1
|
Ou YJ, Liu BJ, Xuan YF, Bao XB, Huan XJ, Song SS, Su AL, Miao ZH, Wang YQ. The combination of BET and METTL3 inhibitors elicits synergistic antitumor effects in ovarian cancer cells via reducing SP1 and BCL-2 expression. Life Sci 2025; 368:123505. [PMID: 40015668 DOI: 10.1016/j.lfs.2025.123505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/25/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Ovarian cancer (OC) remains a major health threat to woman despite treatment advances. New therapeutic strategies are demanded to persistently explored. In this study, we found that inhibitors of bromodomain and extra-Terminal domain (BET) and methyltransferase-like 3 (METTL3) exerted synergistic proliferative inhibition in different OC cell lines. In vitro synergism was translated into in vivo antitumor activity through the combination of BET inhibitor HJP-178 and METTL3 inhibitor STM2457. Mechanistically, this combination mainly enhanced apoptosis rather than affecting cell cycle arrest. Furthermore, it was revealed that HJP-178 decreased the transcription of Specificity protein 1 (SP1) while STM2457 lowered the N6-methyladenosine (m6A) levels of SP1 mRNA. Consequently, their combination synergistically reduces SP1 RNA and protein levels through both transcriptional and post-transcriptional modifications. Further exploration demonstrated that inhibiting SP1 directly downregulates the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), activating the caspase-mediated apoptotic pathway and triggering programmed cell death. Importantly, SP1 overexpression significantly reducing the apoptosis induction and proliferation inhibition induced by the combination. Similarly, BCL-2 overexpression mimicked the effects of increased SP1. These results demonstrate the critical roles of SP1 and BCL-2 in the synergistic antitumor activity between BET and METTL3 inhibitors. Collectively, our findings broaden the potential applications of both drug types and present a promising therapeutic approach for OC, warranting further investigation in clinical settings.
Collapse
Affiliation(s)
- Ying-Jie Ou
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ben-Jin Liu
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yi-Fei Xuan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xu-Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xia-Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ai-Ling Su
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying-Qing Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
2
|
Gupta MK, Gouda G, Moazzam-Jazi M, Vadde R, Nagaraju GP, El-Rayes BF. CRISPR/Cas9-directed epigenetic editing in colorectal cancer. Biochim Biophys Acta Rev Cancer 2025:189338. [PMID: 40315964 DOI: 10.1016/j.bbcan.2025.189338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related illness and death worldwide, arising from a complex interplay of genetic predisposition, environmental influences, and epigenetic dysregulation. Among these factors, epigenetic modifications-reversible and heritable changes in gene expression-serve as crucial regulators of CRC progression. Understanding these modifications is essential for identifying potential biomarkers for early diagnosis and developing targeted therapeutic strategies. Epigenetic drugs (epidrugs) such as DNA methyltransferase inhibitors (e.g., decitabine) and bromodomain inhibitors (e.g., JQ1) have shown promise in modulating aberrant epigenetic changes in CRC. However, challenges such as drug specificity, delivery, and safety concerns limit their clinical application. Advances in CRISPR-Cas9-based epigenetic editing offer a more precise approach to modifying specific epigenetic markers, presenting a potential breakthrough in CRC treatment. Despite its promise, CRISPR-based epigenome editing may result in unintended genetic modifications, necessitating stringent regulations and safety assessments. Beyond pharmacological interventions, lifestyle factors-including diet and gut microbiome composition-play a significant role in shaping the epigenetic landscape of CRC. Nutritional and microbiome-based interventions have shown potential in preventing CRC development by maintaining intestinal homeostasis and reducing tumor-promoting epigenetic changes. This review provides a comprehensive overview of epigenetic alterations in CRC, exploring their implications for diagnosis, prevention, and treatment. By integrating multi-omics approaches, single-cell technologies, and model organism studies, future research can enhance the specificity and efficacy of epigenetic-based therapies. Shortly, a combination of advanced gene-editing technologies, targeted epidrugs, and lifestyle interventions may pave the way for more effective and personalized CRC treatment strategies.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack 753 006, Odisha, India
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Division of Hematology & Oncology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
3
|
Zhong M, Zhong S, Qiu K, Peng X, Liu X, Sui S, Dai Z, Wang X, Nie D, Yu Z, Yu Q, Chen C, Li Y, Zeng C. Synergistic effects of BET inhibitors and ferroptosis inducers via targeted inhibition of the BRD4/c-Myc/NRF2 pathway in AML. Eur J Pharmacol 2025; 998:177652. [PMID: 40252902 DOI: 10.1016/j.ejphar.2025.177652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
In acute myeloid leukemia (AML), high expression of BRD4 is associated with poor prognosis. BET inhibitors that mainly inhibit BRD4 can induce AML cell death, but some AML cells are insensitive to BET inhibitors. We found that BET inhibitors could promote the up-regulation of the ferroptosis signaling pathway in AML. In this study, we intend to investigate the synergistic effects of BET inhibitors with ferroptosis inducers in AML cells. The combination of BET inhibitors with ferroptosis inducers (RSL3, FIN56, and Erastin) markedly reduced AML cell viability and increased cell death, as demonstrated by CCK-8 assays and flow cytometry analysis across multiple AML cell lines and primary AML patient samples. Moreover, BET inhibitors combined with ferroptosis inducers elevated the lipid reactive oxygen species (ROS) levels, indicating heightened lipid peroxidation, a hallmark of ferroptosis. Mechanistically, BET inhibitor and ferroptosis inducer co-targeted the BRD4/c-Myc/NRF2 axis, leading to downregulation of NRF2, key regulators of AML cell survival and oxidative stress resistance. NRF2 knockdown amplified the anti-AML effect of this combined treatment, whereas NRF2 overexpression negated this synergy, highlighting its critical role in mediating ferroptosis resistance. Finally, survival analyses of AML patients from the TCGA and GSE71014 datasets revealed that elevated expression of BRD4, NRF2, and its downstream target GPX4, an essential ferroptosis regulator, correlated with poor overall survival, highlighting the clinical relevance of our findings. In all, combining BET inhibition with ferroptosis induction could enhance anti-leukemia effect and represent a novel therapeutic strategy for targeting AML cells.
Collapse
Affiliation(s)
- Mengjun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China; Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, 510180, PR China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Kangjie Qiu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xueting Peng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xin Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Songnan Sui
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Zhangshuai Dai
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Xianfeng Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Dingrui Nie
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Zhi Yu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Quan Yu
- Experimental Research Center, School of Medicine, Jinan University, Guangzhou, 510632, PR China.
| | - Cunte Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China; Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, 510180, PR China.
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China.
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, PR China; Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, PR China.
| |
Collapse
|
4
|
Chen Y, Zhou H, Yu J, Gao J, Xue S, Ding H, Lin H, Luo C. A patent review of BRD4 inhibitors (2020-present). Expert Opin Ther Pat 2025; 35:371-386. [PMID: 39918129 DOI: 10.1080/13543776.2025.2463150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Bromodomain-containing protein 4 (BRD4) stands as a pivotal member within the Bromodomain and Extra-Terminal Domain (BET) family, contributing significantly to epigenetic control and gene expression. Given its association with various cancers, BRD4 emerges as a promising therapeutic target, suggesting a substantial role in the treatment of diverse pathological conditions. AREAS COVERED The present review is centered on patent applications concerning inhibitors targeting BRD4's bromodomain site, published from 2020 to present. A comprehensive evaluation was conducted on a total of 70 applications. The latest patented studies of BRD4 are summarized by using the keywords 'BRD4' in SciFinder, PubMed, and The lens Patents and databases in the year from 2020 to present. EXPERT OPINION Despite the substantial progress achieved in the clinical research of numerous BET bromodomain inhibitors, their development remains fraught with challenges. To mitigate the dose-limiting toxicity (DLT) and other clinical adverse effects associated with pan-BET inhibitors, current research efforts are increasingly focus on the development of selective BRD4-BD1 or -BD2 inhibitors. These selective inhibitors exhibit considerable potential as more efficacious candidate drugs, thereby paving the way for novel avenues in both fundamental and translational research within this domain.
Collapse
Affiliation(s)
- Yanfang Chen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Huanmin Zhou
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jiamin Yu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Shengyu Xue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hua Lin
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Cheng Luo
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
5
|
Chan SPY, Rashid MBMA, Lim JJ, Goh JJN, Wong WY, Hooi L, Ismail NN, Luo B, Chen BJ, Noor NFBM, Phua BXM, Villanueva A, Sam XX, Ong CAJ, Chia CS, Abidin SZ, Yong MH, Kumar K, Ooi LL, Tay TKY, Woo XY, Toh TB, Yang VS, Chow EKH. Functional combinatorial precision medicine for predicting and optimizing soft tissue sarcoma treatments. NPJ Precis Oncol 2025; 9:83. [PMID: 40121334 PMCID: PMC11929909 DOI: 10.1038/s41698-025-00851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Soft tissue sarcomas (STS) are rare, heterogeneous tumors with poor survival outcomes, primarily due to reliance on cytotoxic chemotherapy and lack of targeted therapies. Given the uniquely individualized nature of STS, we hypothesized that the ex vivo drug sensitivity platform, quadratic phenotypic optimization platform (QPOP), can predict treatment response and enhance combination therapy design for STS. Using QPOP, we screened 45 primary STS patient samples, and showed improved or concordant patient outcomes that are attributable to QPOP predictions. From a panel of approved and investigational agents, QPOP identified AZD5153 (BET inhibitor) and pazopanib (multi-kinase blocker) as the most effective combination with superior efficacy compared to standard regimens. Validation in a panel of established patient lines and in vivo models supported its synergistic interaction, accompanied by repressed oncogenic MYC and related pathways. These findings provide preliminary clinical evidence for QPOP to predict STS treatment outcomes and guide the development of novel therapeutic strategies for STS patients.
Collapse
Affiliation(s)
- Sharon Pei Yi Chan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01 Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | | | - Jhin Jieh Lim
- KYAN Technologies, 1 Research Link, #05-45, Singapore, 117604, Republic of Singapore
| | - Janice Jia Ni Goh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Wai Yee Wong
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01 Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #12-01 Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | - Nur Nadiah Ismail
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, #05-COR, Singapore, 117456, Republic of Singapore
| | - Baiwen Luo
- The N1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore, 117456, Republic of Singapore
| | - Benjamin Jieming Chen
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Nur Fazlin Bte Mohamed Noor
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
| | - Brandon Xuan Ming Phua
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Andre Villanueva
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Xin Xiu Sam
- Department of Anatomical Pathology, Singapore General Hospital, College Road, Level 7 Academia, Singapore, 169856, Republic of Singapore
| | - Chin-Ann Johnny Ong
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
| | - Claramae Shulyn Chia
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
| | - Suraya Zainul Abidin
- Department of Orthopaedic Surgery, Singapore General Hospital, 10 Hospital Boulevard, Tower Level 4 SingHealth Tower, Singapore, 168582, Republic of Singapore
| | - Ming-Hui Yong
- Department of Neurology, National Neuroscience Institute (Singapore General Hospital Campus), Outram Rd, Singapore, 169608, Republic of Singapore
| | - Krishan Kumar
- Department of Neurosurgery, National Neuroscience Institute (Singapore General Hospital Campus), Outram Rd, Singapore, 169608, Republic of Singapore
| | - London Lucien Ooi
- Oncology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
- Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Outram Rd, Singapore, 169608, Republic of Singapore
| | - Timothy Kwang Yong Tay
- Department of Anatomical Pathology, Singapore General Hospital, College Road, Level 7 Academia, Singapore, 169856, Republic of Singapore
| | - Xing Yi Woo
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Tan Boon Toh
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, #05-COR, Singapore, 117456, Republic of Singapore.
