1
|
Sasaki K, Takahashi S, Ouchi K, Shirota H, Sato N, Kaneko K, Masuda N, Fujishima F, Sato S, Ishioka C. Dynamic predictive power of TP53 signatures in breast cancer prognosis: Pre- and post-neoadjuvant chemotherapy insights. Transl Oncol 2025; 56:102398. [PMID: 40245753 DOI: 10.1016/j.tranon.2025.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND The TP53 signature determined using a biopsy specimen before neoadjuvant chemotherapy (pre-NAC biopsy specimens) predicts NAC response and prognosis in breast cancer. We aimed to compare the clinical utility of the TP53 signature determined using pre-NAC biopsy specimens and surgical specimens after NAC (post-NAC surgical specimens). METHODS This observational cohort study included patients with paired pre-NAC biopsy and post-NAC surgical specimens, analyzing the association between the TP53 signature from each specimen and prognosis (UMIN000042055). RESULTS Pre-NAC biopsy specimens classified 71 patients into those having a TP53 mutant signature (pre-mt, n = 47) and wild-type signature (pre-wt, n = 24), with the same for post-NAC surgical specimens (post-mt, n = 16 and post-wt, n = 55). Among the 47 pre-mt patients, 31 became post-wt (pre-mt/post-wt), whereas 16 remained post-mt (pre-mt/post-mt). All pre-wt patients remained post-wt (pre-wt/post-wt). Recurrence-free survival (RFS) was significantly shorter in the pre-mt group than in the pre-wt group, although no significant difference was observed between the post-mt and post-wt groups. Change in the TP53 signature following NAC did not affect predictive ability of the TP53 signature determined using pre-NAC biopsy specimens. CONCLUSIONS The TP53 signature status should be determined using pre-NAC biopsy specimens.
Collapse
Affiliation(s)
- Keiju Sasaki
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan; Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan; Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Ouchi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan; Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan; Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuaki Sato
- Department of Breast Oncology, Niigata Cancer Center Hospital, Niigata, Japan
| | - Kouji Kaneko
- Department of Breast Oncology, Niigata Cancer Center Hospital, Niigata, Japan
| | - Norikazu Masuda
- Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital, Osaka, Japan; Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Hospital, Sendai, Japan; Division of Diagnostic Pathology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Satoko Sato
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan; Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Clinical Oncology Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan; JR Sendai Hospital, Sendai, Japan.
| |
Collapse
|
2
|
Togawa A, Ueno M, Yamaoka M, Takada K, Nishina S, Ikeda Y, Uenishi Y, Hata A, Mano T, Moriwaki T, Mouri H, Mizuno M. Glioblastoma Arising in Lynch-like Syndrome after Repeated Development of Colorectal Cancers. Intern Med 2025; 64:1189-1193. [PMID: 39343572 DOI: 10.2169/internalmedicine.4180-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
We herein report a patient with Lynch-like syndrome in whom a brain tumor (glioblastoma) developed after repeated resection of colorectal cancer. The patient had a significant family history of cancer. Immunohistochemical expression of mismatch repair proteins was decreased in both brain and colon tumors, but no pathogenic variant of the related genes was detected. Although brain tumors occasionally develop in Lynch syndrome, they have not been reported in cases of Lynch-like syndrome. This first report of Lynch-like syndrome with the development of glioblastoma suggests the need for further investigation on the surveillance of brain tumors in patients with this syndrome.
Collapse
Affiliation(s)
- Ayako Togawa
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Japan
| | - Masayuki Ueno
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Japan
| | - Mari Yamaoka
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Japan
- Department of Gastroenterology and Hepatology, Seiyu Clinic, Japan
| | - Kensuke Takada
- Department of Neurosurgery, Kurashiki Central Hospital, Japan
| | - Shinichi Nishina
- Department of Medical Oncology, Kurashiki Central Hospital, Japan
- Department of General Surgery, Kurashiki Central Hospital, Japan
| | - Yuki Ikeda
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Japan
| | - Yosuke Uenishi
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Japan
| | - Ayako Hata
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Japan
| | - Toshifumi Mano
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Japan
| | - Toshikazu Moriwaki
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Japan
| | - Hirokazu Mouri
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Japan
| | - Motowo Mizuno
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Japan
| |
Collapse
|
3
|
Jiang M, Ma S, Xuan Y, Chen K. Synthetic approaches and clinical application of KRAS inhibitors for cancer therapy. Eur J Med Chem 2025; 291:117626. [PMID: 40252381 DOI: 10.1016/j.ejmech.2025.117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are among the most common oncogenic alterations in various cancers, including pancreatic, colorectal, and non-small cell lung cancer (NSCLC). Targeting KRAS has long been considered a difficult challenge due to its high affinity for guanosine triphosphate (GTP) and the lack of a druggable binding site. However, recent advancements in small-molecule inhibitor design have led to the development of targeted therapies aimed at KRAS mutations, particularly the KRASG12C mutation. Inhibitors such as Sotorasib and Adagrasib have shown promise in preclinical and clinical studies by irreversibly binding to the mutant KRAS protein, locking it in an inactive state and disrupting downstream signaling pathways critical for tumor growth and survival. These inhibitors have demonstrated clinical efficacy in treating patients with KRASG12C-mutated cancers, leading to tumor regression, prolonged progression-free survival, and improved patient outcomes. This review discusses the synthetic strategies employed to develop these KRAS inhibitor and also examines the clinical application of these inhibitors, highlighting the challenges and successes encountered during clinical trials. Ultimately, KRAS inhibitors represent a breakthrough in cancer therapy, offering a promising new treatment option for patients with KRAS-driven tumors.
Collapse
Affiliation(s)
- Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shaowei Ma
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xuan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kuanbing Chen
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Zhang H, Wu J, Cui L, Wang T, Jin H, Guo H, Xie C, Li L, Wang X, Wang Z. Pyrithione zinc alters mismatch repair to trigger tumor immunogenicity. Oncogene 2025; 44:983-995. [PMID: 39814851 DOI: 10.1038/s41388-024-03272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Mismatch repair deficiency (dMMR) cancers are highly sensitive to immunotherapy, but only account for a small fraction of cancer patients. How to increase immunotherapy efficacy on MMR-proficient (pMMR) cancer is still a major challenge. This study demonstrates that pyrithione zinc (PYZ), an FDA-approved drug, can enhance tumor immunogenicity via altering MMR and activating STING signaling. Mechanistically, PYZ elevates levels of ROS, leading to the upregulation of HIF-1α and DNA damage, while also inhibiting the expression of DNA mismatch repair proteins MSH2 and MSH6, together promoting DNA damage accumulation. Therefore, the administration of PYZ results in the accumulation of DNA damage, leading to the activation of STING signaling, which enhances tumor immunogenicity. Knockout of Sting diminishes the activation of IFN-I signaling induced by PYZ and reduces tumor immunogenicity. Furthermore, in vivo administration of PYZ promotes the infiltration of CD8+ T cells into the tumor and inhibits tumor growth, an effect that is attenuated in Nude mice or mice with CD8+ T cell depletion or deficiency of Ifnar. Overall, our findings showed that pyrithione zinc could trigger tumor immunogenicity by downregulating MMR machinery and activating STING pathway in tumor cells, and provide a translational approach to improve immunotherapy on pMMR cancer.
Collapse
Affiliation(s)
- Huanling Zhang
- Guangzhou Institute of Clinical Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
5
|
Chang Y, Long M, Shan H, Liu L, Zhong S, Luo JL. Combining gut microbiota modulation and immunotherapy: A promising approach for treating microsatellite stable colorectal cancer. Crit Rev Oncol Hematol 2025; 208:104629. [PMID: 39864533 DOI: 10.1016/j.critrevonc.2025.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide, ranking third in incidence and second in mortality. While immunotherapy has shown promise in patients with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), its effectiveness in proficient mismatch repair (pMMR) or microsatellite stable (MSS) CRC remains limited. Recent advances highlight the gut microbiota as a potential modulator of anti-tumor immunity. The gut microbiome can significantly influence the efficacy of immune checkpoint inhibitors (ICIs), especially in pMMR/MSS CRC, by modulating immune responses and systemic inflammation. This review explores the role of the gut microbiota in pMMR/MSS CRC, the mechanisms by which it may enhance immunotherapy, and current strategies for microbiota modulation. We discuss the potential benefits of combining microbiota-targeting interventions with immunotherapy to improve treatment outcomes for pMMR/MSS CRC patients.
Collapse
Affiliation(s)
- Yujie Chang
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Min Long
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Hanguo Shan
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hunan 410008, China.
| |
Collapse
|
6
|
Chen H, An Y, Wang C, Zhou J. Circulating tumor DNA in colorectal cancer: biology, methods and applications. Discov Oncol 2025; 16:439. [PMID: 40167831 PMCID: PMC11961841 DOI: 10.1007/s12672-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
In the practice of colorectal cancer (CRC), traditional tumor tissue analysis is limited by intratumoral and intertumoral heterogeneity and its invasive nature. Circulating tumor DNA (ctDNA) analysis, a promising liquid biopsy approach, has been increasingly explored in clinical studies. Biologically, ctDNA is characterized by tumor-specific diversity and rapid clearance from circulation, enabling real-time, dynamic, and repeatable assessments. Technologically, PCR- and NGS-based downstream analysis methods have been developed and validated. However, variables in pre-analytical and analytical procedures underscores the need for standardized protocols. Compared with clinicopathology-based risk stratification, ctDNA-based molecular residual disease detection has demonstrated significant potential in guiding treatment decisions. Qualitative and quantitative changes in ctDNA have also shown predictive and prognostic value during neoadjuvant or adjuvant treatment, as well as in later-line treatment for metastatic CRC. Specific molecular aberrations in ctDNA can not only assist in identifying candidates for targeted therapies but also reveal resistance mechanisms. Additionally, emerging research is exploring the potential of ctDNA in early cancer detection. Overall, as a novel biomarker, ctDNA holds substantial promise in advancing clinical practice. This review focuses on the biological characteristics, pre-analytical variables, and downstream analysis methods of ctDNA and summarizes its role across various clinical scenarios in CRC.
Collapse
Affiliation(s)
- Han Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Beijing, 100730, China
| | - Yang An
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Beijing, 100730, China
| | - Chentong Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Beijing, 100730, China
| | - Jiaolin Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Beijing, 100730, China.
| |
Collapse
|
7
|
Trin K, Dalleau C, Mathoulin-Pelissier S, Le Tourneau C, Dinart D, Bellera C. The Growth Modulation Index (GMI) as an Efficacy Outcome in Cancer Clinical Trials: A Scoping Review with Suggested Reporting Guidelines. Curr Oncol Rep 2025:10.1007/s11912-025-01667-1. [PMID: 40156702 DOI: 10.1007/s11912-025-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE OF REVIEW The growth modulation index (GMI) is defined as the ratio between the time to progression of a new line of treatment and the previous line. This ratio can be used to determine whether the new line of treatment brings a clinical benefit. It has been proposed as an outcome in trials evaluating non-cytotoxic drugs. Its interest lies in the intra-patient comparison. The terminology employed to refer to the GMI, as well as its definitions, are highly variable in the literature. Some uses of the GMI are arbitrary and not based on any scientific rationale. Our aim is to describe how the GMI is reported in the scientific literature. RECENT FINDINGS We carried out a scoping review using PubMed, Scopus, Web of Science and BASE (Bielefeld Academic Search Engine). The algorithm was composed of the terms "growth modulation index", "time to progression ratio" and "progression-free survival ratio". Documents in English, with full-text available, published up to 2023, were included. Among 227 included documents, 166 of which discussed GMI specifically. On these 166 documents, 76 reported on observational studies, 62 on interventional studies and 17 on methodological or statistical developments pertaining to the GMI. All were about oncology. Our review highlights significant variability in the reporting and use of the GMI. To address this, we propose standardized reporting guidelines. Additionally, we emphasize the need for methodological and statistical developments to improve the use of the GMI and to develop novel GMI-based trial designs.
Collapse
Affiliation(s)
- Kilian Trin
- INSERM CIC-1401, Clinical and Epidemiological Research Unit, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France.
