1
|
Liu Z, Hu J, Han X, Li L, Niu H, Zhang X, Wang N, Shi X, Sang L, Zhang Q, Qian X. SLAMF8 regulates Fc receptor-mediated phagocytosis in mouse macrophage cells through PI3K-Akt signaling. Immunol Lett 2025; 273:106990. [PMID: 39983459 DOI: 10.1016/j.imlet.2025.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Emerging studies have demonstrated that phagocytosis checkpoints, which promote tumor-mediated immune evasion, are potential targets for cancer immunotherapy. In this study, the TCGA colorectal cancer (CRC) dataset and our RNA sequencing dataset suggested that SLAMF8 expression is significantly positively correlated with the expression levels of multiple phagocytosis checkpoint molecules. In vitro, we confirmed that SLAMF8 significantly regulated the phagocytosis of mouse CRC cells. RNA sequencing revealed that the expression of genes that promote Fc receptor (FcR)-mediated phagocytosis, such as FCGR1, FCGR3, FCGR2b, FCGR4, and ITGAM, was significantly upregulated after SLAMF8 knockdown. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results suggested that the significantly enriched signaling pathways after SLAMF8 knockdown or overexpression included the PI3K-Akt signaling pathway. The protein expression levels of p-PI3K and p-Akt were significantly increased after SLAMF8 knockdown. When PI3K inhibitors and Fc blockers were added after SLAMF8 knockdown, mouse macrophage phagocytosis, and FcR expression decreased. Our results suggest that SLAMF8 may impair FcR-mediated phagocytosis through the PI3K-Akt signaling pathway and negatively regulate the antitumor immune response.
Collapse
Affiliation(s)
- Zhihao Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, PR China; Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, PR China
| | - Jing Hu
- Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, PR China
| | - Xingzhi Han
- Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, PR China
| | - Li Li
- Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, PR China
| | - Haiqing Niu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xin Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Ning Wang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xiao Shi
- Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, PR China
| | - Liuqi Sang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, PR China
| | - Qun Zhang
- Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, PR China.
| | - Xiaoping Qian
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, PR China; Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, PR China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|
2
|
Cillari R, Acúrcio RC, Barateiro A, Florindo HF, Mauro N, Cavallaro G. Harnessing sulfur-doped carbon nanodots conjugated with IDO inhibitors act as a dual-mode breast cancer immunotherapy. J Control Release 2025; 381:113575. [PMID: 40024343 DOI: 10.1016/j.jconrel.2025.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/10/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Fluorescent ultrasmall nanoparticles (d < 10 nm), such as carbon nanodots (CDs), are promising nanosystems for precision cancer therapy. Their optimal size allows them to diffuse within complex microenvironments, enabling drug delivery, imaging, and monitoring. Additionally, CDs can be engineered to hold inherent nanotoxicity toward cancer cells, overcoming multidrug resistance associated with conventional drugs. Nevertheless, cancer is a multifactorial disease where combinational strategies are most likely to tackle metastatic tumors and efficiently avoid recidivism. Therefore, developing multifunctional CDs that exhibit intrinsic nanotoxicity against cancer cells and drive effective antitumor immune responses is a promising approach to improving patients' response rates. Here, we developed an innovative nanosystem by conjugating N-,S-doped CDs with indoximod (IND) through a simple and cost-effective method. Our CDs-IND not only retained the advantages of bare CDs, including photoluminescence for self-tracking but also significantly controlled breast cancer progression in vivo following CDs-IND intratumoral (IT) and intravenous (IV) administration. Tumor microenvironment (TME) immune profiling revealed that CDs-IND reduced IDO expression and recruited NK, NKT, and T cells. This study underscores the potential of combining the inherent pharmacological properties of CDs with indoximod-mediated immunotherapy, offering a promising strategy for precision breast cancer treatment.
Collapse
Affiliation(s)
- Roberta Cillari
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo, Italy.
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon 1649-003, Portugal.
| | - Andreia Barateiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon 1649-003, Portugal.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon 1649-003, Portugal; CIBERONC, IISCIII, Madrid, Spain.
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo, Italy.
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo, Italy.
| |
Collapse
|
3
|
Sun Y, Deng Z, Sun H, Wei X, Wang L, Wang S, Gao A, Sun Y, Li J. Prognostic impact of the timing of immunotherapy in first-line immunochemotherapy for patients with advanced lung adenocarcinoma: A propensity score-matched analysis. Int J Cancer 2025. [PMID: 40259531 DOI: 10.1002/ijc.35447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/23/2025]
Abstract
Immunochemotherapy combinations have been the standard first-line therapy for advanced lung adenocarcinoma (LUAD) without driver mutations, wherein concurrent chemotherapy and immunotherapy are conventionally anchored in the established dosing regimen. A few studies have suggested that the timing of immunotherapy in combinations may have a significant impact on the efficacy. However, this issue has not been addressed in an advanced LUAD cohort. We aimed to investigate the prognostic significance of the timing of immunotherapy in first-line immunochemotherapy combinations for patients with advanced LUAD. We retrospectively analyzed 508 patients with advanced LUAD without driver mutations who received immunochemotherapy as initial systemic treatment. The patients were divided into two groups-the induction and non-induction groups-with induction defined as receiving chemotherapy alone before concurrent immunochemotherapy. The bias between different groups was minimized using propensity score matching (PSM). We found both the PFS and OS of the patients in the induction group were significantly longer than those in the non-induction group before (PFS: p < 0.0001, OS: p < 0.0001) and after PSM (PFS: p = 0.0045, OS: p = 0.00073). After adjusting for confounders, induction chemotherapy was still a significant favorable factor for both PFS (p = 0.001) and OS (p = 0.001). In subsequent analyses, we found that both ≥2-cycles induction (PFS: p = 0.000, OS: p = 0.000) and 1-cycle induction (PFS: p = 0.013, OS: p = 0.002) were superior to non-induction and these differences were still significant after PSM. Our findings highlight the notable benefits of induction chemotherapy for patients with advanced LUAD treated with first-line immunochemotherapy combinations.
Collapse
Affiliation(s)
- Yanxin Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Deng
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haifeng Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaojuan Wei
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Leirong Wang
- Phase I Clinical Research Center, Shandong University Cancer Center, Jinan, Shandong, China
| | - Shuyun Wang
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Aiqin Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuping Sun
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Juan Li
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
4
|
Wei C, Liu M, Zhang W. Programmed cell death protein 1 in cancer cells. Cell Commun Signal 2025; 23:185. [PMID: 40241148 PMCID: PMC12001728 DOI: 10.1186/s12964-025-02155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Programmed cell death protein 1 (PD-1) is frequently detected in certain subsets of tumor cells, and our understanding of PD-1 signaling consequences has expanded to include control of tumor growth, stemness and drug resistance. Nonetheless, tumor cell-intrinsic PD-1 has been comparatively underexplored in relation to PD-1 expressed on the surface of immune cells as an immune checkpoint, despite the imperative need to comprehensively elucidate the underlying mechanisms of action for achieving optimal responses in tumor immunotherapy. Here, we review the roles of the regulation and function of tumor-intrinsic PD-1 from its expression to degradation processes. Our primary focus is on unraveling its enigmatic influence on tumorigenesis and progression as proposed by recent findings, while navigating the labyrinthine network of regulatory mechanisms governing its expression and intricate functional interplay. We also discuss how the elucidation of the mechanistic underpinnings of tumor-intrinsic PD-1 expression holds the potential to explain the divergent therapeutic outcomes observed with anti-PD-1-based combination therapies, thereby furnishing indispensable insights crucial for synergistic anti-tumor strategies.
Collapse
Affiliation(s)
- Chunlian Wei
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
| | - Meijun Liu
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, PR China.
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, PR China.
| |
Collapse
|
5
|
Deshmukh SS, Chaudhari KS, Basu A, Sonpavde GP. Current update on pharmacological strategies of penile cancer. Expert Opin Pharmacother 2025:1-16. [PMID: 40210449 DOI: 10.1080/14656566.2025.2492335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/18/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
INTRODUCTION Penile cancer considered an orphan malignancy - due to its low incidence - makes research and clinical development challenging. The limited understanding of molecular biology and genetic landscape adds to the complexity of developing effective therapies. AREAS COVERED This review takes a closer look at how penile cancer treatment has evolved - from traditional modes like surgery and radiation to now vaccines - over the period of time. Breakthroughs in immunotherapy offer a ray of hope alongside treatments like adoptive T-cell therapies (ATCT), anti-angiogenic agents, Antibody-Drug Conjugates (ADCs), and Bispecific Antibodies (BsAbs). EXPERT OPINION The integration of immunotherapy and targeted therapy has demonstrated promising results, particularly in patients with advanced or metastatic disease. While these advancements bring hope, more research is needed to refine treatment strategies to benefit patients from these novel approaches.
Collapse
Affiliation(s)
- Sameer S Deshmukh
- Division of Hematology/Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center at UAB, Birmingham, AL, USA
| | - Kaustubh S Chaudhari
- Department of Medicine, Dr Vaishampayan Memorial Government Medical College, Solapur, India
| | - Arnab Basu
- Division of Hematology/Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center at UAB, Birmingham, AL, USA
| | - Guru P Sonpavde
- Division of Hematology/Oncology, Department of Medicine, AdventHealth Central Florida, Orlando, FL, USA
| |
Collapse
|
6
|
Mao ZC, Chen L, Chen XM, Lu XY, Mo ZY, Gou Y, Wei JH, Huang RZ, Zhang Y. Design, synthesis and evaluation of diarylidenyl piperidone-ligated platinum (IV) complexes as chemoimmunotherapeutic agents. Eur J Med Chem 2025; 287:117338. [PMID: 39908796 DOI: 10.1016/j.ejmech.2025.117338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
A set of diarylidenyl piperidone-ligated platinum (IV) complexes 8a‒8d with chemoimmunotherapy effects was designed and synthesized based on introduction of classic STAT3 inhibitors, diarylidenyl piperidones, into an oxaliplatin (OXA)-based skeleton. 3-(4,5)-Dimethylthiahiazo (-z-y1)-3, 5-di- phenytetrazoliumromide (MTT) assay indicated that complexes 8a‒8d exhibited obvious inhibition on T24, MDA-MB-231 and SW480 cell lines compared to OXA, with IC50 values in range of 4.96 ± 0.14-21.1 ± 0.35 μM. SW480 xenograft nude mice assay demonstrated that complexes 8a (2 mg/kg and 4 mg/kg), 8b (4 mg/kg) and 8c (4 mg/kg) exhibited effective inhibition on this model with tumor inhibitory rates (TIR) of 46.06 %, 51.18 %, 48.82 % and 42.16 %, respectively, compared with OXA (2 mg/kg, TIR = 31.89 %/34.31 %) during 21-days treatment, while CT-26 xenograft BALB/C mice assay showed that complexes 8a (10 mg/kg), 8b (5 and 10 mg/kg), 8c (5 and 10 mg/kg), and 8d (5 and 10 mg/kg) exhibited effective inhibition of with TIR values of 56.95 %, 56.28 %, 78.02 %, 47.28 %, 63.80 %, 51.90 % and 70.65 %, respectively, compared with OXA (5 mg/kg, TIR = 69.28 %/67.53 %) during 13-days treatment. The pathology results in SW480 and CT-26 xenograft showed that complexes 8a-8d displayed limited toxicity in comparison with OXA. All these results indicated that complexes 8a-8c may be good chemoimmunotherapeutic agents with potent efficacy and safety profiles. Further mechanistic studies revealed that the representative complex 8b might exert its chemoimmunotherapeutic effect by inhibiting the expression and phosphorylation of STAT3, thus evoking CD4+ and CD8+ T lymphocyte immune responses and inducing ferroptosis and apoptosis.
