1
|
Khaddour K, Buchbinder EI. Individualized Neoantigen-Directed Melanoma Therapy. Am J Clin Dermatol 2025; 26:225-235. [PMID: 39875711 DOI: 10.1007/s40257-025-00920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/30/2025]
Abstract
Individualized neoantigen-directed therapy represents a groundbreaking approach in melanoma treatment that leverages the patient's own immune system to target cancer cells. This innovative strategy involves the identification of unique immunogenic neoantigens (mutated proteins specific to an individual's tumor) and the development of therapeutic vaccines that either consist of peptide sequences or RNA encoding these neoantigens. The goal of these therapies is to induce neoantigen-specific immune responses, enabling the immune system to recognize and destroy cancer cells presenting the targeted neoantigens. This individualized approach is particularly advantageous given the genetic heterogeneity of melanoma, which exhibits distinct mutations among different patients. In contrast to traditional therapies, neoantigen-directed therapy offers a tailored treatment that potentially reduces off-target side effects and enhances therapeutic efficacy. Recent advances in neoantigen prediction and vaccine development have facilitated clinical trials exploring the combination of neoantigen vaccines with immune checkpoint inhibitors. These trials have shown promising clinical outcomes, underscoring the potential of this personalized approach. This review provides an overview of the rationale behind neoantigen-directed therapies and summarizes the current state of knowledge regarding personalized neoantigen vaccines in melanoma treatment.
Collapse
Affiliation(s)
- Karam Khaddour
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Elizabeth I Buchbinder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Shariati A, Khani P, Nasri F, Afkhami H, Khezrpour A, Kamrani S, Shariati F, Alavimanesh S, Modarressi MH. mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy. Biomark Res 2024; 12:157. [PMID: 39696625 DOI: 10.1186/s40364-024-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Harnessing the power of the immune system to target cancer cells is one of the most appealing approaches for cancer therapy. Among these immunotherapies, messenger ribonucleic acid (mRNA) cancer vaccines are worthy of consideration, as they have demonstrated promising results in clinical trials. These vaccines have proven to be safe and well-tolerated. They can be easily mass-produced in a relatively short time and induce a systemic immune response effective against both the primary tumor and metastases. Transcripts encoding immunomodulatory molecules can also be incorporated into the mRNA, enhancing its efficacy. On the other hand, there are some challenges associated with their application, including mRNA instability, insufficient uptake by immune cells, and intrinsic immunogenicity, which can block mRNA translation. Many innovations have been suggested to overcome these obstacles, including structural modification (such as 5' cap modification), optimizing delivery vehicles (especially dendritic cells (DCs) and nanoparticles), and using antigens that can enhance immunogenicity by circumventing tolerance mechanisms. A popular approach is to combine mRNA cancer vaccines with traditional and novel cancer treatments like chemotherapy, radiotherapy, and immune checkpoint blockade (ICB). They are most efficacious when combined with other therapies like ICBs. There is still a long way to go before these vaccines enter the standard of care for cancer patients, but with the incredible pace of development in this field, their clinical application will soon be witnessed. This review highlights the recent advances and challenges of mRNA cancer vaccines. Finally, some of the most prominent clinical applications of these vaccines will be reviewed.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
3
|