- Medical Science Faculty, University of Bordeaux, Bordeaux, France.
| | - Cynthia Dalleau
- INSERM CIC-1401, Clinical and Epidemiological Research Unit, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- ISPED, Centre INSERM U1219 Bordeaux Population Health, Epicene Team, University of Bordeaux, Bordeaux, France
| | - Simone Mathoulin-Pelissier
- INSERM CIC-1401, Clinical and Epidemiological Research Unit, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- ISPED, Centre INSERM U1219 Bordeaux Population Health, Epicene Team, University of Bordeaux, Bordeaux, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- INSERM U900 Research Unit, Institut Curie, Paris, France
- Paris-Saclay University, Paris, France
| | - Derek Dinart
- INSERM CIC-1401, Clinical and Epidemiological Research Unit, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- ISPED, Centre INSERM U1219 Bordeaux Population Health, Epicene Team, University of Bordeaux, Bordeaux, France
| | - Carine Bellera
- INSERM CIC-1401, Clinical and Epidemiological Research Unit, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- ISPED, Centre INSERM U1219 Bordeaux Population Health, Epicene Team, University of Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Imyanitov EN, Preobrazhenskaya EV, Mitiushkina NV. Overview on biomarkers for immune oncology drugs. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002298. [PMID: 40135049 PMCID: PMC11933888 DOI: 10.37349/etat.2025.1002298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) are widely used in clinical oncology, less than half of treated cancer patients derive benefit from this therapy. Both tumor- and host-related variables are implicated in response to ICIs. The predictive value of PD-L1 expression is confined only to several cancer types, so this molecule is not an agnostic biomarker. Highly elevated tumor mutation burden (TMB) caused either by excessive carcinogenic exposure or by a deficiency in DNA repair is a reliable indicator for ICI efficacy, as exemplified by tumors with high-level microsatellite instability (MSI-H). Other potentially relevant tumor-related characteristics include gene expression signatures, pattern of tumor infiltration by immune cells, and, perhaps, some immune-response modifying somatic mutations. Host-related factors have not yet been comprehensively considered in relevant clinical trials. Microbiome composition, markers of systemic inflammation [e.g., neutrophil-to-lymphocyte ratio (NLR)], and human leucocyte antigen (HLA) diversity may influence the efficacy of ICIs. Studies on ICI biomarkers are likely to reveal modifiable tumor or host characteristics, which can be utilized to direct the antitumor immune defense. Examples of the latter approach include tumor priming to immune therapy by cytotoxic drugs and elevation of ICI efficacy by microbiome modification.
Collapse
Affiliation(s)
- Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Elena V. Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| |
Collapse
|
9
|
Zheng M. Clinical metric of tumor mutational burden depicts colorectal cancer patients at the extremes. Clin Transl Oncol 2025:10.1007/s12094-025-03873-6. [PMID: 39984774 DOI: 10.1007/s12094-025-03873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/08/2025] [Indexed: 02/23/2025]
Abstract
PURPOSE Rare cases of colorectal cancer patients with exceptionally good or poor prognosis often remain overlooked, limiting insights into prognostic factors and underlying mechanisms. METHODS This study developed an analytical framework to investigate cancer patients at the extremes using tumor mutational burden (TMB). By analyzing data from 1277 colorectal cancer patients who did not receive immunotherapy, this analysis assessed how patient survival varies with a broad range of TMB levels. RESULTS Among patients with TMB ≤ 10 mutations per megabase (mut/Mb), increasing TMB was associated with worse survival outcomes. In contrast, patients with TMB > 10 mut/Mb showed increasingly improved survival. Notably, a small subgroup (3.83%) with TMB > 60 mut/Mb had significantly better survival outcomes. CONCLUSIONS These findings highlight TMB's dual role in colorectal cancer progression. This study suggests that atypical patients can coexist within the same "disease continuum" with typical patients, under the universal context unified by a shared cancer hallmark. TMB provides a useful biomarker for identifying these extremes, offering a clinical metric to better predict patient outcomes and personalize treatment strategies.
Collapse
Affiliation(s)
- Ming Zheng
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China.
- Academy of Military Medical Sciences, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
10
|
Walker R, Joo JE, Mahmood K, Clendenning M, Como J, Preston SG, Joseland S, Pope BJ, Medeiros ABD, Murillo BV, Pachter N, Sweet K, Spigelman AD, Groves A, Gleeson M, Bernatowicz K, Poplawski N, Andrews L, Healey E, Gallinger S, Grant RC, Win AK, Hopper JL, Jenkins MA, Torrezan GT, Rosty C, Macrae FA, Winship IM, Buchanan DD, Georgeson P. Adenomas from individuals with pathogenic biallelic variants in the MUTYH and NTHL1 genes demonstrate base excision repair tumour mutational signature profiles similar to colorectal cancers, expanding potential diagnostic and variant classification applications. Transl Oncol 2025; 52:102266. [PMID: 39793275 PMCID: PMC11774829 DOI: 10.1016/j.tranon.2024.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Colorectal cancers (CRCs) from people with biallelic germline likely pathogenic/pathogenic variants in MUTYH or NTHL1 exhibit specific single base substitution (SBS) mutational signatures, namely combined SBS18 and SBS36 (SBS18+SBS36), and SBS30, respectively. The aim was to determine if adenomas from biallelic cases demonstrated these mutational signatures at diagnostic levels. METHODS Whole-exome sequencing of FFPE tissue and matched blood-derived DNA was performed on 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases, on 7 adenomas and 2 CRCs from 5 biallelic NTHL1 cases and on 27 adenomas and 26 CRCs from 46 non-hereditary (sporadic) participants. All samples were assessed for COSMIC v3.2 SBS mutational signatures. RESULTS In biallelic MUTYH cases, SBS18+SBS36 signature proportions in adenomas (mean±standard deviation, 65.6 %±29.6 %) were not significantly different to those observed in CRCs (76.2 % ± 20.5 %, p-value=0.37), but were significantly higher compared with non-hereditary adenomas (7.6 % ± 7.0 %, p-value=3.4 × 10-4). Similarly, in biallelic NTHL1 cases, SBS30 signature proportions in adenomas (74.5 %±9.4 %) were similar to those in CRCs (78.8 % ± 2.4 %) but significantly higher compared with non-hereditary adenomas (2.8 % ± 3.6 %, p-value=5.1 × 10-7). Additionally, a compound heterozygote with the c.1187G>A p.(Gly396Asp) pathogenic variant and the c.533G>C p.(Gly178Ala) variant of unknown significance (VUS) in MUTYH demonstrated high levels of SBS18+SBS36 in four adenomas and one CRC, providing evidence for reclassification of the VUS to pathogenic. CONCLUSIONS SBS18+SBS36 and SBS30 were enriched in adenomas at comparable proportions to those observed in CRCs from biallelic MUTYH and biallelic NTHL1 cases, respectively. Therefore, testing adenomas may improve the identification of biallelic cases and facilitate variant classification, ultimately enabling opportunities for CRC prevention.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia.
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Susan G Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Ana B D Medeiros
- Clinical and Functional Genomics Group, International Research Centre/CIPE, A.C. Camargo Cancer Centre, Sao Paulo, 01508-010, Brazil
| | - Brenely V Murillo
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia; Medical School, University of Western Australia, Perth, WA, 6009, Australia; School of Medicine, Curtin University, Perth, WA, 6845, Australia
| | - Kevin Sweet
- Division of Human Genetics, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Allan D Spigelman
- Hunter Family Cancer Service, Newcastle, NSW, 2298, Australia; St Vincent's Cancer Genetics Unit, Sydney, NSW, 2290, Australia; Surgical Professorial Unit, UNSW Clinical School of Clinical Medicine, Sydney, NSW, 2052, Australia
| | | | | | | | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Lesley Andrews
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Emma Healey
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Randwick, New South Wales 2031 Australia; Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, New South Wales 2500 Australia
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert C Grant
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aung K Win
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - Giovana T Torrezan
- Clinical and Functional Genomics Group, International Research Centre/CIPE, A.C. Camargo Cancer Centre, Sao Paulo, 01508-010, Brazil; National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia; Envoi Specialist Pathologists, Brisbane, QLD, 4059, Australia; University of Queensland, Brisbane, QLD, 4072, Australia
| | - Finlay A Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, 3000, Australia; Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, 3000, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia. https://twitter.com/dan_buchanan
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia. https://twitter.com/petergeorgeson
| |
Collapse
|
11
|
Ji P, Chen T, Li C, Zhang J, Li X, Zhu H. Comprehensive review of signaling pathways and therapeutic targets in gastrointestinal cancers. Crit Rev Oncol Hematol 2025; 206:104586. [PMID: 39653094 DOI: 10.1016/j.critrevonc.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Targeted therapy, the milestone in the development of human medicine, originated in 2004 when the FDA approved the first targeted agent bevacizumab for colorectal cancer treatment. This new development has resulted from drug developers moving beyond traditional chemotherapy, and several trials have popped up in the last two decades with an unprecedented speed. Specifically, EGF/EGFR, VEGF/VEGFR, HGF/c-MET, and Claudin 18.2 therapeutic targets have been developed in recent years. Some targets previously thought to be undruggable are now being newly explored, such as the RAS site. However, the efficacy of targeted therapy is extremely variable, especially with the emergence of new drugs and the innovative use of traditional targets for other tumors in recent years. Accordingly, this review provides an overview of the major signaling pathway mechanisms and recent advances in targeted therapy for gastrointestinal cancers, as well as future perspectives.
Collapse
Affiliation(s)
- Pengfei Ji
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
12
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Crisafulli G. Liquid Biopsy and Challenge of Assay Heterogeneity for Minimal Residual Disease Assessment in Colon Cancer Treatment. Genes (Basel) 2025; 16:71. [PMID: 39858618 PMCID: PMC11765229 DOI: 10.3390/genes16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
This review provides a comprehensive overview of the evolving role of minimal residual disease (MRD) for patients with Colon Cancer (CC). Currently, the standard of care for patients with non-metastatic CC is adjuvant chemotherapy (ACT) for all patients with stage III and high-risk stage II CC following surgical intervention. Despite a 5-20% improvement in long-term survival outcomes, this approach also results in a significant proportion of patients receiving ACT without any therapeutic benefit and being unnecessarily exposed to the risks of secondary side effects. This underscores an unmet clinical need for more precise stratification to distinguish patients who necessitate ACT from those who can be treated with surgery alone. By employing liquid biopsy, it is possible to discern MRD enabling the categorization of patients as MRD-positive or MRD-negative, potentially revolutionizing the management of ACT. This review aimed to examine the heterogeneity of methodologies currently available for MRD detection, encompassing the state-of-the-art technologies, their respective advantages, limitations, and the technological challenges and multi-omic approaches that can be utilized to enhance assay performance. Furthermore, a discussion was held regarding the clinical trials that employ an MRD assay focusing on the heterogeneity of the assays used. These differences in methodology, target selection, and performance risk producing inconsistent results that may not solely reflect biological/clinical differences but may be the consequence of the preferential use of particular products in studies conducted in different countries. Standardization and harmonization of MRD assays will be crucial to ensure the liquid revolution delivers reliable and clinically actionable outcomes for patients.