Collapse
Affiliation(s)
- Zhi-Chen Mao
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China
| | - Lei Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China
| | - Xiao-Man Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China
| | - Xiao-Yun Lu
- College of Pharmacy, Jinan University, 511436, Guangzhou, China
| | - Zu-Yu Mo
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China
| | - Yi Gou
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China
| | - Jian-Hua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China.
| | - Ri-Zhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, 541199, Guilin, Guangxi, China.
| |
Collapse
|
7
|
Jamal A, Aldreiwish AD, Banawas SS, Alqurashi YE, Kamal MA, Ahmad F. The paths toward immunotherapy of esophageal cancer: An overview of clinical trials. Int Immunopharmacol 2025; 151:114261. [PMID: 40015204 DOI: 10.1016/j.intimp.2025.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
As the seventh-leading contributor to global cancer-related deaths, esophageal cancer (EC) is one of the most challenging types of cancer. Despite advancements in conventional therapies, including surgery, chemotherapy, and radiotherapy, the five-year survival rate remains low, underscoring the need for the development of more efficacious treatment approaches. Immunotherapy has emerged as a promising treatment approach, offering new hope for EC patients. This review provides an in-depth examination of the latest immunotherapeutic strategies for EC, focusing on immune checkpoint inhibitors, adoptive cell therapy, cancer vaccines, and oncolytic virotherapy. We critically analyze the current clinical data to highlight the progress and pitfalls of each immunotherapeutic approach for EC. Additionally, we explore the potential for combination therapies, which could overcome the resistance often seen with monotherapies. Finally, we discuss the limitations of current treatments and outline key areas for future research to improve patient outcomes and survival.
Collapse
Affiliation(s)
- Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Allolo D Aldreiwish
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saeed S Banawas
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Yaser E Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| |
Collapse
|
8
|
Kaynak A, Vallabhapurapu SD, Smith EP, Davis HW, Lewis CS, Ahn J, Muller P, Vojtesek B, Stringer KF, Franco RS, Bogdanov VY, Shao WH, Qi X. Targeting Hsp70 Immunosuppressive Signaling Axis with Lipid Nanovesicles: A Novel Approach to Treat Pancreatic Cancer. Cancers (Basel) 2025; 17:1224. [PMID: 40227806 PMCID: PMC11988048 DOI: 10.3390/cancers17071224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Despite many efforts to effectively treat PDAC, PDAC carries one of the highest mortality rates of all major cancers. Thus, there is a critical unmet need to develop novel approaches to improve the clinical outcome of PDAC. It is well known that many cancers, including PDAC, generate a local TME that allows cancer to escape normal immune surveillance. Phosphatidylserine (PS), a negatively charged phospholipid that is abundant on the cancer cell membrane and with known actions to promote the secretion of immunomodulatory proteins, may provide a mechanism to regulate the TME. This study explored that possibility. METHODS MΦ differentiation and polarization were assessed by Western blotting and flow cytometric approaches. PS exposure and surface markers were analyzed by flow cytometry. Protein-protein and protein-lipid interactions were analyzed by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Phospholipid and SapC-DOPG treatment were employed to assess target protein functions in MΦ polarization, tumor growth, and survival in subcutaneous and orthotopic tumor models. The PK-PD and safety of SapC-DOPG were tested on orthotopic mouse models. RESULTS Our studies show that PDAC secretes Hsp70 that stimulates the MΦ polarization to the immunosuppressive M2 phenotype. We found that high surface PS on cancer cells correlates with increased secretion of Hsp70 and is associated with higher MΦ differentiation activity in vitro and in vivo. Furthermore, blocking cancer cell-secreted Hsp70 with SapC-DOPG reverses the immune suppression and reduces tumor growth. CONCLUSIONS These preclinical results reveal a novel immunotherapeutic approach to potentially improve the outcome of PDAC treatment in humans.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (E.P.S.); (H.W.D.); (C.S.L.); (J.A.); (R.S.F.)
| | - Subrahmanya D. Vallabhapurapu
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (E.P.S.); (H.W.D.); (C.S.L.); (J.A.); (R.S.F.)
| | - Eric P. Smith
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (E.P.S.); (H.W.D.); (C.S.L.); (J.A.); (R.S.F.)
| | - Harold W. Davis
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (E.P.S.); (H.W.D.); (C.S.L.); (J.A.); (R.S.F.)
| | - Clayton S. Lewis
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (E.P.S.); (H.W.D.); (C.S.L.); (J.A.); (R.S.F.)
| | - Joseph Ahn
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (E.P.S.); (H.W.D.); (C.S.L.); (J.A.); (R.S.F.)
| | - Petr Muller
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty Kopec 7, 656 53 Brno, Czech Republic; (P.M.); (B.V.)
| | - Borek Vojtesek
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty Kopec 7, 656 53 Brno, Czech Republic; (P.M.); (B.V.)
| | - Keith F. Stringer
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.F.S.)
| | - Robert S. Franco
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (E.P.S.); (H.W.D.); (C.S.L.); (J.A.); (R.S.F.)
| | - Vladimir Y. Bogdanov
- Center for Scientific Review, National Institutes of Health, Bethesda, MD 20892, USA; (formerly at University of Cincinnati) (V.Y.B.)
| | - Wen-Hai Shao
- Division of Rheumatology, Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (W.-H.S.)
| | - Xiaoyang Qi
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (E.P.S.); (H.W.D.); (C.S.L.); (J.A.); (R.S.F.)
| |
Collapse
|
9
|
Kwong TT, Xiong Z, Zhang Y, Wu H, Cao J, Pak-Chun Wong P, Liu X, Wang J, Wong CH, Man-Kit Tse G, Jao-Yiu Sung J, Zhou J, Sze-Lok Cheng A, Chan SL. Overcoming immunotherapy resistance in hepatocellular carcinoma by targeting myeloid IL-8/CXCR2 signaling. Mol Ther 2025; 33:1659-1673. [PMID: 39916327 PMCID: PMC11997504 DOI: 10.1016/j.ymthe.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Durable responses to immune checkpoint blockade (ICB) in hepatocellular carcinoma (HCC) are limited to a minority of patients, yet reliable biomarkers are still lacking. Inflammatory cytokines such as interleukin-8 (IL-8) are associated with HCC progression, and IL-8 is known as the chemoattractant for immunosuppressive myeloid cells. Therefore, we aim to elucidate the ICB resistance mechanisms mediated by the activation of the IL-8/CXCR2 pathway. Single-cell RNA sequencing (scRNA-seq) was performed in advanced HCC patients with baseline and on-treatment biopsy after pembrolizumab in a phase 2 clinical trial cohort. Our data revealed that IL-8 and its receptor, CXCR2, mainly derived from immunosuppressive myeloid-derived suppressor cells (MDSCs). In particular, the high circulating IL-8 level was strongly associated with poor ICB response. This myeloid IL-8/CXCR2 pathway was further elucidated in our ICB-resistant orthotopic mouse model using AZD5069, a clinically available CXCR2 antagonist. Suppression of the IL-8/CXCR2 pathway significantly abrogated MDSC trafficking and immunosuppressive activity, which sensitized the anti-PD-L1 blockade to reduce tumor growth and prolong survival. The association between myeloid IL-8 and ICB therapeutic outcomes also extended to multiple cancer types. Collectively, our study not only suggests a potential non-invasive biomarker for patient stratification and monitoring of ICB response but it also provides a proof of concept for combinational immunotherapy to benefit patients who are non-responsive to ICB monotherapy.
Collapse
MESH Headings
- Receptors, Interleukin-8B/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/genetics
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/immunology
- Interleukin-8/metabolism
- Interleukin-8/genetics
- Animals
- Mice
- Signal Transduction/drug effects
- Drug Resistance, Neoplasm
- Immunotherapy/methods
- Myeloid-Derived Suppressor Cells/metabolism
- Myeloid-Derived Suppressor Cells/immunology
- Female
- Male
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Disease Models, Animal
Collapse
Affiliation(s)
- Tsz Tung Kwong
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Zhewen Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Yiling Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Haoran Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Jianquan Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Patrick Pak-Chun Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Xiaoyu Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Chi Hang Wong
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gary Man-Kit Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Joseph Jao-Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.
| | - Stephen Lam Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.
| |
Collapse
|
10
|
Wang S, Huang J, Zeng T, Chen Y, Xu Y, Zhang B. Parps in immune response: Potential targets for cancer immunotherapy. Biochem Pharmacol 2025; 234:116803. [PMID: 39965743 DOI: 10.1016/j.bcp.2025.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy in clinical application faces numerous challenges pertaining to both effectiveness and safety. Poly(ADP-ribose) polymerases (PARPs) exhibit multifunctional characteristics by transferring ADP-ribose units to target proteins or nucleic acids. In recent years, more and more attention has been paid to the biological function of PARPs in immune response. This article reviews the relationship between PARP family members and immune response. PARP1 and PARP2 inhibit anti-tumor immune activity by regulating immune checkpoint expression and the cGAS/STING signaling pathway. PARP7 and PARP11 play an important role in promoting immunosuppressive tumor microenvironment. PARP9 promotes the production of Type I interferon and the infiltration of macrophages. PARP13 is a key tumor suppressor that promotes anti-tumor immune response. PARP14 plays a crucial role in promoting the differentiation of macrophages towards the M2 pro-tumor phenotype. Summarizing the molecular mechanisms of PARP7, PARP9, PARP11, PARP13 and PARP14 in regulating immune response is helpful to deepen our comprehension of the role of PARPs in immune function regulation. This provides a reference and basis for targeted PARP-based cancer treatment strategies and drug development. PARP1, PARP7 inhibitors or other PARP inhibitors in combination with immune checkpoint inhibitors or other immunotherapy strategies may be a more effective cancer therapy.
Collapse
Affiliation(s)
- Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of New Drug Design and Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
11
|
Zeng C, Chen X, Lin M, Jin Y, Guo Q, Zhou T, Wang X, Li Y, Wang X, Han Y, Du L, Tang Q, Liu P, Zhang J. Overcoming matrix barriers for enhanced immune infiltration using siRNA-coated metal-organic frameworks. Acta Biomater 2025; 196:410-422. [PMID: 40054648 DOI: 10.1016/j.actbio.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
The extracellular matrix (ECM) of solid tumor constitutes a formidable physical barrier that impedes immune cell infiltration, contributing to immunotherapy resistance. Breast cancer, particularly triple-negative breast cancer (TNBC), is characterized by a collagen-rich tumor microenvironment, which is associated with T cell exclusion and poor therapeutic outcomes. Discoidin domain receptor 2 (DDR2) and integrins, key ECM regulatory receptors on cancer cells, play pivotal role in maintaining this barrier. In this study, we developed a dual-receptor-targeted strategy using metal-organic frameworks (MOFs) to deliver DDR2-specific siRNA (siDDR2) and ITGAV-specific siRNA (siITGAV) to disrupt the ECM barrier. siDDR2 modulates immune infiltration by regulating collagen-cell interactions, while siITGAV suppresses TGF-β1 activation. The MOF@siDDR2+siITGAV complex significantly reduced collagen deposition, enhanced CD8+ T cell infiltration, and downregulated programmed cell death ligand 1 (PD-L1) expression in TNBC. Consequently, this approach markedly inhibited tumor growth. Our findings demonstrate that dual-receptor-targeted MOF-based nanocarriers (MOF@siDDR2+siITGAV) can effectively reprogram the tumor ECM to enhance immune cell access, offering a promising prospect for synergistic cancer immunotherapy. STATEMENT OF SIGNIFICANCE: A dual-receptor-targeted MOF nanocarrier is developed to improve immune accessibility in tumors. Concurrent blockade of DDR2 and ITGAV effectively decreases collagen deposition, increases CD8+ T cell infiltration, and suppresses PD-L1 expression. Modulating the mechanical properties of the extracellular matrix (ECM) to enhance immune accessibility offers an innovative strategy for cancer treatment.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China; Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xingang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yiping Li
- Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yongming Han
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ling Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qianyun Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China; Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Yang W, Huang B, Rao H, Ye P, Chen B, Wang H, Chung C, Wu H, Yen H, Wang S, Cha J, Yan X, Yang M, Hung M. Ribonuclease 1 Induces T-Cell Dysfunction and Impairs CD8 + T-Cell Cytotoxicity to Benefit Tumor Growth through Hijacking STAT1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404961. [PMID: 39932384 PMCID: PMC11967817 DOI: 10.1002/advs.202404961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/19/2025] [Indexed: 04/05/2025]
Abstract
T-cell-based immunotherapy holds promise for eliminating cancer through T-cell activation. However, prolonged interaction between T cells and tumors and the presence of immunosuppressive factors can diminish T-cell cytotoxicity, leading to treatment failure. Here, ribonuclease 1 (RNase1), which degrades RNA, reduced the expression of effector cytokines and increases immune checkpoint protein levels, inducing T-cell dysfunction. RNase1 expression is positively associated with exhausted T-cell gene signatures and immune checkpoint proteins across several cancer types. Cancer cells expressing RNase1 are resistant to CD8+ T-cell-mediated killing. RNase1 promotes tumor growth in immunocompetent, but not in immunodeficient, mouse models and inhibits CD8+ T-cell activity in vivo. Mechanistically, RNase1 enters T cells and deactivates signal transducer and activator of transcription 1 (STAT1), causing T-cell dysfunction. Loss of RNase1-STAT1 interaction restores CD8+ T-cell cytotoxicity. Notably, a study has found RNase1 might activate CD4+ T cells to inhibit breast cancer growth, while another has indicated it causes immunosuppression in liver cancer. The current research shows that RNase1 does not impact CD4+ T cells in vivo. Overall, the study supports the immunosuppressive role of RNase1 in cancer of negatively regulating STAT1 to impair CD8+ T-cell cytotoxicity. Targeting the RNase1-STAT1 interaction could prevent CD8+ T-cell dysfunction in RNase1-highly expressing cancer patients.