Khan DA, Adhikary T, Sultana MT, Toukir IA. A comprehensive identification of potential molecular targets and small drugs candidate for melanoma cancer using bioinformatics and network-based screening approach. J Biomol Struct Dyn 2024; 42:7349-7369. [PMID: 37534476 DOI: 10.1080/07391102.2023.2240409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Melanoma is the third most common malignant skin tumor and has increased in morbidity and mortality over the previous decade due to its rapid spread into the bloodstream or lymphatic system. This study used integrated bioinformatics and network-based methodologies to reliably identify molecular targets and small molecular medicines that may be more successful for Melanoma diagnosis, prognosis and treatment. The statistical LIMMA approach utilized for bioinformatics analysis in this study found 246 common differentially expressed genes (cDEGs) between case and control samples from two microarray gene-expression datasets (GSE130244 and GSE15605). Protein-protein interaction network study revealed 15 cDEGs (PTK2, STAT1, PNO1, CXCR4, WASL, FN1, RUNX2, SOCS3, ITGA4, GNG2, CDK6, BRAF, AGO2, GTF2H1 and AR) to be critical in the development of melanoma (KGs). According to regulatory network analysis, the most important transcriptional and post-transcriptional regulators of DEGs and hub-DEGs are ten transcription factors and three miRNAs. We discovered the pathogenetic mechanisms of MC by studying DEGs' biological processes, molecular function, cellular components and KEGG pathways. We used molecular docking and dynamics modeling to select the four most expressed genes responsible for melanoma malignancy to identify therapeutic candidates. Then, utilizing the Connectivity Map (CMap) database, we analyzed the top 4-hub-DEGs-guided repurposable drugs. We validated four melanoma cancer drugs (Fisetin, Epicatechin Gallate, 1237586-97-8 and PF 431396) using molecular dynamics simulation with their target proteins. As a result, the results of this study may provide resources to researchers and medical professionals for the wet-lab validation of MC diagnosis, prognosis and treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhrubo Ahmed Khan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tonmoy Adhikary
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mst Tania Sultana
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Imran Ahamed Toukir
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
4
|
Ramirez CA, Becker-Hapak M, Singhal K, Russler-Germain DA, Frenkel F, Barnell EK, McClain ED, Desai S, Schappe T, Onyeador OC, Kudryashova O, Belousov V, Bagaev A, Ocheredko E, Kiwala S, Hundal J, Skidmore ZL, Watkins MP, Mooney TB, Walker JR, Krysiak K, Gomez F, Fronick CC, Fulton RS, Schreiber RD, Mehta-Shah N, Cashen AF, Kahl BS, Ataullakhanov R, Bartlett NL, Griffith M, Griffith OL, Fehniger TA. Neoantigen landscape supports feasibility of personalized cancer vaccine for follicular lymphoma. Blood Adv 2024; 8:4035-4049. [PMID: 38713894 PMCID: PMC11339042 DOI: 10.1182/bloodadvances.2022007792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
ABSTRACT Personalized cancer vaccines designed to target neoantigens represent a promising new treatment paradigm in oncology. In contrast to classical idiotype vaccines, we hypothesized that "polyvalent" vaccines could be engineered for the personalized treatment of follicular lymphoma (FL) using neoantigen discovery by combined whole-exome sequencing (WES) and RNA sequencing (RNA-seq). Fifty-eight tumor samples from 57 patients with FL underwent WES and RNA-seq. Somatic and B-cell clonotype neoantigens were predicted and filtered to identify high-quality neoantigens. B-cell clonality was determined by the alignment of B-cell receptor (BCR) CDR3 regions from RNA-seq data, grouping at the protein level, and comparison with the BCR repertoire from healthy individuals using RNA-seq data. An average of 52 somatic mutations per patient (range, 2-172) were identified, and ≥2 (median, 15) high-quality neoantigens were predicted for 56 of 58 FL samples. The predicted neoantigen peptides were composed of missense mutations (77%), indels (9%), gene fusions (3%), and BCR sequences (11%). Building off of these preclinical analyses, we initiated a pilot clinical trial using personalized neoantigen vaccination combined with PD-1 blockade in patients with relapsed or refractory FL (#NCT03121677). Synthetic long peptide vaccines targeting predicted high-quality neoantigens were successfully synthesized for and administered to all 4 patients enrolled. Initial results demonstrate feasibility, safety, and potential immunologic and clinical responses. Our study suggests that a genomics-driven personalized cancer vaccine strategy is feasible for patients with FL, and this may overcome prior challenges in the field. This trial was registered at www.ClinicalTrials.gov as #NCT03121677.
