Sanger sequencing. Fusion was detected in 71 patients (63.4%). No statistically significant differences were found between the state of fusion and the variables analyzed. In the 41 fusion-negative cases (36.6%), two patients (4.9%) had missense mutations in SPOP (p.F102C and p.F133L), representing a 1.8% of the overall cohort. The low frequency of this subtype in Colombians could be explained by the reported variability in the frequency of these mutations according to the population (5%-20%). No mutations were found in FOXA1 in the cases analyzed. The synonym SNP rs11554137 IDH1105GGT was found in tumor tissue but not in the normal tissue in one case. A larger cohort of Colombian PCa patients is needed for future studies to validate these findings and gain a better understanding of the molecular profile of this cancer in our population and if there are any differences by Colombian regions.
Collapse
Affiliation(s)
- Wendy Montero-Ovalle
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia.,Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Rodolfo Varela-Ramírez
- Department of Oncological Urology, Instituto Nacional de Cancerología, Bogotá, Colombia.,Department of Surgery, Faculty of Medicine Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Marcela Nuñez-Lemus
- Research Support and Monitoring Group, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Martha L Serrano
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia.,Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
24
|
The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46:1-17. [PMID: 36645575 DOI: 10.1007/s12272-023-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Gene expression is modulated through the integration of many regulatory elements and their associated transcription factors (TFs). TFs bind to specific DNA sequences and either activate or repress transcriptional activity. Through decades of research, it has been established that aberrant expression or functional abnormalities of TFs can lead to uncontrolled cell division and the development of cancer. Initial studies on transcriptional regulation in cancer have focused on TFs as transcriptional activators. However, recent studies have demonstrated several different mechanisms of transcriptional repression in cancer, which could be potential therapeutic targets for the development of specific anti-cancer agents. In the first section of this review, "Emerging roles of transcriptional repressors in cancer development," we summarize the current understanding of transcriptional repressors and their involvement in the molecular processes of cancer progression. In the subsequent section, "Therapeutic applications," we provide an updated overview of the available therapeutic targets for drug discovery and discuss the new frontier of such applications.
Collapse
|
25
|
Zhang G, Wang Z, Bavarva J, Kuhns KJ, Guo J, Ledet EM, Qian C, Lin Y, Fang Z, Zabaleta J, Valle LD, Hu JJ, Mandal D, Liu W. A Recurrent ADPRHL1 Germline Mutation Activates PARP1 and Confers Prostate Cancer Risk in African American Families. Mol Cancer Res 2022; 20:1776-1784. [PMID: 35816343 DOI: 10.1158/1541-7786.mcr-21-0874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/15/2022] [Accepted: 07/05/2022] [Indexed: 01/15/2023]
Abstract
African American (AA) families have the highest risk of prostate cancer. However, the genetic factors contributing to prostate cancer susceptibility in AA families remain poorly understood. We performed whole-exome sequencing of one affected and one unaffected brother in an AA family with hereditary prostate cancer. The novel non-synonymous variants discovered only in the affected individuals were further analyzed in all affected and unaffected men in 20 AA-PC families. Here, we report one rare recurrent ADPRHL1 germline mutation (c.A233T; p.D78V) in four of the 20 families affected by prostate cancer. The mutation co-segregates with prostate cancer in two families and presents in two affected men in the other two families, but was absent in 170 unrelated healthy AA men. Functional characterization of the mutation in benign prostate cells showed aberrant promotion of cell proliferation, whereas expression of the wild-type ADPRHL1 in prostate cancer cells suppressed cell proliferation and oncogenesis. Mechanistically, the ADPRHL1 mutant activates PARP1, leading to an increased H2O2 or cisplatin-induced DNA damage response for prostate cancer cell survival. Indeed, the PARP1 inhibitor, olaparib, suppresses prostate cancer cell survival induced by mutant ADPRHL1. Given that the expression levels of ADPRHL1 are significantly high in normal prostate tissues and reduce stepwise as Gleason scores increase in tumors, our findings provide genetic, biochemical, and clinicopathological evidence that ADPRHL1 is a tumor suppressor in prostate tissue. A loss of function mutation in ADPRHL1 induces prostate tumorigenesis and confers prostate cancer susceptibility in high-risk AA families. IMPLICATIONS This study highlights a potential strategy for ADPRHL1 mutation detection in prostate cancer-risk assessment and a potential therapeutic application for individuals with prostate cancer in AA families.
Collapse
Affiliation(s)
- Guanyi Zhang
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Zemin Wang
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jasmin Bavarva
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Katherine J Kuhns
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jianhui Guo
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Elisa M Ledet
- Department of Genetics, School of Medicine, Louisiana State University, New Orleans, Louisiana
| | - Chiping Qian
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yuan Lin
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Zhide Fang
- Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, New Orleans Louisiana
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Diptasri Mandal
- Department of Genetics, School of Medicine, Louisiana State University, New Orleans, Louisiana
| | - Wanguo Liu
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Department of Genetics, School of Medicine, Louisiana State University, New Orleans, Louisiana
| |
Collapse
|
26
|
Gupta N, Song H, Wu W, Ponce RK, Lin YK, Kim JW, Small EJ, Feng FY, Huang FW, Okimoto RA. The CIC-ERF co-deletion underlies fusion-independent activation of ETS family member, ETV1, to drive prostate cancer progression. eLife 2022; 11:e77072. [PMID: 36383412 PMCID: PMC9668335 DOI: 10.7554/elife.77072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human prostate cancer can result from chromosomal rearrangements that lead to aberrant ETS gene expression. The mechanisms that lead to fusion-independent ETS factor upregulation and prostate oncogenesis remain relatively unknown. Here, we show that two neighboring transcription factors, Capicua (CIC) and ETS2 repressor factor (ERF), which are co-deleted in human prostate tumors can drive prostate oncogenesis. Concurrent CIC and ERF loss commonly occur through focal genomic deletions at chromosome 19q13.2. Mechanistically, CIC and ERF co-bind the proximal regulatory element and mutually repress the ETS transcription factor, ETV1. Targeting ETV1 in CIC and ERF-deficient prostate cancer limits tumor growth. Thus, we have uncovered a fusion-independent mode of ETS transcriptional activation defined by concurrent loss of CIC and ERF.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Hanbing Song
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Wei Wu
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Rovingaile K Ponce
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Yone K Lin
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Ji Won Kim
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Eric J Small
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| | - Felix Y Feng
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
- Department of Radiation Oncology, University of CaliforniaSan FranciscoUnited States
| | - Franklin W Huang
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| | - Ross A Okimoto
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| |
Collapse
|
27
|
Jaratlerdsiri W, Jiang J, Gong T, Patrick SM, Willet C, Chew T, Lyons RJ, Haynes AM, Pasqualim G, Louw M, Kench JG, Campbell R, Horvath LG, Chan EKF, Wedge DC, Sadsad R, Brum IS, Mutambirwa SBA, Stricker PD, Bornman MSR, Hayes VM. African-specific molecular taxonomy of prostate cancer. Nature 2022; 609:552-559. [PMID: 36045292 PMCID: PMC9477733 DOI: 10.1038/s41586-022-05154-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/27/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is characterized by considerable geo-ethnic disparity. African ancestry is a significant risk factor, with mortality rates across sub-Saharan Africa of 2.7-fold higher than global averages1. The contributing genetic and non-genetic factors, and associated mutational processes, are unknown2,3. Here, through whole-genome sequencing of treatment-naive prostate cancer samples from 183 ancestrally (African versus European) and globally distinct patients, we generate a large cancer genomics resource for sub-Saharan Africa, identifying around 2 million somatic variants. Significant African-ancestry-specific findings include an elevated tumour mutational burden, increased percentage of genome alteration, a greater number of predicted damaging mutations and a higher total of mutational signatures, and the driver genes NCOA2, STK19, DDX11L1, PCAT1 and SETBP1. Examining all somatic mutational types, we describe a molecular taxonomy for prostate cancer differentiated by ancestry and defined as global mutational subtypes (GMS). By further including Chinese Asian data, we confirm that GMS-B (copy-number gain) and GMS-D (mutationally noisy) are specific to African populations, GMS-A (mutationally quiet) is universal (all ethnicities) and the African-European-restricted subtype GMS-C (copy-number losses) predicts poor clinical outcomes. In addition to the clinical benefit of including individuals of African ancestry, our GMS subtypes reveal different evolutionary trajectories and mutational processes suggesting that both common genetic and environmental factors contribute to the disparity between ethnicities. Analogous to gene-environment interaction-defined here as a different effect of an environmental surrounding in people with different ancestries or vice versa-we anticipate that GMS subtypes act as a proxy for intrinsic and extrinsic mutational processes in cancers, promoting global inclusion in landmark studies.