- The N1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore, 117456, Republic of Singapore.
| | - Valerie Shiwen Yang
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore.
- Oncology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore.
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01 Centre for Translational Medicine, Singapore, 117599, Republic of Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #12-01 Centre for Translational Medicine, Singapore, 117599, Republic of Singapore.
- The N1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore, 117456, Republic of Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Republic of Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore, 117583, Republic of Singapore.
| |
Collapse
|
6
|
Wang W, Li X, Hu R, Dong L, Pei S, Jin L, Gao Q, Chen X, Yin M. BET inhibitor in combination with BCG vaccine enhances antitumor efficacy and orchestrates T cell reprogramming for melanoma. Cell Rep Med 2025; 6:101995. [PMID: 40107246 PMCID: PMC11970395 DOI: 10.1016/j.xcrm.2025.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Immunotherapy shows remarkable benefits in treating melanoma, yet existing approaches achieve limited overall responses. Here, we show that a combination of bromodomain and extra-terminal protein family inhibitor, NHWD-870, and Bacillus Calmette-Guérin vaccine is a promising therapeutic strategy for melanomas. Single-cell transcriptome analyses and functional experiments show that the combination therapy significantly inhibited tumor growth by reprogramming T cells toward an immune-activated state, enhancing their cytotoxicity, preventing their exhaustion, and increasing the recruitment of them into the tumor microenvironment. We identify the molecule, MT1, as a direct downstream target of BRD4, which is effectively suppressed by NHWD-870. Furthermore, our findings are reinforced by a humanized patient-derived xenograft (PDX) model, which exhibits notable antitumor effects in humanized tumor-bearing mice treated with the combination therapy. Our study underscores the immense potential of this therapeutic approach for clinical practice, offering promising prospects in overcoming the limitations of current treatments.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xin Li
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing 404100, China; Translational Medicine Research Center (TMRC), School of Medicine Chongqing University, Shapingba, Chongqing 400000, China.
| | - Rui Hu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Liang Dong
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Shiyao Pei
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Liping Jin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Qian Gao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
7
|
Yang Y, Liu H, Yuan H, Lyu K, Zhong H, Li Y, Cao D, Zhao W, Zhang H, Xiong B, Chen D, Guo D. Design of Selective BRD4 Inhibitors for the Treatment of Autosomal Dominant Polycystic Kidney Disease. J Med Chem 2025; 68:5257-5274. [PMID: 39945752 DOI: 10.1021/acs.jmedchem.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Epigenetic modulation plays a pivotal role in restraining tumor progression by governing gene expression and protein function. Autosomal dominant polycystic kidney disease (ADPKD), characterized by neoplastic-like progression, can be managed by inhibiting cyst expansion. Of note, the epigenetic regulator BRD4 has been implicated in ADPKD's development. Our prior research unveiled a class of (pyrazol-3-yl) pyrimidin-4-amine compounds as potent BRD4 inhibitors with additional kinase inhibition, which might induce unwanted biological activities. To address this, this study focused on creating selective BRD4 inhibitors through structure-guided design, minimizing off-target kinase interactions. Specifically, compound 23 emerged as an efficacious and selective BRD4 inhibitor in cellular and embryonic kidney models of ADPKD, along with encouraging outcomes in murine models. Collectively, these results highlight the therapeutic potential of targeted BRD4 inhibition as a safe and efficacious strategy for managing ADPKD.
Collapse
Affiliation(s)
- Yueyue Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Kaikai Lyu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyang Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yanlian Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Danyan Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenchao Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Bing Xiong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danqi Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
8
|
Zhu W, Zhang Y, Yang L, Chen L, Chen C, Shi Q, Xu Z. Construction of a lung adenocarcinoma prognostic model based on KEAP1/NRF2/HO‑1 mutation‑mediated upregulated genes and bioinformatic analysis. Oncol Lett 2025; 29:155. [PMID: 39911153 PMCID: PMC11795234 DOI: 10.3892/ol.2025.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a prevalent malignant tumor of the respiratory tract. The Kelch like ECH associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) axis serves a pivotal role in the occurrence and progression of LUAD. The present study aimed to identify specific genes regulated by mutations of the KEAP1/NRF2/HO-1 axis and to investigate their prognostic potential in LUAD, as well as their association with the tumor microenvironment. Immunohistochemistry was performed to assess the expression levels of KEAP1, NRF2 and HO-1 in LUAD tissues and to evaluate their association with clinical pathology. Sequencing data and clinical information were obtained from The Cancer Genome Atlas (TCGA)-LUAD and Gene Expression Omnibus (GSE68465) databases, whilst mutation information was sourced from the cBio Cancer Genomics Portal website. The R package 'limma' and Venn diagram were utilized to identify upregulated differentially expressed genes. Subsequently, a prognostic model was constructed using univariate Cox regression analysis and 101 machine learning methods. A nomogram of the prognostic model was generated to assess its efficacy in evaluating survival among patients with LUAD. The 'ImmuCellAI' and 'oncoPredict' R packages were used to compare and evaluate differences in immune cell infiltration and immunotherapy between high- and low-risk groups, as well as the sensitivity of LUAD to chemotherapy drugs. Compared with the group with negative expression, the results revealed that the group with positive expression of NRF2 and HO-1 exhibited advanced tumor, lymph node and clinical stages and a worse prognosis. A predictive model incorporating four genes (kynureninase, serpin family B member 5, insulin like 4 and γ-aminobutyric acid type A receptor subunit α3) was constructed based on KEAP1/NRF2/HO-1 mutation-mediated upregulated genes (KNHMUGs). Risk score was an independent prognostic factor for patients with LUAD (hazard ratio, 1.038; 95% confidence interval, 1.034-1.043; P<0.001). A nomogram was developed to predict the prognosis of patients with LUAD, which was validated as a reliable prognostic tool. The low-risk group exhibited higher immune cell infiltration, including CD4+ T, CD8+ T, natural killer (NK) and NKT cells, compared with the high-risk group. In addition, it demonstrated increased expression levels of immune checkpoint inhibitory genes such as cytotoxic T-lymphocyte associated protein 4, T cell immunoreceptor with Ig and ITIM domains, hepatitis A virus cellular receptor 2 and B and T lymphocyte associated protein. Moreover, it displayed enhanced sensitivity to immunotherapy. Drug sensitivity analysis revealed that the high-risk group exhibited increased sensitivity towards vinblastine, docetaxel and cisplatin, whereas the low-risk group showed increased sensitivity to BMS_754807, SB505124_1194 and JQ1_2172. In conclusion, a KNHMUGs-based gene signature was constructed in the present study, which holds promise as a biomarker for evaluating patient prognosis and guiding treatment by effectively assessing immunotherapy response and chemotherapy sensitivity in patients with LUAD.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pathology, Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu 214105, P.R. China
| | - Ye Zhang
- Department of Pathology, Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu 214105, P.R. China
| | - Lingyun Yang
- Department of Renal and Rheumatology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214000, P.R. China
| | - Lu Chen
- Department of Pathology, Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu 214105, P.R. China
| | - Chaobo Chen
- Department of General Surgery, Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu 214105, P.R. China
- Department of Hepatobiliary and Transplantation Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210000, P.R. China
| | - Qifeng Shi
- Department of Pathology, Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu 214105, P.R. China
| | - Zipeng Xu
- Department of General Surgery, Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu 214105, P.R. China
| |
Collapse
|
9
|
Obinata D, Yamada Y, Sumiyoshi T, Tanegashima T, Watanabe R, Kobayashi H, Ito D, Urabe F. Recent advances in basic research on prostate cancer: Where we are heading? Int J Urol 2025; 32:219-228. [PMID: 39474871 DOI: 10.1111/iju.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 03/21/2025]
Abstract
In the over 80 years since androgens were found to play a pivotal role in prostate cancer (PCa) progression, androgen deprivation therapy (ADT) has been a cornerstone in treating advanced PCa. Castration-resistant PCa persists, however, with some of these tumors evolving to androgen receptor (AR)-independent forms like neuroendocrine PCa. The development of novel diagnostic and therapeutic approaches to PCa is therefore crucial. This review provides an overview of recent basic research in PCa, focusing on two main areas: PCa cells and their tumor microenvironments. The first section describes current knowledge on the intricate mechanisms of AR signaling pathways, emphasizing the roles of coactivators and chromatin state alterations in gene regulation. Genomic analyses have revealed recurrent mutations and copy number alterations critical for precision medicine. Liquid biopsy has become a promising tool for real-time tumor monitoring, identifying genetic alterations in circulating-tumor DNA or extracellular vesicles. The second section describes the tumor microenvironment of PCa, highlighting its immunosuppressive landscape and the potential of combining ADT with immunotherapy. Advanced techniques, including single-cell RNA sequencing and spatial transcriptomics offer insights into cellular heterogeneity and interactions within the tumor microenvironment, paving the way for novel therapeutic strategies. Integration of these diverse research areas will provide a comprehensive understanding of the current state and future directions of PCa research, underscoring the importance of personalized medicine and the dynamic nature of cancer treatment strategies.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Yasutaka Yamada
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Sumiyoshi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuta Watanabe
- Department of Urology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroaki Kobayashi
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Daisuke Ito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
11
|
Gao Y, Liu Q, Song C, Song S, Tian C, Li J, Liu W, Cheng M, Zhang S, Wang X, Xia C, Liu T. Achieving theranostic probes targeting BRD3/BRD4 for imaging and therapy of tumor. Eur J Med Chem 2025; 283:117151. [PMID: 39681044 DOI: 10.1016/j.ejmech.2024.117151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
The BET family proteins play pleiotropic roles in the tumorigenesis and growth of various human malignancies that have aroused great interests as the cancer therapeutic targets. Therefore, it's significant to develop labeling toolkits for the dynamic monitoring of BET family proteins in living tumor cells and tissue slices. In particular, there are few small-molecule fluorescent probes based on BET family proteins developed for real-time imaging of these proteins in tumor cells and tissues and treatment of breast cancer. In general, antibodies of BET family proteins are chosen for imaging of these proteins. However, the cost of these antibodies is more expensive than small molecules and the operation is relatively complicated. Moreover, the antibodies for imaging are not capable of the therapy for breast cancer. Thus, it's essential to exploit a novel imaging system for BET family proteins which is easy-operating and economical, with achieving therapeutic effects simultaneously. Therefore, a series of fluorescent probes (17-21) targeting BET family proteins were developed. Through the evaluation studies, probe 17 showed advantages in docking studies, analysis of cell viability, and imaging studies. Importantly, probe 17 was capable of distinguishing tumor cells and tissue slices and made a distinction between them by labeling BRD3 and BRD4 proteins. Importantly, probe 17 showed higher resolution in mouse tumor and human tumor slice imaging than BRD3 and BRD4 antibodies. Moreover, compared with these antibodies, probe 17 was more stable, more economical and easier to operate in the imaging assays. In addition, it also played an anti-tumor role by inducing cell apoptosis, proliferation inhibition, and cycle arrest in tumor cells. All these features render probe 17 to perform as an effective labeling toolkit compatible for imaging studies of BRD3/BRD4, as well as an approach to diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yuqi Gao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China.