Collapse
Affiliation(s)
- Cody A. Ramirez
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | | | - Kartik Singhal
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - David A. Russler-Germain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | | | - Erica K. Barnell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Ethan D. McClain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sweta Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy Schappe
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | - Susanna Kiwala
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Zachary L. Skidmore
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Marcus P. Watkins
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Thomas B. Mooney
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Jason R. Walker
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Kilannin Krysiak
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Felicia Gomez
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Catrina C. Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Robert S. Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Robert D. Schreiber
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Neha Mehta-Shah
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Amanda F. Cashen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Brad S. Kahl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | | | - Nancy L. Bartlett
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Obi L. Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Todd A. Fehniger
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Chen G, Kong D, Lin Y. Neo-Antigen-Reactive T Cells Immunotherapy for Colorectal Cancer: A More Personalized Cancer Therapy Approach. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200186. [PMID: 37970536 PMCID: PMC10632666 DOI: 10.1002/gch2.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/09/2023] [Indexed: 11/17/2023]
Abstract
Colorectal cancer (CRC) is the second most common malignancy in women and the third most frequent cancer in men. Evidence has revealed that the survival of patients with metastatic CRC is very low, between one and three years. Neoantigens are known proteins encoded by mutations in tumor cells. It is theorized that recognizing neoantigens by T cells leads to T cell activation and further antitumor responses. Neoantigen-reactive T cells (NRTs) are designed against the mentioned neoantigens expressed by tumor cells. NRTs selectively kill tumor cells without damage to non-cancerous cells. Identifying patient-specific and high immunogen neoantigens is important in NRT immunotherapy of patients with CRC. However, the main challenges are the side effects and preparation of NRTs, as well as the effectiveness of these cells in vivo. This review summarized the properties of neoantigens as well as the preparation and therapeutic outcomes of NRTs for the treatment of CRC.
Collapse
Affiliation(s)
- Guan‐Liang Chen
- Department of Gastroenterology SurgeryAffiliated Hospital of Shaoxing UniversityShaoxing312000China
| | - De‐Xia Kong
- Center for General Practice MedicineDepartment of GastroenterologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeNo. 158 Shangtang RoadHangzhouZhejiang310014China
| | - Yan Lin
- Center for General Practice MedicineDepartment of GastroenterologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeNo. 158 Shangtang RoadHangzhouZhejiang310014China
| |
Collapse
|
6
|
Sun H, Zhang Y, Wang G, Yang W, Xu Y. mRNA-Based Therapeutics in Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15020622. [PMID: 36839944 PMCID: PMC9964383 DOI: 10.3390/pharmaceutics15020622] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
Over the past two decades, significant technological innovations have led to messenger RNA (mRNA) becoming a promising option for developing prophylactic and therapeutic vaccines, protein replacement therapies, and genome engineering. The success of the two COVID-19 mRNA vaccines has sparked new enthusiasm for other medical applications, particularly in cancer treatment. In vitro-transcribed (IVT) mRNAs are structurally designed to resemble naturally occurring mature mRNA. Delivery of IVT mRNA via delivery platforms such as lipid nanoparticles allows host cells to produce many copies of encoded proteins, which can serve as antigens to stimulate immune responses or as additional beneficial proteins for supplements. mRNA-based cancer therapeutics include mRNA cancer vaccines, mRNA encoding cytokines, chimeric antigen receptors, tumor suppressors, and other combination therapies. To better understand the current development and research status of mRNA therapies for cancer treatment, this review focused on the molecular design, delivery systems, and clinical indications of mRNA therapies in cancer.
Collapse
Affiliation(s)
- Han Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ge Wang
- Department of Oral Maxillofacial & Head and Neck Oncology, National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
7
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 185.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
8
|
Neoantigen: A Promising Target for the Immunotherapy of Colorectal Cancer. DISEASE MARKERS 2022; 2022:8270305. [PMID: 35211210 PMCID: PMC8863477 DOI: 10.1155/2022/8270305] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023]
Abstract
At present, there are various treatment strategies for colorectal cancer, including surgery, chemotherapy, radiotherapy, and targeted therapy. In recent years, with the continuous development of immunotherapy, immune checkpoint inhibitors (ICIs) can significantly improve the treatment of advanced colorectal cancer patients with high levels of microsatellite instability. In addition to ICIs, neoantigens, as a class of tumor-specific antigens (TSA), are regarded as new immunotherapy targets for many cancer species and are being explored for antitumor therapy. Immunotherapy strategies based on neoantigens include tumor vaccines and adoptive cell therapy (ACT). These methods aim to eliminate tumor cells by enhancing the immune response of host T-cells to neoantigens. In addition, for MSS colorectal cancer, such “cold tumors” with low mutation rates and stable microsatellites are not sensitive to ICIs, whereas neoantigens could provide a promising immunotherapeutic avenue. In this review, we summarized the current status of colorectal cancer neoantigen prediction and current clinical trials of neoantigens and discussed the difficulties and limitations of neoantigens-based therapies for the treatment of CRC.