Collapse
Affiliation(s)
- Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Tingting Gong
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Sean M Patrick
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa
| | - Cali Willet
- Sydney Informatics Hub, University of Sydney, Darlington, New South Wales, Australia
| | - Tracy Chew
- Sydney Informatics Hub, University of Sydney, Darlington, New South Wales, Australia
| | - Ruth J Lyons
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anne-Maree Haynes
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Gabriela Pasqualim
- Endocrine and Tumor Molecular Biology Laboratory (LABIMET), Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genetics, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Melanie Louw
- National Health Laboratory Services, Johannesburg, South Africa
| | - James G Kench
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | | | - Lisa G Horvath
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Oncology, Chris O'Brien Lifehouse, Royal Prince Alfred Hospital and Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Eva K F Chan
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- NSW Health Pathology, Sydney, New South Wales, Australia
| | - David C Wedge
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rosemarie Sadsad
- Sydney Informatics Hub, University of Sydney, Darlington, New South Wales, Australia
| | - Ilma Simoni Brum
- Endocrine and Tumor Molecular Biology Laboratory (LABIMET), Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, South Africa
| | - Phillip D Stricker
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Urology, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - M S Riana Bornman
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.
- Genomics and Epigenetic Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Mankweng, South Africa.
| |
Collapse
|
28
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
29
|
Ogura K, Elkrief A, Bowman AS, Koche RP, de Stanchina E, Benayed R, Mauguen A, Mattar MS, Khodos I, Meyers PA, Healey JH, Tap WD, Hameed M, Zehir A, Shukla N, Sawyers C, Bose R, Slotkin E, Ladanyi M. Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance. JCO Precis Oncol 2022; 6:e2200048. [PMID: 35952322 PMCID: PMC9384944 DOI: 10.1200/po.22.00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ewing sarcoma (ES) is a primitive sarcoma defined by EWSR1-ETS fusions as the primary driver alteration. To better define the landscape of cooperating secondary genetic alterations in ES, we analyzed clinical genomic profiling data of 113 patients with ES, a cohort including more adult patients (> 18 years) and more patients with advanced stage at presentation than previous genomic cohorts.
Collapse
Affiliation(s)
- Koichi Ogura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Arielle Elkrief
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anita S Bowman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elisa de Stanchina
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,AstraZeneca Pharmaceuticals, Wilmington, DE
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marissa S Mattar
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Inna Khodos
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul A Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John H Healey
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William D Tap
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,AstraZeneca Pharmaceuticals, Wilmington, DE
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Charles Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,HHMI, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rohit Bose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA.,Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA.,Department of Urology, University of California, San Francisco, San Francisco, CA.,Benioff Initiative for Prostate Cancer Research, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
30
|
Kensler KH, Baichoo S, Pathania S, Rebbeck TR. The tumor mutational landscape of BRCA2-deficient primary and metastatic prostate cancer. NPJ Precis Oncol 2022; 6:39. [PMID: 35715489 PMCID: PMC9205939 DOI: 10.1038/s41698-022-00284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/17/2022] [Indexed: 02/08/2023] Open
Abstract
Carriers of germline BRCA2 pathogenic sequence variants have elevated aggressive prostate cancer risk and are candidates for precision oncology treatments. We examined whether BRCA2-deficient (BRCA2d) prostate tumors have distinct genomic alterations compared with BRCA2-intact (BRCA2i) tumors. Among 2536 primary and 899 metastatic prostate tumors from the ICGC, GENIE, and TCGA databases, we identified 138 primary and 85 metastatic BRCA2d tumors. Total tumor mutation burden (TMB) was higher among primary BRCA2d tumors, although pathogenic TMB did not differ by tumor BRCA2 status. Pathogenic and total single nucleotide variant (SNV) frequencies at KMT2D were higher in BRCA2d primary tumors, as was the total SNV frequency at KMT2D in BRCA2d metastatic tumors. Homozygous deletions at NEK3, RB1, and APC were enriched in BRCA2d primary tumors, and RB1 deletions in metastatic BRCA2d tumors as well. TMPRSS2-ETV1 fusions were more common in BRCA2d tumors. These results identify somatic alterations that hallmark etiological and prognostic differences between BRCA2d and BRCA2i prostate tumors.
Collapse
Affiliation(s)
- Kevin H Kensler
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Shakuntala Baichoo
- Department of Digital Technologies, FoICDT, University of Mauritius, Réduit, Mauritius
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Timothy R Rebbeck
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
31
|
Variation in Molecularly Defined Prostate Tumor Subtypes by Self-identified Race. EUR UROL SUPPL 2022; 40:19-26. [PMID: 35638091 PMCID: PMC9142751 DOI: 10.1016/j.euros.2022.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Background Socioeconomic and health care utilization factors are major drivers of prostate cancer (PC) mortality disparities in the USA; however, tumor molecular heterogeneity may also contribute to the higher mortality among Black men. Objective To compare differences in PC subtype frequency and genomic aggressiveness by self-identified race. Design setting and participants Five molecular subtype classifiers were applied for 426 Black and 762 White PC patients in the Decipher Genomics Resource Information Database (GRID). Outcome measurements and statistical analysis Differences in subtype frequency and tumor genomic risk (Decipher score >0.6) by race were evaluated using χ2 tests and multivariable-adjusted logistic regression models. Results and limitations Subtype frequencies differed by race for four classifiers. Subtypes characterized by the presence of SPOP mutations, SPINK1 overexpression, and neuroendocrine differentiation were more common among Black men. ERG and ETS fusion-positive subtypes were more frequent among White men, with no clear differences for subtypes reflecting luminal versus basal lineage. The hypothesized low-risk Kamoun S2 subtype was associated with a lower Decipher score among White men only (p = 0.01 for heterogeneity), while the aggressive You PCS1 subtype was associated with a higher Decipher score among White men only (p = 0.001 for heterogeneity). The Tomlins ERG+ subtype was associated with a higher Decipher score relative to all other subtypes among Black men, with no association among White men (p = 0.007 for heterogeneity). Conclusions The frequency of PC molecular subtypes differed by self-identified race. Additional studies are required to evaluate whether our observations suggest differences in the tumor genomic risk of progression by self-identified race. Patient summary We studied five classifiers that identify subtypes of prostate tumors and found that subtypes differed in frequency between Black and White patients. Further research is warranted to evaluate how differences in tumor subtypes may contribute to disparities in prostate cancer mortality.