Collapse
Affiliation(s)
- Wen‐Hao Yang
- Graduate Institute of Cell Biology and Cancer Biology and Precision Therapeutics CenterChina Medical UniversityTaichung406040Taiwan
| | - Bao‐Yue Huang
- Graduate Institute of Cell Biology and Cancer Biology and Precision Therapeutics CenterChina Medical UniversityTaichung406040Taiwan
| | - Hsing‐Yu Rao
- Graduate Institute of Cell Biology and Cancer Biology and Precision Therapeutics CenterChina Medical UniversityTaichung406040Taiwan
| | - Peng Ye
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouGuangdong910095China
- Infection Medicine Research Institute of Panyu DistrictThe Affiliated Panyu Central Hospital of Guangzhou Medical UniversityGuangzhouGuangdong910095China
| | - Bi Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouGuangdong910095China
| | - Hao‐Ching Wang
- The PhD Program for Translational Medicine, and Graduate Institute of Translational MedicineCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Chih‐Hung Chung
- Cancer and Immunology Research CenterNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| | - Heng‐Hsiung Wu
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichung404328Taiwan
| | - Hung‐Rong Yen
- School of Chinese MedicineCollege of Chinese MedicineChina Medical UniversityTaichung404328Taiwan
| | - Shao‐Chun Wang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichung404328Taiwan
| | - Jong‐Ho Cha
- Department of Biomedical Science and EngineeringGraduate SchoolInha UniversityIncheon22212Republic of Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouGuangdong910095China
| | - Muh‐Hwa Yang
- Institute of Clinical Medicine and Cancer and Immunology Research CenterNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
- Department of OncologyTaipei Veterans General HospitalTaipei112201Taiwan
| | - Mien‐Chie Hung
- Graduate Institute of Biomedical SciencesInstitute of Biochemistry and Molecular BiologyResearch Center for Cancer BiologyCancer Biology and Precision Therapeutics Center and Center for Molecular MedicineChina Medical UniversityTaichung406040Taiwan
| |
Collapse
|
13
|
Giri S, Lamichhane G, Pandey J, Khadayat R, K. C. S, Devkota HP, Khadka D. Immune Modulation and Immunotherapy in Solid Tumors: Mechanisms of Resistance and Potential Therapeutic Strategies. Int J Mol Sci 2025; 26:2923. [PMID: 40243502 PMCID: PMC11989189 DOI: 10.3390/ijms26072923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Understanding the modulation of specific immune cells within the tumor microenvironment (TME) offers new hope in cancer treatments, especially in cancer immunotherapies. In recent years, immune modulation and resistance to immunotherapy have become critical challenges in cancer treatments. However, novel strategies for immune modulation have emerged as promising approaches for oncology due to the vital roles of the immunomodulators in regulating tumor progression and metastasis and modulating immunological responses to standard of care in cancer treatments. With the progress in immuno-oncology, a growing number of novel immunomodulators and mechanisms are being uncovered, offering the potential for enhanced clinical immunotherapy in the near future. Thus, gaining a comprehensive understanding of the broader context is essential. Herein, we particularly summarize the paradoxical role of tumor-related immune cells, focusing on how targeted immune cells and their actions are modulated by immunotherapies to overcome immunotherapeutic resistance in tumor cells. We also highlight the molecular mechanisms employed by tumors to evade the long-term effects of immunotherapeutic agents, rendering them ineffective.
Collapse
Affiliation(s)
- Suman Giri
- Asian College for Advance Studies, Purbanchal University, Satdobato, Lalitpur 44700, Nepal;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jitendra Pandey
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Ramesh Khadayat
- Patan Hospital, Patan Academic of Health Sciences, Lagankhel, Lalitpur 44700, Nepal;
| | - Sindhu K. C.
- Department of Pharmacology, Chitwan Medical College, Tribhuwan University, Bharatpur-05, Chitwan 44200, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oehonmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan;
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| | - Dipendra Khadka
- NADIANBIO Co., Ltd., Wonkwang University School of Medicine, Business Incubation Center R201-1, Iksan 54538, Jeonbuk, Republic of Korea
- KHAS Health Pvt. Ltd., Dhangadhi-04, Kailali 10910, Nepal
| |
Collapse
|
14
|
Mannan A, Mohan M, Singh TG. Revenge unraveling the fortress: Exploring anticancer drug resistance mechanisms in BC for enhanced therapeutic strategies. Crit Rev Oncol Hematol 2025; 210:104707. [PMID: 40122355 DOI: 10.1016/j.critrevonc.2025.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Breast cancer (BC) is the most prevalent form of cancer in women worldwide and the main cause of cancer-related fatalities in females. BC can be classified into various types based on where cancer has begun to grow or spread, specific characteristics that influence how cancer behaves, and treatment choices. BC is multifaceted, and due to its diverse nature, the mechanisms involved are complex and have not yet been understood. Overexpression and expression of various factors involved in the functioning of mechanisms lead to abnormal changes, providing an environment supporting cancer cell growth. Understanding BC risk factors and early diagnosis through screening techniques like mammography and diagnostic techniques such as imaging and biopsies has advanced significantly. A wide range of treatment options, including surgery, radiation, chemotherapy, targeted treatments, and hormonal therapies, are now available. Daily advancements are being made in the clinical treatment of BC. Still, BC drug resistance cases remain highly prevalent and are currently one of the biggest problems faced by medical science. To increase response rates and possibly lengthen survival, there is a critical requirement for novel medicines with minimal sensitivity to overcome drug resistance. This review classifies different mechanisms that are involved in the development of BC and workable pharmacological targets and explains how they relate to the development of BC drug resistance. By concentrating on the mechanisms covered in this review, we can have a deep understanding of different mechanisms and learn innovative ways to develop novel therapeutics for the disease to combat medication resistance.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
15
|
Thiruppathi J, Vijayan V, Hwang HS, Bang YJ, Loeurng V, Hong SH, Sundaram A, Park IK, Lee SE, Rhee JH. Thermoresistant flagellin-adjuvanted cancer vaccine combined with photothermal therapy synergizes with anti-PD-1 treatment. J Immunother Cancer 2025; 13:e010272. [PMID: 40118497 PMCID: PMC11931959 DOI: 10.1136/jitc-2024-010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/04/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Cancer immunotherapy, leveraging the immune system to target and eradicate cancer cells, has transformed cancer treatment paradigms. Immune checkpoint inhibitors (ICIs) are used in a wide array of cancers, but only a limited fraction of patients are responding. Cancer vaccines could elicit antigen-specific immune responses and establish long-term immune memory, preventing recurrence and metastasis. Despite their promising profiles, ICIs and cancer vaccines by themselves are often insufficient to overcome the immunosuppressive tumor microenvironment (TME) and recurrence/metastasis. Addressing these challenges is crucial for improving cancer immunotherapy outcomes. METHODS The targeted liposomal formulation (TLIF), displaying Cyclic RGD (cRGD) peptide on the surface and encapsulating ICG and thermoresistant flagellin (FlaB) inside, was used for photothermal therapy (PTT), which was designed to induce robust immunogenic cell death (ICD) and release tumor antigens (TAs). We employed a mouse breast cancer model amenable to PTT. Utilizing a bilateral DD-Her2/neu tumor implantation model, we evaluated local and abscopal effects of combinatorial approaches employing PTT, FlaB-adjuvanted peptide vaccine (FlaB-Vax), and anti-PD-1 treatment. FlaB-Vax was designed to trigger tumor-associated antigen (TAA)-specific immune responses, which will trigger specific anti-tumor immunity. TLIF-PTT aimed to reduce tumor burden and induce ICD-mediated TA liberation for epitope spreading. Sustained anti-tumor immune memory was assessed by orthotopic rechallenging cured mice with the DD-Her2/neu tumor cells. RESULTS The combination of TLIF-PTT and FlaB-Vax provided significantly enhanced primary tumor suppression, with strong abscopal effects and long-lasting immune memory. The addition of anti-PD-1 therapy further improved long-term relapse-free survival, highlighting the potential of this combinatorial approach to induce durable antitumor immunity and sustainably prevent cancer recurrence and metastasis. CONCLUSION This study demonstrates that the combination of TLIF-PTT and FlaB-Vax synergistically induced synergistic anti-tumor immune responses, which were efficaciously potentiated by anti-PD-1 treatment for recurrence-free long-term survival.
Collapse
Affiliation(s)
| | - Veena Vijayan
- Chonnam National University, Hwasun, Korea (the Republic of)
| | - Hye Suk Hwang
- Chonnam National University, Hwasun, Korea (the Republic of)
- Department of Biomedical Science,College of Life Science and Industry, Sunchon National University, Sunchon 57922, South Korea
| | - Yong Jun Bang
- Chonnam National University, Hwasun, Korea (the Republic of)
| | - Vandara Loeurng
- Chonnam National University, Hwasun, Korea (the Republic of)
| | - Seol Hee Hong
- Chonnam National University, Gwangju, Korea (the Republic of)
| | | | - In-Kyu Park
- Chonnam National University Medical School, Gwangju, Korea (the Republic of)
| | - Shee Eun Lee
- Chonnam National University, Gwangju, Korea (the Republic of)
| | - Joon Haeng Rhee
- Chonnam National University, Hwasun, Korea (the Republic of)
| |
Collapse
|
16
|
Narote S, Desai SA, Patel VP, Deshmukh R, Raut N, Dapse S. Identification of new immune target and signaling for cancer immunotherapy. Cancer Genet 2025; 294-295:57-75. [PMID: 40154216 DOI: 10.1016/j.cancergen.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Immunotherapy has become one of the innovative treatments in malignancy as it activates the immune system to find and eliminate malignant cells. The tumor immunology interface has become increasingly intricate, making the identification of new immune targets and signalling pathways on which to base improved therapeutic strategies an ongoing process. This review, we goal to clarify the contacts between cancer and immune system with a focus on immune surveillance as well as immune evasion mechanisms. Comprehensive immunotherapeutic therapies are overviewed with ICI (CTLA-4, PD-1, PD-L1), CAR-T cell therapy, and cancer vaccines whereas, advanced therapies targeting new immune checkpoints are also elucidated including TIM-3, LAG-3, and TIGIT. The JAK/STAT, MAPK and PI3K-AKT-mTOR pathways are reviewed with regards to cancer progression and immunotherapeutic resistance. The dysregulation of these pathways gives hope for the identification of fresh targets for therapy. Genomics, proteomics, immunopeptidomics, single cell mass spectrometry, CRISPR-based functional genomics and bioinformatics are described as essential for immune target identification and for mapping of cancer relevant signaling pathways. This review also considers some emerging issues in the subject area like the tumor heterogeneity, immune-related adverse events (irAEs), and personalized treatment. These barriers are described to facilitate the understanding of ways to overcome them and increase the efficacy of immunotherapies through combination therapies. This means that by developing new knowledge of immunological targets and pathways, immunoprecision medicine for cancer could greatly enhance outcomes.