Collapse
|
9
|
Neoantigen Cancer Vaccines: Generation, Optimization, and Therapeutic Targeting Strategies. Vaccines (Basel) 2022; 10:vaccines10020196. [PMID: 35214655 PMCID: PMC8877108 DOI: 10.3390/vaccines10020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022] Open
Abstract
Alternatives to conventional cancer treatments are highly sought after for high-risk malignancies that have a poor response to established treatment modalities. With research advancing rapidly in the past decade, neoantigen-based immunotherapeutic approaches represent an effective and highly tolerable therapeutic option. Neoantigens are tumor-specific antigens that are not expressed in normal cells and possess significant immunogenic potential. Several recent studies have described the conceptual framework and methodologies to generate neoantigen-based vaccines as well as the formulation of appropriate clinical trials to advance this approach for patient care. This review aims to describe some of the key studies in the recent literature in this rapidly evolving field and summarize the current advances in neoantigen identification and selection, vaccine generation and delivery, and the optimization of neoantigen-based therapeutic strategies, including the early data from pivotal clinical studies.
Collapse
|
10
|
Kumai T, Yamaki H, Kono M, Hayashi R, Wakisaka R, Komatsuda H. Antitumor Peptide-Based Vaccine in the Limelight. Vaccines (Basel) 2022; 10:vaccines10010070. [PMID: 35062731 PMCID: PMC8778374 DOI: 10.3390/vaccines10010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
The success of the immune checkpoint blockade has provided a proof of concept that immune cells are capable of attacking tumors in the clinic. However, clinical benefit is only observed in less than 20% of the patients due to the non-specific activation of immune cells by the immune checkpoint blockade. Developing tumor-specific immune responses is a challenging task that can be achieved by targeting tumor antigens to generate tumor-specific T-cell responses. The recent advancements in peptide-based immunotherapy have encouraged clinicians and patients who are struggling with cancer that is otherwise non-treatable with current therapeutics. By selecting appropriate epitopes from tumor antigens with suitable adjuvants, peptides can elicit robust antitumor responses in both mice and humans. Although recent experimental data and clinical trials suggest the potency of tumor reduction by peptide-based vaccines, earlier clinical trials based on the inadequate hypothesis have misled that peptide vaccines are not efficient in eliminating tumor cells. In this review, we highlighted the recent evidence that supports the rationale of peptide-based antitumor vaccines. We also discussed the strategies to select the optimal epitope for vaccines and the mechanism of how adjuvants increase the efficacy of this promising approach to treat cancer.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
- Correspondence: ; Tel.: +81-166-68-2554; Fax: +81-166-68-2559
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| |
Collapse
|
11
|
Immune suppressive checkpoint interactions in the tumour microenvironment of primary liver cancers. Br J Cancer 2022; 126:10-23. [PMID: 34400801 PMCID: PMC8727557 DOI: 10.1038/s41416-021-01453-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most prevalent cancers, and the third most common cause of cancer-related mortality worldwide. The therapeutic options for the main types of primary liver cancer-hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA)-are very limited. HCC and CCA are immunogenic cancers, but effective immune-mediated tumour control is prevented by their immunosuppressive tumour microenvironment. Despite the critical involvement of key co-inhibitory immune checkpoint interactions in immunosuppression in liver cancer, only a minority of patients with HCC respond to monotherapy using approved checkpoint inhibitor antibodies. To develop effective (combinatorial) therapeutic immune checkpoint strategies for liver cancer, in-depth knowledge of the different mechanisms that contribute to intratumoral immunosuppression is needed. Here, we review the co-inhibitory pathways that are known to suppress intratumoral T cells in HCC and CCA. We provide a detailed description of insights from preclinical studies in cellular crosstalk within the tumour microenvironment that results in interactions between co-inhibitory receptors on different T-cell subsets and their ligands on other cell types, including tumour cells. We suggest alternative immune checkpoints as promising targets, and draw attention to the possibility of combined targeting of co-inhibitory and co-stimulatory pathways to abrogate immunosuppression.