| | - Qiao Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Shubin Song
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, 250200, China
| | - Jianjun Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wenjie Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Mingyu Cheng
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Sitao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xu Wang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
12
|
Qu J, Chen Z, Zhu Y, Huang J, Shen Q. Pulmonary Nuclear protein in Testis (NUT) carcinoma: clinical, molecular characteristics, and treatment strategies. BMC Cancer 2025; 25:196. [PMID: 39905380 PMCID: PMC11792297 DOI: 10.1186/s12885-025-13593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Pulmonary nuclear protein in testis (NUT) carcinoma is a rare and aggressive malignancy that often exhibits clinical and pathological features overlapping with other thoracic malignancies, posing significant challenges for accurate diagnosis and leading to poor treatment outcomes. METHOD We conducted a retrospective analysis of five patients diagnosed with pulmonary NUT carcinoma between 2020 and 2023. Comprehensive clinical, imaging, histopathological, and molecular data and survival outcomes were collected. RESULTS The cohort included three females and two males, with a median age of 44 years. Clinical features commonly involved centrally located masses with mediastinal invasion. Distant metastases to bones, pleura, and lungs were confirmed in 60% of cases. Diagnostic confirmation was achieved through NUT protein positivity via IHC and FISH rearrangements in all five patients. RNA sequencing identified BRD3-NUTM1 fusions in 60% (3/5) patients. Chemotherapy was employed as the initial treatment strategy but showed limited efficacy in advanced stages. Among two patients undergoing surgical resection, better outcomes were achieved in the patient receiving adjuvant therapy with overall survival (OS) exceeding 36 months. Immunotherapy demonstrated limited benefit, likely attributable to low PD-L1 expression and an immunologically "cold" tumor microenvironment. Despite multimodal treatment approaches, three out of five patients in advanced pulmonary NUT carcinoma died to the disease, with OS ranging from 6 to 15 months. CONCLUSION Advanced molecular techniques are critical for diagnosing pulmonary NUT carcinoma, but survival outcomes remain poor. Surgical resection with adjuvant therapy offers better outcomes for early-stage patients, while chemotherapy and immunotherapy show limited efficacy in metastatic cases due to the tumor's aggressive behavior. Early detection and innovative therapies are essential for improving outcomes.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, P. R. China
| | - Zhen Chen
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, P. R. China
| | - Yanping Zhu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, P. R. China
| | - JinYan Huang
- Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, P.R. China
| | - Qian Shen
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, P. R. China.
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, P. R. China.
| |
Collapse
|
13
|
Verbeke S, Bourdon A, Lafon M, Chaire V, Frederic B, Naït Eldjoudi A, Derieppe MA, Giles F, Italiano A. Dual inhibition of BET and EP300 has antitumor activity in undifferentiated pleomorphic sarcomas and synergizes with ferroptosis induction. Transl Oncol 2025; 52:102236. [PMID: 39681067 PMCID: PMC11713734 DOI: 10.1016/j.tranon.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is the most frequent and the most aggressive sarcoma subtype for which therapeutic options are limited. The identification of new therapeutic strategies is therefore an important medical need. Epigenetic modifiers has been extensively investigated in recent years leading to the development of novel therapeutic agents. Dual BET/EP300 inhibitors have shown synergistic antitumor activity and have recently entered clinical development. To date, no data related to potential of BET/EP300 inhibition as a treatment in UPS have been reported. To investigate the therapeutic potential of BET/EP300 inhibition, we evaluated the antitumor activity of three compounds in vitro via MTT, apoptosis and cell cycle assays. The most potent inhibitor was evaluated in vivo in two animal models and the mechanisms of action were investigated by RNA sequencing, Western blotting and immunofluorescence staining. A CRISPR knockout screen was performed to identify resistance mechanisms. Among the three compounds tested, the dual inhibitor NEO2734 was the most potent, decreased the viability of UPS cells in vitro through a regulation of E2F targets and cell cycle and decreased the tumor growth in vivo. Moreover, we identified GPX4 as a gene involved in resistance and showed synergy between BET inhibition and ferroptosis induction. The present study demonstrated that dual BET/EP300 inhibitors have a relevant antitumor activity in a subgroup of UPS characterized by expression of MYC-targets pathway and identified a potent combination therapeutic strategy that deserves further investigation in the clinical setting.
Collapse
Affiliation(s)
- Stéphanie Verbeke
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Aurélien Bourdon
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Mathilde Lafon
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Vanessa Chaire
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Bertolo Frederic
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Amina Naït Eldjoudi
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France
| | - Marie-Alix Derieppe
- Service Commun des Animaleries, University of Bordeaux 33000 Bordeaux, France
| | | | - Antoine Italiano
- Sarcoma Unit, Bergonié Institute 33000 Bordeaux, France; INSERM U1312 BRIC BoRdeaux Institute of onCology, University of Bordeaux 33000 Bordeaux, France; Faculty of Medicine, University of Bordeaux 33000 Bordeaux, France.
| |
Collapse
|
14
|
Korbelik M, Heger M, Girotti AW. Participation of lipids in the tumor response to photodynamic therapy and its exploitation for therapeutic gain. J Lipid Res 2025; 66:100729. [PMID: 39675508 PMCID: PMC11911859 DOI: 10.1016/j.jlr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during clinical oncological PDT, but this is not well-perceived by practitioners of this therapy. In general, the pivotal influence of lipids in tumor responses to PDT needs to be better appreciated. Of related importance is the fact that most malignant tumors have dramatically different lipid metabolism compared with healthy tissues, and this too is often ignored. The response of tumors to PDT appears especially vulnerable to manipulations within the tumor lipid microenvironment. This can be exploited for therapeutic gain with PDT, as exemplified here by the combined treatment with the antitumor lipid edelfosine.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Lyu K, Ren Y, Mou J, Yang Y, Pan Y, Zhang H, Li Y, Cao D, Chen L, Chen D, Guo D, Xiong B. Structure-Based Rational Design and Evaluation of BET-Aurora Kinase Dual-Inhibitors for Treatment of Cancers. J Med Chem 2025; 68:1344-1364. [PMID: 39844725 DOI: 10.1021/acs.jmedchem.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor 27, we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors. Compound 38 exhibited strong affinity toward both BRD4 and Aurora kinase A. It also showed good antiproliferative activities on diverse cancer cell lines, good pharmacokinetic profiles, and favorable antitumor efficacy in renal cell cancer and colon cancer xenograft models with TGI of 45.99% and 53.06%, respectively. The development of compound 38 reinforces the concept that a rational design may achieve dual inhibitors targeting specific kinases and bromodomain proteins.
Collapse
Affiliation(s)
- Kaikai Lyu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Yunfang Yang
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Yaoyao Pan
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Huijie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
16
|
Cao J, Wu T, Zhou T, Jiang Z, Ren Y, Yu J, Wang J, Qian C, Wu G, He L, Li H, Lin R, Liu M, Gu H. USP35 promotes the growth of ER positive breast cancer by inhibiting ferroptosis via BRD4-SLC7A11 axis. Commun Biol 2025; 8:64. [PMID: 39820080 PMCID: PMC11739500 DOI: 10.1038/s42003-025-07513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Anti-estrogen endocrine therapies greatly improve survival of estrogen receptor positive (ER + ) breast cancer. Unfortunately, about 30% of patients do not respond to endocrine therapies initially. We previously showed that deubiquitinase USP35 and ERα act in a positive feedback loop to promote the carcinogenesis of ER+ breast cancer although it is unclear whether USP35 regulates cell death in ER+ breast cancer. In this study, we uncovered that USP35 inhibited ferroptosis of ER+ breast cancer cells. Mechanistically, USP35 interacted with, deubiquitinated, and stabilized BRD4. Consequentially, BRD4 mediated USP35-induced SLC7A11 upregulation, inhibiting ferroptosis and promoting the growth of ER+ breast cancer cells. Furthermore, BRD4 inhibitor (+)-JQ-1 inhibited USP35-enhanced tumorigenesis in vivo. Our findings demonstrated that the USP35-BRD4-SLC7A11 axis contributes to the growth of ER+ breast cancer by inhibiting ferroptosis. Targeting USP35 together with ferroptosis inducer may represent a potential promising strategy for treating ER+ breast cancer that does not respond to endocrine therapies.
Collapse
Affiliation(s)
- Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Tao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tong Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zewei Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yinrui Ren
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changrui Qian
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Licai He
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rixu Lin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Min Liu
- Department of Orthopedics, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
17
|
Kumar D, Kanchan R, Chaturvedi NK. Targeting protein synthesis pathways in MYC-amplified medulloblastoma. Discov Oncol 2025; 16:23. [PMID: 39779613 PMCID: PMC11711608 DOI: 10.1007/s12672-025-01761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
MYC is one of the most deregulated oncogenic transcription factors in human cancers. MYC amplification/or overexpression is most common in Group 3 medulloblastoma and is positively associated with poor prognosis. MYC is known to regulate the transcription of major components of protein synthesis (translation) machinery, leading to promoted rates of protein synthesis and tumorigenesis. MTOR signaling-driven deregulated protein synthesis is widespread in various cancers, including medulloblastoma, which can promote the stabilization of MYC. Indeed, our previous studies demonstrate that the key components of protein synthesis machinery, including mTOR signaling and MYC targets, are overexpressed and activated in MYC-amplified medulloblastoma, confirming MYC-dependent addiction of enhanced protein synthesis in medulloblastoma. Further, targeting this enhanced protein synthesis pathway with combined inhibition of MYC transcription and mTOR translation by small-molecule inhibitors, demonstrates preclinical synergistic anti-tumor potential against MYC-driven medulloblastoma in vitro and in vivo. Thus, inhibiting enhanced protein synthesis by targeting the MYC indirectly and mTOR pathways together may present a highly appropriate strategy for treating MYC-driven medulloblastoma and other MYC-addicted cancers. Evidence strongly proposes that MYC/mTOR-driven tumorigenic signaling can predominantly control the translational machinery to elicit cooperative effects on increased cell proliferation, cell cycle progression, and genome dysregulation as a mechanism of cancer initiation. Several small molecule inhibitors of targeting MYC indirectly and mTOR signaling have been developed and used clinically with immunosuppressants and chemotherapy in multiple cancers. Only a few of them have been investigated as treatments for medulloblastoma and other pediatric tumors. This review explores concurrent targeting of MYC and mTOR signaling against MYC-driven medulloblastoma. Based on existing evidence, targeting of MYC and mTOR pathways together produces functional synergy that could be the basis for effective therapies against medulloblastoma.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA
| | - Ranjana Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
18
|
Nwosu ZC, Giza HM, Nassif M, Charlestin V, Menjivar RE, Kim D, Kemp SB, Sajjakulnukit P, Andren A, Zhang L, Lai WK, Loveless I, Steele N, Hu J, Hu B, Wang S, Pasca di Magliano M, Lyssiotis CA. Multidimensional analyses identify genes of high priority for pancreatic cancer research. JCI Insight 2025; 10:e174264. [PMID: 39774001 PMCID: PMC11949049 DOI: 10.1172/jci.insight.174264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a drug-resistant and lethal cancer. Identification of the genes that consistently show altered expression across patient cohorts can expose effective therapeutic targets and strategies. To identify such genes, we separately analyzed 5 human PDAC microarray datasets. We defined genes as "consistent" if upregulated or downregulated in 4 or more datasets (adjusted P < 0.05). The genes were subsequently queried in additional datasets, including single-cell RNA-sequencing data, and we analyzed their pathway enrichment, tissue specificity, essentiality for cell viability, and association with cancer features, e.g., tumor subtype, proliferation, metastasis, and poor survival outcome. We identified 2,010 consistently upregulated and 1,928 downregulated genes, of which more than 50% to our knowledge were uncharacterized in PDAC. These genes spanned multiple processes, including cell cycle, immunity, transport, metabolism, signaling, and transcriptional/epigenetic regulation - cell cycle and glycolysis being the most altered. Several upregulated genes correlated with cancer features, and their suppression impaired PDAC cell viability in prior CRISPR/Cas9 and RNA interference screens. Furthermore, the upregulated genes predicted sensitivity to bromodomain and extraterminal (epigenetic) protein inhibition, which, in combination with gemcitabine, disrupted amino acid metabolism and in vivo tumor growth. Our results highlight genes for further studies in the quest for PDAC mechanisms, therapeutic targets, and biomarkers.