Collapse
Affiliation(s)
- Sakshi Narote
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India.
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Rutuja Deshmukh
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Nikita Raut
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Sejal Dapse
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| |
Collapse
|
17
|
Arroyo-Nogales A, Plaza-Palomo G, González-Larre J, Jiménez-Falcao S, Baeza A. Silicasomes in Oncology: From Conventional Chemotherapy to Combined Immunotherapy. Molecules 2025; 30:1257. [PMID: 40142031 PMCID: PMC11945772 DOI: 10.3390/molecules30061257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The use of nanoparticles as drug carriers in oncology has evolved from their traditional role as chemotherapy carriers to their application in immunotherapy, exploiting not only their passive accumulation in solid tumors but also their ability to interact with immune cells. Silicasomes are highly versatile nanoplatforms composed of a mesoporous silica core whose external surface is coated with a lipid bilayer that allows the co-delivery of therapeutic agents having different chemical natures (small molecules, proteins, enzymes, or oligonucleotides, among others). Herein, cutting-edge advances carried out in the development and application of silicasomes are presented, providing a general description of the performance of these nanotransporters. Additionally, the specific load of chemotherapeutic drugs is explored, followed by a discussion of the immunotherapeutic application of silicasomes and the combination of different therapeutic strategies, including theragnosis, in a single silicasome platform, highlighting the enormous potential of these nanosystems.
Collapse
Affiliation(s)
| | | | | | | | - Alejandro Baeza
- Materials and Aerospace Production Department, Superior Technic School of Aeronautics and Space Engineering, Politechnic University of Madrid Department Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (A.A.-N.); (G.P.-P.); (J.G.-L.); (S.J.-F.)
| |
Collapse
|
18
|
Nazerai L, Tsiavou C, Vardouli L, Schmiegelow K, De Zio D. Thiopurine therapy enhances immune checkpoint inhibitor efficacy in low-mutational burden melanoma: A promising anticancer approach. Proc Natl Acad Sci U S A 2025; 122:e2423246122. [PMID: 39993201 DOI: 10.1073/pnas.2423246122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
A key limitation of immune checkpoint inhibitors (ICI) therapy is their reduced efficacy toward cancers with a low tumor mutational burden (TMB). Since low-TMB tumors express fewer neoantigens, they are less responsive to ICI therapy like anti-PD-1 and anti-CTLA-4. In preclinical immunocompetent mouse models of low-TMB melanoma, we recently demonstrated that exposure to 6-thioguanine (6TG) significantly improved tumor control by increasing TMB and creating a proinflammatory tumor microenvironment. The combination of 6TG with anti-PD-1 further improved tumor control, although it did not fully inhibit tumor growth. We here investigated additional ICI combinations, assessing anti-CTLA-4 with anti-PD-1 to improve efficacy. ICI eliminated tumors in 6TG-exposed mice when ICI treatment was initiated at tumor volumes of 20 mm3, stopped tumor growth at volumes of 120 mm3, and had no effect at volumes of 300 mm3. Finally, we showed that mice achieving complete tumor regression with 6TG and ICI treatment exhibited lasting immune memory, which effectively suppressed tumor growth at relapse upon re-exposure to tumor cells. These findings may pave the way to effective application of ICI to low-TMB cancers, when initiated at low tumor volume.
Collapse
Affiliation(s)
- Loulieta Nazerai
- Melanoma Research Team, Danish Cancer Institute, Copenhagen 2100, Denmark
| | - Christina Tsiavou
- Melanoma Research Team, Danish Cancer Institute, Copenhagen 2100, Denmark
| | - Lina Vardouli
- Melanoma Research Team, Danish Cancer Institute, Copenhagen 2100, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital & Institute of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Institute, Copenhagen 2100, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
19
|
Sivakumar A, Phuengkham H, Rajesh H, Mac QD, Rogers LC, Silva Trenkle AD, Bawage SS, Hincapie R, Li Z, Vainikos S, Lee I, Xue M, Qiu P, Finn MG, Kwong GA. AND-gated protease-activated nanosensors for programmable detection of anti-tumour immunity. NATURE NANOTECHNOLOGY 2025; 20:441-450. [PMID: 39753733 PMCID: PMC11922657 DOI: 10.1038/s41565-024-01834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/30/2024] [Indexed: 03/20/2025]
Abstract
The forward design of biosensors that implement Boolean logic to improve detection precision primarily relies on programming genetic components to control transcriptional responses. However, cell- and gene-free nanomaterials programmed with logical functions may present lower barriers for clinical translation. Here we report the design of activity-based nanosensors that implement AND-gate logic without genetic parts via bi-labile cyclic peptides. These actuate by releasing a reporter if and only if cleaved by a specific pair of proteases. AND-gated nanosensors that detect the concomitant activity of the granzyme B protease secreted by CD8 T cells and matrix metalloproteinases overexpressed by cancer cells identify the unique condition of cytotoxic T cell killing of tumour cells. In preclinical mouse models, AND-gated nanosensors discriminate tumours that are responsive to immune checkpoint blockade therapy from B2m-/- tumours that are resistant to it, minimize signals from tissues without co-localized protease expression including the lungs during acute influenza infection, and release a reporter locally in tissue or distally in the urine for facile detection.
Collapse
Affiliation(s)
- Anirudh Sivakumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Hathaichanok Phuengkham
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Hitha Rajesh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Quoc D Mac
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Leonard C Rogers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Aaron D Silva Trenkle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Swapnil Subhash Bawage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhonghan Li
- Department of Chemistry, University of California Riverside, Riverside, CA, USA
| | - Sofia Vainikos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Inho Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - Min Xue
- Department of Chemistry, University of California Riverside, Riverside, CA, USA
| | - Peng Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA.
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Zhou Y, Chen K, Cheng H, Zhang S. Recent Advances in Polysaccharide-Based Hydrogels for Tumor Immunotherapy. Gels 2025; 11:152. [PMID: 40136857 PMCID: PMC11941962 DOI: 10.3390/gels11030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment and led to a significant increase in patient survival rates and quality of life. However, the effectiveness of current immunotherapies is limited by various factors, including immune evasion mechanisms and serious side effects. Hydrogels are a type of medical material with an ideal biocompatibility, variable structure, flexible synthesis method, and physical properties. Hydrogels have long been recognized and used as a superior choice for various biomedical applications. The fascinating results were derived from both in vitro and in vivo models. The rapid expansion of this area suggests that the principles and uses of functionalized polysaccharides are transformative, motivating researchers to investigate novel polysaccharide-based hydrogels for wider applications. Polysaccharide hydrogels have proven to be a practicable delivery strategy for tumor immunotherapy due to their biocompatibility, biodegradability, and pronounced bioactive characteristics. This study aims to examine in detail the latest developments of polysaccharide hydrogels in tumor immunotherapy, focusing on their design, mechanism of action, and potential therapeutic applications.
Collapse
Affiliation(s)
- Youxi Zhou
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China; (Y.Z.); (K.C.)
| | - Kaizhao Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China; (Y.Z.); (K.C.)
| | - Hongwei Cheng
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau 999078, China
| | - Shuaishuai Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China; (Y.Z.); (K.C.)
| |
Collapse
|
21
|
Sasaki N, Homme M, Murayama T, Osaki T, Tenma T, An T, Takegami Y, Tani T, Gedeon PC, Kobayashi Y, Cañadas I, Barbie DA, Yao R, Kitajima S. RNA sensing induced by chromosome missegregation augments anti-tumor immunity. Mol Cell 2025; 85:770-786.e7. [PMID: 39706184 PMCID: PMC11888943 DOI: 10.1016/j.molcel.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
Viral mimicry driven by endogenous double-stranded RNA (dsRNA) stimulates innate and adaptive immune responses. However, the mechanisms that regulate dsRNA-forming transcripts during cancer therapy remain unclear. Here, we demonstrate that dsRNA is significantly accumulated in cancer cells following pharmacologic induction of micronuclei, stimulating mitochondrial antiviral signaling (MAVS)-mediated dsRNA sensing in conjunction with the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Activation of cytosolic dsRNA sensing cooperates with double-stranded DNA (dsDNA) sensing to upregulate immune cell migration and antigen-presenting machinery. Tracing of dsRNA-sequences reveals that dsRNA-forming transcripts are predominantly generated from non-exonic regions, particularly in locations proximal to genes exhibiting high chromatin accessibility. Activation of this pathway by pulsed monopolar spindle 1 (MPS1) inhibitor treatment, which potently induces micronuclei formation, upregulates cytoplasmic dsRNA sensing and thus promotes anti-tumor immunity mediated by cytotoxic lymphocyte activation in vivo. Collectively, our findings uncover a mechanism in which dsRNA sensing cooperates with dsDNA sensing to boost immune responses, offering an approach to enhance the efficacy of cancer therapies targeting genomic instability.
Collapse
Affiliation(s)
- Nobunari Sasaki
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Mizuki Homme
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Takahiko Murayama
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Tatsuya Osaki
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Toshiyuki Tenma
- Respiratory Center, Asahikawa Medical University Hospital, Asahikawa 078-8510, Japan
| | - Tadaichi An
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa 230-0051, Japan
| | - Yujiro Takegami
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa 230-0051, Japan
| | - Tetsuo Tani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Patrick C Gedeon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yoshihisa Kobayashi
- Division of Molecular Pathology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Shunsuke Kitajima
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
22
|
Guo Z, Liu Y, Chen D, Sun Y, Li D, Meng Y, Zhou Q, Zeng F, Deng G, Chen X. Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J Transl Int Med 2025; 13:10-32. [PMID: 40115032 PMCID: PMC11921819 DOI: 10.1515/jtim-2025-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity. Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death modalities. We then discuss how these processes activate antigen-presenting cells, facilitate the cross-priming of CD8+ T cells, and trigger anti-tumor immune responses, highlighting the complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore, we summarize potential drugs and nanoparticles that can induce or inhibit these emerging RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review enhances our understanding of the molecular mechanisms and biological impacts of RCD-based therapies, providing new perspectives and strategies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yuming Sun
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Furong Zeng
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
23
|
Chen C, Wang M, Tu D, Cao J, Zhang C, Bai D. Roles of anoikis in hepatocellular carcinoma: mechanisms and therapeutic potential. Med Oncol 2025; 42:58. [PMID: 39885089 DOI: 10.1007/s12032-025-02612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is a highly aggressive malignancy with limited viable therapeutic options. For early HCC, resection surgery is currently the most effective treatment. However, in advanced stages, resection alone does not sufficiently address the disease, so finding a method with a better prognosis is necessary. Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. HCC cells often acquire resistance to anoikis, allowing them to survive after detaching from the extracellular matrix and contributing to tumor spread. This review discusses the mechanisms of anoikis in HCC, exploring the potential of drug-induced anoikis and targeting anoikis resistance as promising therapeutic strategies for treating HCC, analyzing the value of anoikis in the immune of HCC, and propose potential pathways in oncotherapy, which can provide background knowledge for subsequent related research.