Collapse
|
12
|
Ashi MO, Mami-Chouaib F, Corgnac S. Mutant and non-mutant neoantigen-based cancer vaccines: recent advances and future promises. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:746-762. [PMID: 36654823 PMCID: PMC9834040 DOI: 10.37349/etat.2022.00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Major advances in cancer treatment have emerged with the introduction of immunotherapies using blocking antibodies that target T-cell inhibitory receptors, such as programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), known as immune checkpoints. However, most cancer patients do not respond to immune checkpoint blockade (ICB) therapies, suggesting the development of resistance mechanisms associated with either an insufficient number of preexisting tumor-specific T-cell precursors and/or inappropriate T-cell reactivation. To broaden clinical benefit, anti-PD-1/PD-1 ligand (PD-L1) neutralizing antibodies have been combined with therapeutic cancer vaccines based on non-mutant and/or mutant tumor antigens, to stimulate and expand tumor-specific T lymphocytes. Although these combination treatments achieve the expected goal in some patients, relapse linked to alterations in antigen presentation machinery (APM) of cancer cells often occurs leading to tumor escape from CD8 T-cell immunity. Remarkably, an alternative antigenic peptide repertoire, referred to as T-cell epitopes associated with impaired peptide processing (TEIPP), arises on these malignant cells with altered APM. TEIPP are derived from ubiquitous non-mutant self-proteins and represent a unique resource to target immune-edited tumors that have acquired resistance to cytotoxic T lymphocytes (CTLs) related to defects in transporter associated with antigen processing (TAP) and possibly also to ICB. The present review discusses tumor-associated antigens (TAAs) and mutant neoantigens and their use as targets in peptide- and RNA-based therapeutic cancer vaccines. Finally, this paper highlights TEIPP as a promising immunogenic non-mutant neoantigen candidates for active cancer immunotherapy and combination with TAA and mutant neoantigens. Combining these polyepitope cancer vaccines with ICB would broaden T-cell specificity and reinvigorate exhausted antitumor CTL, resulting in the eradication of all types of neoplastic cells, including immune-escaped subtypes.
Collapse
Affiliation(s)
- Mohamad Omar Ashi
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France,Correspondence: Fathia Mami-Chouaib,
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France,Stéphanie Corgnac, . INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
13
|
Weiss SA, Sznol M. Resistance mechanisms to checkpoint inhibitors. Curr Opin Immunol 2021; 69:47-55. [PMID: 33676271 DOI: 10.1016/j.coi.2021.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
Although multiple immune checkpoint inhibitors (ICI) have been identified and tested in the clinic, antibodies blocking the PD-1/PD-L1 axis have produced the greatest impact on cancer treatment. Many potential mechanisms of treatment failure have been proposed from pre-clinical animal and human translational studies. Pre-clinical studies and clinical trials are underway to better understand how resistance arises and to develop strategies that can circumvent these resistance mechanisms and sensitize patients to anti-PD1/PD-L1 to improve clinical outcomes.
Collapse
Affiliation(s)
- Sarah A Weiss
- Yale University School of Medicine, Department of Medicine (Section of Medical Oncology), 333 Cedar St., P.O. Box 208032, New Haven, CT 06520, United States.
| | - Mario Sznol
- Yale University School of Medicine, Department of Medicine (Section of Medical Oncology), 333 Cedar St., P.O. Box 208032, New Haven, CT 06520, United States
| |
Collapse
|
14
|
Esprit A, de Mey W, Bahadur Shahi R, Thielemans K, Franceschini L, Breckpot K. Neo-Antigen mRNA Vaccines. Vaccines (Basel) 2020; 8:E776. [PMID: 33353155 PMCID: PMC7766040 DOI: 10.3390/vaccines8040776] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in therapeutic cancer vaccines has caught enormous attention in recent years due to several breakthroughs in cancer research, among which the finding that successful checkpoint blockade treatments reinvigorate neo-antigen-specific T cells and that successful adoptive cell therapies are directed towards neo-antigens. Neo-antigens are cancer-specific antigens, which develop from somatic mutations in the cancer cell genome that can be highly immunogenic and are not subjected to central tolerance. As the majority of neo-antigens are unique to each patient's cancer, a vaccine technology that is flexible and potent is required to develop personalized neo-antigen vaccines. In vitro transcribed mRNA is such a technology platform and has been evaluated for delivery of neo-antigens to professional antigen-presenting cells both ex vivo and in vivo. In addition, strategies that support the activity of T cells in the tumor microenvironment have been developed. These represent a unique opportunity to ensure durable T cell activity upon vaccination. Here, we comprehensively review recent progress in mRNA-based neo-antigen vaccines, summarizing critical milestones that made it possible to bring the promise of therapeutic cancer vaccines within reach.