Collapse
Affiliation(s)
- Zeribe C. Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heather M. Giza
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Maya Nassif
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - Daeho Kim
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha B. Kemp
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Sajjakulnukit
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - William K.M. Lai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Ian Loveless
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA
- Department of Computational Mathematics, Science, and Engineering; Medical Imaging and Data Integration Lab; Michigan State University, East Lansing, Michigan, USA
| | - Nina Steele
- Henry Ford Pancreatic Cancer Center, Department of Surgery, Detroit, Michigan, USA
- Department of Pathology and Oncology, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Jiantao Hu
- Department of Internal Medicine, Medical School
| | - Biao Hu
- Department of Internal Medicine, Medical School
| | - Shaomeng Wang
- Department of Internal Medicine, Medical School
- Department of Pharmacology, Medical School
- Department of Medicinal Chemistry, College of Pharmacy
- Rogel Cancer Center
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center
- Department of Cell and Developmental Biology, and
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
20
|
Shields MD, Minton KG, Tran M, Gunderman PR, Larsson LG, Guo S, Kniese CM, Wei CX, Marin-Acevedo JA, Maniar R, Durm GA, He W, Hanna NH. Defining the needle in a haystack: A compendium of genomic, pathologic, and clinical characteristics of rare pulmonary tumors. Lung Cancer 2025; 199:108035. [PMID: 39731864 DOI: 10.1016/j.lungcan.2024.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/30/2024]
Abstract
A major paradigm shift in the diagnosis, management, and survival outcomes of early and advanced non-small cell lung cancer has transpired over the past few decades in thoracic oncology with the incorporation of molecular testing, targeted therapy, immunotherapy, neoadjuvant, and adjuvant approaches. However, transformation in the management and survival outcomes of rare lung tumors is lacking. Given the scarcity of these tumor types, randomized trials are rarely performed, and treatment is extrapolated from case series, tumor-agnostic trials, or cancers with similar histology. Literature informing the management of rare pulmonary tumors is typically limited to a single histology, unique features, or extraordinary responses to therapy. Few resources detailing genomic characteristics and delineating features of these tumors are available, often resulting in suboptimal treatment. Here, we explore the clinical, histopathologic, genomic features and potential therapies of five rare pulmonary tumors, namely adenosquamous, basaloid squamous, mucoepidermoid, carcinosarcoma, and NUT carcinoma, to build a resource for rare histological subtypes of the lung and emphasize knowledge gaps in the management of these tumors. Our recommendations are based on a comprehensive review of case reports and series, clinical trials, and the "Indiana University Experience."
Collapse
Affiliation(s)
- Misty D Shields
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSOM), Indianapolis, IN 46202, USA
| | - Katherine G Minton
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSOM), Indianapolis, IN 46202, USA
| | - Mya Tran
- Department of Pharmacology and Toxicology, IUSOM
| | | | | | | | | | - Cynthia X Wei
- Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Julian A Marin-Acevedo
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSOM), Indianapolis, IN 46202, USA
| | - Rohan Maniar
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSOM), Indianapolis, IN 46202, USA
| | - Greg A Durm
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSOM), Indianapolis, IN 46202, USA
| | - Weston He
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSOM), Indianapolis, IN 46202, USA
| | - Nasser H Hanna
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine (IUSOM), Indianapolis, IN 46202, USA.
| |
Collapse
|
21
|
Wang MS, Sussman J, Xu JA, Patel R, Elghawy O, Rawla P. Pharmacological Advancements of PRC2 in Cancer Therapy: A Narrative Review. Life (Basel) 2024; 14:1645. [PMID: 39768352 PMCID: PMC11678550 DOI: 10.3390/life14121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Polycomb repressive complex 2 (PRC2) is known to regulate gene expression and chromatin structure as it methylates H3K27, resulting in gene silencing. Studies have shown that PRC2 has dual functions in oncogenesis that allow it to function as both an oncogene and a tumor suppressor. Because of this, nuanced strategies are necessary to promote or inhibit PRC2 activity therapeutically. Given the therapeutic vulnerabilities and associated risks in oncological applications, a structured literature review on PRC2 was conducted to showcase similar cofactor competitor inhibitors of PRC2. Key inhibitors such as Tazemetostat, GSK126, Valemetostat, and UNC1999 have shown promise for clinical use within various studies. Tazemetostat and GSK126 are both highly selective for wild-type and lymphoma-associated EZH2 mutants. Valemetostat and UNC1999 have shown promise as orally bioavailable and SAM-competitive inhibitors of both EZH1 and EZH2, giving them greater efficacy against potential drug resistance. The development of other PRC2 inhibitors, particularly inhibitors targeting the EED or SUZ12 subunit, is also being explored with the development of drugs like EED 226. This review aims to bridge gaps in the current literature and provide a unified perspective on promising PRC2 inhibitors as therapeutic agents in the treatment of lymphomas and solid tumors.
Collapse
Affiliation(s)
- Michael S. Wang
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Jonathan Sussman
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Jessica A. Xu
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Reema Patel
- University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
| | - Omar Elghawy
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Prashanth Rawla
- Parrish Healthcare, 951 North Washington Ave., Titusville, FL 32796, USA
| |
Collapse
|
22
|
Rossi T, Iorio E, Chirico M, Pisanu ME, Amodio N, Cantafio MEG, Perrotta I, Colciaghi F, Fiorillo M, Gianferrari A, Puccio N, Neri A, Ciarrocchi A, Pistoni M. BET inhibitors (BETi) influence oxidative phosphorylation metabolism by affecting mitochondrial dynamics leading to alterations in apoptotic pathways in triple-negative breast cancer (TNBC) cells. Cell Prolif 2024; 57:e13730. [PMID: 39223828 PMCID: PMC11628750 DOI: 10.1111/cpr.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Repressing BET proteins' function using bromodomain inhibitors (BETi) has been shown to elicit antitumor effects by regulating the transcription of genes downstream of BRD4. We previously showed that BETi promoted cell death of triple-negative breast cancer (TNBC) cells. Here, we proved that BETi induce altered mitochondrial dynamics fitness in TNBC cells falling in cell death. We demonstrated that BETi treatment downregulated the expression of BCL-2, and proteins involved in mitochondrial fission and increased fused mitochondria. Impaired mitochondrial fission affected oxidative phosphorylation (OXPHOS) inducing the expression of OXPHOS-related genes, SDHa and ATP5a, and increased cell death. Consistently, the amount of mitochondrial DNA and mitochondrial membrane potential (∆Ψm) increased in BETi-treated cells compared to control cells. Lastly, BETi in combination with Metformin reduced cell growth. Our results indicate that mitochondrial dynamics and OXPHOS metabolism support breast cancer proliferation and represent novel BETi downstream targets in TNBC cells.
Collapse
Affiliation(s)
- Teresa Rossi
- Laboratory of Translational ResearchAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| | - Egidio Iorio
- High Resolution NMR UnitCore Facilities, Istituto Superiore di SanitàRomeItaly
| | - Mattea Chirico
- High Resolution NMR UnitCore Facilities, Istituto Superiore di SanitàRomeItaly
| | - Maria Elena Pisanu
- High Resolution NMR UnitCore Facilities, Istituto Superiore di SanitàRomeItaly
| | - Nicola Amodio
- Department of Experimental and Clinical MedicineUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | | | - Ida Perrotta
- Department of Biology, Ecology and Earth SciencesCentre for Microscopy and Microanalysis (CM2), University of CalabriaCosenzaItaly
| | | | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Alessia Gianferrari
- Laboratory of Translational ResearchAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| | - Noemi Puccio
- Laboratory of Translational ResearchAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| | - Antonino Neri
- Scientific DirectorateAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| | - Alessia Ciarrocchi
- Laboratory of Translational ResearchAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| | - Mariaelena Pistoni
- Laboratory of Translational ResearchAUSL‐IRCCS di Reggio EmiliaReggio EmilaItaly
| |
Collapse
|
23
|
Wang T, Kim J, Kumar R, Deek RA, Stephenson R, Mayer T, Saraiya B, Ghodoussipour S, Jang T, Golombos D, Packiam V, Ennis R, Hathout L, Jabbour SK, Guler O, Onal C, Deek MP. Landscape and prognostic significance of oncogene drivers in metastatic castration sensitive prostate cancer. Transl Cancer Res 2024; 13:6235-6245. [PMID: 39697761 PMCID: PMC11651787 DOI: 10.21037/tcr-24-123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Tumor suppressors are well known drivers of cancer invasion and metastasis in metastatic castration sensitive prostate cancer (mCSPC). However, oncogenes are also known to be altered in this state, however the frequency and prognosis of these alterations are unclear. Thus, we aimed to study the spectrum of oncogene mutations in mCSPC and study the significance of these alteration on outcomes. METHODS Four hundred and seventy-seven patients with mCSPC were included who underwent next generation sequencing. Oncogene alterations were defined as mutations in ALK, AKT1-3, BRAF, CCND1-3, CTNNB1, EGFR, ERBB2, FGFR1, FGFR2, HRAS, KRAS, MDM2, MET, MITF, MYC, NOTCH1-3, NRAS, PIK3CA, PI3KCB, PIK3R1, RET. Endpoints of interests were radiographic progression-free survival (rPFS), time to development of CRPC (tdCRPC), and overall survival (OS). Kaplan Meier analysis was performed and Cox regression hazard ratios (HR) calculated. RESULTS A total of 477 patients were included with baseline characteristics with 117 patients (24.5%) harbored a mutation within an oncogene. A total of 172 oncogene mutations were found within the population with the most common being MYC (n=29; 16.9%), PIK3CA (n=24; 14%), CTNNB1 (n=22, 12.8%), BRAF (n=10, 5.8%), and CCND1 (n=10, 5.8%). Oncogene mutations were associated with inferior rPFS (19.2 vs. 32.2 months, P=0.03), tdCRPC (15.7 vs. 32.4 months, P<0.001), and OS (5-year OS 75.3% vs. 55.4%, P=0.01). On multivariable analysis oncogene mutations were strongly associated with tdCRPC (HR 1.42, P=0.03). CONCLUSIONS Oncogenes are frequency mutated in mCSPC and associated with aggressive features and inferior outcomes. Future work will need to validate these results to better assess its significance in allowing for personalization of care.