Collapse
|
32
|
Park KH, Choi JY, Lim AR, Kim JW, Choi YJ, Lee S, Sung JS, Chung HJ, Jang B, Yoon D, Kim S, Sa JK, Kim YH. Genomic Landscape and Clinical Utility in Korean Advanced Pan-Cancer Patients from Prospective Clinical Sequencing: K-MASTER Program. Cancer Discov 2022; 12:938-948. [PMID: 34862196 PMCID: PMC9387587 DOI: 10.1158/2159-8290.cd-21-1064] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
The fundamental principle of precision oncology is centralized on the identification of therapeutically exploitable targets that provides individual patients with cancer an opportunity to make informed decisions on a personalized level. To facilitate and adopt such concepts within clinical practice, we have initiated a nationwide, multi-institutional precision oncology screening program to examine and enroll patients into the most appropriate clinical trial based on their tumor's unique molecular properties. To determine the prevalence of essential major driver mutations and to explore their dynamic associations at both molecular and pathway levels, we present a comprehensive overview on the genomic properties of East Asian patients with cancer. We further delineate the extent of genomic diversity as well as clinical actionability in patients from Western and Eastern cultures at the pan-cancer and single-tumor entity levels. To support fellow oncology communities in future investigations involving large-scale analysis, all data have been made accessible to the public (https://kmportal.or.kr). SIGNIFICANCE We present a comprehensive overview of molecular properties of East Asian pan-cancer patients and demonstrate significant diversity in terms of genomic characteristics as well as clinical utility compared with patients with European ancestry. The results of this study will lay the groundwork for designing personalized treatments in the clinical setting. See related commentary by Moyers and Subbiah, p. 886. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Kyong Hwa Park
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- K-MASTER Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Yoon Choi
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- K-MASTER Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ah-Reum Lim
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- K-MASTER Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ju Won Kim
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- K-MASTER Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon Ji Choi
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- K-MASTER Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soohyeon Lee
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- K-MASTER Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Sook Sung
- K-MASTER Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Joon Chung
- K-MASTER Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byunghyun Jang
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dayoung Yoon
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Sukwon Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jason K. Sa
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Corresponding Authors: Jason K. Sa, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, Republic of Korea. Phone: 822-2286-1468; E-mail: ; and Yeul Hong Kim,
| | - Yeul Hong Kim
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- K-MASTER Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Corresponding Authors: Jason K. Sa, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, Republic of Korea. Phone: 822-2286-1468; E-mail: ; and Yeul Hong Kim,
| |
Collapse
|
33
|
Stover EH, Oh C, Keskula P, Choudhury AD, Tseng YY, Adalsteinsson VA, Lohr JG, Thorner AR, Ducar M, Kryukov GV, Ha G, Rosenberg M, Freeman SS, Zhang Z, Wu X, Van Allen EM, Takeda DY, Loda M, Wu CL, Taplin ME, Garraway LA, Boehm JS, Huang FW. Implementation of a prostate cancer-specific targeted sequencing panel for credentialing of patient-derived cell lines and genomic characterization of patient samples. Prostate 2022; 82:584-597. [PMID: 35084050 PMCID: PMC8887817 DOI: 10.1002/pros.24305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Primary and metastatic prostate cancers have low mutation rates and recurrent alterations in a small set of genes, enabling targeted sequencing of prostate cancer-associated genes as an efficient approach to characterizing patient samples (compared to whole-exome and whole-genome sequencing). For example, targeted sequencing provides a flexible, rapid, and cost-effective method for genomic assessment of patient-derived cell lines to evaluate fidelity to initial patient tumor samples. METHODS We developed a prostate cancer-specific targeted next-generation sequencing (NGS) panel to detect alterations in 62 prostate cancer-associated genes as well as recurring gene fusions with ETS family members, representing the majority of common alterations in prostate cancer. We tested this panel on primary prostate cancer tissues and blood biopsies from patients with metastatic prostate cancer. We generated patient-derived cell lines from primary prostate cancers using conditional reprogramming methods and applied targeted sequencing to evaluate the fidelity of these cell lines to the original patient tumors. RESULTS The prostate cancer-specific panel identified biologically and clinically relevant alterations, including point mutations in driver oncogenes and ETS family fusion genes, in tumor tissues from 29 radical prostatectomy samples. The targeted panel also identified genomic alterations in cell-free DNA and circulating tumor cells (CTCs) from patients with metastatic prostate cancer, and in standard prostate cancer cell lines. We used the targeted panel to sequence our set of patient-derived cell lines; however, no prostate cancer-specific mutations were identified in the tumor-derived cell lines, suggesting preferential outgrowth of normal prostate epithelial cells. CONCLUSIONS We evaluated a prostate cancer-specific targeted NGS panel to detect common and clinically relevant alterations (including ETS family gene fusions) in prostate cancer. The panel detected driver mutations in a diverse set of clinical samples of prostate cancer, including fresh-frozen tumors, cell-free DNA, CTCs, and cell lines. Targeted sequencing of patient-derived cell lines highlights the challenge of deriving cell lines from primary prostate cancers and the importance of genomic characterization to credential candidate cell lines. Our study supports that a prostate cancer-specific targeted sequencing panel provides an efficient, clinically feasible approach to identify genetic alterations across a spectrum of prostate cancer samples and cell lines.
Collapse
Affiliation(s)
- Elizabeth H. Stover
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | - Coyin Oh
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | | | - Atish D. Choudhury
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | | | | | - Jens G. Lohr
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | | | | | - Gregory V. Kryukov
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | - Gavin Ha
- Fred Hutchinson Cancer Research Center, Seattle WA
| | | | | | - Zhenwei Zhang
- Dana-Farber Cancer Institute, Boston MA
- University of Massachusetts Memorial Medical Center, Worcester MA
| | | | - Eliezer M. Van Allen
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | | | - Massimo Loda
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- New York-Presbyterian/Weill Cornell Medical Center, New York, NY
| | - Chin-Lee Wu
- Harvard Medical School, Boston MA
- Massachusetts General Hospital, Boston MA
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Boston MA
- Harvard Medical School, Boston MA
| | | | | | | |
Collapse
|
34
|
Zhang B, Yao K, Cheng C. A network-based integration for understanding racial disparity in prostate cancer. Transl Oncol 2022; 17:101327. [PMID: 34998235 PMCID: PMC8738961 DOI: 10.1016/j.tranon.2021.101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Compared to Caucasians (CAs), African Americans (AAs) have a higher rate of incidence and mortality in prostate cancer and are prone to be diagnosed at later stages. To understand this racial disparity, molecular features of different types, including gene expression, DNA methylation and other genomic alterations, have been compared between tumor samples from the two races, but led to different disparity associated genes (DAGs). In this study, we applied a network-based algorithm to integrate a comprehensive set of genomic datasets and identified 130 core DAGs. Out of these genes, 78 were not identified by any individual dataset but prioritized and selected through network propagation. We found DAGs were highly enriched in several critical prostate cancer-related signaling transduction and cell cycle pathways and were more likely to be associated with patient prognosis in prostate cancer. Furthermore, DAGs were over-represented in prostate cancer risk genes identified from previous genome wide association studies. We also found DAGs were enriched in kinase and transcription factor encoding genes. Interestingly, for many of these prioritized kinases their association with racial disparity did not manifest from the original genomic/transcriptomic data but was reflected by their differential phosphorylation levels between AA and CA prostate tumor samples. Similarly, the disparity relevance of some transcription factors was not reflected at the mRNA or protein expression level, but at the activity level as demonstrated by their differential ability in regulating target gene expression. Our integrative analysis provided new candidate targets for improving prostate cancer treatment and addressing the racial disparity problem.