Collapse
Affiliation(s)
| | | | | | | | | | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, B-1090 Brussels, Belgium; (A.E.); (W.d.M.); (R.B.S.); (K.T.); (L.F.)
| |
Collapse
|
15
|
Tan X, Li D, Huang P, Jian X, Wan H, Wang G, Li Y, Ouyang J, Lin Y, Xie L. dbPepNeo: a manually curated database for human tumor neoantigen peptides. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5747759. [PMID: 32090262 PMCID: PMC7043295 DOI: 10.1093/database/baaa004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
Neoantigens can function as actual antigens to facilitate tumor rejection, which play a crucial role in cancer immunology and immunotherapy. Emerging evidence revealed that neoantigens can be used to develop personalized, cancer-specific vaccines. To date, large numbers of immunogenomic peptides have been computationally predicted to be potential neoantigens. However, experimental validation remains the gold standard for potential clinical application. Experimentally validated neoantigens are rare and mostly appear scattered among scientific papers and various databases. Here, we constructed dbPepNeo, a specific database for human leukocyte antigen class I (HLA-I) binding neoantigen peptides based on mass spectrometry (MS) validation or immunoassay in human tumors. According to the verification methods of these neoantigens, the collection of peptides was classified as 295 high confidence, 247 medium confidence and 407 794 low confidence neoantigens, respectively. This can serve as a valuable resource to aid further screening for effective neoantigens, optimize a neoantigen prediction pipeline and study T-cell receptor (TCR) recognition. Three applications of dbPepNeo are shown. In summary, this work resulted in a platform to promote the screening and confirmation of potential neoantigens in cancer immunotherapy. Database URL: www.biostatistics.online/dbPepNeo/.
Collapse
Affiliation(s)
- Xiaoxiu Tan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, Yangpu District, Shanghai 200093, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, No. 1278, Keyuan Road, Pudong New District, Shanghai 201203, China
| | - Daixi Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Pengjie Huang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, Yangpu District, Shanghai 200093, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, No. 1278, Keyuan Road, Pudong New District, Shanghai 201203, China
| | - Xingxing Jian
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, No. 1278, Keyuan Road, Pudong New District, Shanghai 201203, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Xiangya Hospital, Central South University, Central South University, No. 932, South Lushan Road, Yuelu District, Changsha 410083, China
| | - Huihui Wan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, Yangpu District, Shanghai 200093, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, No. 1278, Keyuan Road, Pudong New District, Shanghai 201203, China
| | - Guangzhi Wang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, No. 1278, Keyuan Road, Pudong New District, Shanghai 201203, China.,College of Food Science and Technology, Shanghai Ocean University, No. 999, Hucheng Ring Road, Pudong New District, Shanghai 201306, China
| | - Yuyu Li
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, No. 1278, Keyuan Road, Pudong New District, Shanghai 201203, China.,College of Food Science and Technology, Shanghai Ocean University, No. 999, Hucheng Ring Road, Pudong New District, Shanghai 201306, China
| | - Jian Ouyang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, No. 1278, Keyuan Road, Pudong New District, Shanghai 201203, China
| | - Yong Lin
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, No. 1278, Keyuan Road, Pudong New District, Shanghai 201203, China
| |
Collapse
|
16
|
Simon B, Uslu U. Fasten the seat belt: Increasing safety of CAR T-cell therapy. Exp Dermatol 2020; 29:1039-1045. [PMID: 32627228 DOI: 10.1111/exd.14131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
After the recent success and approvals of chimeric antigen receptor (CAR) T cells in haematological malignancies, its efficacy is currently evaluated in a broad spectrum of tumor entities including melanoma. However, severe and potentially life-threatening side effects like cytokine release syndrome, neurologic toxicities, and the competing risk of morbidity and mortality from the treatment itself are still a major limiting factor in the current CAR T-cell landscape. In addition, especially in solid tumors, the lack of ideal target antigens to avoid on-target/off-tumor toxicities also restricts its use. While various groups are working on strategies to boost CAR T-cell efficacy, mechanisms to increase engineered T-cell safety should not move out of focus. Thus, the aim of this article is to summarize and to discuss current and potential future strategies and mechanisms to increase CAR T-cell safety in order to enable the wide use of this promising approach in melanoma and other tumor entities.