Collapse
Affiliation(s)
- Theodore Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Jongmyung Kim
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Ritesh Kumar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Rebecca A. Deek
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan Stephenson
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Tina Mayer
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Biren Saraiya
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Saum Ghodoussipour
- Department of Urology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Thomas Jang
- Department of Urology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - David Golombos
- Department of Urology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Vignesh Packiam
- Department of Urology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Ronald Ennis
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Lara Hathout
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Ozan Guler
- Department of Radiation Oncology, Baskent University, Ankara, Turkey
| | - Cem Onal
- Department of Radiation Oncology, Baskent University, Ankara, Turkey
| | - Matthew P. Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
24
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
25
|
Devaiah BN, Singh AK, Mu J, Chen Q, Meerzaman D, Singer DS. Phosphorylation by JNK switches BRD4 functions. Mol Cell 2024; 84:4282-4296.e7. [PMID: 39454579 PMCID: PMC11585421 DOI: 10.1016/j.molcel.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Bromodomain 4 (BRD4), a key regulator with pleiotropic functions, plays crucial roles in cancers and cellular stress responses. It exhibits dual functionality: chromatin-bound BRD4 regulates remodeling through its histone acetyltransferase (HAT) activity, while promoter-associated BRD4 regulates transcription through its kinase activity. Notably, chromatin-bound BRD4 lacks kinase activity, and RNA polymerase II (RNA Pol II)-bound BRD4 exhibits no HAT activity. This study unveils one mechanism underlying BRD4's functional switch. In response to diverse stimuli, c-Jun N-terminal kinase (JNK)-mediated phosphorylation of human BRD4 at Thr1186 and Thr1212 triggers its transient release from chromatin, disrupting its HAT activity and potentiating its kinase activity. Released BRD4 directly interacts with and phosphorylates RNA Pol II, PTEFb, and c-Myc, thereby promoting transcription of target genes involved in immune and inflammatory responses. JNK-mediated BRD4 functional switching induces CD8 expression in thymocytes and epithelial-to-mesenchymal transition (EMT) in prostate cancer cells. These findings elucidate the mechanism by which BRD4 transitions from a chromatin regulator to a transcriptional activator.
Collapse
Affiliation(s)
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Jie Mu
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD 20892, USA
| | - Dinah S Singer
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Zhang J, Wang Q, Liu J, Duan Y, Liu Z, Zhang Z, Li C. Active enhancers: recent research advances and insights into disease. Biol Direct 2024; 19:112. [PMID: 39533395 PMCID: PMC11556110 DOI: 10.1186/s13062-024-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Precise regulation of gene expression is crucial to development. Enhancers, the core of gene regulation, determine the spatiotemporal pattern of gene transcription. Since many disease-associated mutations are characterized in enhancers, the research on enhancer will provide clues to precise medicine. Rapid advances in high-throughput sequencing technology facilitate the characterization of enhancers at genome wide, but understanding the functional mechanisms of enhancers remains challenging. Herein, we provide a panorama of enhancer characteristics, including epigenetic modifications, enhancer transcripts, and enhancer-promoter interaction patterns. Furthermore, we outline the applications of high-throughput sequencing technology and functional genomics methods in enhancer research. Finally, we discuss the role of enhancers in human disease and their potential as targets for disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
27
|
Sui S, Zhong M, Zhong S, Peng X, Mao L, Chen C, Zeng C, Luo OJ, Li Y. BRD4 inhibitor reduces exhaustion and blocks terminal differentiation in CAR-T cells by modulating BATF and EGR1. Biomark Res 2024; 12:124. [PMID: 39407311 PMCID: PMC11476310 DOI: 10.1186/s40364-024-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exhaustion is a key factor that influences the efficacy of chimeric antigen receptor T (CAR-T) cells. Our previous study demonstrated that a bromodomain protein 4 (BRD4) inhibitor can revise the phenotype and function of exhausted T cells from leukemia patients. This study aims to elucidate the mechanism by which a BRD4 inhibitor reduces CAR-T cell exhaustion using single-cell RNA sequencing (scRNA-Seq). METHODS Exhausted CD123-specific CAR-T cells were prepared by co-culture with CD123 antigen-positive MV411 cells. After elimination of MV411 cells and upregulation of inhibitory receptors on the surface, exhausted CAR-T cells were treated with a BRD4 inhibitor (JQ1) for 72 h. The CAR-T cells were subsequently isolated, and scRNA-Seq was conducted to characterize phenotypic and functional changes in JQ1-treated cells. RESULTS Both the proportion of exhausted CD8+ CAR-T cells and the exhausted score of CAR-T cells decreased in JQ1-treated compared with control-treated cells. Moreover, JQ1 treatment led to a higher proportion of naïve, memory, and progenitor exhausted CD8+ CAR-T cells as opposed to terminal exhausted CD8+ CAR-T cells accompanied by enhanced proliferation, differentiation, and activation capacities. Additionally, with JQ1 treatment, BATF activity and expression in naïve, memory, and progenitor exhausted CD8+ CAR-T cells decreased, whereas EGR1 activity and expression increased. Interestingly, AML patients with higher EGR1 and EGR1 target gene ssGSEA scores, coupled with lower BATF and BATF target gene ssGSEA scores, had the best prognosis. CONCLUSIONS Our study reveals that a BRD4 inhibitor can reduce CAR-T cell exhaustion and block exhausted T cell terminal differentiation by downregulating BATF activity and expression together with upregulating EGR1 activity and expression, presenting an approach for improving the effectiveness of CAR-T cell therapy.
Collapse
Affiliation(s)
- Songnan Sui
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Mengjun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xueting Peng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
28
|
Nakamura M, Chonabayashi K, Narita M, Matsumura Y, Nishikawa M, Ochi Y, Nannya Y, Hishizawa M, Inoue D, Delwel R, Ogawa S, Takaori-Kondo A, Yoshida Y. Modelling and drug targeting of a myeloid neoplasm with atypical 3q26/MECOM rearrangement using patient-specific iPSCs. Br J Haematol 2024; 205:1430-1443. [PMID: 39187468 DOI: 10.1111/bjh.19720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
Structural variations involving enhancer hijacking induce aberrant oncogene expression and cause tumorigenesis. A rare translocation, t(3;8)(q26.2;q24), is associated with MECOM and MYC rearrangement, causing myeloid neoplasms with a dismal prognosis. The most recent World Health Organization classification recognises myeloid neoplasms with MECOM rearrangement as acute myeloid leukaemia (AML) with defining genetic abnormalities. Recently, the increasing use of induced pluripotent stem cell (iPSC) technology has helped elucidate the pathogenic processes of haematological malignancies. However, its utility for investigating enhancer hijacking in myeloid neoplasms remains unclear. In this study, we generated iPSC lines from patients with myelodysplastic syndromes (MDS) harbouring t(3;8)(q26.2;q24) and differentiated them into haematopoietic progenitor cells to model the pathophysiology of MDS with t(3;8)(q26.2;q24). Our iPSC model reproduced the primary patient's MECOM expression changes and histone H3 lysine 27 acetylation (H3K27ac) patterns in the MECOM promoter and MYC blood enhancer cluster (BENC). Furthermore, we revealed the apoptotic effects of the bromodomain and extra-terminal motif (BET) inhibitor on iPSC-derived MDS cells by suppressing activated MECOM. Our study demonstrates the usefulness of iPSC models for uncovering the precise mechanism of enhancer hijacking due to chromosomal structural changes and discovering potential therapeutic drug candidates for cancer treatment.
Collapse
MESH Headings
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/drug effects
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/metabolism
- Chromosomes, Human, Pair 3/genetics
- Translocation, Genetic
- Chromosomes, Human, Pair 8/genetics
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Gene Rearrangement
- Male
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Azepines/pharmacology
- Female
Collapse
Affiliation(s)
- Momoko Nakamura
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhisa Chonabayashi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Megumi Narita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yasuko Matsumura
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Misato Nishikawa
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshinori Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Lu Y, Jiang X, Li Y, Li F, Zhao M, Lin Y, Jin L, Zhuang H, Li S, Ye P, Pei R, Jin J, Jiang L. NL101 synergizes with the BCL-2 inhibitor venetoclax through PI3K-dependent suppression of c-Myc in acute myeloid leukaemia. J Transl Med 2024; 22:867. [PMID: 39334157 PMCID: PMC11429391 DOI: 10.1186/s12967-024-05647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) comprises a group of heterogeneous and aggressive haematological malignancies with unsatisfactory prognoses and limited treatment options. Treatments targeting B-cell lymphoma-2 (BCL-2) with venetoclax have been approved for patients with AML, and venetoclax-based drug combinations are becoming the standard of care for older patients unfit for intensive chemotherapy. However, the therapeutic duration of either single or combination strategies is limited, and the development of resistance seems inevitable. Therefore, more effective combination regimens are urgently needed. METHODS The efficacy of combination therapy with NL101, a SAHA-bendamustine hybrid, and venetoclax was evaluated in preclinical models of AML including established cell lines, primary blasts from patients, and animal models. RNA-sequencing and immunoblotting were used to explore the underlying mechanism. RESULTS NL101 significantly potentiated the activity of venetoclax in AML cell lines, as evidenced by the enhanced decrease in viability and induction of apoptosis. Mechanistically, the addition of NL101 to venetoclax decreased the stability of the antiapoptotic protein myeloid cell leukaemia-1 (MCL-1) by inhibiting ERK, thereby facilitating the release of BIM and triggering mitochondrial apoptosis. Moreover, the strong synergy between NL101 and venetoclax also relied on the downregulation of c-Myc via PI3K/Akt/GSK3β signalling. The combination of NL101 and venetoclax synergistically eliminated primary blasts from 10 AML patients and reduced the leukaemia burden in an MV4-11 cell-derived xenograft model. CONCLUSIONS Our results encourage the pursuit of clinical trials of combined treatment with NL101 and venetoclax and provide a novel venetoclax-incorporating therapeutic strategy for AML.