Collapse
Affiliation(s)
- Baoyi Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77030, United States
| | - Kevin Yao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, United States; Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
35
|
Nelson WG, Brawley OW, Isaacs WB, Platz EA, Yegnasubramanian S, Sfanos KS, Lotan TL, De Marzo AM. Health inequity drives disease biology to create disparities in prostate cancer outcomes. J Clin Invest 2022; 132:e155031. [PMID: 35104804 PMCID: PMC8803327 DOI: 10.1172/jci155031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer exerts a greater toll on African American men than on White men of European descent (hereafter referred to as European American men): the disparity in incidence and mortality is greater than that of any other common cancer. The disproportionate impact of prostate cancer on Black men has been attributed to the genetics of African ancestry, to diet and lifestyle risk factors, and to unequal access to quality health care. In this Review, all of these influences are considered in the context of the evolving understanding that chronic or recurrent inflammatory processes drive prostatic carcinogenesis. Studies of inherited susceptibility highlight the contributions of genes involved in prostate cell and tissue repair (BRCA1/2, ATM) and regeneration (HOXB13 and MYC). Social determinants of health appear to accentuate these genetic influences by fueling prostate inflammation and associated cell and genome damage. Molecular characterization of the prostate cancers that arise in Black versus White men further implicates this inflammatory microenvironment in disease behavior. Yet, when Black and White men with similar grade and stage of prostate cancer are treated equally, they exhibit equivalent outcomes. The central role of prostate inflammation in prostate cancer development and progression augments the impact of the social determinants of health on disease pathogenesis. And, when coupled with poorer access to high-quality treatment, these inequities result in a disparate burden of prostate cancer on African American men.
Collapse
|
36
|
Qian C, Li D, Chen Y. ETS factors in prostate cancer. Cancer Lett 2022; 530:181-189. [PMID: 35033589 PMCID: PMC8832285 DOI: 10.1016/j.canlet.2022.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which play critical roles in both normal tissue development and homeostasis and have been implicated in development and progression of a variety of cancers. In prostate cancer, gene fusion and overexpression of ETS factors ERG, FLI1, ETV1, ETV4 and ETV5 have been found in half of prostate cancer patients in Caucasian men and define the largest genetic subtype of prostate cancer. This review summarizes the data on the discovery, modeling, molecular taxonomy, lineage plasticity and therapeutic targeting of ETS family members in prostate cancer.
Collapse
Affiliation(s)
- Cheng Qian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, NY, 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
37
|
Song H, Weinstein HNW, Allegakoen P, Wadsworth MH, Xie J, Yang H, Castro EA, Lu KL, Stohr BA, Feng FY, Carroll PR, Wang B, Cooperberg MR, Shalek AK, Huang FW. Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat Commun 2022; 13:141. [PMID: 35013146 PMCID: PMC8748675 DOI: 10.1038/s41467-021-27322-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is the second most common malignancy in men worldwide and consists of a mixture of tumor and non-tumor cell types. To characterize the prostate cancer tumor microenvironment, we perform single-cell RNA-sequencing on prostate biopsies, prostatectomy specimens, and patient-derived organoids from localized prostate cancer patients. We uncover heterogeneous cellular states in prostate epithelial cells marked by high androgen signaling states that are enriched in prostate cancer and identify a population of tumor-associated club cells that may be associated with prostate carcinogenesis. ERG-negative tumor cells, compared to ERG-positive cells, demonstrate shared heterogeneity with surrounding luminal epithelial cells and appear to give rise to common tumor microenvironment responses. Finally, we show that prostate epithelial organoids harbor tumor-associated epithelial cell states and are enriched with distinct cell types and states from their parent tissues. Our results provide diagnostically relevant insights and advance our understanding of the cellular states associated with prostate carcinogenesis.
Collapse
Affiliation(s)
- Hanbing Song
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Hannah N. W. Weinstein
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Paul Allegakoen
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Marc H. Wadsworth
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Jamie Xie
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Heiko Yang
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Ethan A. Castro
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Kevin L. Lu
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bradley A. Stohr
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Felix Y. Feng
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Departments of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Peter R. Carroll
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bruce Wang
- grid.266102.10000 0001 2297 6811Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA 94143 USA
| | - Matthew R. Cooperberg
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| | - Alex K. Shalek
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Franklin W. Huang
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| |
Collapse
|
38
|
Johnson JR, Woods-Burnham L, Hooker SE, Batai K, Kittles RA. Genetic Contributions to Prostate Cancer Disparities in Men of West African Descent. Front Oncol 2021; 11:770500. [PMID: 34820334 PMCID: PMC8606679 DOI: 10.3389/fonc.2021.770500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed malignancy and the second leading cause of death in men worldwide, after adjusting for age. According to the International Agency for Research on Cancer, continents such as North America and Europe report higher incidence of PCa; however, mortality rates are highest among men of African ancestry in the western, southern, and central regions of Africa and the Caribbean. The American Cancer Society reports, African Americans (AAs), in the United States, have a 1.7 increased incidence and 2.4 times higher mortality rate, compared to European American's (EAs). Hence, early population history in west Africa and the subsequent African Diaspora may play an important role in understanding the global disproportionate burden of PCa shared among Africans and other men of African descent. Nonetheless, disparities involved in diagnosis, treatment, and survival of PCa patients has also been correlated to socioeconomic status, education and access to healthcare. Although recent studies suggest equal PCa treatments yield equal outcomes among patients, data illuminates an unsettling reality of disparities in treatment and care in both, developed and developing countries, especially for men of African descent. Yet, even after adjusting for the effects of the aforementioned factors; racial disparities in mortality rates remain significant. This suggests that molecular and genomic factors may account for much of PCa disparities.