Collapse
Affiliation(s)
- Bianca Simon
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen- European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.,Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ugur Uslu
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen- European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
17
|
Bianchi V, Harari A, Coukos G. Neoantigen-Specific Adoptive Cell Therapies for Cancer: Making T-Cell Products More Personal. Front Immunol 2020; 11:1215. [PMID: 32695101 PMCID: PMC7333784 DOI: 10.3389/fimmu.2020.01215] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Mutation-derived neoantigens are taking central stage as a determinant in eliciting effective antitumor immune responses following adoptive T-cell therapies. These mutations are patient-specific, and their targeting calls for highly personalized pipelines. The promising clinical outcomes of tumor-infiltrating lymphocyte (TIL) therapy have spurred interest in generating T-cell infusion products that have been selectively enriched in neoantigen (or autologous tumor) reactivity. The implementation of an isolation step, prior to T-cell in vitro expansion and reinfusion, may provide a way to improve the overall response rates achieved to date by adoptive T-cell therapies in metastatic cancer patients. Here we provide an overview of the main technologies [i.e., peptide major histocompatibility complex (pMHC) multimers, cytokine capture, and activation markers] to enrich infiltrating or circulating T-cells in predefined neoantigen specificities (or tumor reactivity). The unique technical and regulatory challenges faced by such highly specialized and patient-specific manufacturing T-cell platforms are also discussed.
Collapse
Affiliation(s)
- Valentina Bianchi
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Benvenuto M, Focaccetti C, Izzi V, Masuelli L, Modesti A, Bei R. Tumor antigens heterogeneity and immune response-targeting neoantigens in breast cancer. Semin Cancer Biol 2019; 72:65-75. [PMID: 31698088 DOI: 10.1016/j.semcancer.2019.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is both the most common type of cancer and the most frequent cause of cancer mortality in women, mainly because of its heterogeneity and limited immunogenicity. The aim of specific active cancer immunotherapy is to stimulate the host's immune response against cancer cells directly using a vaccine platform carrying one or more tumor antigens. In particular, the ideal tumor antigen should be able to elicit T cell and B cell responses, be specific for the tumor and be expressed at high levels on cancer cells. Neoantigens are ideal targets for immunotherapy because they are exclusive to individual patient's tumors, are absent in healthy tissues and are not subject to immune tolerance mechanisms. Thus, neoantigens should generate a specific reaction towards tumors since they constitute the largest fraction of targets of tumor-infiltrating T cells. In this review, we describe the technologies used for neoantigen discovery, the heterogeneity of neoantigens in breast cancer and recent studies of breast cancer immunotherapy targeting neoantigens.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131, Rome, Italy.
| | - Chiara Focaccetti
- Department of Human Science and Promotion of the Quality of Life, University San Raffaele Rome, Via di Val Cannuta 247, 00166, Rome, Italy.
| | - Valerio Izzi
- Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230, Oulu, Finland.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
19
|
Qin H, Sheng J, Zhang D, Zhang X, Liu L, Li B, Li G, Zhang Z. New Strategies for Therapeutic Cancer Vaccines. Anticancer Agents Med Chem 2019; 19:213-221. [PMID: 30411693 DOI: 10.2174/1871520618666181109151835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Patients with low response rates to cancer vaccines, short duration of anti-tumor response after vaccination, and relatively weak curative effects are problems that have not been resolved effectively during the development and application of cancer vaccines. With the continuous improvement of knowledge and awareness regarding the immune system and cancer cells, many researches have helped to explain the reasons for poor vaccine efficacy. Input from researchers accompanied by some newly emerged strategies could bring hope to improve the therapeutic effects of vaccines. METHODS Data were collected from Web of Science, Medline, Pubmed, through searching of these keywords: "cancer vaccine", "cancer stem cell", "targeted agent", "immune checkpoint blockade" and "neoantigen". RESULTS It may be more effective in immunotherapy of human cancers, including cancer stem cell vaccines, combination vaccines with targeted agents or immune checkpoint blockade, and neoantigen-based vaccines. CONCLUSION Personalized vaccines will become the mainstream solution of cancer treatment program with the continuous improvement of human understanding of the immune system and the progress of related experiments.