Collapse
Affiliation(s)
- Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Xia Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Youhong Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Fenglin Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Mengting Zhao
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Ye Lin
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lili Jin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Haihui Zhuang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Shuangyue Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Peipei Ye
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
30
|
Yu S, Long L, Zhang X, Qiu Y, Huang Y, Huang X, Li X, Xu R, Fan C, Huang H. The current status and future trends of BET research in oncology. Heliyon 2024; 10:e36888. [PMID: 39281429 PMCID: PMC11399683 DOI: 10.1016/j.heliyon.2024.e36888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background BET family proteins are important epigenetic and transcriptional regulators involved in the control of tumorigenesis and development and have become important targets for cancer therapy. However, there is no systematic bibliometric analysis in this field. A visual analysis of the research hotspots and trends of BET is helpful to understand the future development direction. Method We used CiteSpace, VOSviewer, and Excel to visualize and analyze the trends regarding authors, journals, countries or regions, highly cited papers, and keywords in the field. Result The results included a total of 946 publications. There are many more papers on BET proteins published since 2013. The papers are mainly from 44 countries, led by the U.S. and China. A total of 7381 authors were identified, among which Bradner, J.E. had the greatest number of articles and the greatest influence. Cancer Discovery was the journal with the most citations per article. Our analysis identified the most influential papers in the field, including highly cited papers and citation burst references. The most frequent keywords included 'expression', 'c-Myc', 'cancer', 'BRD4', 'BET inhibition', 'resistance', 'differentiation', and 'JQ1', which represent the focus of current and developing research fields. Conclusion Research on BET is thriving. Collaboration and exchanges between countries and institutions must be strengthened in the future, and the mechanisms of BET-related pathways, the relationship between BET and various diseases, and the development of new BET inhibitors have become the major focus of current research and the trend of future research.
Collapse
Affiliation(s)
- Siying Yu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Linna Long
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaorui Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Qiu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yabo Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xueying Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Li
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of gynaecology, Xinjiang Cancer Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Rong Xu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chunmei Fan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of gynaecology, Xinjiang Cancer Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
31
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
32
|
Rao A, Stosic MS, Mohanty C, Suresh D, Wang AR, Lee DL, Nickel KP, Chandrashekar DS, Kimple RJ, Lambert PF, Kendziorski C, Rounge TB, Iyer G. Targeted inhibition of BET proteins in HPV16-positive head and neck squamous cell carcinoma reveals heterogeneous transcriptional responses. Front Oncol 2024; 14:1440836. [PMID: 39301555 PMCID: PMC11410754 DOI: 10.3389/fonc.2024.1440836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Human papillomaviruses (HPV), most commonly HPV16, are associated with a subset of head and neck squamous cell carcinoma (HNSCC) tumors, primarily oropharyngeal carcinomas, with integration of viral genomes into host chromosomes associated with worse survival outcomes. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. The role of BET protein-mediated transcription of viral-cellular genes in the viral-HNSCC genomes needs to be better understood. Using a combination of TAME-Seq, qRT-PCR, and immunoblot analyses, we show that BET inhibition downregulates E6 and E7 significantly, with heterogeneity in the downregulation of viral transcription across different HPV+ HNSCC cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4, mirroring the downregulation of viral E6 and E7 expression. We found that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A (p21) expression, leading to a G1-cell cycle arrest with apoptotic activity. Overall, our studies demonstrate that BET inhibition regulates both E6 and E7 viral and key cellular cell cycle regulator E2F gene expression and cellular gene expression in HPV-associated HNSCC and highlight the potential of BET inhibitors as a therapeutic strategy for this disease while also underscoring the importance of considering the heterogeneity in cellular responses to BET inhibition.
Collapse
Affiliation(s)
- Aakarsha Rao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Milan S. Stosic
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Dhruthi Suresh
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Albert R. Wang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Denis L. Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Darshan S. Chandrashekar
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Trine B. Rounge
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
- Norwegian Institute of Public Health, Cancer Registry of Norway, Oslo, Norway
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
33
|
Gheidari D, Mehrdad M, Bayat M. Novel indenopyrrol-4-one derivatives as potent BRDT inhibitors: synthesis, molecular docking, drug-likeness, ADMET, and DFT studies. J Biomol Struct Dyn 2024; 42:7860-7873. [PMID: 37528682 DOI: 10.1080/07391102.2023.2242502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
We synthesized new, structurally distinct series of indeno[1,2-b]pyrrol-4(1H)-ones. Effective derivatives were found by in silico screening, and our studies revealed that compound 5h exhibited good binding energies for inhibition of BRDT. In addition, DFT studies were carried out by means of the B3LYP/6-3lG basis set in the gas phase to investigate the conformation of protein-ligand interactions. The results of the investigation suggest that these compounds could be considered novel BRDT inhibitors. The pharmacokinetic and drug-like properties of the new indenopyrrol-4(1H)-one derivatives exhibited that these compounds could be represented as potential candidates for further development into anticancer-like agents. Additionally, based on the optimised structures, the optimum geometry for each of the selected molecules was developed. Then, the estimated and the experimentally determined IR vibrational frequencies for each compound were compared. The results of this comparison showed that the theoretical and experimental data were in excellent agreement, which could support the reliability of the experimental analytical data and the applicability of the mathematical model.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Davood Gheidari
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Morteza Mehrdad
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
34
|
Shields MA, Metropulos AE, Spaulding C, Alzahrani KA, Hirose T, Ohno S, Pham TND, Munshi HG. BET Inhibition Rescues Acinar-Ductal-Metaplasia and Ciliogenesis and Ameliorates Chronic Pancreatitis-Driven Changes in Mice With Loss of the Polarity Protein Par3. Cell Mol Gastroenterol Hepatol 2024; 18:101389. [PMID: 39128653 PMCID: PMC11437875 DOI: 10.1016/j.jcmgh.2024.101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND & AIMS The apical-basal polarity of pancreatic acinar cells is essential for maintaining tissue architecture. However, the mechanisms by which polarity proteins regulate acinar pancreas injury and regeneration are poorly understood. METHODS Cerulein-induced pancreatitis was induced in mice with conditional deletion of the polarity protein Par3 in the pancreas. The impact of Par3 loss on pancreas injury and regeneration was assessed by histologic analyses and transcriptional profiling by RNA sequencing. Mice were pretreated with the bromodomain and extraterminal domain (BET) inhibitor JQ1 before cotreatment with cerulein to determine the effect of BET inhibition on pancreas injury and regeneration. RESULTS Initially, we show that Par3 is increased in acinar-ductal metaplasia (ADM) lesions present in human and mouse chronic pancreatitis specimens. Although Par3 loss disrupts tight junctions, Par3 is dispensable for pancreatogenesis. However, with aging, Par3 loss results in low-grade inflammation, acinar degeneration, and pancreatic lipomatosis. Par3 loss exacerbates acute pancreatitis-induced injury and chronic pancreatitis-induced acinar cell loss, promotes pancreatic lipomatosis, and prevents regeneration. Par3 loss also results in suppression of chronic pancreatitis-induced ADM and primary ciliogenesis. Notably, targeting BET proteins attenuates chronic pancreatitis-induced loss of primary cilia and promotes ADM in mice lacking pancreatic Par3. Targeting BET proteins also attenuates cerulein-induced acinar cell loss and enhances recovery of acinar cell mass and body weight of mice lacking pancreatic Par3. CONCLUSIONS Combined, this study demonstrates how Par3 restrains chronic pancreatitis-induced changes in the pancreas and identifies a potential role for BET inhibitors to attenuate pancreas injury and facilitate regeneration.
Collapse
Affiliation(s)
- Mario A Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois.
| | - Anastasia E Metropulos
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Khulood A Alzahrani
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan; Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Thao N D Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
35
|
Chen L, Qi Q, Jiang X, Wu J, Li Y, Liu Z, Cai Y, Ran H, Zhang S, Zhang C, Wu H, Cao S, Mi L, Xiao D, Huang H, Jiang S, Wu J, Li B, Xie J, Qi J, Li F, Liang P, Han Q, Wu M, Zhou W, Wang C, Zhang W, Jiang X, Zhang K, Li H, Zhang X, Li A, Zhou T, Man J. Phosphocreatine Promotes Epigenetic Reprogramming to Facilitate Glioblastoma Growth Through Stabilizing BRD2. Cancer Discov 2024; 14:1547-1565. [PMID: 38563585 DOI: 10.1158/2159-8290.cd-23-1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma (GBM) exhibits profound metabolic plasticity for survival and therapeutic resistance, while the underlying mechanisms remain unclear. Here, we show that GBM stem cells reprogram the epigenetic landscape by producing substantial amounts of phosphocreatine (PCr). This production is attributed to the elevated transcription of brain-type creatine kinase, mediated by Zinc finger E-box binding homeobox 1. PCr inhibits the poly-ubiquitination of the chromatin regulator bromodomain containing protein 2 (BRD2) by outcompeting the E3 ubiquitin ligase SPOP for BRD2 binding. Pharmacological disruption of PCr biosynthesis by cyclocreatine (cCr) leads to BRD2 degradation and a decrease in its targets' transcription, which inhibits chromosome segregation and cell proliferation. Notably, cyclocreatine treatment significantly impedes tumor growth and sensitizes tumors to a BRD2 inhibitor in mouse GBM models without detectable side effects. These findings highlight that high production of PCr is a druggable metabolic feature of GBM and a promising therapeutic target for GBM treatment. Significance: Glioblastoma (GBM) exhibits an adaptable metabolism crucial for survival and therapy resistance. We demonstrate that GBM stem cells modify their epigenetics by producing phosphocreatine (PCr), which prevents bromodomain containing protein 2 (BRD2) degradation and promotes accurate chromosome segregation. Disrupting PCr biosynthesis impedes tumor growth and improves the efficacy of BRD2 inhibitors in mouse GBM models.