Collapse
Affiliation(s)
- Chen Chen
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Mengyao Wang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
24
|
Kaynak A, Vallabhapurapu SD, Davis HW, Smith EP, Muller P, Vojtesek B, Franco RS, Shao WH, Qi X. TLR2-Bound Cancer-Secreted Hsp70 Induces MerTK-Mediated Immunosuppression and Tumorigenesis in Solid Tumors. Cancers (Basel) 2025; 17:450. [PMID: 39941817 PMCID: PMC11815864 DOI: 10.3390/cancers17030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background: A hallmark of cancer is the presence of an immunosuppressive tumor microenvironment (TME). Immunosuppressive M2 macrophages (MΦs) in the TME facilitate escape from immune surveillance and promote tumor growth; therefore, TME-induced immunosuppression is a potent immunotherapeutic approach to treating cancer. Methods: Cancer cell-secreted proteins were detected by using liquid chromatography-mass spectrometry (LC-MS). Neutralizing antibodies (nAbs) were used to assess which proteins were involved in MΦs polarization and differentiation. The protein-protein interaction was characterized using co-immunoprecipitation and immunofluorescence assays. Cancer-secreted heat shock protein 70 (Hsp70) protein was quantified using an enzyme-linked immunosorbent assay (ELISA). MΦ polarization and tumor growth were assessed in vivo with subcutaneous LLC-GFP tumor models and toll-like receptor 2 (TLR2) knockout mice; in vitro assessments were conducted using TLR2 knockout and both LLC-GFP and LN227 lentiviral-mediated knockdown (KD) cells. Results: Cancer cells released a secreted form of Hsp70 that acted on MΦ TLR2 to upregulate Mer receptor tyrosine kinase (MerTK) and induce MΦ M2 polarization. Hsp70 nAbs led to a reduction in CD14 expression by 75% in THP-1 cells in response to Gli36 EMD-CM. In addition, neutralizing TLR2 nAbs resulted in a 30% and 50% reduction in CD14 expression on THP-1 cells in response to MiaPaCa-2 and Gli36 exosome/microparticle-depleted conditioned media (EMD-CMs), respectively. Hsp70, TLR2, and MerTK formed a protein complex. Tumor growth and intra-tumor M2 MΦs were significantly reduced upon cancer cell Hsp70 knockdown and in TLR2 knockout mice. Conclusions: Cancer-secreted Hsp70 interacts with TLR2, upregulates MerTK on MΦs, and induces immunosuppressive MΦ M2 polarization. This previously unreported action of secreted Hsp70 suggests that disrupting the Hsp70-TLR2-MerTK interaction could serve as a promising immunotherapeutic approach to mitigate TME immunosuppression in solid cancers.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| | - Subrahmanya D. Vallabhapurapu
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| | - Harold W. Davis
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| | - Eric P. Smith
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| | - Petr Muller
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty Kopec 7, 656 53 Brno, Czech Republic; (P.M.); (B.V.)
| | - Borek Vojtesek
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty Kopec 7, 656 53 Brno, Czech Republic; (P.M.); (B.V.)
| | - Robert S. Franco
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| | - Wen-Hai Shao
- Division of Rheumatology, Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Xiaoyang Qi
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.K.); (S.D.V.); (H.W.D.); (E.P.S.); (R.S.F.)
| |
Collapse
|
25
|
Gockeln L, Wirsdörfer F, Jendrossek V. CD73/adenosine dynamics in treatment-induced pneumonitis: balancing efficacy with risks of adverse events in combined radio-immunotherapies. Front Cell Dev Biol 2025; 12:1471072. [PMID: 39872847 PMCID: PMC11769960 DOI: 10.3389/fcell.2024.1471072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Consolidation with PD-1/PD-L1-based immune checkpoint blockade after concurrent platinum-based chemo-radiotherapy has become the new standard of care for advanced stage III unresectable non-small cell lung cancer (NSCLC) patients. In order to further improve therapy outcomes, innovative combinatorial treatment strategies aim to target additional immunosuppressive barriers in the tumor microenvironment such as the CD73/adenosine pathway. CD73 and adenosine are known as crucial endogenous regulators of lung homeostasis and inflammation, but also contribute to an immunosuppressive tumor microenvironment. Furthermore, the CD73/adenosine pathway can also limit the immune-activating effects of cytotoxic therapies by degrading the pro-inflammatory danger molecule ATP, which is released into the tumor microenvironment and normal lung tissue upon therapy-induced cell damage. Thus, while targeting CD73 may enhance the efficacy of radio-immunotherapies in cancer treatment by mitigating tumor immune escape and improving immune-mediated tumor killing, it also raises concerns about increased immune-related adverse events (irAEs) in the normal tissue. In fact, combined radio-immunotherapies bear an increased risk of irAEs in the lungs, and additional pharmacologic inhibition of CD73 may further enhance the risk of overwhelming or overlapping pulmonary toxicity and thereby limit therapy outcome. This review explores how therapeutic interventions targeting CD73/adenosine dynamics could enhance radiation-induced immune activation in combined radio-immunotherapies, whilst potentially driving irAEs in the lung. We specifically investigate the interactions between radiotherapy and the CD73/adenosine pathway in radiation pneumonitis. Additionally, we compare the incidence of (radiation) pneumonitis reported in relevant trials to determine if there is an increased risk of irAEs in the clinical setting. By understanding these dynamics, we aim to inform future strategies for optimizing radio-immunotherapy regimens, ensuring effective cancer control while preserving pulmonary integrity and patient quality of life.
Collapse
Affiliation(s)
| | | | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Noguerol J, Laviolette K, Zahm M, Chaubet A, Sahal A, Détraves C, Torres R, Demont C, Adoue V, Joffre C, Cammas F, van Meerwijk JP, Joffre OP. Heterochromatic gene silencing controls CD4 + T cell susceptibility to regulatory T cell-mediated suppression in a murine allograft model. Nat Commun 2025; 16:566. [PMID: 39794349 PMCID: PMC11723947 DOI: 10.1038/s41467-025-55848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4+ T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown. Here we show, using a murine bone marrow allograft model in which graft rejection is coordinated by CD4+ T cells and can be inhibited by Treg, that Treg-mediated T cell suppression involves Heterochromatin Protein 1 α (HP1α)-dependent gene silencing. Unexpectedly, our screen also reveals that T cells deficient for HP1γ or the methyltransferase SUV39H1 are better repressed by Treg than their wild-type counterparts. Mechanistically, our transcriptional and epigenetic profiling identifies HP1γ as a negative regulator of a gene network functionally associated with T-cell exhaustion, including those encoding the inhibitory receptors PD-1 and LAG-3. In conclusion, we identify HP1 variants as rheostats that finely tune the balance between tolerance and immunity. While HP1α converts immunosuppressive signals into heterochromatin-dependent gene silencing mechanisms, HP1γ adjusts Tconv sensitivity to inhibitory environmental signals.
Collapse
Affiliation(s)
- Julie Noguerol
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Karl Laviolette
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Margot Zahm
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Adeline Chaubet
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Ambrine Sahal
- Centre de Recherche en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5071, Toulouse, France
| | - Claire Détraves
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Romain Torres
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Clothilde Demont
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Véronique Adoue
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Carine Joffre
- Centre de Recherche en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5071, Toulouse, France
| | - Florence Cammas
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, 34298, Montpellier, France
- Institut Régional du Cancer Montpellier, Université Montpellier, 34298, Montpellier, France
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Joost Pm van Meerwijk
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Olivier P Joffre
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France.
| |
Collapse
|
27
|
Xu Y, Wu Y, Zheng X, Wang D, Ni H, Chen W, Wang K. A Smart Nanomedicine Unleashes a Dual Assault of Glucose Starvation and Cuproptosis to Supercharge αPD-L1 Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411378. [PMID: 39632613 PMCID: PMC11775525 DOI: 10.1002/advs.202411378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Combination therapy has become a promising strategy for promoting the outcomes of anti-programmed death ligand-1 (αPD-L1) therapy in lung cancer. Among all, emerging strategies targeting cancer metabolism have shown great potency in treating cancers with immunotherapy. Here, alteration in glucose and copper metabolisms is found to synergistically regulate PD-L1 expression in lung cancer cells. Thus, an intelligent biomimetic nano-delivery system is synthesized by camouflaging lung cancer cell membranes onto glucose oxidase-loaded Cu-LDHs (CMGCL) for cancer metabolism targeted interference. Such novel nanomedicine is able to induce lung cancer cell cuproptosis and PD-L1 upregulation significantly via self-amplified cascade reactions. Meanwhile, with a decent cancer cell membrane coating, CMGCL exhibited great biosafety, tumor-targeted efficiency and anti-tumor effects in LLC lung tumor-bearing mice models. Additionally, a combination of CMGCL can sensitize the therapeutic effects of αPD-L1, substantially promoting tumor inhibition in both subcutaneous and lung metastasis LLC-bearing mice models. Overall, these findings highlight the potential connections between glucose metabolism and cell cuproptosis, offering a promising approach for treating lung cancer by integrating starvation, cuproptosis, and immunotherapy.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Respiratory and Critical Care MedicineCenter for Oncology MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung CancerYiwu322000China
| | - Yuan Wu
- College of JiyangZhejiang A&F UniversityZhuji311800China
| | - Xinjie Zheng
- Department of Respiratory and Critical Care MedicineCenter for Oncology MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung CancerYiwu322000China
| | - Dongxue Wang
- Department of Nuclear MedicineThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150000China
| | - Hangqi Ni
- Department of Respiratory and Critical Care MedicineCenter for Oncology MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung CancerYiwu322000China
| | - Weiyu Chen
- Department of Respiratory and Critical Care MedicineCenter for Oncology MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung CancerYiwu322000China
| | - Kai Wang
- Department of Respiratory and Critical Care MedicineCenter for Oncology MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung CancerYiwu322000China
| |
Collapse
|
28
|
Du W, Tang Z, Du A, Yang Q, Xu R. Bidirectional crosstalk between the epithelial-mesenchymal transition and immunotherapy: A bibliometric study. Hum Vaccin Immunother 2024; 20:2328403. [PMID: 38502119 PMCID: PMC10956627 DOI: 10.1080/21645515.2024.2328403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapy has recently attracted considerable attention. However, currently, a thorough analysis of the trends associated with the epithelial-mesenchymal transition (EMT) and immunotherapy is lacking. In this study, we used bibliometric tools to provide a comprehensive overview of the progress in EMT-immunotherapy research. A total of 1,302 articles related to EMT and immunotherapy were retrieved from the Web of Science Core Collection (WOSCC). The analysis indicated that in terms of the volume of research, China was the most productive country (49.07%, 639), followed by the United States (16.89%, 220) and Italy (3.6%, 47). The United States was the most influential country according to the frequency of citations and citation burstiness. The results also suggested that Frontiers in Immunotherapy can be considered as the most influential journal with respect to the number of articles and impact factors. "Immune infiltration," "bioinformatics analysis," "traditional Chinese medicine," "gene signature," and "ferroptosis" were found to be emerging keywords in EMT-immunotherapy research. These findings point to potential new directions that can deepen our understanding of the mechanisms underlying the combined effects of immunotherapy and EMT and help develop strategies for improving immunotherapy.