Collapse
Affiliation(s)
- Jabril R. Johnson
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Leanne Woods-Burnham
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Stanley E. Hooker
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Ken Batai
- Department of Urology, University of Arizona, Tucson, AZ, United States
| | - Rick A. Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
39
|
Aldrighetti CM, Niemierko A, Van Allen E, Willers H, Kamran SC. Racial and Ethnic Disparities Among Participants in Precision Oncology Clinical Studies. JAMA Netw Open 2021; 4:e2133205. [PMID: 34748007 PMCID: PMC8576580 DOI: 10.1001/jamanetworkopen.2021.33205] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE Precision oncology is revolutionizing cancer care, allowing for personalized treatments to improve outcomes. Cancer research has benefitted from well-designed studies incorporating precision medicine objectives, but it is unclear if these studies are representative of the diverse cancer population. OBJECTIVE To evaluate racial and ethnic representation in breast, prostate, lung, and colorectal cancer studies incorporating precision oncology objectives in the Clinicaltrials.gov registry and compare with the incidence of these cancer types in racial and ethnic minority groups in the US population. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study identified US-based breast, prostate, lung, and colorectal cancer studies incorporating precision oncology objectives for reporting of race and ethnicity. The Surveillance, Epidemiology, and End Results and US Census databases were used to determine cancer incidence by race and ethnicity, linked with cancer type and median year of enrollment for each trial. Data were collected and analyzed between December 2020 and April 2021. MAIN OUTCOMES AND MEASURES The expected number of participants per study by each racial and ethnic group was calculated based on the corresponding US-based proportion. Under- and overrepresentation was defined as the ratio of the actual number of enrolled cases to the expected number of cases for each trial by cancer type. Ratios above 1 indicated overrepresentation while a ratio below 1 indicated underrepresentation. Random-effects meta-analysis of representation ratios of individual trials was performed to weigh each individual study. RESULTS Of 93 studies encompassing 5867 enrollees with race and ethnicity data; 4826 participants (82.3%) were non-Hispanic White, 587 (10.0%) were Black, and 238 (4.1%) were Asian. Per observed-to-expected ratios, White participants were overrepresented in all studies, with a ratio of 1.35 (95% CI, 1.30-1.37), as well as Asian participants, with a ratio of 1.46 (95% CI, 1.28-1.66), while Black participants (ratio, 0.49; 95% CI, 0.45-0.54), Hispanic participants (ratio, 0.24; 95% CI, 0.20-0.28), and American Indian and Alaskan Native participants (ratio, 0.43; 95% CI, 0.24-0.78) were underrepresented. By individual cancer site, White participants were consistently overrepresented in all studies, while Black and Hispanic participants were underrepresented. CONCLUSIONS AND RELEVANCE This analysis found that precision oncology studies for breast, lung, prostate, and colorectal cancers vastly underrepresent racial and ethnic minority populations relative to their cancer incidence in the US population. It is imperative to increase diversity among enrollees so that all individuals may benefit from cancer research breakthroughs and personalized treatments.
Collapse
Affiliation(s)
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eliezer Van Allen
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sophia C. Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
40
|
Carpten JD, Fashoyin-Aje L, Garraway LA, Winn R. Making cancer research more inclusive. Nat Rev Cancer 2021; 21:613-618. [PMID: 34188191 DOI: 10.1038/s41568-021-00369-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 11/08/2022]
Affiliation(s)
- John D Carpten
- Department of Translational Genomics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Lola Fashoyin-Aje
- Office of Oncologic Diseases, Center for Drug Evaluation and Research, and Oncology Center of Excellence, US Food and Drug Administration, Silver Spring, MD, USA.
| | | | - Robert Winn
- Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
41
|
Freeland J, Crowell PD, Giafaglione JM, Boutros PC, Goldstein AS. Aging of the progenitor cells that initiate prostate cancer. Cancer Lett 2021; 515:28-35. [PMID: 34052326 PMCID: PMC8494000 DOI: 10.1016/j.canlet.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
Many organs experience a loss of tissue mass and a decline in regenerative capacity during aging. In contrast, the prostate continues to grow in volume. In fact, age is the most important risk factor for prostate cancer. However, the age-related factors that influence the composition, morphology and molecular features of prostate epithelial progenitor cells, the cells-of-origin for prostate cancer, are poorly understood. Here, we review the evidence that prostate luminal progenitor cells are expanded with age. We explore the age-related changes to the microenvironment that may influence prostate epithelial cells and risk of transformation. Finally, we raise a series of questions about models of aging and regulators of prostate aging which need to be addressed. A fundamental understanding of aging in the prostate will yield critical insights into mechanisms that promote the development of age-related prostatic disease.
Collapse
Affiliation(s)
- Jack Freeland
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Paul C Boutros
- Departments of Human Genetics & Urology, Jonsson Comprehensive Cancer Center and Institute for Precision Health, University of California, Los Angeles, USA
| | - Andrew S Goldstein
- Departments of Molecular, Cell and Developmental Biology & Urology, Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA.
| |
Collapse
|
42
|
Courtney PT, Deka R, Kotha NV, Cherry DR, Salans MA, Nelson TJ, Kumar A, Luterstein E, Yip AT, Nalawade V, Parsons JK, Kader AK, Stewart TF, Rose BS. Active surveillance for intermediate-risk prostate cancer in African American and non-Hispanic White men. Cancer 2021; 127:4403-4412. [PMID: 34347291 DOI: 10.1002/cncr.33824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND The safety of active surveillance (AS) for African American men compared with non-Hispanic White (White) men with intermediate-risk prostate cancer is unclear. METHODS The authors identified patients with modified National Comprehensive Cancer Network favorable ("low-intermediate") and unfavorable ("high-intermediate") intermediate-risk prostate cancer diagnosed between 2001 and 2015 and initially managed with AS in the Veterans Health Administration database. They analyzed definitive treatment, disease progression, metastases, prostate cancer-specific mortality (PCSM), and all-cause mortality by using cumulative incidences and multivariable competing-risks (disease progression, metastasis, and PCSM) or Cox (all-cause mortality) regression. RESULTS The cohort included 1007 men (African Americans, 330 [32.8%]; Whites, 677 [67.2%]) followed for a median of 7.7 years; 773 (76.8%) had low-intermediate-risk disease, and 234 (23.2%) had high-intermediate-risk disease. The 10-year cumulative incidences of definitive treatment were not significantly different (African Americans, 83.5%; 95% confidence interval [CI], 78.5%-88.7%; Whites, 80.6%; 95% CI, 76.6%-84.4%; P = .17). Among those with low-intermediate-risk disease, there were no significant differences in the 10-year cumulative incidences of disease progression (African Americans, 46.8%; 95% CI, 40.0%-53.3%; Whites, 46.9%; 95% CI, 42.1%-51.5%; P = .91), metastasis (African Americans, 7.1%; 95% CI, 3.7%-11.8%; Whites, 10.8%; 95% CI, 7.6%-14.6%; P = .17), or PCSM (African Americans, 3.8%; 95% CI, 1.6%-7.5%; Whites, 3.8%; 95% CI, 2.0%-6.3%; P = .69). In a multivariable regression including the entire cohort, African American race was not associated with increased risks of definitive treatment, disease progression, metastasis, PCSM, or all-cause mortality (all P > .30). CONCLUSIONS Outcomes in the Veterans Affairs Health System were similar for African American and White men treated for low-intermediate-risk prostate cancer with AS.