Collapse
Affiliation(s)
- Lishu Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Qinghui Qi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xiaoqing Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jin Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yuanyuan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Zhaodan Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Yan Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Haowen Ran
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Songyang Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Cheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Huiran Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Shuailiang Cao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Lanjuan Mi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Dake Xiao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Haohao Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Shuai Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jiaqi Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Bohan Li
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Jiong Xie
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Ji Qi
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Fangye Li
- Department of Neurosurgery, First Medical Center of PLA General Hospital, Beijing, China
| | - Panpan Liang
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiuying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Wenchao Zhou
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenhui Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Weina Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Kun Zhang
- Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xuemin Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Jianghong Man
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| |
Collapse
|
36
|
Peng X, Huang X, Zhang S, Zhang N, Huang S, Wang Y, Zhong Z, Zhu S, Gao H, Yu Z, Yan X, Tao Z, Dai Y, Zhang Z, Chen X, Wang F, Claret FX, Elkabets M, Ji N, Zhong Y, Kong D. Sequential Inhibition of PARP and BET as a Rational Therapeutic Strategy for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307747. [PMID: 38896791 PMCID: PMC11321613 DOI: 10.1002/advs.202307747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/20/2024] [Indexed: 06/21/2024]
Abstract
PARP inhibitors (PARPi) hold substantial promise in treating glioblastoma (GBM). However, the adverse effects have restricted their broad application. Through unbiased transcriptomic and proteomic sequencing, it is discovered that the BET inhibitor (BETi) Birabresib profoundly alters the processes of DNA replication and cell cycle progression in GBM cells, beyond the previously reported impact of BET inhibition on homologous recombination repair. Through in vitro experiments using established GBM cell lines and patient-derived primary GBM cells, as well as in vivo orthotopic transplantation tumor experiments in zebrafish and nude mice, it is demonstrated that the concurrent administration of PARPi and BETi can synergistically inhibit GBM. Intriguingly, it is observed that DNA damage lingers after discontinuation of PARPi monotherapy, implying that sequential administration of PARPi followed by BETi can maintain antitumor efficacy while reducing toxicity. In GBM cells with elevated baseline replication stress, the sequential regimen exhibits comparable efficacy to concurrent treatment, protecting normal glial cells with lower baseline replication stress from DNA toxicity and subsequent death. This study provides compelling preclinical evidence supporting the development of innovative drug administration strategies focusing on PARPi for GBM therapy.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Xin Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Naixin Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shengfan Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Yingying Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhenxing Zhong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shan Zhu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Haiwang Gao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zixiang Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xiaotong Yan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhennan Tao
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Yuxiang Dai
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xi Chen
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjin300020China
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Feng Wang
- Department of GeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Francois X. Claret
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Moshe Elkabets
- The Shraga Segal Department of MicrobiologyImmunology and GeneticsFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Ning Ji
- National Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of PharmacyTianjin Medical University General HospitalTianjin300052China
| |
Collapse
|
37
|
Mi W, You J, Li L, Zhu L, Xia X, Yang L, Li F, Xu Y, Bi J, Liu P, Chen L, Li F. BET inhibition induces GDH1-dependent glutamine metabolic remodeling and vulnerability in liver cancer. LIFE METABOLISM 2024; 3:loae016. [PMID: 39872506 PMCID: PMC11749653 DOI: 10.1093/lifemeta/loae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 01/30/2025]
Abstract
Bromodomain and extra-terminal domain (BET) proteins, which function partly through MYC proto-oncogene (MYC), are critical epigenetic readers and emerging therapeutic targets in cancer. Whether and how BET inhibition simultaneously induces metabolic remodeling in cancer cells remains unclear. Here we find that even transient BET inhibition by JQ-1 and other pan-BET inhibitors (pan-BETis) blunts liver cancer cell proliferation and tumor growth. BET inhibition decreases glycolytic gene expression but enhances mitochondrial glucose and glutamine oxidative metabolism revealed by metabolomics and isotope labeling analysis. Specifically, BET inhibition downregulates miR-30a to upregulate glutamate dehydrogenase 1 (GDH1) independent of MYC, which produces α-ketoglutarate for mitochondrial oxidative phosphorylation (OXPHOS). Targeting GDH1 or OXPHOS is synthetic lethal to BET inhibition, and combined BET and OXPHOS inhibition therapeutically prevents liver tumor growth in vitro and in vivo. Together, we uncover an important epigenetic-metabolic crosstalk whereby BET inhibition induces MYC-independent and GDH1-dependent glutamine metabolic remodeling that can be exploited for innovative combination therapy of liver cancer.
Collapse
Affiliation(s)
- Wen Mi
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Jianwei You
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Liucheng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Lingzhi Zhu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Xinyi Xia
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Li Yang
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yi Xu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Junfeng Bi
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Pingyu Liu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China
| | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Fuming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
38
|
Wu D, Yin H, Yang C, Zhang Z, Fang F, Wang J, Li X, Xie Y, Hu X, Zhuo R, Chen Y, Yu J, Li T, Li G, Pan J. The BET PROTAC inhibitor GNE-987 displays anti-tumor effects by targeting super-enhancers regulated gene in osteosarcoma. BMC Cancer 2024; 24:928. [PMID: 39090568 PMCID: PMC11292958 DOI: 10.1186/s12885-024-12691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of the most common primary malignant tumors of bone in children, which develops from osteoblasts and typically occurs during the rapid growth phase of the bone. Recently, Super-Enhancers(SEs)have been reported to play a crucial role in osteosarcoma growth and metastasis. Therefore, there is an urgent need to identify specific targeted inhibitors of SEs to assist clinical therapy. This study aimed to elucidate the role of BRD4 inhibitor GNE-987 targeting SEs in OS and preliminarily explore its mechanism. METHODS We evaluated changes in osteosarcoma cells following treatment with a BRD4 inhibitor GNE-987. We assessed the anti-tumor effect of GNE-987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, xenograft tumor size measurements, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS In this study, we found that extremely low concentrations of GNE-987(2-10 nM) significantly reduced the proliferation and survival of OS cells by degrading BRD4. In addition, we found that GNE-987 markedly induced cell cycle arrest and apoptosis in OS cells. Further study indicated that VHL was critical for GNE-987 to exert its antitumor effect in OS cells. Consistent with in vitro results, GNE-987 administration significantly reduced tumor size in xenograft models with minimal toxicity, and partially degraded the BRD4 protein. KRT80 was identified through analysis of the RNA-seq and ChIP-seq data. U2OS HiC analysis suggested a higher frequency of chromatin interactions near the KRT80 binding site. The enrichment of H3K27ac modification at KRT80 was significantly reduced after GNE-987 treatment. KRT80 was identified as playing an important role in OS occurrence and development. CONCLUSIONS This research revealed that GNE-987 selectively degraded BRD4 and disrupted the transcriptional regulation of oncogenes in OS. GNE-987 has the potential to affect KRT80 against OS.
Collapse
Affiliation(s)
- Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiaohan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yanling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Tiandan Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| |
Collapse
|
39
|
Gu R, Fang H, Wang R, Dai W, Cai G. A comprehensive overview of the molecular features and therapeutic targets in BRAF V600E-mutant colorectal cancer. Clin Transl Med 2024; 14:e1764. [PMID: 39073010 PMCID: PMC11283586 DOI: 10.1002/ctm2.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
As one of the most prevalent digestive system tumours, colorectal cancer (CRC) poses a significant threat to global human health. With the emergence of immunotherapy and target therapy, the prognosis for the majority of CRC patients has notably improved. However, the subset of patients with BRAF exon 15 p.V600E mutation (BRAFV600E) has not experienced remarkable benefits from these therapeutic advancements. Hence, researchers have undertaken foundational investigations into the molecular pathology of this specific subtype and clinical effectiveness of diverse therapeutic drug combinations. This review comprehensively summarised the distinctive molecular features and recent clinical research advancements in BRAF-mutant CRC. To explore potential therapeutic targets, this article conducted a systematic review of ongoing clinical trials involving patients with BRAFV600E-mutant CRC.
Collapse
Affiliation(s)
- Ruiqi Gu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hongsheng Fang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Renjie Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weixing Dai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Guoxiang Cai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
40
|
Wang Z, Che S, Yu Z. PROTAC: Novel degradable approach for different targets to treat breast cancer. Eur J Pharm Sci 2024; 198:106793. [PMID: 38740076 DOI: 10.1016/j.ejps.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The revolutionary Proteolysis Targeting Chimera (PROTACs) have the exciting potential to reshape the pharmaceutical industry landscape by leveraging the ubiquitin-proteasome system for targeted protein degradation. Breast cancer, the most prevalent cancer in women, could be treated using PROTAC therapy. Although substantial work has been conducted, there is not yet a comprehensive overview or progress update on PROTAC therapy for breast cancer. Hence, in this article, we've compiled recent research progress focusing on different breast cancer target proteins, such as estrogen receptor (ER), BET, CDK, HER2, PARP, EZH2, etc. This resource aims to serve as a guide for future PROTAC-based breast cancer treatment design.
Collapse
Affiliation(s)
- Zhenjie Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Office of Drug Clinical Trials, The People's Hospital of Gaozhou, Maoming, 525200, PR China
| | - Siyao Che
- Hepatological Surgery Department, The People's Hospital of Gaozhou, Maoming, 525200, PR China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, PR China.
| |
Collapse
|
41
|
Zhang Y, Ming A, Wang J, Chen W, Fang Z. PROTACs targeting androgen receptor signaling: Potential therapeutic agents for castration-resistant prostate cancer. Pharmacol Res 2024; 205:107234. [PMID: 38815882 DOI: 10.1016/j.phrs.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
After the initial androgen deprivation therapy (ADT), part of the prostate cancer may continuously deteriorate into castration-resistant prostate cancer (CRPC). The majority of patients suffer from the localized illness at primary diagnosis that could rapidly assault other organs. This disease stage is referred as metastatic castration-resistant prostate cancer (mCRPC). Surgery and radiation are still the treatment of CRPC, but have some adverse effects such as urinary symptoms and sexual dysfunction. Hormonal castration therapy interfering androgen receptor (AR) signaling pathway is indispensable for most advanced prostate cancer patients, and the first- and second-generation of novel AR inhibitors could effectively cure hormone sensitive prostate cancer (HSPC). However, the resistance to these chemical agents is inevitable, so many of patients may experience relapses. The resistance to AR inhibitor mainly involves AR mutation, splice variant formation and amplification, which indicates the important role in CRPC. Proteolysis-targeting chimera (PROTAC), a potent technique to degrade targeted protein, has recently undergone extensive development as a biological tool and therapeutic drug. This technique has the potential to become the next generation of antitumor therapeutics as it could overcome the shortcomings of conventional small molecule inhibitors. In this review, we summarize the molecular mechanisms on PROTACs targeting AR signaling for CRPC, hoping to provide insights into drug development and clinical medication.
Collapse
Affiliation(s)
- Yulu Zhang
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, China
| | - Annan Ming
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, China
| | - Junyan Wang
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China
| | | | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China.
| |
Collapse
|
42
|
Liu J, Jiao X, Ma D, Fang Y, Gao Q. CAR-T therapy and targeted treatments: Emerging combination strategies in solid tumors. MED 2024; 5:530-549. [PMID: 38547867 DOI: 10.1016/j.medj.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 06/17/2024]
Abstract
CAR-T cell therapies hold great potential in achieving long-term remission in patients suffering from malignancies. However, their efficacy in treating solid tumors is impeded by challenges such as limited infiltration, compromised cancer recognition, decreased cytotoxicity, heightened exhaustion, absence of memory phenotypes, and inevitable toxicity. To surmount these obstacles, researchers are exploring innovative strategies, including the integration of CAR-T cells with targeted inhibitors. The combination of CAR-T therapies with specific targeted drugs has shown promise in enhancing CAR-T cell infiltration into tumor sites, boosting their tumor recognition capabilities, strengthening their cytotoxicity, alleviating exhaustion, promoting the development of a memory phenotype, and reducing toxicity. By harnessing the synergistic potential, a wider range of patients with solid tumors may potentially experience favorable outcomes. To summarize the current combined strategies of CAR-T therapies and targeted therapies, outline the potential mechanisms, and provide insights for future studies, we conducted this review by collecting existing experimental and clinical evidence.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Jiao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Darwish DG, El-Sherief HAM, Abdel-Aziz SA, Abuo-Rahma GEDA. A decade's overview of 2-aminothiophenes and their fused analogs as promising anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2300758. [PMID: 38442316 DOI: 10.1002/ardp.202300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Over the past decades, cancer has been a challenging domain for medicinal chemists as it is an international health concern. In association, small molecules such as 2-aminothiophenes and their derivatives showed significant antitumor activity through variable modes of action. Therefore, this article aims to review the advances regarding these core scaffolds over the past 10 years, where 2-aminothiophenes and their fused analogs are classified and discussed according to their biological activity and mode of action, in the interest of boosting new design pathways for medicinal chemists to develop targeted antitumor candidates.