Collapse
|
14
|
Backman S, Botling J, Nord H, Ghosal S, Stålberg P, Juhlin CC, Almlöf J, Sundin A, Zhang L, Moens L, Eriksson B, Welin S, Hellman P, Skogseid B, Pacak K, Mollazadegan K, Åkerström T, Crona J. The evolutionary history of metastatic pancreatic neuroendocrine tumours reveals a therapy driven route to high-grade transformation. J Pathol 2024; 264:357-370. [PMID: 39360347 DOI: 10.1002/path.6348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024]
Abstract
Tumour evolution with acquisition of more aggressive disease characteristics is a hallmark of disseminated cancer. Metastatic pancreatic neuroendocrine tumours (PanNETs) in particular may progress from a low/intermediate to a high-grade disease. The aim of this work was to understand the molecular mechanisms underlying metastatic progression as well as PanNET transformation from a low/intermediate to a high-grade disease. We performed multi-omics analysis (genome/exome sequencing, total RNA-sequencing and methylation array) of 32 longitudinal samples from six patients with metastatic low/intermediate grade PanNET. The clonal composition of tumour lesions and underlying phylogeny of each patient were determined with bioinformatics analyses. Findings were validated in post-alkylating chemotherapy samples from 24 patients with PanNET using targeted next generation sequencing. We validate the current PanNET evolutionary model with MEN1 inactivation that occurs very early in tumourigenesis. This was followed by pronounced genetic diversity on both spatial and temporal levels, with parallel and convergent tumour evolution involving the ATRX/DAXX and mechanistic target of the rapamycin (mTOR) pathways. Following alkylating chemotherapy treatment, some PanNETs developed mismatch repair deficiency and acquired a hypermutational phenotype. This was validated among 16 patients with PanNET who had high-grade progression after alkylating chemotherapy, of whom eight had a tumour mutational burden >50 (50%). In comparison, among the eight patients who did not show high-grade progression, 0 had a tumour mutational burden >50 (0%; odds ratio 'infinite', 95% confidence interval 1.8 to 'infinite', p = 0.02). Our findings contribute to broaden the understanding of metastatic/high-grade PanNETs and suggests that therapy driven disease evolution is an important hallmark of this disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Helena Nord
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - C Christofer Juhlin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Almlöf
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Section of Radiology, Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Liang Zhang
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Barbro Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Gao H, Zhang W, Li Z, Liu W, Liu M, Zhuo Q, Shi Y, Xu W, Zhou C, Qin Y, Xu J, Chen J, Yu X, Xu X, Ji S. Distinctive grade based on Ki67 index and immune microenvironment of metastatic pancreatic neuroendocrine tumors responding to capecitabine plus temozolomide. BMC Cancer 2024; 24:1362. [PMID: 39511555 PMCID: PMC11542389 DOI: 10.1186/s12885-024-13117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Ki67 index changes during the treatment of metastatic pancreatic neuroendocrine tumor (PanNET) treatment. The study aimed to detect alterations of grade based on Ki67 index and immune microenvironment in PanNET responding to capecitabine/temozolomide (CapTem). METHOD Retrospective data of patients with PanNET were collected. In control group, 35 patients underwent surgery immediately after biopsy. In CapTem group, 38 patients received CapTem after biopsy and responded well to treatment (defined as either stable disease or partial response), and subsequently underwent surgery. All patients have pathological Ki67 index at biopsy and after surgery. CD163 + CD68 + CD206 + M2 macrophages, CD68 + CD86 + CD80 + M1 macrophages, CD11b + CD33 + myeloid-derived suppressor cells, and CD4 + CD25 + regulatory T cells were stained using multiplex immunofluorescence. RESULTS In control group, the paired grade based on Ki67 index directly after surgery showed no upgrade or downgrade compared to biopsy. In patients who responded well to CapTem, the grade based on Ki67 index before and after CapTem was altered. Thirteen patients had upgraded Ki67 index and 11 patients had downgraded. The proportion of stable disease was higher in the upgraded group compared to downgraded group (p = 0.0155). And upgraded group had a significantly shorter mPFS than patients in the downgrade group (8.5 months vs. 20 months, HR 4.834, 95% CI 1.414 to 16.53, p = 0.012). M1 macrophages was significantly lower in the downgraded group than in the Ki67 upgraded group (p < 0.001). CONCLUSION Grade based on Ki67 index and immune environment change in PanNET patients responding well to CapTem. Patients with downgraded had longer mPFS compared to those with upgraded. It is necessary to reassess the Ki67 index after CapTem treatment, even in patients responding well to CapTem.
Collapse
Affiliation(s)
- Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yihua Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Macagno M, Pessei V, Congiusta N, Lazzari L, Bellomo SE, Idrees F, Cavaliere A, Pietrantonio F, Raimondi A, Gusmaroli E, Zampino MG, Gervaso L, Ciardiello D, Mondello G, Santoro A, Personeni N, Bonoldi E, Aquilano MC, Valtorta E, Siena S, Sartore-Bianchi A, Amatu A, Bonazzina EF, Bencardino KB, Serini G, Marsoni S, Barault L, Di Nicolantonio F, Maione F. A Comparative Study of Methyl-BEAMing and Droplet Digital PCR for MGMT Gene Promoter Hypermethylation Detection. Diagnostics (Basel) 2024; 14:2467. [PMID: 39594133 PMCID: PMC11592929 DOI: 10.3390/diagnostics14222467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Background: O-6-methylguanine-DNA methyltransferase is responsible for the direct repair of O6-methylguanine lesions induced by alkylating agents, including temozolomide. O-6-methylguanine-DNA methyltransferase promoter hypermethylation is a well-established biomarker for temozolomide response in glioblastoma patients, also correlated with therapeutic response in colorectal cancer. Objectives: The ARETHUSA clinical trial aims to stratify colorectal cancer patients based on their mismatch repair status. Mismatch repair-deficient patients are eligible for treatment with immune checkpoint inhibitors (anti-PDL-1), whereas mismatch repair-proficient samples are screened for O-6-methylguanine-DNA methyltransferase promoter methylation to identify those suitable for temozolomide treatment. Methods: In this context, a subset of ARETHUSA metastatic colorectal cancer samples was used to compare two different techniques for assessing O-6-methylguanine-DNA methyltransferase hypermethylation: Methyl-BEAMing, a highly sensitive digital PCR approach that combines emulsion PCR and flow cytometry, and droplet digital PCR, a more automated procedure that enables the rapid, operator-independent analysis of a large number of samples. Results: Our study clearly demonstrates that the results obtained using Methyl-BEAMing and droplet digital PCR are comparable, with both techniques showing similar accuracy, sensitivity, and reproducibility. Conclusions: Digital droplet PCR proved to be an efficient method for detecting gene promoter methylation. However, the Methyl-BEAMing method has proved more sensitive for detecting low quantities of DNA.
Collapse
Affiliation(s)
- Marco Macagno
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy; (M.M.); (V.P.); (N.C.); (S.E.B.); (F.I.); (A.C.); (G.S.); (F.D.N.)
| | - Valeria Pessei
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy; (M.M.); (V.P.); (N.C.); (S.E.B.); (F.I.); (A.C.); (G.S.); (F.D.N.)
| | - Noemi Congiusta
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy; (M.M.); (V.P.); (N.C.); (S.E.B.); (F.I.); (A.C.); (G.S.); (F.D.N.)
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy;
| | - Luca Lazzari
- IFOM ETS—The AIRC Institute of Molecolar Oncology, 20139 Milano, MI, Italy; (L.L.); (S.M.)
| | - Sara Erika Bellomo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy; (M.M.); (V.P.); (N.C.); (S.E.B.); (F.I.); (A.C.); (G.S.); (F.D.N.)
| | - Fariha Idrees
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy; (M.M.); (V.P.); (N.C.); (S.E.B.); (F.I.); (A.C.); (G.S.); (F.D.N.)
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy;
| | - Alessandro Cavaliere
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy; (M.M.); (V.P.); (N.C.); (S.E.B.); (F.I.); (A.C.); (G.S.); (F.D.N.)
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy;
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, MI, Italy; (F.P.); (A.R.); (E.G.)
| | - Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, MI, Italy; (F.P.); (A.R.); (E.G.)
| | - Eleonora Gusmaroli
- Department of Medical Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, MI, Italy; (F.P.); (A.R.); (E.G.)
| | - Maria Giulia Zampino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IRCCS, 20139 Milano, MI, Italy; (M.G.Z.); (L.G.); (D.C.)
| | - Lorenzo Gervaso
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IRCCS, 20139 Milano, MI, Italy; (M.G.Z.); (L.G.); (D.C.)
| | - Davide Ciardiello
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IRCCS, 20139 Milano, MI, Italy; (M.G.Z.); (L.G.); (D.C.)
| | - Giuseppe Mondello
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy; (G.M.); (A.S.)
| | - Armando Santoro
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy; (G.M.); (A.S.)
| | | | - Emanuela Bonoldi
- Department of Hematology, Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162 Milano, MI, Italy; (E.B.); (M.C.A.); (E.V.)
| | - Maria Costanza Aquilano
- Department of Hematology, Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162 Milano, MI, Italy; (E.B.); (M.C.A.); (E.V.)
| | - Emanuele Valtorta
- Department of Hematology, Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162 Milano, MI, Italy; (E.B.); (M.C.A.); (E.V.)
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, MI, Italy; (S.S.); (A.S.-B.); (A.A.); (E.F.B.); (K.B.B.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milano, MI, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, MI, Italy; (S.S.); (A.S.-B.); (A.A.); (E.F.B.); (K.B.B.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milano, MI, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, MI, Italy; (S.S.); (A.S.-B.); (A.A.); (E.F.B.); (K.B.B.)
| | - Erica Francesca Bonazzina
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, MI, Italy; (S.S.); (A.S.-B.); (A.A.); (E.F.B.); (K.B.B.)
| | - Katia Bruna Bencardino
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milano, MI, Italy; (S.S.); (A.S.-B.); (A.A.); (E.F.B.); (K.B.B.)
| | - Guido Serini
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy; (M.M.); (V.P.); (N.C.); (S.E.B.); (F.I.); (A.C.); (G.S.); (F.D.N.)
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy;
| | - Silvia Marsoni
- IFOM ETS—The AIRC Institute of Molecolar Oncology, 20139 Milano, MI, Italy; (L.L.); (S.M.)
| | - Ludovic Barault
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy;
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy; (M.M.); (V.P.); (N.C.); (S.E.B.); (F.I.); (A.C.); (G.S.); (F.D.N.)
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy;
| | - Federica Maione
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy; (M.M.); (V.P.); (N.C.); (S.E.B.); (F.I.); (A.C.); (G.S.); (F.D.N.)
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy;
| |
Collapse
|
17
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Amodio V, Vitiello PP, Bardelli A, Germano G. DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors. Br J Cancer 2024; 131:1576-1590. [PMID: 39271762 PMCID: PMC11554791 DOI: 10.1038/s41416-024-02848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of cancer death worldwide. Chemotherapy continues to serve as the primary treatment modality, while immunotherapy is largely ineffective for the majority of CRC patients. Seminal discoveries have emphasized that modifying DNA damage response (DDR) mechanisms confers both cell-autonomous and immune-related vulnerabilities across various cancers. In CRC, approximately 15% of tumours exhibit alterations in the mismatch repair (MMR) machinery, resulting in a high number of neoantigens and the activation of the type I interferon response. These factors, in conjunction with immune checkpoint blockades, collectively stimulate anticancer immunity. Furthermore, although less frequently, somatic alterations in the homologous recombination (HR) pathway are observed in CRC; these defects lead to genome instability and telomere alterations, supporting the use of poly (ADP-ribose) polymerase (PARP) inhibitors in HR-deficient CRC patients. Additionally, other DDR inhibitors, such as Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors, have shown some efficacy both in preclinical models and in the clinical setting, irrespective of MMR proficiency. The aim of this review is to elucidate how preexisting or induced vulnerabilities in DNA repair pathways represent an opportunity to increase tumour sensitivity to immune-based therapies in CRC.
Collapse
Affiliation(s)
- V Amodio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - P P Vitiello
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - A Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy.
| | - G Germano
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milano, 20133, Milan, Italy.
| |
Collapse
|
19
|
Axelsson J, LeBlanc D, Shojaeisaadi H, Meier MJ, Fitzgerald DM, Nachmanson D, Carlson J, Golubeva A, Higgins J, Smith T, Lo FY, Pilsner R, Williams A, Salk J, Marchetti F, Yauk C. Frequency and spectrum of mutations in human sperm measured using duplex sequencing correlate with trio-based de novo mutation analyses. Sci Rep 2024; 14:23134. [PMID: 39379474 PMCID: PMC11461794 DOI: 10.1038/s41598-024-73587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
De novo mutations (DNMs) are drivers of genetic disorders. However, the study of DNMs is hampered by technological limitations preventing accurate quantification of ultra-rare mutations. Duplex Sequencing (DS) theoretically has < 1 error/billion base-pairs (bp). To determine the DS utility to quantify and characterize DNMs, we analyzed DNA from blood and spermatozoa from six healthy, 18-year-old Swedish men using the TwinStrand DS mutagenesis panel (48 kb spanning 20 genic and intergenic loci). The mean single nucleotide variant mutation frequency (MF) was 1.2 × 10- 7 per bp in blood and 2.5 × 10- 8 per bp in sperm, with the most common base substitution being C > T. Blood MF and substitution spectrum were similar to those reported in blood cells with an orthogonal method. The sperm MF was in the same order of magnitude and had a strikingly similar spectrum to DNMs from publicly available whole genome sequencing data from human pedigrees (1.2 × 10- 8 per bp). DS revealed much larger numbers of insertions and deletions in sperm over blood, driven by an abundance of putative extra-chromosomal circular DNAs. The study indicates the strong potential of DS to characterize human DNMs to inform factors that contribute to disease susceptibility and heritable genetic risks.