Collapse
Affiliation(s)
- P Travis Courtney
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Rishi Deka
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Nikhil V Kotha
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Daniel R Cherry
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Mia A Salans
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Tyler J Nelson
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Abhishek Kumar
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Elaine Luterstein
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Anthony T Yip
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Vinit Nalawade
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - J Kellogg Parsons
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Urology, University of California San Diego School of Medicine, La Jolla, California
| | - A Karim Kader
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Urology, University of California San Diego School of Medicine, La Jolla, California
| | - Tyler F Stewart
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego, La Jolla, California
| | - Brent S Rose
- Veterans Health Administration San Diego Health Care System, La Jolla, California.,Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| |
Collapse
|
43
|
Cacciatore S, Wium M, Licari C, Ajayi-Smith A, Masieri L, Anderson C, Salukazana AS, Kaestner L, Carini M, Carbone GM, Catapano CV, Loda M, Libermann TA, Zerbini LF. Inflammatory metabolic profile of South African patients with prostate cancer. Cancer Metab 2021; 9:29. [PMID: 34344464 PMCID: PMC8336341 DOI: 10.1186/s40170-021-00265-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background Men with African ancestry are more likely to develop aggressive prostate cancer (PCa) and to die from this disease. The study of PCa in the South African population represents an opportunity for biomedical research due to the high prevalence of aggressive PCa. While inflammation is known to play a significant role in PCa progression, its association with tumor stage in populations of African descent has not been explored in detail. Identification of new metabolic biomarkers of inflammation may improve diagnosis of patients with aggressive PCa. Methods Plasma samples were profiled from 41 South African men with PCa using nuclear magnetic resonance (NMR) spectroscopy. A total of 41 features, including metabolites, lipid classes, total protein, and the inflammatory NMR markers, GlycA, and GlycB, were quantified from each NMR spectrum. The Bruker’s B.I.-LISA protocols were used to characterize 114 parameters related to the lipoproteins. The unsupervised KODAMA method was used to stratify the patients of our cohort based on their metabolic profile. Results We found that the plasma of patients with very high risk, aggressive PCa and high level of C-reactive protein have a peculiar metabolic phenotype (metabotype) characterized by extremely high levels of GlycA and GlycB. The inflammatory processes linked to the higher level of GlycA and GlycB are characterized by a deep change of the plasma metabolome that may be used to improve the stratification of patients with PCa. We also identified a not previously known relationship between high values of VLDL and low level of GlycB in a different metabotype of patients characterized by lower-risk PCa. Conclusions For the first time, a portrait of the metabolic changes in African men with PCa has been delineated indicating a strong association between inflammation and metabolic profiles. Our findings indicate how the metabolic profile could be used to identify those patients with high level of inflammation, characterized by aggressive PCa and short life expectancy. Integrating a metabolomic analysis as a tool for patient stratification could be important for opening the door to the development of new therapies. Further investigations are needed to understand the prevalence of an inflammatory metabotype in patients with aggressive PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00265-6.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Institute for Reproductive and Developmental Biology, Imperial College, London, UK
| | - Martha Wium
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Cristina Licari
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
| | - Aderonke Ajayi-Smith
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Lorenzo Masieri
- Department of Urology, Clinica Urologica I, Azienda Ospedaliera Careggi, University of Florence, Florence, Italy.,Pediatric Urology Unit, Meyer Children Hospital, University of Florence, Florence, Italy
| | - Chanelle Anderson
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | | | - Lisa Kaestner
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Marco Carini
- Department of Urology, Clinica Urologica I, Azienda Ospedaliera Careggi, University of Florence, Florence, Italy
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,Harvard Medical School, MA, Boston, USA
| | - Towia A Libermann
- Harvard Medical School, MA, Boston, USA.,BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, MA, Boston, USA
| | - Luiz F Zerbini
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.
| |
Collapse
|
44
|
Bossé D, Xie W, Lin X, Simantov R, Lalani AKA, Graham J, Wells JC, Donskov F, Rini B, Beuselinck B, Alva A, Hansen A, Wood L, Soulières D, Kollmannsberger C, Patenaude F, Heng DYC, Choueiri TK, McKay RR. Outcomes in Black and White Patients With Metastatic Renal Cell Carcinoma Treated With First-Line Tyrosine Kinase Inhibitors: Insights From Two Large Cohorts. JCO Glob Oncol 2021; 6:293-306. [PMID: 32109159 PMCID: PMC7055470 DOI: 10.1200/jgo.19.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate whether black race is an independent predictor of overall survival (OS) in metastatic renal cell carcinoma (mRCC). METHODS We performed a retrospective 2-cohort (International Metastatic Renal Cell Carcinoma Database Consortium [IMDC] and trial-database) study of patients with mRCC treated with first-line tyrosine kinase inhibitors (TKIs). Unmatched (UM) and matched (M) analyses accounting for imbalances in region, year of treatment, age, and sex between races were performed. Cox models adjusting for histology, number of metastatic sites, nephrectomy, and IMDC risk compared time to treatment failure (TTF; IMDC cohort), progression-free survival (PFS; trial-database cohort), and OS. RESULTS The IMDC cohort included 73 black versus 3,381 (UM) and 1,236 (M) white patients. The trial-database cohort included 21 black versus 1,040 (UM) and 431 (M) white patients. Median OS for black versus white patients was 18.5 versus 25.8 months in the IMDC group and 21.0 versus 25.6 months in the trial-database group. Differences in OS were not significant in multivariable analysis in the IMDC group (hazard ratio [HR]M, 1.0; 95% CI, 0.7 to 1.5; HRUM, 1.1; 95% CI, 0.8 to 1.4) and trial-database (HRM, 1.5; 95% CI, 0.8 to 2.7; HRUM, 1.4; 95% CI, 0.8 to 2.6) cohorts. TTF for black patients was shorter in the UM IMDC cohort (HRUM, 1.4; 95% CI, 1.1 to 1.8; P = .003), but not in the M analysis. PFS was shorter for black patients in both analyses in the trial-database cohort (HRM, 2.3; 95% CI, 1.4 to 3.9; P = .002; HRUM, 2.3; 95% CI, 1.4 to 3.9; P = .002). CONCLUSION Black patients had more IMDC risk factors and worse outcomes with TKIs versus white patients. Race was not an independent predictor of OS. Strategies to understand biologic determinants of outcomes for minority patients are needed to optimize care.