Collapse
Affiliation(s)
- Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| | - Zemin Tang
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| | - Ashuai Du
- Department of Infectious Diseases, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qinglong Yang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of General Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Rong Xu
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| |
Collapse
|
29
|
Guo X, Cui T, Sun L, Fu Y, Cheng C, Wu C, Zhu Y, Liang S, Liu Y, Zhou S, Li X, Ji C, Ma K, Zhang N, Chu Q, Xing C, Deng S, Wang J, Liu Y, Liu L. A STT3A-dependent PD-L1 glycosylation modification mediated by GMPS drives tumor immune evasion in hepatocellular carcinoma. Cell Death Differ 2024:10.1038/s41418-024-01432-0. [PMID: 39690246 DOI: 10.1038/s41418-024-01432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor characterized by rapid progression. To explore the regulatory mechanism of rapid tumor growth and metastasis, we conducted proteomic and scRNA-Seq analyses on advanced HCC tissues and identified a significant molecule, guanine monophosphate synthase (GMPS), closely associated with the immune evasion in HCC. We analyzed the immune microenvironment characteristics remodeled by GMPS using scRNA-Seq and found GMPS induced tumor immune evasion in HCC by impairing the tumor-killing function of CD8 + T cells. Further investigation revealed that GMPS increased PD-L1 expression by regulating its ubiquitination and glycosylation modification. Mechanistically, GMPS enhanced the bond between PD-L1 and the catalytic subunit STT3A of oligosaccharyltransferase (OST) by acting as an additional module connecting the Sec61 channel complex and STT3A, which aided in the translocation and modification of nascent peptides. Increased PD-L1 impaired the tumor-killing function of CD8 + T cells, leading to the immune evasion. Importantly, targeting GMPS with angustmycin A, an inhibitor of GMPS activity, significantly suppressed PD-L1 expression and tumor growth in HCC, which also increased the sensitivity to anti-CTLA-4 immunotherapy. These findings suggested the potential of targeting GMPS as a promising therapeutic approach for HCC.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yitong Zhu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yufeng Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Kun Ma
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ning Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Changjian Xing
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shumin Deng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
30
|
Zhou W, Lu X, Tian F, Luo Q, Zhou W, Yang S, Li W, Yang Y, Shi M, Zhou T. Vaccine Therapies for Prostate Cancer: Current Status and Future Outlook. Vaccines (Basel) 2024; 12:1384. [PMID: 39772046 PMCID: PMC11679746 DOI: 10.3390/vaccines12121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer is a prevalent cancer in elderly men, and immunotherapy has emerged as a promising treatment approach in recent years. The aim of immunotherapy is to stimulate the body's immune system to target and destroy cancer cells. Cancer vaccines that are highly specific, safe, and capable of creating long-lasting immune responses are a key focus in cancer immunotherapy research. Despite progress in clinical trials showing positive results, the practical use of cancer vaccines still encounters various obstacles. The complexity of the immune microenvironment and variations in the immune systems of individual patients have hindered the progress of research on prostate cancer vaccines. This review examines the history and mechanisms of cancer vaccines, summarizes recent clinical research findings, and explores future directions in the development of prostate cancer vaccines.
Collapse
Affiliation(s)
- Wenhao Zhou
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (X.L.)
| | - Xiaojun Lu
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (X.L.)
| | - Feng Tian
- Department of Urology, Shanghai Eighth People’s Hospital, Shanghai 200235, China;
| | - Qianming Luo
- School of Medicine, Tongji University, Shanghai 200092, China; (Q.L.); (W.Z.); (S.Y.)
| | - Weihang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China; (Q.L.); (W.Z.); (S.Y.)
| | - Siyuan Yang
- School of Medicine, Tongji University, Shanghai 200092, China; (Q.L.); (W.Z.); (S.Y.)
| | - Wenxuan Li
- College of Clinical Medicine, Naval Medical University, Shanghai 200433, China; (W.L.); (Y.Y.)
| | - Yongjun Yang
- College of Clinical Medicine, Naval Medical University, Shanghai 200433, China; (W.L.); (Y.Y.)
| | - Minfeng Shi
- Reproduction Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tie Zhou
- Department of Urology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (W.Z.); (X.L.)
| |
Collapse
|
31
|
Gao C, Zhang H, Wang X. Current advances on the role of ferroptosis in tumor immune evasion. Discov Oncol 2024; 15:736. [PMID: 39621177 PMCID: PMC11612115 DOI: 10.1007/s12672-024-01573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Cancer immunotherapy, especially immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, has been considered a breakthrough in cancer treatment, achieving encouraging clinical anti-tumor effects in a variety of cancers. However, tumor immune evasion is indispensable to immunotherapy failure. The mechanisms of tumor immune evasion are quite complex, and its occurrence is inseparable from the ferroptosis in tumor microenvironment (TME). Thus, a comprehensive understanding of the role of ferroptosis in tumor immune evasion is crucial to enhance the efficacy of immunotherapy. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms and interactions with the TME. We also summarize the potential applications of ferroptosis induction in immunotherapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis as a double-edged sword, including the current challenges and future directions regarding its potential for cancer treatment.
Collapse
Affiliation(s)
- Changlin Gao
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Haoran Zhang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China
- Graduate School of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Xianwei Wang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
32
|
Xiao K, Zhang S, Peng Q, Du Y, Yao X, Ng II, Tang H. PD-L1 protects tumor-associated dendritic cells from ferroptosis during immunogenic chemotherapy. Cell Rep 2024; 43:114868. [PMID: 39423128 DOI: 10.1016/j.celrep.2024.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/13/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Dendritic cells (DCs) express high levels of PD-L1 in the tumor microenvironment. However, the physiological functions of PD-L1 on DCs remain incompletely understood. Here, we explored the roles of PD-L1 signaling during immunogenic chemotherapy. We found that antitumor efficacy was dramatically reduced in the absence of PD-L1 on DCs. Chemotherapy reshaped the tumor immune microenvironment, particularly the DC compartment. In the absence of PD-L1, DCs were more susceptible to the cytotoxicity induced by chemotherapy. Mechanistically, loss of PD-L1 led to the downregulation of SLC7A11, resulting in increased lipid peroxidation that caused DCs to succumb to ferroptosis and dampened antitumor immune responses. Mice with Pdl1-deficient DCs were less efficient at priming T cells during chemotherapy. In cancer patients, a higher level of PD-L1 on DCs correlated with better prognosis after immunogenic chemotherapy. Collectively, these findings reveal an underappreciated role of PD-L1 in orchestrating DC survival, which is critical during chemoimmunotherapy.
Collapse
Affiliation(s)
- Kaimin Xiao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Silin Zhang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Peng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxia Du
- Department of General Practice, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province 362000, China
| | - Xiyue Yao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ian-Ian Ng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haidong Tang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Gharatape A, Amanzadi B, Mohamadi F, Rafieian M, Faridi-Majidi R. Recent advances in polymeric and lipid stimuli-responsive nanocarriers for cell-based cancer immunotherapy. Nanomedicine (Lond) 2024; 19:2655-2678. [PMID: 39540464 DOI: 10.1080/17435889.2024.2416377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer therapy has major limitations, including non-specificity, unavoidable side effects, low specific tumor accumulation and systemic toxicity. In recent years, more effective and precise treatment methods have been developed, including cell-based immunotherapy. Carriers that can accurately and specifically target cells and equip them to combat cancer cells are particularly important for developing this therapy. As a result, attention has been drawn to smart nanocarriers that can react to specific stimuli. Thus, stimuli-responsive nanocarriers have attracted increasing attention because they can change their physicochemical properties in response to stimulus conditions, such as pH, enzymes, redox agents, hypoxia, light and temperature. This review highlights recent advances in various stimuli-responsive nanocarriers, discussing loading, targeted delivery, cellular uptake, biocompatibility and immunomodulation in cell-based immunotherapy. Finally, future challenges and perspectives regarding the possible clinical translation of nanocarriers are discussed.
Collapse
Affiliation(s)
- Alireza Gharatape
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Bentolhoda Amanzadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Faranak Mohamadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mahdieh Rafieian
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Reza Faridi-Majidi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Pharmaceutical Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
35
|
Geng S, Fang B, Wang K, Wang F, Zhou Y, Hou Y, Iqbal MZ, Chen Y, Yu Z. Polydopamine Nanoformulations Induced ICD and M1 Phenotype Macrophage Polarization for Enhanced TNBC Synergistic Photothermal Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59814-59832. [PMID: 39450881 DOI: 10.1021/acsami.4c11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Photothermal therapy (PTT) is a promising technology that can achieve the thermal ablation of tumors and induce immunogenic cell death (ICD). However, relying solely on the antitumor immune responses caused by PTT-induced ICD is insufficient to suppress tumor metastasis and recurrence effectively. Fortunately, multifunctional nanoformulation-based synergistic photothermal immunotherapy can eliminate primary and metastatic tumors and inhibit tumor recurrence for a long time. Herein, we select polydopamine (PDA) nanoparticles to serve as the carrier for our nanomedicine as well as a potent photothermal agent and modulator of macrophage polarization. PDA nanoparticles are loaded with the insoluble immune adjuvant Imiquimod (R837) to construct PDA(R837) nanoformulations. These straightforward yet highly effective nanoformulations demonstrate excellent performance, allowing for successful triple-negative breast cancer (TNBC) treatment through synergistic photothermal immunotherapy. Moreover, experimental results showed that PDA(R837) implementation of PTT is effective in the thermal ablation of primary tumors while causing ICD and releasing R837, further promoting dendritic cell (DC) maturation and activating the systemic antitumor immune response. Furthermore, PDA(R837) nanoformulations inhibit tumor metastasis and recurrence and achieve M1 phenotype macrophage polarization, achieving long-term and excellent antitumor efficacy. Therefore, the structurally simple PDA(R837) nanoformulations provide cancer treatment and have excellent clinical translational application prospects.
Collapse
Affiliation(s)
- Siqi Geng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Baoru Fang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Ke Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Fang Wang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yiqing Zhou
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yanping Chen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Zhangsen Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| |
Collapse
|
36
|
Chang J, Zheng T, Wu C. Early Cancer Detection Through Comprehensive Mapping of Dynamic Tumorigenesis. Cancer Discov 2024; 14:2037-2040. [PMID: 39485248 DOI: 10.1158/2159-8290.cd-24-0831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 11/03/2024]
Abstract
Current strategies for early cancer detection and diagnosis need updating to achieve greater precision, necessitating the creation of a comprehensive evolutionary map of tumorigenesis. This requires establishing high-quality prospective cohorts, systematically collecting samples for integrated spatiotemporal multiomics analyses, and efficiently translating laboratory findings into clinical applications.
Collapse
Affiliation(s)
- Jiang Chang
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongsen Zheng
- Key Laboratories of Molecular Oncology of Heilongjiang Province, Harbin, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Chinese Academy of Medical Sciences, CAMS Oxford Institute, Beijing, China
| |
Collapse
|
37
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
38
|
Wu Y, Lin JY, Zhou YD, Liu HJ, Lu SX, Zhang XK, Guan YY, Nagle DG, Zhang WD, Chen HZ, Luan X. Oncolytic Peptide-Nanoplatform Drives Oncoimmune Response and Reverses Adenosine-Induced Immunosuppressive Tumor Microenvironment. Adv Healthc Mater 2024; 13:e2303445. [PMID: 38290499 DOI: 10.1002/adhm.202303445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/22/2024] [Indexed: 02/01/2024]
Abstract
The application of oncolytic peptides has become a powerful approach to induce complete and long-lasting remission in multiple types of carcinomas, as affirmed by the appearance of tumor-associated antigens and adenosine triphosphate (ATP) in large quantities, which jumpstarts the cancer-immunity cycle. However, the ATP breakdown product adenosine is a significant contributor to forming the immunosuppressive tumor microenvironment, which substantially weakens peptide-driven oncolytic immunotherapy. In this study, a lipid-coated micelle (CA@TLM) loaded with a stapled oncolytic peptide (PalAno) and an adenosine 2A receptor (A2AR) inhibitor (CPI-444) is devised to enact tumor-targeted oncolytic immunotherapy and to overcome adenosine-mediated immune suppression simultaneously. The CA@TLM micelle accumulates in tumors with high efficiency, and the acidic tumor microenvironment prompts the rapid release of PalAno and CPI-444. Subsequently, PalAno induces swift membrane lysis of tumor cells and the release of antigenic materials. Meanwhile, CPI-444 blocks the activation of the immunosuppressive adenosine-A2AR signaling pathway. This combined approach exhibits pronounced synergy at stalling tumor growth and metastasis in animal models for triple-negative breast cancer and melanoma, providing a novel strategy for enhanced oncolytic immunotherapy.