Collapse
Affiliation(s)
- Jonatan Axelsson
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | | | | | | | | | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Richard Pilsner
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Jesse Salk
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
20
|
Chen T, Wang M, Chen Y, Cao Y, Liu Y. Advances in predictive biomarkers associated with immunotherapy in extensive-stage small cell lung cancer. Cell Biosci 2024; 14:117. [PMID: 39267195 PMCID: PMC11391723 DOI: 10.1186/s13578-024-01283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024] Open
Abstract
Small cell lung cancer (SCLC) is a highly malignant and poor-prognosis cancer, with most cases diagnosed at the extensive stage (ES). Amidst a landscape marked by limited progress in treatment modalities for ES-SCLC over the past few decades, the integration of immune checkpoint inhibitors (ICIs) with platinum-based chemotherapy has provided a milestone approach for improving prognosis, emerging as the new standard for initial therapy in ES-SCLC. However, only a minority of SCLC patients can benefit from ICIs, which frequently come with varying degrees of immune-related adverse events (irAEs). Therefore, it is crucial to investigate predictive biomarkers to screen potential beneficiaries of ICIs, mitigate the risk of side effects, and improve treatment precision. This review summarized potential biomarkers for predicting ICI response in ES-SCLC, with a primary focus on markers sourced from tumor tissue or peripheral blood samples. The former mainly included PD-L1 expression, tumor mutational burden (TMB), along with cellular or molecular components related to the tumor microenvironment (TME) and antigen presentation machinery (APM), molecular subtypes of SCLC, and inflammatory gene expression profiles. Circulating biomarkers predominantly comprised circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), cytokines, plasma autoantibodies, inflammation-related parameters, and blood TMB. We synthesized and analyzed the research progress of these potential markers. Notably, investigations into PD-L1 expression and TMB have been the most extensive, exhibiting preliminary predictive efficacy in salvage immunotherapy; however, consistent conclusions have yet to be reached across studies. Additionally, novel predictive markers developed based on TME composition, APM, transcriptomic and genomic features provide promising tools for precision immunotherapy. Circulating biomarkers offer the advantages of convenience, non-invasiveness, and a comprehensive reflection of tumor molecular characteristics. They may serve as alternative options for predicting immunotherapy efficacy in SCLC. However, there is a scarcity of studies, and the significant heterogeneity in research findings warrants attention.
Collapse
Affiliation(s)
- Tong Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yanchao Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yang Cao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
21
|
Andrini E, Ricco G, Zappi A, Aloi S, Giordano M, Altimari A, Gruppioni E, Maloberti T, de Biase D, Campana D, Lamberti G. Challenges and future perspectives for the use of temozolomide in the treatment of SCLC. Cancer Treat Rev 2024; 129:102798. [PMID: 38970838 DOI: 10.1016/j.ctrv.2024.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/09/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Small-cell lung cancer (SCLC), accounting for 10-20 % of all lung tumors, represents the most aggressive high-grade neuroendocrine carcinoma. Most patients are diagnosed with extensive-stage SCLC (ES-SCLC), with brian metastases identified in ∼ 80 % of cases during the disease cours, and the prognosis is dismal, with a 5-year survival rate of less than 5 %. Current available treatments in the second-line setting are limited, and topotecan has long been the only FDA-approved drug in relapsed or refractory ES-SCLC, until the recent approval of lurbinectedin, a selective inhibitor of RNA polymerase II. Temozolomide (TMZ) is an oral alkylating agent, which showed single-agent activity in SCLC, particularly among patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. Several studies have revealed the synergistic activity of temozolomide with poly-ADP-ribose polymerase (PARP) inhibitors, that prevent repair of TMZ-induced DNA damage. This review focuses on the rationale for the use of TMZ in ES-SCLC and provides an overview of the main trials that have evaluated and are currently investigating its role, both as a single-agent and in combinations, in relapse or refractory disease.
Collapse
Affiliation(s)
- Elisa Andrini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Gianluca Ricco
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Arianna Zappi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Serena Aloi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Mirela Giordano
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy.
| | - Davide Campana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Giuseppe Lamberti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
22
|
Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:609-625. [PMID: 38806657 DOI: 10.1038/s41575-024-00934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
23
|
Crisafulli G. Mutational Signatures in Colorectal Cancer: Translational Insights, Clinical Applications, and Limitations. Cancers (Basel) 2024; 16:2956. [PMID: 39272814 PMCID: PMC11393898 DOI: 10.3390/cancers16172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
A multitude of exogenous and endogenous processes have the potential to result in DNA damage. While the repair mechanisms are typically capable of correcting this damage, errors in the repair process can result in mutations. The findings of research conducted in 2012 indicate that mutations do not occur randomly but rather follow specific patterns that can be attributed to known or inferred mutational processes. The process of mutational signature analysis allows for the inference of the predominant mutational process for a given cancer sample, with significant potential for clinical applications. A deeper comprehension of these mutational signatures in CRC could facilitate enhanced prevention strategies, facilitate the comprehension of genotoxic drug activity, predict responses to personalized treatments, and, in the future, inform the development of targeted therapies in the context of precision oncology. The efforts of numerous researchers have led to the identification of several mutational signatures, which can be categorized into different mutational signature references. In CRC, distinct mutational signatures are identified as correlating with mismatch repair deficiency, polymerase mutations, and chemotherapy treatment. In this context, a mutational signature analysis offers considerable potential for enhancing minimal residual disease (MRD) tests in stage II (high-risk) and stage III CRC post-surgery, stratifying CRC based on the impacts of genetic and epigenetic alterations for precision oncology, identifying potential therapeutic vulnerabilities, and evaluating drug efficacy and guiding therapy, as illustrated in a proof-of-concept clinical trial.
Collapse
|
24
|
Walker R, Joo JE, Mahmood K, Clendenning M, Como J, Preston SG, Joseland S, Pope BJ, Medeiros ABD, Murillo BV, Pachter N, Sweet K, Spigelman AD, Groves A, Gleeson M, Bernatowicz K, Poplawski N, Andrews L, Healey E, Gallinger S, Grant RC, Win AK, Hopper JL, Jenkins MA, Torrezan GT, Rosty C, Macrae FA, Winship IM, Buchanan DD, Georgeson P. Adenomas from individuals with pathogenic biallelic variants in the MUTYH and NTHL1 genes demonstrate base excision repair tumour mutational signature profiles similar to colorectal cancers, expanding potential diagnostic and variant classification applications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311713. [PMID: 39148833 PMCID: PMC11326331 DOI: 10.1101/2024.08.08.24311713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Colorectal cancers (CRCs) from people with biallelic germline likely pathogenic/pathogenic variants in MUTYH or NTHL1 exhibit specific single base substitution (SBS) mutational signatures, namely combined SBS18 and SBS36 (SBS18+SBS36), and SBS30, respectively. The aim was to determine if adenomas from biallelic cases demonstrated these mutational signatures at diagnostic levels. Methods Whole-exome sequencing of FFPE tissue and matched blood-derived DNA was performed on 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases, on 7 adenomas and 2 CRCs from 5 biallelic NTHL1 cases and on 27 adenomas and 26 CRCs from 46 non-hereditary (sporadic) participants. All samples were assessed for COSMIC v3.2 SBS mutational signatures. Results In biallelic MUTYH cases, SBS18+SBS36 signature proportions in adenomas (mean±standard deviation, 65.6%±29.6%) were not significantly different to those observed in CRCs (76.2%±20.5%, p-value=0.37), but were significantly higher compared with non-hereditary adenomas (7.6%±7.0%, p-value=3.4×10-4). Similarly, in biallelic NTHL1 cases, SBS30 signature proportions in adenomas (74.5%±9.4%) were similar to those in CRCs (78.8%±2.4%) but significantly higher compared with non-hereditary adenomas (2.8%±3.6%, p-value=5.1×10-7). Additionally, a compound heterozygote with the c.1187G>A p.(Gly396Asp) pathogenic variant and the c.533G>C p.(Gly178Ala) variant of unknown significance (VUS) in MUTYH demonstrated high levels of SBS18+SBS36 in four adenomas and one CRC, providing evidence for reclassification of the VUS to pathogenic. Conclusions SBS18+SBS36 and SBS30 were enriched in adenomas at comparable proportions observed in CRCs from biallelic MUTYH and biallelic NTHL1 cases, respectively. Therefore, testing adenomas may improve the identification of biallelic cases and facilitate variant classification, ultimately enabling opportunities for CRC prevention.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Susan G Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Ana B D Medeiros
- Clinical and Functional Genomics Group, International Research Centre/CIPE, A.C. Camargo Cancer Centre, Sao Paulo, 01508-010, Brazil
| | - Brenely V Murillo
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
- Medical School, University of Western Australia, Perth, WA, 6009, Australia
- School of Medicine, Curtin University, Perth, WA, 6845, Australia
| | - Kevin Sweet
- Division of Human Genetics, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Allan D Spigelman
- Hunter Family Cancer Service, Newcastle, NSW, 2298, Australia
- St Vincent's Cancer Genetics Unit, Sydney, NSW, 2290, Australia
- Surgical Professorial Unit, UNSW Clinical School of Clinical Medicine, Sydney, NSW, 2052, Australia
| | | | | | | | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Lesley Andrews
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Emma Healey
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Randwick, New South Wales 2031 Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, New South Wales 2500 Australia
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert C Grant
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aung K Win
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, VIC, 3053, Australia
| | - Giovana T Torrezan
- Clinical and Functional Genomics Group, International Research Centre/CIPE, A.C. Camargo Cancer Centre, Sao Paulo, 01508-010, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 01508-010, Brazil
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, 4059, Australia
- University of Queensland, Brisbane, QLD, 4072, Australia
| | - Finlay A Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3000, Australia
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3000, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| |
Collapse
|
25
|
Grillo F, Angerilli V, Parente P, Vanoli A, Luchini C, Sciallero S, Puccini A, Bergamo F, Lonardi S, Valeri N, Mastracci L, Fassan M. Prevalence and type of MMR expression heterogeneity in colorectal adenocarcinoma: therapeutic implications and reporting. Virchows Arch 2024; 485:131-135. [PMID: 38141133 DOI: 10.1007/s00428-023-03726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Mismatch repair (MMR) immunohistochemical (IHC) evaluation has entered pathology routine practice as the first-line screening method to identify patients with MMR deficient (MMRd)/microsatellite instability (MSI) colorectal cancer (CRC), and its misdiagnosis may significantly impact the personalization of CRC patient care. To determine the prevalence of MMR protein intratumor heterogeneity in real-world practice, we collected a series of 8282 CRCs tested for MMR proteins in the setting of Lynch syndrome universal screening. Four heterogenous cases were also investigated for tumor infiltrating lymphocytes count, MSI status, and consensus molecular subtypes by Nanostring nCounter® Platform. Overall, 1056 (12.8%) CRCs showed a MMR altered status, with 46 cases showing a heterogeneous MMR profile (0.56% of the total, and 4.36% of all MMRd cases). To conclude, the authors make some critical remarks regarding the approach to MMR heterogeneity in clinical practice and routine diagnostics.
Collapse
Affiliation(s)
- Federica Grillo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Anatomic Pathology, University of Genova, Genoa, Italy
| | - Valentina Angerilli
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Paola Parente
- Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, Unit of Pathology, San Giovanni Rotondo, Italy
| | - Alessandro Vanoli
- Department of Molecular Medicine, Anatomic Pathology Unit, University of Pavia, Pavia, Italy
- Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Puccini
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Rozzano, Milan, Italy
| | | | - Sara Lonardi
- Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Nicola Valeri
- Centre for Molecular Pathology, the Institute of Cancer Research, Sutton, UK
| | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Anatomic Pathology, University of Genova, Genoa, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy.
- Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy.
| |
Collapse
|
26
|
Jan YH, Lu CT, Lam AKY. Comparison of genomic profiling of patient-matched primary colorectal and surgical resected distant metastatic (stage IV) colorectal carcinoma for drug actionability. Hum Pathol 2024; 149:21-28. [PMID: 38862093 DOI: 10.1016/j.humpath.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
It is often difficult to obtain adequate tissue for genomic study from distant metastases for assessment of targeted therapy in colorectal carcinomas. The study aims to explore the genomic differences between matched distant metastatic colorectal carcinomas (mCRC) and primary carcinoma using surgical specimens of both with adequate tissue. Thirty-four paired primary and distant metastatic colorectal carcinoma samples (liver, ovary, and lung) were obtained from surgical excisions (not small biopsies) and are microsatellite stable. They were subjected to DNA sequencing using comprehensive next-generation sequencing. This included mutation concordance analysis and mutational signature analysis. The mutation concordance analysis showed 49.6% shared mutations between primary and metastatic tumours, with 23.0% mutations exclusive to primary tumours and 27.4% mutations exclusive to distant metastases. While many patients with KRAS/BRAF mutations had shared mutations, two cases had unique KRAS mutations in the primary tumours only. Additionally, TMB (tumour mutational burden) analysis revealed that half of the TMB-high (≥7.5 mutations/Mb) metastatic colorectal carcinomas had a low TMB (<7.5 mutations/Mb) in the primary tumours. The mutational signature analysis identified de novo signatures consistent with known single base substitution patterns such as SBS11 (alkylation agents) and SBS30 (base excision repair deficiency) post-chemotherapy. To conclude, this study demonstrates significant genomic variations in resected distant metastasis when compared to primary colorectal carcinomas when adequate tissue is available. This finding underscores the importance of considering these differences and selecting tissue for mutation analysis in planning targeted and effective treatment strategies for mCRC.
Collapse
Affiliation(s)
- Yi-Hua Jan
- ACT Genomics, Co. Ltd., Taipei City, 114, Taiwan; Department of Molecular Medicine at the Koo Foundation Sun Yat-Sen Cancer Center, Taipei City, 11259, Taiwan
| | - Cu Tai Lu
- Department of Surgery, Gold Coast University Hospital, Southport, QLD, 4215, Australia; School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Alfred King-Yin Lam
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia; Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia.
| |
Collapse
|
27
|
Yaacov A, Ben Cohen G, Landau J, Hope T, Simon I, Rosenberg S. Cancer mutational signatures identification in clinical assays using neural embedding-based representations. Cell Rep Med 2024; 5:101608. [PMID: 38866015 PMCID: PMC11228799 DOI: 10.1016/j.xcrm.2024.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
While mutational signatures provide a plethora of prognostic and therapeutic insights, their application in clinical-setting, targeted gene panels is extremely limited. We develop a mutational representation model (which learns and embeds specific mutation signature connections) that enables prediction of dominant signatures with only a few mutations. We predict the dominant signatures across more than 60,000 tumors with gene panels, delineating their landscape across different cancers. Dominant signature predictions in gene panels are of clinical importance. These included UV, tobacco, and apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) signatures that are associated with better survival, independently from mutational burden. Further analyses reveal gene and mutation associations with signatures, such as SBS5 with TP53 and APOBEC with FGFR3S249C. In a clinical use case, APOBEC signature is a robust and specific predictor for resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Our model provides an easy-to-use way to detect signatures in clinical setting assays with many possible clinical implications for an unprecedented number of cancer patients.
Collapse
Affiliation(s)
- Adar Yaacov
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Gil Ben Cohen
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jakob Landau
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tom Hope
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Rosenberg
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
28
|
Boeri M, Signoroni S, Ciniselli CM, Gariboldi M, Zanutto S, Rausa E, Segale M, Zanghì A, Ricci MT, Verderio P, Sozzi G, Vitellaro M. Detection of (pre)cancerous colorectal lesions in Lynch syndrome patients by microsatellite instability liquid biopsy. Cancer Gene Ther 2024; 31:842-850. [PMID: 38332046 PMCID: PMC11192631 DOI: 10.1038/s41417-023-00721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024]
Abstract
Lynch syndrome (LS) is an inherited condition characterized by an increased risk of developing cancer, in particular colorectal cancer (CRC). Microsatellite instability (MSI) is the main feature of (pre)cancerous lesions occurring in LS patients. Close endoscopic surveillance is the only option available to reduce CRC morbidity and mortality. However, it may fail to intercept interval cancers and patients' compliance to such an invasive procedure may decrease over the years. The development of a minimally invasive test able to detect (pre)cancerous colorectal lesions, could thus help tailor surveillance programs in LS patients. Taking advantage of an endoscopic surveillance program, we retrospectively assessed the instability of five microsatellites (BAT26, BAT25, NR24, NR21, and Mono27) in liquid biopsies collected at baseline and possibly at two further endoscopic rounds. For this purpose, we tested a new multiplex drop-off digital polymerase chain reaction (dPCR) assay, reaching mutant allele frequencies (MAFs) as low as 0.01%. Overall, 78 plasma samples at the three time-points from 18 patients with baseline (pre)cancerous lesions and 18 controls were available for molecular analysis. At baseline, the MAFs of BAT26, BAT25 and NR24 were significantly higher in samples of patients with lesions but did not differ with respect to the grade of dysplasia or any other clinico-pathological characteristics. When all markers were combined to determine MSI in blood, this test was able to discriminate lesion-bearing patients with an AUC of 0.80 (95%CI: 0.66; 0.94).
Collapse
Affiliation(s)
- Mattia Boeri
- Epigenomics and Biomarkers of Solid Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Signoroni
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Chiara Maura Ciniselli
- Bioinformatics and Biostatistics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Gariboldi
- Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Susanna Zanutto
- Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Rausa
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Miriam Segale
- Epigenomics and Biomarkers of Solid Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Zanghì
- Epigenomics and Biomarkers of Solid Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Teresa Ricci
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriella Sozzi
- Epigenomics and Biomarkers of Solid Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Colorectal Surgery Division, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
29
|
Mariella E, Grasso G, Miotto M, Buzo K, Reilly NM, Andrei P, Vitiello PP, Crisafulli G, Arena S, Rospo G, Corti G, Lorenzato A, Cancelliere C, Barault L, Gionfriddo G, Linnebacher M, Russo M, Di Nicolantonio F, Bardelli A. Transcriptome-wide gene expression outlier analysis pinpoints therapeutic vulnerabilities in colorectal cancer. Mol Oncol 2024; 18:1460-1485. [PMID: 38468448 PMCID: PMC11161737 DOI: 10.1002/1878-0261.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Multiple strategies are continuously being explored to expand the drug target repertoire in solid tumors. We devised a novel computational workflow for transcriptome-wide gene expression outlier analysis that allows the systematic identification of both overexpression and underexpression events in cancer cells. Here, it was applied to expression values obtained through RNA sequencing in 226 colorectal cancer (CRC) cell lines that were also characterized by whole-exome sequencing and microarray-based DNA methylation profiling. We found cell models displaying an abnormally high or low expression level for 3533 and 965 genes, respectively. Gene expression abnormalities that have been previously associated with clinically relevant features of CRC cell lines were confirmed. Moreover, by integrating multi-omics data, we identified both genetic and epigenetic alternations underlying outlier expression values. Importantly, our atlas of CRC gene expression outliers can guide the discovery of novel drug targets and biomarkers. As a proof of concept, we found that CRC cell lines lacking expression of the MTAP gene are sensitive to treatment with a PRMT5-MTA inhibitor (MRTX1719). Finally, other tumor types may also benefit from this approach.
Collapse
Affiliation(s)
- Elisa Mariella
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | - Gaia Grasso
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | - Martina Miotto
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | - Kristi Buzo
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
- Candiolo Cancer InstituteFPO‐IRCCSCandiolo (TO)Italy
| | | | - Pietro Andrei
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
| | - Pietro Paolo Vitiello
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | | | - Sabrina Arena
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
- Candiolo Cancer InstituteFPO‐IRCCSCandiolo (TO)Italy
| | - Giuseppe Rospo
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
- Present address:
Boehringer Ingelheim RCV GmbH & Co KGViennaAustria
| | - Giorgio Corti
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Annalisa Lorenzato
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
| | | | - Ludovic Barault
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
| | | | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and ImmunotherapyUniversity of RostockGermany
| | - Mariangela Russo
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | - Federica Di Nicolantonio
- Department of OncologyUniversity of TorinoCandiolo (TO)Italy
- Candiolo Cancer InstituteFPO‐IRCCSCandiolo (TO)Italy
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| |
Collapse
|
30
|
Battuello P, Corti G, Bartolini A, Lorenzato A, Sogari A, Russo M, Di Nicolantonio F, Bardelli A, Crisafulli G. Mutational signatures of colorectal cancers according to distinct computational workflows. Brief Bioinform 2024; 25:bbae249. [PMID: 38783705 PMCID: PMC11116831 DOI: 10.1093/bib/bbae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Tumor mutational signatures have gained prominence in cancer research, yet the lack of standardized methods hinders reproducibility and robustness. Leveraging colorectal cancer (CRC) as a model, we explored the influence of computational parameters on mutational signature analyses across 230 CRC cell lines and 152 CRC patients. Results were validated in three independent datasets: 483 endometrial cancer patients stratified by mismatch repair (MMR) status, 35 lung cancer patients by smoking status and 12 patient-derived organoids (PDOs) annotated for colibactin exposure. Assessing various bioinformatic tools, reference datasets and input data sizes including whole genome sequencing, whole exome sequencing and a pan-cancer gene panel, we demonstrated significant variability in the results. We report that the use of distinct algorithms and references led to statistically different results, highlighting how arbitrary choices may induce variability in the mutational signature contributions. Furthermore, we found a differential contribution of mutational signatures between coding and intergenic regions and defined the minimum number of somatic variants required for reliable mutational signature assignment. To facilitate the identification of the most suitable workflows, we developed Comparative Mutational Signature analysis on Coding and Extragenic Regions (CoMSCER), a bioinformatic tool which allows researchers to easily perform comparative mutational signature analysis by coupling the results from several tools and public reference datasets and to assess mutational signature contributions in coding and non-coding genomic regions. In conclusion, our study provides a comparative framework to elucidate the impact of distinct computational workflows on mutational signatures.
Collapse
Affiliation(s)
- Paolo Battuello
- Department of Oncology, Molecular Biotechnology Center, University of Turin, Piazza Nizza 44, 10126, Turin, Italy
- Genomics of Cancer and Targeted Therapies Unit, IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Giorgio Corti
- Department of Oncology, Molecular Biotechnology Center, University of Turin, Piazza Nizza 44, 10126, Turin, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142 - km 3.95, 10060, Candiolo, Turin, Italy
| | - Alice Bartolini
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142 - km 3.95, 10060, Candiolo, Turin, Italy
| | - Annalisa Lorenzato
- Department of Oncology, Molecular Biotechnology Center, University of Turin, Piazza Nizza 44, 10126, Turin, Italy
| | - Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Turin, Piazza Nizza 44, 10126, Turin, Italy
- Genomics of Cancer and Targeted Therapies Unit, IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Turin, Piazza Nizza 44, 10126, Turin, Italy
- Genomics of Cancer and Targeted Therapies Unit, IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, Molecular Biotechnology Center, University of Turin, Piazza Nizza 44, 10126, Turin, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142 - km 3.95, 10060, Candiolo, Turin, Italy
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Turin, Piazza Nizza 44, 10126, Turin, Italy
- Genomics of Cancer and Targeted Therapies Unit, IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Giovanni Crisafulli
- Genomics of Cancer and Targeted Therapies Unit, IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
31
|
Marques A, Cavaco P, Torre C, Sepodes B, Rocha J. Tumor mutational burden in colorectal cancer: Implications for treatment. Crit Rev Oncol Hematol 2024; 197:104342. [PMID: 38614266 DOI: 10.1016/j.critrevonc.2024.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
Although immune checkpoint inhibitors have revolutionized the treatment of several advanced solid cancers, in colorectal cancer, the transformative benefit of these innovative medicines is currently limited to those with deficient mismatch repair or high microsatellite instability. Tumor mutational burden (TMB) has emerged as a potential predictor of immunotherapy benefit, but the lack of standardization in its assessment and reporting has hindered the introduction of this biomarker in routine clinical practice. Here, we compiled 45 colorectal cancer studies utilizing numerical thresholds for high-TMB. In this group of studies, TMB cut-offs ranged from 6.88 to 41 mut/Mb and were most often set at 10, 17, or 20 mut/Mb. Additionally, we observed divergent TMB definitions and inconsistent disclosure of specific methodological details, which collectively emphasize the substantial lack of harmonization within the field. Ongoing efforts to harmonize TMB assessment will be critical to validate TMB as a predictive marker of immunotherapy response.