Collapse
Affiliation(s)
- Donia G Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
44
|
Atallah-Yunes SA, Habermann TM, Khurana A. Targeted therapy in Burkitt lymphoma: Small molecule inhibitors under investigation. Br J Haematol 2024; 204:2165-2172. [PMID: 38577716 DOI: 10.1111/bjh.19425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Multiagent chemoimmunotherapy remains the standard of care treatment for Burkitt lymphoma leading to a cure in the majority of cases. However, frontline treatment regimens are associated with a significant risk of treatment related toxicity especially in elderly and immunocompromised patients. Additionally, prognosis remains dismal in refractory/relapsed Burkitt lymphoma. Thus, novel therapies are required to not only improve outcomes in relapsed/refractory Burkitt lymphoma but also minimize frontline treatment related toxicities. Recurrent genomic changes and signalling pathway alterations that have been implicated in the Burkitt lymphomagenesis include cell cycle dysregulation, cell proliferation, inhibition of apoptosis, epigenetic dysregulation and tonic B-cell receptor-phosphatidylinositol 3-kinase (BCR-PI3K) signalling. Here, we will discuss novel targeted therapy approaches using small molecule inhibitors that could pave the way to the future treatment landscape based on the understanding of recurrent genomic changes and signalling pathway alterations in the lymphomagenesis of adult Burkitt lymphoma.
Collapse
Affiliation(s)
| | - Thomas M Habermann
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arushi Khurana
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
45
|
Hashimoto M, Masuda T, Nakano Y, Tobo T, Saito H, Koike K, Takahashi J, Abe T, Ando Y, Ozato Y, Hosoda K, Higuchi S, Hisamatsu Y, Toshima T, Yonemura Y, Hata T, Uemura M, Eguchi H, Doki Y, Mori M, Mimori K. Tumor suppressive role of the epigenetic master regulator BRD3 in colorectal cancer. Cancer Sci 2024; 115:1866-1880. [PMID: 38494600 PMCID: PMC11145117 DOI: 10.1111/cas.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Bromodomain and extraterminal domain (BET) family proteins are epigenetic master regulators of gene expression via recognition of acetylated histones and recruitment of transcription factors and co-activators to chromatin. Hence, BET family proteins have emerged as promising therapeutic targets in cancer. In this study, we examined the functional role of bromodomain containing 3 (BRD3), a BET family protein, in colorectal cancer (CRC). In vitro and vivo analyses using BRD3-knockdown or BRD3-overexpressing CRC cells showed that BRD3 suppressed tumor growth and cell cycle G1/S transition and induced p21 expression. Clinical analysis of CRC datasets from our hospital or The Cancer Genome Atlas revealed that BET family genes, including BRD3, were overexpressed in tumor tissues. In immunohistochemical analyses, BRD3 was observed mainly in the nucleus of CRC cells. According to single-cell RNA sequencing in untreated CRC tissues, BRD3 was highly expressed in malignant epithelial cells, and cell cycle checkpoint-related pathways were enriched in the epithelial cells with high BRD3 expression. Spatial transcriptomic and single-cell RNA sequencing analyses of CRC tissues showed that BRD3 expression was positively associated with high p21 expression. Furthermore, overexpression of BRD3 combined with knockdown of, a driver gene in the BRD family, showed strong inhibition of CRC cells in vitro. In conclusion, we demonstrated a novel tumor suppressive role of BRD3 that inhibits tumor growth by cell cycle inhibition in part via induction of p21 expression. BRD3 activation might be a novel therapeutic approach for CRC.
Collapse
Affiliation(s)
- Masahiro Hashimoto
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Takaaki Masuda
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Yusuke Nakano
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Taro Tobo
- Department of PathologyKyushu University Beppu HospitalBeppuJapan
| | - Hideyuki Saito
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Kensuke Koike
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | | | - Tadashi Abe
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Yuki Ando
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Yuki Ozato
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Kiyotaka Hosoda
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Satoshi Higuchi
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | | | - Takeo Toshima
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Yusuke Yonemura
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Tsuyoshi Hata
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Mamoru Uemura
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Masaki Mori
- Tokai University School of MedicineIseharaJapan
| | - Koshi Mimori
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| |
Collapse
|
46
|
Jiang Z, Cai G, Liu H, Liu L, Huang R, Nie X, Gui R, Li J, Ma J, Cao K, Luo Y. A combination of a TLR7/8 agonist and an epigenetic inhibitor suppresses triple-negative breast cancer through triggering anti-tumor immune. J Nanobiotechnology 2024; 22:296. [PMID: 38811964 PMCID: PMC11134718 DOI: 10.1186/s12951-024-02525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Combination therapy involving immune checkpoint blockade (ICB) and other drugs is a potential strategy for converting immune-cold tumors into immune-hot tumors to benefit from immunotherapy. To achieve drug synergy, we developed a homologous cancer cell membrane vesicle (CM)-coated metal-organic framework (MOF) nanodelivery platform for the codelivery of a TLR7/8 agonist with an epigenetic inhibitor. METHODS A novel biomimetic codelivery system (MCM@UN) was constructed by MOF nanoparticles UiO-66 loading with a bromodomain-containing protein 4 (BRD4) inhibitor and then coated with the membrane vesicles of homologous cancer cells that embedding the 18 C lipid tail of 3M-052 (M). The antitumor immune ability and tumor suppressive effect of MCM@UN were evaluated in a mouse model of triple-negative breast cancer (TNBC) and in vitro. The tumor immune microenvironment was analyzed by multicolor immunofluorescence staining. RESULTS In vitro and in vivo data showed that MCM@UN specifically targeted to TNBC cells and was superior to the free drug in terms of tumor growth inhibition and antitumor immune activity. In terms of mechanism, MCM@UN blocked BRD4 and PD-L1 to prompt dying tumor cells to disintegrate and expose tumor antigens. The disintegrated tumor cells released damage-associated molecular patterns (DAMPs), recruited dendritic cells (DCs) to efficiently activate CD8+ T cells to mediate effective and long-lasting antitumor immunity. In addition, TLR7/8 agonist on MCM@UN enhanced lymphocytes infiltration and immunogenic cell death and decreased regulatory T-cells (Tregs). On clinical specimens, we found that mature DCs infiltrating tumor tissues of TNBC patients were negatively correlated with the expression of BRD4, which was consistent with the result in animal model. CONCLUSION MCM@UN specifically targeted to TNBC cells and remodeled tumor immune microenvironment to inhibit malignant behaviors of TNBC.
Collapse
Affiliation(s)
- Zhenzhen Jiang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Guangqing Cai
- Department of Orthopedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan, 410013, P. R. China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xinmin Nie
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jinqi Ma
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
47
|
Luo J, Chen Z, Qiao Y, Tien JCY, Young E, Mannan R, Mahapatra S, He T, Eyunni S, Zhang Y, Zheng Y, Su F, Cao X, Wang R, Cheng Y, Seri R, George J, Shahine M, Miner SJ, Vaishampayan U, Wang M, Wang S, Parolia A, Chinnaiyan AM. p300/CBP degradation is required to disable the active AR enhanceosome in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587346. [PMID: 38586029 PMCID: PMC10996709 DOI: 10.1101/2024.03.29.587346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Prostate cancer is an exemplar of an enhancer-binding transcription factor-driven disease. The androgen receptor (AR) enhanceosome complex comprised of chromatin and epigenetic coregulators assembles at enhancer elements to drive disease progression. The paralog lysine acetyltransferases p300 and CBP deposit histone marks that are associated with enhancer activation. Here, we demonstrate that p300/CBP are determinant cofactors of the active AR enhanceosome in prostate cancer. Histone H2B N-terminus multisite lysine acetylation (H2BNTac), which is exclusively reliant on p300/CBP catalytic function, marked active enhancers and was notably elevated in prostate cancer lesions relative to the adjacent benign epithelia. Degradation of p300/CBP rapidly depleted acetylation marks associated with the active AR enhanceosome, which was only partially phenocopied by inhibition of their reader bromodomains. Notably, H2BNTac was effectively abrogated only upon p300/CBP degradation, which led to a stronger suppression of p300/CBP-dependent oncogenic gene programs relative to bromodomain inhibition or the inhibition of its catalytic domain. In vivo experiments using an orally active p300/CBP proteolysis targeting chimera (PROTAC) degrader (CBPD-409) showed that p300/CBP degradation potently inhibited tumor growth in preclinical models of castration-resistant prostate cancer and synergized with AR antagonists. While mouse p300/CBP orthologs were effectively degraded in host tissues, prolonged treatment with the PROTAC degrader was well tolerated with no significant signs of toxicity. Taken together, our study highlights the pivotal role of p300/CBP in maintaining the active AR enhanceosome and demonstrates how target degradation may have functionally distinct effects relative to target inhibition, thus supporting the development of p300/CBP degraders for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Jie Luo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Zhixiang Chen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yunhui Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rithvik Seri
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - James George
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Miriam Shahine
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ulka Vaishampayan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mi Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
49
|
Hao B, Chen K, Zhai L, Liu M, Liu B, Tan M. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae019. [PMID: 38862432 PMCID: PMC12016574 DOI: 10.1093/gpbjnl/qzae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.
Collapse
Affiliation(s)
- Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
50
|
Wang Y, Wei T, Zhao M, Huang A, Sun F, Chen L, Lin R, Xie Y, Zhang M, Xu S, Sun Z, Hong L, Wang R, Tian R, Li G. Alkenyl oxindole is a novel PROTAC moiety that recruits the CRL4DCAF11 E3 ubiquitin ligase complex for targeted protein degradation. PLoS Biol 2024; 22:e3002550. [PMID: 38768083 PMCID: PMC11104598 DOI: 10.1371/journal.pbio.3002550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Alkenyl oxindoles have been characterized as autophagosome-tethering compounds (ATTECs), which can target mutant huntingtin protein (mHTT) for lysosomal degradation. In order to expand the application of alkenyl oxindoles for targeted protein degradation, we designed and synthesized a series of heterobifunctional compounds by conjugating different alkenyl oxindoles with bromodomain-containing protein 4 (BRD4) inhibitor JQ1. Through structure-activity relationship study, we successfully developed JQ1-alkenyl oxindole conjugates that potently degrade BRD4. Unexpectedly, we found that these molecules degrade BRD4 through the ubiquitin-proteasome system, rather than the autophagy-lysosomal pathway. Using pooled CRISPR interference (CRISPRi) screening, we revealed that JQ1-alkenyl oxindole conjugates recruit the E3 ubiquitin ligase complex CRL4DCAF11 for substrate degradation. Furthermore, we validated the most potent heterobifunctional molecule HL435 as a promising drug-like lead compound to exert antitumor activity both in vitro and in a mouse xenograft tumor model. Our research provides new employable proteolysis targeting chimera (PROTAC) moieties for targeted protein degradation, providing new possibilities for drug discovery.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Tianzi Wei
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Man Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Aima Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fan Sun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Risheng Lin
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yubao Xie
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ming Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Shiyu Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Sun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruilin Tian
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|