Collapse
Affiliation(s)
- Dominick Bossé
- The Ottawa Hospital, Division of Medical Oncology, University of Ottawa, Ottawa, Ontario, Canada.,Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Wanling Xie
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Xun Lin
- Pfizer Oncology, La Jolla, CA
| | | | - Aly-Khan A Lalani
- Juravinski Cancer Centre, Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | | | - J Connor Wells
- Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada
| | | | - Brian Rini
- Department of Hematology and Medical Oncology, Cleveland Clinic-Taussig Cancer Institute, Cleveland, OH
| | - Benoit Beuselinck
- University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | | | - Aaron Hansen
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Lori Wood
- Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Denis Soulières
- Centre Hospitalier de l'Université de Montréal, Division of Oncology, Montreal, Quebec, Canada
| | | | - Francois Patenaude
- Department of Oncology, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Daniel Y C Heng
- University of California San Diego, Moores Cancer Center, San Diego, CA
| | - Toni K Choueiri
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Rana R McKay
- University of California San Diego, Moores Cancer Center, San Diego, CA
| |
Collapse
|
45
|
Salmi F, Maachi F, Tazzite A, Aboutaib R, Fekkak J, Azeddoug H, Jouhadi H. Next-generation sequencing of BRCA1 and BRCA2 genes in Moroccan prostate cancer patients with positive family history. PLoS One 2021; 16:e0254101. [PMID: 34242281 PMCID: PMC8270444 DOI: 10.1371/journal.pone.0254101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer is the most common male cancer in Morocco. Although sporadic forms account for a large proportion of patients, familial forms of prostate cancer are observed in 20% of cases and about 5% are due to hereditary transmission. Indeed, germline mutations in BRCA1/2 genes have been associated with prostate cancer risk. However, the spectrum of these mutations was not investigated in Moroccan Prostate cancer patients. Thereby, the aim of this study was to characterize and to estimate the prevalence of germline BRCA1/2 mutations and large rearrangements in Moroccan patients with familial prostate cancer. The entire coding regions and intron/exon boundaries of BRCA1 and BRCA2 genes have been analyzed by next generation sequencing (NGS) in a total of 30 familial prostate cancer patients. Three pathogenic mutations were detected in four unrelated patients (13.3%). One BRCA1 mutation (c.1953_1956delGAAA) and two BRCA2 mutations (c.7234_7235insG and BRCA2ΔE12). In addition, sixty-three distinct polymorphisms and unclassified variants have been found. Early identification of germline BRCA1/2 mutations may be relevant for the management of Moroccan prostate cancer patients.
Collapse
Affiliation(s)
- Fatiha Salmi
- Laboratory of Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatima Maachi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Amal Tazzite
- Laboratory of Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
| | - Rachid Aboutaib
- Department of Urology, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Jamal Fekkak
- Molecular Biology Department, Anoual Laboratory, Casablanca, Morocco
| | - Houssine Azeddoug
- Faculty of Sciences-Biochemistry and Molecular Biology Laboratory, University Hassan II Casablanca, Casablanca, Morocco
| | - Hassan Jouhadi
- Laboratory of Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Mohammed VI Center for Cancer Treatment, Ibn Rochd University Hospital Center, Casablanca, Morocco
| |
Collapse
|
46
|
A Rare Variant in ERF (rs144812092) Predisposes to Prostate and Bladder Cancers in an Extended Pedigree. Cancers (Basel) 2021; 13:cancers13102399. [PMID: 34063511 PMCID: PMC8156789 DOI: 10.3390/cancers13102399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Here we applied a powerful predisposition candidate gene identification strategy to identify rare variants shared by two related bladder cancer cases who were members of pedigrees exhibiting a significant excess of bladder cancers. We sequenced the exomes of pairs of related bladder cancer cases belonging to high-risk bladder cancer pedigrees to identify rare, shared variants shared as candidates for predisposition. A rare, shared variant in ERF was also found to show significant association with bladder cancer risk in an independent population, was present in other prostate cancer-affected members in the pedigree, and showed evidence for altering the function of the associated protein. This evidence supports ERF (ETS2 Repressor Factor) as a bladder and prostate cancer predisposition gene. Abstract Pairs of related bladder cancer cases who belong to pedigrees with an excess of bladder cancer were sequenced to identify rare, shared variants as candidate predisposition variants. Candidate variants were tested for association with bladder cancer risk. A validated variant was assayed for segregation to other related cancer cases, and the predicted protein structure of this variant was analyzed. This study of affected bladder cancer relative pairs from high-risk pedigrees identified 152 bladder cancer predisposition candidate variants. One variant in ERF (ETS Repressing Factor) was significantly associated with bladder cancer risk in an independent population, was observed to segregate with bladder and prostate cancer in relatives, and showed evidence for altering the function of the associated protein. This finding of a rare variant in ERF that is strongly associated with bladder and prostate cancer risk in an extended pedigree both validates ERF as a cancer predisposition gene and shows the continuing value of analyzing affected members of high-risk pedigrees to identify and validate rare cancer predisposition variants.
Collapse
|
47
|
Albawardi A, Livingstone J, Almarzooqi S, Palanisamy N, Houlahan KE, Awwad AAA, Abdelsalam RA, Boutros PC, Bismar TA. Copy Number Profiles of Prostate Cancer in Men of Middle Eastern Ancestry. Cancers (Basel) 2021; 13:cancers13102363. [PMID: 34068856 PMCID: PMC8153627 DOI: 10.3390/cancers13102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Prostate cancer is the most commonly diagnosed non-skin malignancy in men. Numerous studies have been undertaken to explore the role that genomics plays in prostate cancer initiation and progression. Most of this genomic data comes tumors arising in men with European or Asian ancestry, leaving other ancestry groups understudied. To fill this gap, we investigated the differences in copy number aberrations between prostate cancers arising in men of Middle Eastern ethnicity and those of European, African, or East Asian ethnicities in the hope of better understanding the incidence and risk of prostate cancer in different populations. We identified ancestry-specific gains and deletions, as well as differences in overall genomic instability between ancestry groups. This confirms that ancestry should be considered when investigating and characterizing biomarkers and molecular signatures relative to disease progression, prognosis, and potentially therapeutic targeting. Abstract Our knowledge of prostate cancer (PCa) genomics mainly reflects European (EUR) and Asian (ASN) populations. Our understanding of the influence of Middle Eastern (ME) and African (AFR) ancestry on the mutational profiles of prostate cancer is limited. To characterize genomic differences between ME, EUR, ASN, and AFR ancestry, fluorescent in situ hybridization (FISH) studies for NKX3-1 deletion and MYC amplification were carried out on 42 tumors arising in individuals of ME ancestry. These were supplemented by analysis of genome-wide copy number profiles of 401 tumors of all ancestries. FISH results of NKX3-1 and MYC were assessed in the ME cohort and compared to other ancestries. Gene level copy number aberrations (CNAs) for each sample were statistically compared between ancestry groups. NKX3-1 deletions by FISH were observed in 17/42 (17.5%) prostate tumors arising in men of ME ancestry, while MYC amplifications were only observed in 1/42 (2.3%). Using CNAs called from arrays, the incidence of NKX3-1 deletions was significantly lower in ME vs. other ancestries (20% vs. 52%; p = 2.3 × 10−3). Across the genome, tumors arising in men of ME ancestry had fewer CNAs than those in men of other ancestries (p = 0.014). Additionally, the somatic amplification of 21 specific genes was more frequent in tumors arising in men of ME vs. EUR ancestry (two-sided proportion test; Q < 0.05). Those included amplifications in the glutathione S-transferase family on chromosome 1 (GSTM1, GSTM2, GSTM5) and the IQ motif-containing family on chromosome 3 (IQCF1, IQCF2, IQCF13, IQCF4, IQCF5, IQCF6). Larger studies investigating ME populations are warranted to confirm these observations.
Collapse
Affiliation(s)
- Alia Albawardi
- Tawam Hospital, Abu Dhabi P.O. Box 15258, United Arab Emirates; (A.A.); (S.A.); (A.A.A.A.)
- Pathology College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Julie Livingstone
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
| | - Saeeda Almarzooqi
- Tawam Hospital, Abu Dhabi P.O. Box 15258, United Arab Emirates; (A.A.); (S.A.); (A.A.A.A.)