Collapse
Affiliation(s)
- Adriana Marques
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Patrícia Cavaco
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal; Pharmacy Department, Centro Hospitalar de Lisboa Ocidental, Lisboa 1449-005, Portugal
| | - Carla Torre
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| |
Collapse
|
32
|
Matthaios D, Balgkouranidou I, Neanidis K, Sofis A, Pikouli A, Romanidis K, Pappa A, Karamouzis M, Zygogianni A, Charalampidis C, Zarogoulidis P, Rigas G, Galanis A. Revisiting Temozolomide's role in solid tumors: Old is gold? J Cancer 2024; 15:3254-3271. [PMID: 38817857 PMCID: PMC11134434 DOI: 10.7150/jca.94109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/23/2024] [Indexed: 06/01/2024] Open
Abstract
Temozolomide is an imidazotetrazine with a long history in oncology especially for the high grade malignant glioma and metastatic melanoma. However, last year's new indications for its use are added. Its optimum pharmacodynamic profile, its ability to penetrate the blood-brain barrier, the existence of methylation of MGMT in solid tumors which enhances its efficacy, the identification of new agents that can overcome temozolomide's resistance, the promising role of temozolomide in turning immune cold tumors to hot ones, are leading to expand its use in other solid tumors, giving oncologists an additional tool for the treatment of advanced and aggressive neoplasms.
Collapse
Affiliation(s)
| | | | | | | | - Anastasia Pikouli
- Third Department of Surgery, Attikon University Hospital, Athens, Greece
| | - Konstantinos Romanidis
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Paul Zarogoulidis
- Pulmonary-Oncology Department, General Clinic Euromedice, Thessaloniki, Greece
| | - George Rigas
- Oncology Department, Private General Clinic of Volos, Volos, Greece
| | - Alex Galanis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
33
|
Hu Z, Wu Z, Liu W, Ning Y, Liu J, Ding W, Fan J, Cai S, Li Q, Li W, Yang X, Dou Y, Wang W, Peng W, Lu F, Zhuang X, Qin T, Kang X, Feng C, Xu Z, Lv Q, Wang Q, Wang C, Wang X, Wang Z, Wang J, Jiang J, Wang B, Mills GB, Ma D, Gao Q, Li K, Chen G, Chen X, Sun C. Proteogenomic insights into early-onset endometrioid endometrial carcinoma: predictors for fertility-sparing therapy response. Nat Genet 2024; 56:637-651. [PMID: 38565644 DOI: 10.1038/s41588-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Endometrial carcinoma remains a public health concern with a growing incidence, particularly in younger women. Preserving fertility is a crucial consideration in the management of early-onset endometrioid endometrial carcinoma (EEEC), particularly in patients under 40 who maintain both reproductive desire and capacity. To illuminate the molecular characteristics of EEEC, we undertook a large-scale multi-omics study of 215 patients with endometrial carcinoma, including 81 with EEEC. We reveal an unexpected association between exposome-related mutational signature and EEEC, characterized by specific CTNNB1 and SIGLEC10 hotspot mutations and disruption of downstream pathways. Interestingly, SIGLEC10Q144K mutation in EEECs resulted in aberrant SIGLEC-10 protein expression and promoted progestin resistance by interacting with estrogen receptor alpha. We also identified potential protein biomarkers for progestin response in fertility-sparing treatment for EEEC. Collectively, our study establishes a proteogenomic resource of EEECs, uncovering the interactions between exposome and genomic susceptibilities that contribute to the development of primary prevention and early detection strategies for EEECs.
Collapse
Affiliation(s)
- Zhe Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zimeng Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wei Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China
| | - Yan Ning
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China
| | - Jingbo Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wencheng Ding
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Junpeng Fan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Shuyan Cai
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China
| | - Qinlan Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wenting Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaohang Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yingyu Dou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wei Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wenju Peng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Funian Lu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xucui Zhuang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Tianyu Qin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaoyan Kang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chenzhao Feng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhiying Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China
| | - Qiaoying Lv
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China
| | - Qian Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China
| | - Chao Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China
| | - Xinyu Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Zhiqi Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital; Peking University People's Hospital, Xicheng District, Beijing, P. R. China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital; Peking University People's Hospital, Xicheng District, Beijing, P. R. China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Beibei Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | | | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Gang Chen
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P. R. China.
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
34
|
Zhu L, Qin J. Predictive biomarkers for immunotherapy response in extensive-stage SCLC. J Cancer Res Clin Oncol 2024; 150:22. [PMID: 38245636 PMCID: PMC10799815 DOI: 10.1007/s00432-023-05544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Small cell lung cancer (SCLC) accounts for about 13-15% of all lung cancers, and about 70% of SCLC patients have developed extensive-stage small cell lung cancer (ES-SCLC) at the time of diagnosis because of its highgrade malignancy, easy invasion, and metastasis. In recent years, immunotherapy combined with chemotherapy has become the standard first-line treatment for ES-SCLC. However, SCLC is a relatively immune-cold lung cancer subtype with a limited number of beneficiaries and a short benefit period. Therefore, the use of biomarkers to identify populations with significant benefits from immunotherapy will help improve the efficacy and survival benefits of immunotherapy. However, predictive biomarkers suitable for clinical practice have not been established in the field of SCLC. PURPOSE In order to find the predictive biomarkers of immunotherapy for ES-SCLC, we summarized the research progress of traditional biomarkers, such as programmed cell death ligand 1 (PD-L1) and tumor mutation burden (TMB), and summarizes the research of potential biomarkers associated with prognosis, such as molecular subtypes, special gene expression, expression of major histocompatibility complex (MHC) I and II classes, tumor immune microenvironment (TIME), and circulating tumor DNA (ctDNA) .We aim to provide new insights on biomarkers. CONCLUSION The exploration of biomarkers for immunotherapy of SCLC is still very difficult, and it is clear that conventional predictive biomarkers are not suitable for SCLC. At present, the molecular subtypes defined from transcription factors may have some guiding significance, which still needs to be confirmed by prospective clinical studies. In addition, the ctDNA positivity rate of SCLC is higher than that of other tumor types, which can also solve the dilemma of the difficulty of obtaining specimens of SCLC tissues. And the dynamic change of ctDNA also has great potential to predict the curative effect of SCLC, which is worth further clinical exploration.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jing Qin
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China.
| |
Collapse
|
35
|
Backman S, Botling J, Nord H, Ghosal S, Stålberg P, Juhlin CC, Almlöf J, Sundin A, Zhang L, Moens L, Eriksson B, Welin S, Hellman P, Skogseid B, Pacak K, Mollazadegan K, Åkerström T, Crona J. The Evolutionary History of Metastatic Pancreatic Neuroendocrine Tumours Reveals a Therapy Driven Route to High-Grade Transformation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24300723. [PMID: 38313278 PMCID: PMC10836126 DOI: 10.1101/2024.01.08.24300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Tumour evolution with acquisition of more aggressive disease characteristics is a hallmark of disseminated cancer. Metastatic pancreatic neuroendocrine tumours (PanNETs) in particular, show frequent progression from a low/intermediate to a high-grade disease. To understand the molecular mechanisms underlying this phenomenon, we performed multi-omics analysis of 32 longitudinal samples from six metastatic PanNET patients. Following MEN1 inactivation, PanNETs exhibit genetic heterogeneity on both spatial and temporal dimensions with parallel and convergent tumuor evolution involving the ATRX/DAXX and mTOR pathways. Following alkylating chemotherapy treatment, some PanNETs develop mismatch repair deficiency and acquire a hypermutator phenotype. This DNA hypermutation phenotype was only found in cases that also showed transformation into a high-grade PanNET. Overall, our findings contribute to broaden the understanding of metastatic PanNET, and suggests that therapy driven disease evolution is an important hallmark of this disease.
Collapse
|
36
|
Yang J, Huang J, Han D, Ma X. Artificial Intelligence Applications in the Treatment of Colorectal Cancer: A Narrative Review. Clin Med Insights Oncol 2024; 18:11795549231220320. [PMID: 38187459 PMCID: PMC10771756 DOI: 10.1177/11795549231220320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024] Open
Abstract
Colorectal cancer is the third most prevalent cancer worldwide, and its treatment has been a demanding clinical problem. Beyond traditional surgical therapy and chemotherapy, newly revealed molecular mechanisms diversify therapeutic approaches for colorectal cancer. However, the selection of personalized treatment among multiple treatment options has become another challenge in the era of precision medicine. Artificial intelligence has recently been increasingly investigated in the treatment of colorectal cancer. This narrative review mainly discusses the applications of artificial intelligence in the treatment of colorectal cancer patients. A comprehensive literature search was conducted in MEDLINE, EMBASE, and Web of Science to identify relevant papers, resulting in 49 articles being included. The results showed that, based on different categories of data, artificial intelligence can predict treatment outcomes and essential guidance information of traditional and novel therapies, thus enabling individualized treatment strategy selection for colorectal cancer patients. Some frequently implemented machine learning algorithms and deep learning frameworks have also been employed for long-term prognosis prediction in patients with colorectal cancer. Overall, artificial intelligence shows encouraging results in treatment strategy selection and prognosis evaluation for colorectal cancer patients.
Collapse
Affiliation(s)
- Jiaqing Yang
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Huang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Deqian Han
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Qi Y, Huang X, Ji C, Wang C, Yao Y. The co-inhibitory immune checkpoint proteins B7-H1(PD-L1) and B7-H4 in high grade glioma: From bench to bedside. Transl Oncol 2024; 39:101793. [PMID: 37844479 PMCID: PMC10587763 DOI: 10.1016/j.tranon.2023.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
Co-inhibitory immune checkpoints play a crucial role in tumor progression, and PD-1/PD-L1 inhibitor has been a breakthrough for treating multiple refractory tumors in last decade. Nevertheless, results of several phase III clinical trials of PD-1/PD-L1 inhibitor are unsatisfactory in high grade gliomas recently. This article reviews the promising biomarkers which can predict the efficacy of PD-1/PD-L1 blockade immunotherapy and current status of emerging strategies involving PD-1/PD-L1 inhibitors, especially the combination treatment and neoadjuvant PD-1 therapy in gliomas. In addition, B7-H4, one of the most promising immune checkpoints, is also briefly reviewed here for its clinical significance, regulatory mechanism and developing immunotherapeutic strategies in pre-clinical glioma models.
Collapse
Affiliation(s)
- Ying Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xiaoming Huang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Chunxia Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | | | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
38
|
Shaw R, Karmakar S, Basu M, Ghosh MK. DDX5 (p68) orchestrates β-catenin, RelA and SP1 mediated MGMT gene expression in human colon cancer cells: Implication in TMZ chemoresistance. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194991. [PMID: 37793472 DOI: 10.1016/j.bbagrm.2023.194991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
DDX5 (p68) upregulation has been linked with various cancers of different origins, especially Colon Adenocarcinomas. Similarly, across cancers, MGMT has been identified as the major contributor of chemoresistance against DNA alkylating agents like Temozolomide (TMZ). TMZ is an emerging potent chemotherapeutic agent across cancers under the arena of drug repurposing. Recent studies have established that patients with open MGMT promoters are prone to be innately resistant or acquire resistance against TMZ compared to its closed conformation. However, not much is known about the transcriptional regulation of MGMT gene in the context of colon cancer. This necessitates studying MGMT gene regulation which directly impacts the cellular potential to develop chemoresistance against alkylating agents. Our study aims to uncover an unidentified mechanism of DDX5-mediated MGMT gene regulation. Experimentally, we found that both mRNA and protein expression levels of MGMT were elevated in response to p68 overexpression in multiple human colon cancer cell lines and vice-versa. Since p68 cannot directly interact with the MGMT promoter, transcription factors viz., β-catenin, RelA (p65) and SP1 were also studied as reported contributors. Through co-immunoprecipitation and GST-pull-down studies, p68 was established as an interacting partner of SP1 in addition to β-catenin and NF-κB (p50-p65). Mechanistically, luciferase reporter and chromatin-immunoprecipitation assays demonstrated that p68 interacts with the MGMT promoter via TCF4-LEF, RelA and SP1 sites to enhance its transcription. To the best of our knowledge, this is the first report of p68 as a transcriptional co-activator of MGMT promoter and our study identifies p68 as a novel and master regulator of MGMT gene expression.