Collapse
Affiliation(s)
- Ye Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Dong Zhou
- Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, MS, 38677, USA
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sheng-Xin Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Kun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Dale G Nagle
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100700, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
39
|
Chu X, Tian W, Ning J, Zhou R. Efficacy and safety of personalized optimal PD-(L)1 combinations in advanced NSCLC: a network meta-analysis. J Natl Cancer Inst 2024; 116:1571-1586. [PMID: 38885371 DOI: 10.1093/jnci/djae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Programmed death 1 (PD-1)/programmed death 1 ligand 1 (PD-L1)-directed immunotherapy has revolutionized the treatments for advanced non-small cell lung cancer (NSCLC), whereas the optimal therapeutic combinations remain uncertain. METHODS Our study encompassed phase II/III randomized controlled trials (RCTs) that involved anti-PD-(L)1-based therapies for stage-IV NSCLC. The primary outcomes included overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and incidences of adverse events. Subgroup analyses were conducted by treatment lines, PD-L1 expression levels, histological types, and metastatic sites. RESULTS Our analysis incorporated 38 publications, covering 14 therapeutic combinations and involving 18 048 participants. PD-(L)1+chemotherapy (CT), PD-(L)1+ cytotoxic T lymphocyte-associated antigen-4 (CTLA4) +CT, and PD-(L)1+ T-cell immunoglobulin and ITIM domain were notably effective in prolonging OS. Overall, PD-(L)1+CT and PD-(L)1+CT+ vascular endothelial growth factor (VEGF) were significantly beneficial for PFS and ORR. As for the subsequent-line treatments, incorporating radiotherapy can enhance PFS and ORR (ranked fourth among enrolled treatments). For patients with PD-L1 <1%, PD-(L)1+CT+VEGF and PD-(L)1+CTLA4+CT were favorable approaches. Conversely, in patients with PD-L1 ≥50%, PD-(L)1+CT represented an effective treatment. Patients with nonsquamous cell carcinoma or liver metastases might benefit from the addition of VEGF. In cases of squamous cell carcinoma or brain metastases, the combination of PD-(L)1+CTLA4+CT yielded superior benefits. CONCLUSIONS This study underscores the enhanced efficacy of combination immunotherapies over monotherapy. It highlights the necessity for personalized treatment, considering individual factors. These insights are vital for clinical decision making in the management of advanced NSCLC.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Zheng S, Su Z, He Y, You L, Zhang G, Chen J, Lu L, Liu Z. Novel prognostic signature for hepatocellular carcinoma using a comprehensive machine learning framework to predict prognosis and guide treatment. Front Immunol 2024; 15:1454977. [PMID: 39380994 PMCID: PMC11458406 DOI: 10.3389/fimmu.2024.1454977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is highly aggressive, with delayed diagnosis, poor prognosis, and a lack of comprehensive and accurate prognostic models to assist clinicians. This study aimed to construct an HCC prognosis-related gene signature (HPRGS) and explore its clinical application value. Methods TCGA-LIHC cohort was used for training, and the LIRI-JP cohort and HCC cDNA microarray were used for validation. Machine learning algorithms constructed a prognostic gene label for HCC. Kaplan-Meier (K-M), ROC curve, multiple analyses, algorithms, and online databases were used to analyze differences between high- and low-risk populations. A nomogram was constructed to facilitate clinical application. Results We identified 119 differential genes based on transcriptome sequencing data from five independent HCC cohorts, and 53 of these genes were associated with overall survival (OS). Using 101 machine learning algorithms, the 10 most prognostic genes were selected. We constructed an HCC HPRGS with four genes (SOCS2, LCAT, ECT2, and TMEM106C). Good predictive performance of the HPRGS was confirmed by ROC, C-index, and K-M curves. Mutation analysis showed significant differences between the low- and high-risk patients. The low-risk group had a higher response to transcatheter arterial chemoembolization (TACE) and immunotherapy. Treatment response of high- and low-risk groups to small-molecule drugs was predicted. Linifanib was a potential drug for high-risk populations. Multivariate analysis confirmed that HPRGS were independent prognostic factors in TCGA-LIHC. A nomogram provided a clinical practice reference. Conclusion We constructed an HPRGS for HCC, which can accurately predict OS and guide the treatment decisions for patients with HCC.
Collapse
Affiliation(s)
- Shengzhou Zheng
- Department of Emergency, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Zhixiong Su
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Yufang He
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Lijie You
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Guifeng Zhang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Lihu Lu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
41
|
Kim J, Lee BJ, Moon S, Lee H, Lee J, Kim BS, Jung K, Seo H, Chung Y. Strategies to Overcome Hurdles in Cancer Immunotherapy. Biomater Res 2024; 28:0080. [PMID: 39301248 PMCID: PMC11411167 DOI: 10.34133/bmr.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Despite marked advancements in cancer immunotherapy over the past few decades, there remains an urgent need to develop more effective treatments in humans. This review explores strategies to overcome hurdles in cancer immunotherapy, leveraging innovative technologies including multi-specific antibodies, chimeric antigen receptor (CAR) T cells, myeloid cells, cancer-associated fibroblasts, artificial intelligence (AI)-predicted neoantigens, autologous vaccines, and mRNA vaccines. These approaches aim to address the diverse facets and interactions of tumors' immune evasion mechanisms. Specifically, multi-specific antibodies and CAR T cells enhance interactions with tumor cells, bolstering immune responses to facilitate tumor infiltration and destruction. Modulation of myeloid cells and cancer-associated fibroblasts targets the tumor's immunosuppressive microenvironment, enhancing immunotherapy efficacy. AI-predicted neoantigens swiftly and accurately identify antigen targets, which can facilitate the development of personalized anticancer vaccines. Additionally, autologous and mRNA vaccines activate individuals' immune systems, fostering sustained immune responses against cancer neoantigens as therapeutic vaccines. Collectively, these strategies are expected to enhance efficacy of cancer immunotherapy, opening new horizons in anticancer treatment.
Collapse
Affiliation(s)
- Jihyun Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, College of Pharmacy,Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Joon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sehoon Moon
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, College of Pharmacy,Seoul National University, Seoul 08826, Republic of Korea
| | - Hojeong Lee
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Juyong Lee
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, College of Pharmacy,Seoul National University, Seoul 08826, Republic of Korea
- Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Arontier Co., Seoul 06735, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, and BioMAX, Seoul National University, Seoul 08826, Republic of Korea
| | - Keehoon Jung
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyungseok Seo
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, College of Pharmacy,Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonseok Chung
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, College of Pharmacy,Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
42
|
Lica JJ, Pradhan B, Safi K, Jakóbkiewicz-Banecka J, Hellmann A. Promising Therapeutic Strategies for Hematologic Malignancies: Innovations and Potential. Molecules 2024; 29:4280. [PMID: 39275127 PMCID: PMC11397263 DOI: 10.3390/molecules29174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
In this review we explore innovative approaches in the treatment of hematologic cancers by combining various therapeutic modalities. We discuss the synergistic potential of combining inhibitors targeting different cellular pathways with immunotherapies, molecular therapies, and hormonal therapies. Examples include combining PI3K inhibitors with proteasome inhibitors, NF-κB inhibitors with immunotherapy checkpoint inhibitors, and neddylation inhibitors with therapies targeting the tumor microenvironment. Additionally, we discuss the potential use of small molecules and peptide inhibitors in hematologic cancer treatment. These multidimensional therapeutic combinations present promising strategies for enhancing treatment efficacy and overcoming resistance mechanisms. However, further clinical research is required to validate their effectiveness and safety profiles in hematologic cancer patients.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Faculty of Health Science, Powiśle University, 80-214 Gdańsk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kawthar Safi
- Department of Biochemistry and Clinical Chemistry, Faculty of Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| |
Collapse
|
43
|
Bu JW, Wang ZG, Liu HY, Liu SL. Metal nanozymes modulation of reactive oxygen species as promising strategies for cancer therapy. Int J Pharm 2024; 662:124453. [PMID: 39013531 DOI: 10.1016/j.ijpharm.2024.124453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Nanozymes, nanostructured materials emulating natural enzyme activities, exhibit potential in catalyzing reactive oxygen species (ROS) production for cancer treatment. By facilitating oxidative reactions, elevating ROS levels, and influencing the tumor microenvironment (TME), nanozymes foster the eradication of cancer cells. Noteworthy are their superior stability, ease of preservation, and cost-effectiveness compared to natural enzymes, rendering them invaluable for medical applications. This comprehensive review intricately explores the interplay between ROS and tumor therapy, with a focused examination of metal-based nanozyme strategies mitigating tumor hypoxia. It provides nuanced insights into diverse catalytic processes, mechanisms, and surface modifications of various metal nanozymes, shedding light on their role in intra-tumoral ROS generation and applications in antioxidant therapy. The review concludes by delineating specific potential prospects and challenges associated with the burgeoning use of metal nanozymes in future tumor therapies.
Collapse
Affiliation(s)
- Jin-Wei Bu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhi-Gang Wang
- College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Hao-Yang Liu
- College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China; College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
44
|
Sergent P, Pinto-Cárdenas JC, Carrillo AJA, Dávalos DL, Pérez MDG, Lechuga DAM, Alonso-Miguel D, Schaafsma E, Cuarenta AJ, Muñoz DC, Zarabanda Y, Palisoul SM, Lewis PJ, Kolling FW, Affonso de Oliveira JF, Steinmetz NF, Rothstein JL, Lines L, Noelle RJ, Fiering S, Arias-Pulido H. An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1. Cells 2024; 13:1478. [PMID: 39273048 PMCID: PMC11394642 DOI: 10.3390/cells13171478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Neoadjuvant intratumoral (IT) therapy could amplify the weak responses to checkpoint blockade therapy observed in breast cancer (BC). In this study, we administered neoadjuvant IT anti-canine PD-1 therapy (IT acPD-1) alone or combined with IT cowpea mosaic virus therapy (IT CPMV/acPD-1) to companion dogs diagnosed with canine mammary cancer (CMC), a spontaneous tumor resembling human BC. CMC patients treated weekly with acPD-1 (n = 3) or CPMV/acPD-1 (n = 3) for four weeks or with CPMV/acPD-1 (n = 3 patients not candidates for surgery) for up to 11 weeks did not experience immune-related adverse events. We found that acPD-1 and CPMV/acPD-1 injections resulted in tumor control and a reduction in injected tumors in all patients and in noninjected tumors located in the ipsilateral and contralateral mammary chains of treated dogs. In two metastatic CMC patients, CPMV/acPD-1 treatments resulted in the control and reduction of established lung metastases. CPMV/acPD-1 treatments were associated with altered gene expression related to TLR1-4 signaling and complement pathways. These novel therapies could be effective for CMC patients. Owing to the extensive similarities between CMC and human BC, IT CPMV combined with approved anti-PD-1 therapies could be a novel and effective immunotherapy to treat local BC and suppress metastatic BC.
Collapse
Affiliation(s)
- Petra Sergent
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (L.L.); (R.J.N.); (S.F.)
| | | | | | - Daniel Luna Dávalos
- VETCONNECT Diagnóstico por imagen, Via Toledo, 2952 Mas Palomas, Monterrey 64780, Nuevo León, Mexico;
| | | | - Dora Alicia Mendoza Lechuga
- Centro Veterinario Valles, Zapopan 45070, Jalisco, Mexico; (A.J.A.C.); (M.D.G.P.); (D.A.M.L.); (A.J.C.); (D.C.M.)
| | - Daniel Alonso-Miguel
- Department of Animal Medicine and Surgery, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Abigail Jiménez Cuarenta
- Centro Veterinario Valles, Zapopan 45070, Jalisco, Mexico; (A.J.A.C.); (M.D.G.P.); (D.A.M.L.); (A.J.C.); (D.C.M.)
| | - Diana Cárdenas Muñoz
- Centro Veterinario Valles, Zapopan 45070, Jalisco, Mexico; (A.J.A.C.); (M.D.G.P.); (D.A.M.L.); (A.J.C.); (D.C.M.)
| | | | - Scott M. Palisoul
- Department of Pathology and Laboratory Medicine at Dartmouth Hitchcock Health, Center for Clinical Genomics and Advanced Technology, Lebanon, NH 03756, USA;
| | - Petra J. Lewis
- Department of Radiology Dartmouth Health Geisel School of Medicine, Lebanon, NH 03755, USA;
| | - Fred W. Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (J.F.A.d.O.); (N.F.S.)
