1
|
Meyer SN, Koul S, Pasqualucci L. Mouse Models of Germinal Center Derived B-Cell Lymphomas. Front Immunol 2021; 12:710711. [PMID: 34456919 PMCID: PMC8387591 DOI: 10.3389/fimmu.2021.710711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Over the last decades, the revolution in DNA sequencing has changed the way we understand the genetics and biology of B-cell lymphomas by uncovering a large number of recurrently mutated genes, whose aberrant function is likely to play an important role in the initiation and/or maintenance of these cancers. Dissecting how the involved genes contribute to the physiology and pathology of germinal center (GC) B cells -the origin of most B-cell lymphomas- will be key to advance our ability to diagnose and treat these patients. Genetically engineered mouse models (GEMM) that faithfully recapitulate lymphoma-associated genetic alterations offer a valuable platform to investigate the pathogenic roles of candidate oncogenes and tumor suppressors in vivo, and to pre-clinically develop new therapeutic principles in the context of an intact tumor immune microenvironment. In this review, we provide a summary of state-of-the art GEMMs obtained by accurately modelling the most common genetic alterations found in human GC B cell malignancies, with a focus on Burkitt lymphoma, follicular lymphoma, and diffuse large B-cell lymphoma, and we discuss how lessons learned from these models can help guide the design of novel therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Stefanie N. Meyer
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
| | - Sanjay Koul
- Department of Biological Sciences & Geology, Queensborough Community College (City University of New York), Bayside, NY, United States
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology & Cell Biology, Columbia University, New York, NY, United States
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Chang AN, Liang Z, Dai HQ, Chapdelaine-Williams AM, Andrews N, Bronson RT, Schwer B, Alt FW. Neural blastocyst complementation enables mouse forebrain organogenesis. Nature 2018; 563:126-130. [PMID: 30305734 PMCID: PMC6588192 DOI: 10.1038/s41586-018-0586-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
Genetically modified mice are commonly generated by the microinjection of pluripotent embryonic stem (ES) cells into wild-type host blastocysts1, producing chimeric progeny that require breeding for germline transmission and homozygosity of modified alleles. As an alternative approach and to facilitate studies of the immune system, we previously developed RAG2-deficient blastocyst complementation2. Because RAG2-deficient mice cannot undergo V(D)J recombination, they do not develop B or T lineage cells beyond the progenitor stage2: injecting RAG2-sufficient donor ES cells into RAG2-deficient blastocysts generates somatic chimaeras in which all mature lymphocytes derive from donor ES cells. This enables analysis, in mature lymphocytes, of the functions of genes that are required more generally for mouse development3. Blastocyst complementation has been extended to pancreas organogenesis4, and used to generate several other tissues or organs5-10, but an equivalent approach for brain organogenesis has not yet been achieved. Here we describe neural blastocyst complementation (NBC), which can be used to study the development and function of specific forebrain regions. NBC involves targeted ablation, mediated by diphtheria toxin subunit A, of host-derived dorsal telencephalic progenitors during development. This ablation creates a vacant forebrain niche in host embryos that results in agenesis of the cerebral cortex and hippocampus. Injection of donor ES cells into blastocysts with forebrain-specific targeting of diphtheria toxin subunit A enables donor-derived dorsal telencephalic progenitors to populate the vacant niche in the host embryos, giving rise to neocortices and hippocampi that are morphologically and neurologically normal with respect to learning and memory formation. Moreover, doublecortin-deficient ES cells-generated via a CRISPR-Cas9 approach-produced NBC chimaeras that faithfully recapitulated the phenotype of conventional, germline doublecortin-deficient mice. We conclude that NBC is a rapid and efficient approach to generate complex mouse models for studying forebrain functions; this approach could more broadly facilitate organogenesis based on blastocyst complementation.
Collapse
Affiliation(s)
- Amelia N Chang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Zhuoyi Liang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Aimee M Chapdelaine-Williams
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nick Andrews
- Division of Neurology, Kirby Center for Neurobiology, Boston Children's Hospital, Boston, MA, USA
| | | | - Bjoern Schwer
- Department of Neurological Surgery and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Cao Q, Zhang D, Mao Y, Meng C, Zhu J, Feng Z, Chen R. A human Fab exclusively binding to the extracellular domain of LMP2A. Biochem Biophys Res Commun 2017; 482:226-231. [PMID: 27845040 DOI: 10.1016/j.bbrc.2016.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
In the areas of North Africa, Southeast Asia as well as South China, Nasopharyngeal carcinoma (NPC) is among the most widespread cancers. Plenty of research findings confirmed that Epstein-Barr virus (EBV) played a crucial role in NPC. EBV-encoded Latent membrane protein 2A (LMP2A) which continuously expressed in cell membrane protein induced an epithelial-mesenchymal transition and increased the number of side population stem-like cancer cells in NPC. This reveals that LMP2A could contribute to the development and recurrence in NPC. Above evidences suggest that LMP2A could be the potential target molecule in the treatment of NPC. In the current study, a novel human antibody Fab (Fab29) against the extracellular domain of LMP2A was produced with success. Through immunofluorescence experiment it was proved that human antibody Fab29 exclusively combined the surface of SUNE cells (LMP2A-positive). Then flow cytometry result exhibited that the fluorescent intensities of SUNE cells and CNE cells were distinct (96.89% and 0.02% respectively). After that, it was shown by affinity test that the Fab29 fragment had high affinity (KD (M) 1.79E-09) with LMP2A. It was also revealed by immunohistochemical analysis that the Fab29 fragment could combine with LMP2A-positive human NPC tissues in comparison with the control group. Finally, the MTT result indicated that the Fab29 fragment could inhibit the proliferation of LMP2A-positive NPC cells. The inhibiting rate to SUNE cell proliferation reached a peak by Fab29 (19.67%) compared with unrelated Fab and CNE with Fab29 at a concentration of 500 μg/L in first 24 h and in the next 24 h the inhibition rate grew to 22.54%. In brief, it was shown that Fab29, a characteristic human antibody, could recognize LMP2A protein and inhibit the proliferation of LMP2A-expressing NPC cells in vitro.
Collapse
Affiliation(s)
- Qing Cao
- Department of Otorhinolaryngology, Su Bei People's Hospital of Yangzhou, Yangzhou 225001, China
| | - Dawei Zhang
- Department of Otolaryngology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuan Mao
- Department of Otorhinolaryngology, Jiangsu Province Geriatric Hospital, Nanjing 210024, China
| | | | - Jin Zhu
- The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Zhenqing Feng
- The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Renjie Chen
- Department of Otolaryngology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|