Collapse
Affiliation(s)
- Rajni Shaw
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
39
|
Li H, Guo L, Wang C, Hu X, Xu Y. Improving the value of molecular testing: current status and opportunities in colorectal cancer precision medicine. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0293. [PMID: 38038341 PMCID: PMC10875284 DOI: 10.20892/j.issn.2095-3941.2023.0293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Haiyun Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linwei Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chenchen Wang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xin Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Precision Cancer Medical Center Affiliated with Fudan University Shanghai Cancer Center, Shanghai 201315, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
40
|
Yao S, Han Y, Yang M, Jin K, Lan H. Integration of liquid biopsy and immunotherapy: opening a new era in colorectal cancer treatment. Front Immunol 2023; 14:1292861. [PMID: 38077354 PMCID: PMC10702507 DOI: 10.3389/fimmu.2023.1292861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Immunotherapy has revolutionized the conventional treatment approaches for colorectal cancer (CRC), offering new therapeutic prospects for patients. Liquid biopsy has shown significant potential in early screening, diagnosis, and postoperative monitoring by analyzing circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). In the era of immunotherapy, liquid biopsy provides additional possibilities for guiding immune-based treatments. Emerging technologies such as mass spectrometry-based detection of neoantigens and flow cytometry-based T cell sorting offer new tools for liquid biopsy, aiming to optimize immune therapy strategies. The integration of liquid biopsy with immunotherapy holds promise for improving treatment outcomes in colorectal cancer patients, enabling breakthroughs in early diagnosis and treatment, and providing patients with more personalized, precise, and effective treatment strategies.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Patelli G, Mauri G, Tosi F, Amatu A, Bencardino K, Bonazzina E, Pizzutilo EG, Villa F, Calvanese G, Agostara AG, Stabile S, Ghezzi S, Crisafulli G, Di Nicolantonio F, Marsoni S, Bardelli A, Siena S, Sartore-Bianchi A. Circulating Tumor DNA to Drive Treatment in Metastatic Colorectal Cancer. Clin Cancer Res 2023; 29:4530-4539. [PMID: 37436743 PMCID: PMC10643999 DOI: 10.1158/1078-0432.ccr-23-0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
In the evolving molecular treatment landscape of metastatic colorectal cancer (mCRC), the identification of druggable alterations is pivotal to achieve the best therapeutic opportunity for each patient. Because the number of actionable targets is expanding, there is the need to timely detect their presence or emergence to guide the choice of different available treatment options. Liquid biopsy, through the analysis of circulating tumor DNA (ctDNA), has proven safe and effective as a complementary method to address cancer evolution while overcoming the limitations of tissue biopsy. Even though data are accumulating regarding the potential for ctDNA-guided treatments applied to targeted agents, still major gaps in knowledge exist as for their application to different areas of the continuum of care. In this review, we recapitulate how ctDNA information could be exploited to drive different targeted treatment strategies in mCRC patients, by refining molecular selection before treatment by addressing tumor heterogeneity beyond tumor tissue biopsy; longitudinally monitoring early-tumor response and resistance mechanisms to targeted agents, potentially leading to tailored, molecular-driven, therapeutic options; guiding the molecular triage towards rechallenge strategies with anti-EGFR agents, suggesting the best time for retreatment; and providing opportunities for an "enhanced rechallenge" through additional treatments or combos aimed at overcoming acquired resistance. Besides, we discuss future perspectives concerning the potential role of ctDNA to fine-tune investigational strategies such as immuno-oncology.
Collapse
Affiliation(s)
- Giorgio Patelli
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Gianluca Mauri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Federica Tosi
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessio Amatu
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Katia Bencardino
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Erica Bonazzina
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Elio Gregory Pizzutilo
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Villa
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Gabriele Calvanese
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alberto Giuseppe Agostara
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Stefano Stabile
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Silvia Ghezzi
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Federica Di Nicolantonio
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Silvia Marsoni
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Division of Clinical Research and Innovation, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
42
|
Moog S, Lamartina L, Bani MA, Al Ghuzlan A, Friboulet L, Italiano A, Lacroix L, Postel Vinay S, Tselikas L, Deschamps F, Bonnet B, Pani F, Baudin E, Hadoux J. Alkylating Agent-Induced High Tumor Mutational Burden in Medullary Thyroid Cancer and Response to Immune Checkpoint Inhibitors: Two Case Reports. Thyroid 2023; 33:1368-1373. [PMID: 37698883 DOI: 10.1089/thy.2023.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Background: Patients with metastatic medullary thyroid cancer (MTC) who progressed under tyrosine kinase inhibitors can benefit from an alkylating agent such as dacarbazine or temozolomide. Patient Findings: We describe two patients with metastatic MTC who developed a hypermutant phenotype after alkylating agent treatment. This phenotype was characterized by a high tumor mutational burden (TMB) and a mutational signature indicative of alkylating agent mutagenesis (single-base substitution 11). Both patients received immune checkpoint inhibitors, with partial morphological responses, clinical benefit, and progression-free survival of 6 and 9 months, respectively. Summary and Conclusions: Based on the described observations, we suggest that a hypermutant phenotype may be induced after alkylating agent treatment for MTC and the sequential use of immunotherapy should be further explored as a treatment option for MTC patients with increased TMB.
Collapse
Affiliation(s)
- Sophie Moog
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Livia Lamartina
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Mohamed-Amine Bani
- Département de Biologie et Pathologie Médicale, Institut Gustave Roussy, Villejuif, France
| | - Abir Al Ghuzlan
- Département de Biologie et Pathologie Médicale, Institut Gustave Roussy, Villejuif, France
| | - Luc Friboulet
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Villejuif, France
| | - Antoine Italiano
- Département d'Innovation Thérapeutique et Essais Précoces, and Institut Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Villejuif, France
| | - Sophie Postel Vinay
- Département d'Innovation Thérapeutique et Essais Précoces, and Institut Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Villejuif, France
| | - Lambros Tselikas
- Département de Radiologie Interventionnelle, Institut Gustave Roussy, Villejuif, France
| | - Frédéric Deschamps
- Département de Radiologie Interventionnelle, Institut Gustave Roussy, Villejuif, France
| | - Baptiste Bonnet
- Département de Radiologie Interventionnelle, Institut Gustave Roussy, Villejuif, France
| | - Fabiana Pani
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Eric Baudin
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Julien Hadoux
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
43
|
Matteucci L, Bittoni A, Gallo G, Ridolfi L, Passardi A. Immunocheckpoint Inhibitors in Microsatellite-Stable or Proficient Mismatch Repair Metastatic Colorectal Cancer: Are We Entering a New Era? Cancers (Basel) 2023; 15:5189. [PMID: 37958363 PMCID: PMC10648369 DOI: 10.3390/cancers15215189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause of cancer-related deaths in Europe. About 5% of metastatic CRC (mCRC) are characterized by high microsatellite instability (MSI) due to a deficient DNA mismatch repair (dMMR), and this condition has been related to a high sensitivity to immunotherapy, in particular to the Immune Checkpoint Inhibitors (ICIs). In fact, in MSI-H or dMMR mCRC, treatment with ICIs induced remarkable response rates and prolonged survival. However, the majority of mCRC cases are mismatch-repair-proficient (pMMR) and microsatellite-stable (MSS), and unfortunately these conditions involve resistance to ICIs. This review aims to provide an overview of the strategies implemented to overcome ICI resistance and/or define subgroups of patients with MSS or dMMR mCRC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Laura Matteucci
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Bittoni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Graziana Gallo
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, “Maurizio Bufalini” Hospital, 47521 Cesena, Italy
| | - Laura Ridolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
44
|
Foote MB, Argilés G, Rousseau B, Segal NH. Facts and Hopes in Colorectal Cancer Immunotherapy. Clin Cancer Res 2023; 29:4032-4039. [PMID: 37326624 DOI: 10.1158/1078-0432.ccr-22-2176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Although a minority of colorectal cancers exhibit mismatch repair deficiency and associated sensitivity to immune checkpoint inhibitors (ICI), the vast majority of colorectal cancers arise in a tolerogenic microenvironment with mismatch repair proficiency, low tumor-intrinsic immunogenicity, and negligible immunotherapy responsiveness. Treatment strategies to augment tumor immunity with combination ICIs and chemotherapy have broadly failed in mismatch repair-proficient tumors. Similarly, although several small single-arm studies have shown that checkpoint blockade plus radiation or select tyrosine kinase inhibition may show improved outcomes compared with historical controls, this finding has not been clearly validated in randomized trials. An evolving next generation of intelligently engineered checkpoint inhibitors, bispecific T-cell engagers, and emerging CAR-T cell therapies may improve immunorecognition of colorectal tumors. Across these modalities, ongoing translational efforts to better define patient populations and biomarkers associated with immune response, as well as combine biologically sound and mutually amplifying therapies, show promise for a new era of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Guillem Argilés
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neil H Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
45
|
Mu Q, Chai R, Pang B, Yang Y, Liu H, Zhao Z, Bao Z, Song D, Zhu Z, Yan M, Jiang B, Mo Z, Tang J, Sa JK, Cho HJ, Chang Y, Chan KHY, Loi DSC, Tam SST, Chan AKY, Wu AR, Liu Z, Poon WS, Ng HK, Chan DTM, Iavarone A, Nam DH, Jiang T, Wang J. Identifying predictors of glioma evolution from longitudinal sequencing. Sci Transl Med 2023; 15:eadh4181. [PMID: 37792958 DOI: 10.1126/scitranslmed.adh4181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Clonal evolution drives cancer progression and therapeutic resistance. Recent studies have revealed divergent longitudinal trajectories in gliomas, but early molecular features steering posttreatment cancer evolution remain unclear. Here, we collected sequencing and clinical data of initial-recurrent tumor pairs from 544 adult diffuse gliomas and performed multivariate analysis to identify early molecular predictors of tumor evolution in three diffuse glioma subtypes. We found that CDKN2A deletion at initial diagnosis preceded tumor necrosis and microvascular proliferation that occur at later stages of IDH-mutant glioma. Ki67 expression at diagnosis was positively correlated with acquiring hypermutation at recurrence in the IDH-wild-type glioma. In all glioma subtypes, MYC gain or MYC-target activation at diagnosis was associated with treatment-induced hypermutation at recurrence. To predict glioma evolution, we constructed CELLO2 (Cancer EvoLution for LOngitudinal data version 2), a machine learning model integrating features at diagnosis to forecast hypermutation and progression after treatment. CELLO2 successfully stratified patients into subgroups with distinct prognoses and identified a high-risk patient group featured by MYC gain with worse post-progression survival, from the low-grade IDH-mutant-noncodel subtype. We then performed chronic temozolomide-induction experiments in glioma cell lines and isogenic patient-derived gliomaspheres and demonstrated that MYC drives temozolomide resistance by promoting hypermutation. Mechanistically, we demonstrated that, by binding to open chromatin and transcriptionally active genomic regions, c-MYC increases the vulnerability of key mismatch repair genes to treatment-induced mutagenesis, thus triggering hypermutation. This study reveals early predictors of cancer evolution under therapy and provides a resource for precision oncology targeting cancer dynamics in diffuse gliomas.