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (J.F.A.d.O.); (N.F.S.)
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Engineering in Cancer, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Louise Lines
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (L.L.); (R.J.N.); (S.F.)
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (L.L.); (R.J.N.); (S.F.)
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (L.L.); (R.J.N.); (S.F.)
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (L.L.); (R.J.N.); (S.F.)
| |
Collapse
|
45
|
Sun W, Hu S, Wang X. Advances and clinical applications of immune checkpoint inhibitors in hematological malignancies. Cancer Commun (Lond) 2024; 44:1071-1097. [PMID: 39073258 PMCID: PMC11492363 DOI: 10.1002/cac2.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Immune checkpoints are differentially expressed on various immune cells to regulate immune responses in tumor microenvironment. Tumor cells can activate the immune checkpoint pathway to establish an immunosuppressive tumor microenvironment and inhibit the anti-tumor immune response, which may lead to tumor progression by evading immune surveillance. Interrupting co-inhibitory signaling pathways with immune checkpoint inhibitors (ICIs) could reinvigorate the anti-tumor immune response and promote immune-mediated eradication of tumor cells. As a milestone in tumor treatment, ICIs have been firstly used in solid tumors and subsequently expanded to hematological malignancies, which are in their infancy. Currently, immune checkpoints have been investigated as promising biomarkers and therapeutic targets in hematological malignancies, and novel immune checkpoints, such as signal regulatory protein α (SIRPα) and tumor necrosis factor-alpha-inducible protein 8-like 2 (TIPE2), are constantly being discovered. Numerous ICIs have received clinical approval for clinical application in the treatment of hematological malignancies, especially when used in combination with other strategies, including oncolytic viruses (OVs), neoantigen vaccines, bispecific antibodies (bsAb), bio-nanomaterials, tumor vaccines, and cytokine-induced killer (CIK) cells. Moreover, the proportion of individuals with hematological malignancies benefiting from ICIs remains lower than expected due to multiple mechanisms of drug resistance and immune-related adverse events (irAEs). Close monitoring and appropriate intervention are needed to mitigate irAEs while using ICIs. This review provided a comprehensive overview of immune checkpoints on different immune cells, the latest advances of ICIs and highlighted the clinical applications of immune checkpoints in hematological malignancies, including biomarkers, targets, combination of ICIs with other therapies, mechanisms of resistance to ICIs, and irAEs, which can provide novel insight into the future exploration of ICIs in tumor treatment.
Collapse
Affiliation(s)
- Wenyue Sun
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
46
|
Bai H, Feng L, Schmid F. Macrophage-based cancer immunotherapy: Challenges and opportunities. Exp Cell Res 2024; 442:114198. [PMID: 39103071 DOI: 10.1016/j.yexcr.2024.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Macrophages play crucial roles in the tumor microenvironment (TME), exerting diverse functions ranging from promoting tumor growth and metastasis to orchestrating anti-tumor immune responses. Their plasticity allows them to adopt distinct activation states, often called M1-like (pro-inflammatory) and M2-like (anti-inflammatory or pro-tumoral), significantly influencing tumor progression and response to therapy. Harnessing the potential of macrophages in cancer immunotherapy has emerged as a promising strategy, with increasing interest in targeting these cells directly or modulating their functions within the TME. This review explores the intricate interplay between macrophages, the TME, and immunotherapeutic approaches. We discuss the dynamic phenotypic and functional heterogeneity of tumor-associated macrophages (TAMs), their impact on disease progression, and the mechanisms underlying their response to immunotherapy. Furthermore, we highlight recent advancements in macrophage-based immunotherapeutic strategies, including macrophage-targeting agents, adoptive cell transfer, and engineering approaches. Understanding the complex crosstalk between macrophages and the TME is essential for developing effective immunotherapeutic interventions that exploit the immunomodulatory functions of macrophages to enhance anti-tumor immunity and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Haotian Bai
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Li Feng
- Emergency Department, People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong Province, China.
| | - Felix Schmid
- School of Biomedical Sciences, Carleton University, Ottawa, Canada.
| |
Collapse
|
47
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Mansfield AS, Vivien Yin J, Bradbury P, Kwiatkowski DJ, Patel S, Bazhenova LA, Forde P, Lou Y, Dizona P, Villaruz LC, Arnold SM, Khalil M, Kindler HL, Koczywas M, Pacheco J, Rolfo C, Xia B, Mikula E, Chen L, Patel K, Smith KER, Cao L, Shapiro G, Costello BA, Adjei A, Sharon E, Moscow JA, Zamboni W, Hassan R. Randomized trial of anetumab ravtansine and pembrolizumab compared to pembrolizumab for mesothelioma. Lung Cancer 2024; 195:107928. [PMID: 39197359 PMCID: PMC11416719 DOI: 10.1016/j.lungcan.2024.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024]
Abstract
PURPOSE The mesothelin-targeting antibody-drug conjugate anetumab ravtansine was evaluated in combination with the programmed cell death-1 (PD-1) inhibitor pembrolizumab based on the common expression of mesothelin and reports of activity in mesothelioma. PATIENTS AND METHODS A phase 1 safety run-in of the combination of anetumab ravtansine (6.5 mg/kg iv q3weeks) and pembrolizumab (200 mg, IV q3weeks) was conducted, followed by a phase 2 randomization to the combination or pembrolizumab alone at medical centers across the United States and Canada in the National Cancer Institute's Experimental Therapeutics Clinical Trials Network. Patients with pleural mesothelioma that expressed mesothelin and had previously received platinum-based therapy were eligible. RESULTS In phase 1 (n = 12) only one dose limiting toxicity was observed and the rules for dose reduction were not met. In phase 2, there was no difference in the confirmed response rates between the combination group (n = 18, 2 partial responses [PR], 11 %) and the pembrolizumab group (n = 17, 1 PR, 6 %; z = -0.5523, p = 0.29116). The median PFS was 12.2 months (95 % CI 5.1-not evaluable [NE]) for the combination, and 3.9 months for pembrolizumab (95 % CI 2.1-NE)(HR=0.55, p = 0.20). Patients with high baseline levels of soluble mesothelin who received anetumab ravtansine had a median PFS of 5 months. CONCLUSIONS The numeric difference in PFS between treatment groups was not statistically significant, likely related to a smaller than planned sample size. High levels of soluble mesothelin should potentially be considered to select against the use of mesothelin-targeting therapies in development that are neutralized by soluble mesothelin.
Collapse
Affiliation(s)
| | - Jun Vivien Yin
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Penelope Bradbury
- Princess Margaret Cancer Centre, 610 University Ave, Toronto, Ontario, M5G 2C4, Canada.
| | | | - Shiven Patel
- Huntsman Cancer Institute, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA.
| | - Lyudmila A Bazhenova
- University of California San Diego, 3855 Health Sciences Drive, San Diego, CA 92037, USA.
| | - Patrick Forde
- Johns Hopkins, 300 Mason Lord Drive, Baltimore, MD 21224, USA.
| | - Yanyan Lou
- Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
| | - Paul Dizona
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Liza C Villaruz
- University of Pittsburgh Medical Center, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, USA.
| | - Susanne M Arnold
- Markey Cancer Center, 1000 S. Limestone, Lexington, KY 40536, USA.
| | - Maya Khalil
- O'Neal Comprehensive Cancer Center, Department of Medicine, Division of Hematology & Oncology, The University of Alabama at Birmingham, 1824 6(th) Avenue South, Birmingham, AL 35233, USA.
| | - Hedy L Kindler
- University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | - Jose Pacheco
- University of Colorado Anschutz Cancer Center, 1665 Aurora Court, Aurora, CO 80045, USA.
| | - Christian Rolfo
- University of Maryland, 7901 Regents Drive, College Park, MD 20742, USA.
| | - Bing Xia
- Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA.
| | | | - Li Chen
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Institute of Nanomedicine, 301 Pharmacy Lane, Chapel Hill, NC 27599, USA.
| | - Kashish Patel
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Institute of Nanomedicine, 301 Pharmacy Lane, Chapel Hill, NC 27599, USA.
| | | | - Liang Cao
- National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850, USA.
| | - Geoffrey Shapiro
- Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | | | - Alex Adjei
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Elad Sharon
- National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850, USA.
| | - Jeffrey A Moscow
- National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850, USA.
| | - William Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Institute of Nanomedicine, 301 Pharmacy Lane, Chapel Hill, NC 27599, USA.
| | - Raffit Hassan
- National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850, USA.
| |
Collapse
|
49
|
Nie W, He Y, Mi X, He S, Chen J, Zhang Y, Wang B, Zheng S, Qian Z, Gao X. Immunostimulatory CKb11 gene combined with immune checkpoint PD-1/PD-L1 blockade activates immune response and simultaneously overcomes the immunosuppression of cancer. Bioact Mater 2024; 39:239-254. [PMID: 38832303 PMCID: PMC11145080 DOI: 10.1016/j.bioactmat.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 06/05/2024] Open
Abstract
Immunosuppression tumor microenvironment (TME) seriously impedes anti-tumor immune response, resulting in poor immunotherapy effect of cancer. This study develops a folate-modified delivery system to transport the plasmids encoding immune stimulatory chemokine CKb11 and PD-L1 inhibitors to tumor cells, resulting in high CKb11 secretion from tumor cells, successfully activating immune cells and increasing cytokine secretion to reshape the TME, and ultimately delaying tumor progression. The chemokine CKb11 enhances the effectiveness of tumor immunotherapy by increasing the infiltration of immune cells in TME. It can cause high expression of IFN-γ, which is a double-edged sword that inhibits tumor growth while causing an increase in the expression of PD-L1 on tumor cells. Therefore, combining CKb11 with PD-L1 inhibitors can counterbalance the suppressive impact of PD-L1 on anti-cancer defense, leading to a collaborative anti-tumor outcome. Thus, utilizing nanotechnology to achieve targeted delivery of immune stimulatory chemokines and immune checkpoint inhibitors to tumor sites, thereby reshaping immunosuppressive TME for cancer treatment, has great potential as an immunogene therapy in clinical applications.
Collapse
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Yihong He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Xue Mi
- Department of Pharmacy, West China Second University Hospital of Sichuan University, 610041, Chengdu, PR China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Yunchu Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, 610041, Chengdu, PR China
| | - Songping Zheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| |
Collapse
|
50
|
Xia L, Zhu X, Wang Y, Lu S. The gut microbiota improves the efficacy of immune-checkpoint inhibitor immunotherapy against tumors: From association to cause and effect. Cancer Lett 2024; 598:217123. [PMID: 39033797 DOI: 10.1016/j.canlet.2024.217123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Immune-checkpoint inhibitors (ICIs), including anti-PD-1/PD-L1 therapeutic antibodies, have markedly enhanced survival across numerous cancer types. However, the limited number of patients with durable benefits creates an urgent need to identify response biomarkers and to develop novel strategies so as to improve response. It is widely recognized that the gut microbiome is a key mediator in shaping immunity. Additionally, the gut microbiome shows significant potential in predicting the response to and enhancing the efficacy of ICI immunotherapy against cancer. Recent studies encompassing mechanistic analyses and clinical trials of microbiome-based therapy have shown a cause-and-effect relationship between the gut microbiome and the modulation of the ICI immunotherapeutic response, greatly contributing to the establishment of novel strategies that will improve response and overcome resistance to ICI treatment. In this review, we outline the current state of research advances and discuss the future directions of utilizing the gut microbiome to enhance the efficacy of ICI immunotherapy against tumors.
Collapse
Affiliation(s)
- Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Xiaokuan Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| |
Collapse
|