- Pathology College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System Detroit, Detroit, MI 48202, USA;
| | - Kathleen E. Houlahan
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | | | - Ramy A. Abdelsalam
- Department of Pathology and Laboratory Medicine, University of Calgary-Cumming School of Medicine and Alberta Precision Labs, Calgary, AB T2N 4N1, Canada;
- Department of Pathology, Mansoura University, Mansoura 35516, Egypt
| | - Paul C. Boutros
- Departments of Human Genetics, University of California, Los Angeles, CA 94607, USA; (J.L.); (K.E.H.); (P.C.B.)
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 94607, USA
- Institute for Precision Health, University of California, Los Angeles, CA 94607, USA
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Urology, University of California, Los Angeles, CA 94607, USA
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary-Cumming School of Medicine and Alberta Precision Labs, Calgary, AB T2N 4N1, Canada;
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary-Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
- Alberta Precision Labs, Rockyview Hospital Laboratory, Department of Pathology & Laboratory Medicine, University of Calgary Cumming School of Medicine, 7007-14th Street SW, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
48
|
Cackowski FC, Mahal B, Heath EI, Carthon B. Evolution of Disparities in Prostate Cancer Treatment: Is This a New Normal? Am Soc Clin Oncol Educ Book 2021; 41:1-12. [PMID: 33979195 DOI: 10.1200/edbk_321195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite notable screening, diagnostic, and therapeutic advances, disparities in prostate cancer incidence and outcomes remain prevalent. Although commonly discussed in the context of men of African descent, disparities also exist based on socioeconomic level, education level, and geographic location. The factors in these disparities span systemic access issues affecting availability of care, provider awareness, and personal patient views and mistrust. In this review, we will discuss common themes that patients have noted as impediments to care. We will review how equitable access to care has helped improve outcomes among many different groups of patients, including those with local disease and those with metastatic castration-resistant prostate cancer. Even with more advanced presentation, challenges with recommended screening, and lower rates of genomic testing and trial inclusion, Black populations have benefited greatly from various modalities of therapy, achieving comparable and at times superior outcomes with certain types of immunotherapy, chemotherapy, androgen receptor-based inhibitors, and radiopharmaceuticals in advanced disease. We will also briefly discuss access to genomic testing and differences in patterns of gene expression among Black patients and other groups that are traditionally underrepresented in trials and genomic cohort studies. We propose several strategies on behalf of providers and institutions to help promote more equitable care access environments and continued decreases in prostate cancer disparities across many subgroups.
Collapse
Affiliation(s)
| | - Brandon Mahal
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | | | | |
Collapse
|
49
|
Stein JN, Charlot M, Cykert S. Building Toward Antiracist Cancer Research and Practice: The Case of Precision Medicine. JCO Oncol Pract 2021; 17:273-277. [PMID: 33974820 PMCID: PMC8257901 DOI: 10.1200/op.20.01070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jacob N. Stein
- Division of Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Marjory Charlot
- Division of Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Samuel Cykert
- Division of General Internal Medicine and Clinical Epidemiology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
50
|
Klebaner D, Travis Courtney P, Garraway IP, Einck J, Kumar A, Elena Martinez M, McKay R, Murphy JD, Parada H, Sandhu A, Stewart T, Yamoah K, Rose BS. Association of Health-Care System with Prostate Cancer-Specific Mortality in African American and Non-Hispanic White Men. J Natl Cancer Inst 2021; 113:1343-1351. [PMID: 33892497 DOI: 10.1093/jnci/djab062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Disparities in prostate cancer-specific mortality (PCSM) between African American and non-Hispanic White (White) patients have been attributed to biological and systemic factors. We evaluated drivers of these disparities in the Surveillance, Epidemiology and End Results (SEER) national registry and an equal-access system, the Veterans Health Administration (VHA). METHODS We identified African American and White patients diagnosed with prostate cancer between 2004-2015 in SEER (N = 311,691) and the VHA (N = 90,749). We analyzed the association between race and metastatic disease at presentation using multivariable logistic regression adjusting for sociodemographic factors, and PCSM using sequential competing-risks regression adjusting for disease and sociodemographic factors. RESULTS The median follow-up was 5.3 years in SEER and 4.7 years in the VHA. African American men were more likely than White men to present with metastatic disease in SEER (adjusted odds ratio = 1.23, 95% confidence interval [CI] = 1.17-1.30), but not in the VHA (adjusted odds ratio = 1.07, 95% CI = 0.98-1.17). African American versus White race was associated with an increased risk of PCSM in SEER (subdistribution hazard ratio [SHR] = 1.32, 95% CI = 1.10-1.60), but not in the VHA (SHR = 1.00, 95% CI: 0.93-1.08). Adjusting for disease extent, PSA, and Gleason score eliminated the association between race and PCSM in SEER (aSHR 1.04, 95% CI 0.93-1.16). CONCLUSIONS Racial disparities in PCSM were present in a nationally representative registry, but not in an equal-access healthcare system, due to differences in advanced disease at presentation. Strategies to increase healthcare access may bridge the racial disparity in outcomes. Longer follow-up is needed to fully assess mortality outcomes.Disparities between African American and non-Hispanic White (White) patients in cancer-specific mortality have been described across numerous cancer types and healthcare systems[1-5]. The survival gap between African American and White patients with prostate cancer has been well-characterized, with two-fold higher prostate cancer-specific mortality (PCSM) rates among African American patients depending on the setting[1, 6-10]. This disparity has been attributed to differences in prostate cancer biology in African American men, in addition to systemic factors in mediating this disparity, such as differential access to healthcare, Prostate-Specific Antigen (PSA) screening, and distrust in the healthcare system[1, 11-16].The Veterans Health Administration (VHA) is a relatively equal-access healthcare system that treats a large, ethnically diverse population of veterans. The Surveillance, Epidemiology and End Results (SEER) program is a national cancer registry program that collects data from the general United States (US) population. The goals of the present investigation were to 1) Compare PCSM between African American and White men within SEER and the VHA and 2) Identify modifiable system-level contributors to these disparities. We hypothesized that PCSM would be comparable among African American and White men in an equal-access setting, the VHA, but not in a national registry, SEER, and that this disparity in SEER would be in part driven by more advanced disease at presentation.
Collapse
Affiliation(s)
- Daniella Klebaner
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - P Travis Courtney
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California.,Veterans Health Administration San Diego Health Care System, La Jolla, California, USA
| | - Isla P Garraway
- Department of Urology, University of California Los Angeles School of Medicine, Los Angeles, California
| | - John Einck
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Abhishek Kumar
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Maria Elena Martinez
- Department of Population Sciences, University of California San Diego Moores Cancer Center, La Jolla, California.,Wertheim School of Public Health, University of California San Diego, La Jolla, California
| | - Rana McKay
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - James D Murphy
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California.,Veterans Health Administration San Diego Health Care System, La Jolla, California, USA
| | - Humberto Parada
- Department of Epidemiology and Biostatistics, San Diego State University Graduate School of Public Health,San Diego, California
| | - Ajay Sandhu
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California
| | - Tyler Stewart
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kosj Yamoah
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa Bay, Florida
| | - Brent S Rose
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, California.,Veterans Health Administration San Diego Health Care System, La Jolla, California, USA
| |
Collapse
|