Collapse
Affiliation(s)
- Quanhua Mu
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518045, China
| | - Ruichao Chai
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bo Pang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Hanjie Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zheng Zhao
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhaoshi Bao
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Dong Song
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Zhihan Zhu
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Mengli Yan
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Biaobin Jiang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Zongchao Mo
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Jihong Tang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
| | - Yuzhou Chang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Kaitlin Hao Yi Chan
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Danson Shek Chun Loi
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Sindy Sing Ting Tam
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Aden Ka Yin Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| | - Zhaoqi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wai Sang Poon
- CUHK Otto Wong Brain Tumour Centre, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ho Keung Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Danny Tat Ming Chan
- CUHK Otto Wong Brain Tumour Centre, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 110745, Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 110745, Korea
- Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA) Research Networks
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA) Research Networks
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing 100070, China
| | - Jiguang Wang
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518045, China
- Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA) Research Networks
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong, SAR 999077, China
| |
Collapse
|
46
|
Xie Y, Lecoester B, Boustani J. Contribution of chemotherapy in immunoradiotherapy combinations. Cancer Radiother 2023; 27:519-523. [PMID: 37495428 DOI: 10.1016/j.canrad.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023]
Abstract
Several preclinical data have suggested the ability of radiation therapy to modulate the intrinsic immunogenicity of cancer cells and the tumor microenvironment, with the aim of increasing responses to checkpoint inhibitors. Early results showing a restoration of checkpoint inhibitors response in patients following irradiation have generated a lot of enthusiasm around radiation therapy beyond its usual role in local disease control. Prospective clinical trials evaluating immunoradiotherapy combinations have provided proof-of-concept that radiation therapy may induce tumor-specific T immune responses in patients treated with checkpoint inhibitors. However, these results are not always reproducible, reflecting the existence of factors related to either radiation therapy, immunotherapy and/or the host, which influence the efficacy of these combinations. Anticancer chemotherapy can play a role in amplifying the immune-radiation response by promoting tumor immunogenicity and modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Y Xie
- Inserm, EFS BFC, UMR 1098, RIGHT, greffon-hôte-tumeur interactions/ingénierie cellulaire et génique, université de Franche-Comté, Besançon, France
| | - B Lecoester
- Inserm, EFS BFC, UMR 1098, RIGHT, greffon-hôte-tumeur interactions/ingénierie cellulaire et génique, université de Franche-Comté, Besançon, France
| | - J Boustani
- Inserm, EFS BFC, UMR 1098, RIGHT, greffon-hôte-tumeur interactions/ingénierie cellulaire et génique, université de Franche-Comté, Besançon, France; Department of Radiation Therapy, Besançon University Hospital, Besançon, France.
| |
Collapse
|
47
|
Loft M, To YH, Gibbs P, Tie J. Clinical application of circulating tumour DNA in colorectal cancer. Lancet Gastroenterol Hepatol 2023; 8:837-852. [PMID: 37499673 DOI: 10.1016/s2468-1253(23)00146-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 07/29/2023]
Abstract
Liquid biopsies that detect circulating tumour DNA (ctDNA) have the potential to revolutionise the personalised management of colorectal cancer. For patients with early-stage disease, emerging clinical applications include the assessment of molecular residual disease after surgery, the monitoring of adjuvant chemotherapy efficacy, and early detection of recurrence during surveillance. In the advanced disease setting, data highlight the potential of ctDNA levels as a prognostic marker and as an early indicator of treatment response. ctDNA assessment can complement standard tissue-based testing for molecular characterisation, with the added ability to monitor emerging mutations under the selective pressure of targeted therapy. Here we provide an overview of the evidence supporting the use of ctDNA in colorectal cancer, the studies underway to address some of the outstanding questions, and the barriers to widespread clinical uptake.
Collapse
Affiliation(s)
- Matthew Loft
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Western Health, Footscray, VIC, Australia
| | - Yat Hang To
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Peter Gibbs
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Western Health, Footscray, VIC, Australia
| | - Jeanne Tie
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
48
|
De Bacco F, Orzan F, Crisafulli G, Prelli M, Isella C, Casanova E, Albano R, Reato G, Erriquez J, D'Ambrosio A, Panero M, Dall'Aglio C, Casorzo L, Cominelli M, Pagani F, Melcarne A, Zeppa P, Altieri R, Morra I, Cassoni P, Garbossa D, Cassisa A, Bartolini A, Pellegatta S, Comoglio PM, Finocchiaro G, Poliani PL, Boccaccio C. Coexisting cancer stem cells with heterogeneous gene amplifications, transcriptional profiles, and malignancy are isolated from single glioblastomas. Cell Rep 2023; 42:112816. [PMID: 37505981 DOI: 10.1016/j.celrep.2023.112816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) is known as an intractable, highly heterogeneous tumor encompassing multiple subclones, each supported by a distinct glioblastoma stem cell (GSC). The contribution of GSC genetic and transcriptional heterogeneity to tumor subclonal properties is debated. In this study, we describe the systematic derivation, propagation, and characterization of multiple distinct GSCs from single, treatment-naive GBMs (GSC families). The tumorigenic potential of each GSC better correlates with its transcriptional profile than its genetic make-up, with classical GSCs being inherently more aggressive and mesenchymal more dependent on exogenous growth factors across multiple GBMs. These GSCs can segregate and recapitulate different histopathological aspects of the same GBM, as shown in a paradigmatic tumor with two histopathologically distinct components, including a conventional GBM and a more aggressive primitive neuronal component. This study provides a resource for investigating how GSCs with distinct genetic and/or phenotypic features contribute to individual GBM heterogeneity and malignant escalation.
Collapse
Affiliation(s)
- Francesca De Bacco
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Turin, 10060 Candiolo, Italy
| | - Francesca Orzan
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | | | - Marta Prelli
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Turin, 10060 Candiolo, Italy
| | - Claudio Isella
- Department of Oncology, University of Turin, 10060 Candiolo, Italy; Laboratory of Oncogenomics, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Elena Casanova
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Raffaella Albano
- Core Facilities, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Gigliola Reato
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Turin, 10060 Candiolo, Italy
| | - Jessica Erriquez
- Core Facilities, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Antonio D'Ambrosio
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Mara Panero
- Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Carmine Dall'Aglio
- Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Laura Casorzo
- Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Antonio Melcarne
- Neurosurgery Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Pietro Zeppa
- Neurosurgery Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Roberto Altieri
- Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Isabella Morra
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Diego Garbossa
- Neurosurgery Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Anna Cassisa
- Laboratory of Oncogenomics, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Alice Bartolini
- Core Facilities, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Serena Pellegatta
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Paolo M Comoglio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Pietro L Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Carla Boccaccio
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Turin, 10060 Candiolo, Italy.
| |
Collapse
|
49
|
Mao L, Lian B, Li C, Bai X, Zhou L, Cui C, Chi Z, Sheng X, Wang X, Tang B, Yan X, Li S, Kong Y, Dai J, Wei X, Li J, Duan R, Xu H, Wu X, Yang Y, Cheng F, Zhang C, Xia F, Pang Z, Guo J, Si L. Camrelizumab Plus Apatinib and Temozolomide as First-Line Treatment in Patients With Advanced Acral Melanoma: The CAP 03 Phase 2 Nonrandomized Clinical Trial. JAMA Oncol 2023; 9:1099-1107. [PMID: 37261804 PMCID: PMC10236335 DOI: 10.1001/jamaoncol.2023.1363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Importance Acral melanoma, known for low tumor mutation burden, responds poorly to immunotherapy. A standard therapy is still lacking. Objective To investigate the activity and safety of camrelizumab (an anti-programmed cell death-1 antibody) plus apatinib (a vascular endothelial growth factor receptor 2 inhibitor) and temozolomide as first-line treatment in patients with advanced acral melanoma. Design, Setting, and Participants In this single-arm, single-center, phase 2 nonrandomized clinical trial, patients with treatment-naive unresectable stage III or IV acral melanoma were enrolled at Peking University Cancer Hospital and Institute between June 4, 2020, and August 24, 2021. The data cutoff date was April 10, 2022. Interventions Patients received 4-week cycles of intravenous camrelizumab, 200 mg, every 2 weeks; oral apatinib 250 mg, once daily; and intravenous temozolomide, 200 mg/m2, once daily on days 1 to 5 until disease progression or unacceptable toxic effects. Main Outcomes and Measures The primary end point was objective response rate as assessed by investigators according to the Response Evaluation Criteria In Solid Tumors (version 1.1). Secondary end points included progression-free survival, time to response, duration of response, disease control rate, overall survival, and safety. Results A total of 50 patients (32 men [64%]; median age, 57 years [IQR, 52-62 years]) were enrolled and received treatment. The median follow-up duration was 13.4 months (IQR, 9.6-16.2 months). The objective response rate was 64.0% (32 of 50; 95% CI, 49.2%-77.1%). The median time to response and duration of response were 2.7 months (IQR, 0.9-2.9 months) and 17.5 months (95% CI, 12.0 to not reached), respectively. The disease control rate was 88.0% (44 of 50; 95% CI, 75.7%-95.5%). The estimated median progression-free survival was 18.4 months (95% CI, 10.6 to not reached). The median overall survival was not reached. The most common grade 3 or 4 treatment-related adverse events were increased gamma-glutamyltransferase levels (15 [30%]), decreased neutrophil count (11 [22%]), increased conjugated bilirubin levels (10 [20%]), and increased aspartate aminotransferase levels (10 [20%]). No treatment-related deaths occurred. Conclusions and Relevance The findings of this nonrandomized clinical trial suggest that camrelizumab plus apatinib and temozolomide may be a potential first-line treatment option for patients with advanced acral melanoma, which warrants further validation in a randomized clinical trial. Trial Registration ClinicalTrials.gov Identifier: NCT04397770.
Collapse
Affiliation(s)
- Lili Mao
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Bin Lian
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Caili Li
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xue Bai
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Li Zhou
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Chuanliang Cui
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihong Chi
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xinan Sheng
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xuan Wang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Bixia Tang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xieqiao Yan
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Siming Li
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan Kong
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jie Dai
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaoting Wei
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Juan Li
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Rong Duan
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Huayan Xu
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaowen Wu
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yue Yang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Fengzhuo Cheng
- Department of Medical Affairs, Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Cheng Zhang
- Department of Medical Affairs, Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Fangzhou Xia
- Department of Medical Affairs, Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Zheng Pang
- Department of Medical Affairs, Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Jun Guo
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lu Si
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
50
|
Zheng Z, Wieder T, Mauerer B, Schäfer L, Kesselring R, Braumüller H. T Cells in Colorectal Cancer: Unravelling the Function of Different T Cell Subsets in the Tumor Microenvironment. Int J Mol Sci 2023; 24:11673. [PMID: 37511431 PMCID: PMC10380781 DOI: 10.3390/ijms241411673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic options for metastatic colorectal cancer (mCRC) are very limited, and the prognosis using combination therapy with a chemotherapeutic drug and a targeted agent, e.g., epidermal growth factor receptor or tyrosine kinase, remains poor. Therefore, mCRC is associated with a poor median overall survival (mOS) of only 25-30 months. Current immunotherapies with checkpoint inhibitor blockade (ICB) have led to a substantial change in the treatment of several cancers, such as melanoma and non-small cell lung cancer. In CRC, ICB has only limited effects, except in patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) tumors, which comprise about 15% of sporadic CRC patients and about 4% of patients with metastatic CRC. The vast majority of sporadic CRCs are microsatellite-stable (MSS) tumors with low levels of infiltrating immune cells, in which immunotherapy has no clinical benefit so far. Immunotherapy with checkpoint inhibitors requires the presence of infiltrating T cells into the tumor microenvironment (TME). This makes T cells the most important effector cells in the TME, as evidenced by the establishment of the immunoscore-a method to estimate the prognosis of CRC patients. The microenvironment of a tumor contains several types of T cells that are anti-tumorigenic, such as CD8+ T cells or pro-tumorigenic, such as regulatory T cells (Tregs) or T helper 17 (Th17) cells. However, even CD8+ T cells show marked heterogeneity, e.g., they can become exhausted, enter a state of hyporesponsiveness or become dysfunctional and express high levels of checkpoint molecules, the targets for ICB. To kill cancer cells, CD8+ T cells need the recognition of the MHC class I, which is often downregulated on colorectal cancer cells. In this case, a population of unconventional T cells with a γδ T cell receptor can overcome the limitations of the conventional CD8+ T cells with an αβT cell receptor. γδ T cells recognize antigens in an MHC-independent manner, thus acting as a bridge between innate and adaptive immunity. Here, we discuss the effects of different T cell subsets in colorectal cancer with a special emphasis on γδ T cells and the possibility of using them in CAR-T cell therapy. We explain T cell exclusion in microsatellite-stable colorectal cancer and the possibilities to overcome this exclusion to enable immunotherapy even in these "cold" tumors.
Collapse
Affiliation(s)
- Ziwen Zheng
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Wieder
- Department of Vegetative and Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luisa Schäfer
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Heidi Braumüller
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|