Collapse
Affiliation(s)
- Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun 130041, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun 130041, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun 130041, China
| | - Linlin Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 13033, China
| |
Collapse
|
20
|
Uslu U, Erdmann M, Wiesinger M, Schuler G, Schuler-Thurner B. Automated Good Manufacturing Practice–compliant generation of human monocyte-derived dendritic cells from a complete apheresis product using a hollow-fiber bioreactor system overcomes a major hurdle in the manufacture of dendritic cells for cancer vaccines. Cytotherapy 2019; 21:1166-1178. [DOI: 10.1016/j.jcyt.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
|
21
|
Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J, Ren S, Zhou C. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol 2019; 12:93. [PMID: 31492199 PMCID: PMC6731555 DOI: 10.1186/s13045-019-0787-5] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor neoantigen is the truly foreign protein and entirely absent from normal human organs/tissues. It could be specifically recognized by neoantigen-specific T cell receptors (TCRs) in the context of major histocompatibility complexes (MHCs) molecules. Emerging evidence has suggested that neoantigens play a critical role in tumor-specific T cell-mediated antitumor immune response and successful cancer immunotherapies. From a theoretical perspective, neoantigen is an ideal immunotherapy target because they are distinguished from germline and could be recognized as non-self by the host immune system. Neoantigen-based therapeutic personalized vaccines and adoptive T cell transfer have shown promising preliminary results. Furthermore, recent studies suggested the significant role of neoantigen in immune escape, immunoediting, and sensitivity to immune checkpoint inhibitors. In this review, we systematically summarize the recent advances of understanding and identification of tumor-specific neoantigens and its role on current cancer immunotherapies. We also discuss the ongoing development of strategies based on neoantigens and its future clinical applications.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, China
| | - Tao Shi
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, China
| | | | - Jie Hu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, China.
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, No. 507, Zheng Min Road, Shanghai, 200433, China.
| |
Collapse
|
22
|
Yu YR, Ho PC. Sculpting tumor microenvironment with immune system: from immunometabolism to immunoediting. Clin Exp Immunol 2019; 197:153-160. [PMID: 30873592 DOI: 10.1111/cei.13293] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy unleashing the power of host immunity on eliminating cancer cells represents a critical advance in cancer treatment; however, effective anti-tumor responses are largely dampened by the immunosuppressive tumor microenvironment (TME). Emerging studies have revealed that physiological features in the TME, including glucose deprivation, hypoxia and low pH, established by the metabolically dysregulated cancer cells restrict anti-tumor immunity by impeding the metabolic fitness of tumor-infiltrating cytotoxic CD8+ T cells and natural killer (NK) cells. Furthermore, infiltrating immunomodulatory cells with different metabolic preferences also facilitate the establishment of the immunosuppressive TME. Therefore, deciphering the metabolic cross-talk between immune cells and cancer cells in the TME and elucidating the impact of this process during tumorigenesis are needed to harness anti-tumor immunity more effectively. Herein, we summarize the immunosuppressive features of TME and how these features impair anti-tumor immunity. Moreover, we postulate how immune cells may be involved in shaping the metabolic features of cancer cells and discuss how we might improve the anti-tumor functions of tumor-specific T cells by rewiring their metabolic regulations.
Collapse
Affiliation(s)
- Y-R Yu
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute of Cancer Research Lausanne Branch, Epalinges, Switzerland
| | - P-C Ho
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute of Cancer Research Lausanne Branch, Epalinges, Switzerland
| |
Collapse
|
23
|
Bauer J, Nelde A, Bilich T, Walz JS. Antigen Targets for the Development of Immunotherapies in Leukemia. Int J Mol Sci 2019; 20:ijms20061397. [PMID: 30897713 PMCID: PMC6471800 DOI: 10.3390/ijms20061397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotherapeutic approaches, including allogeneic stem cell transplantation and donor lymphocyte infusion, have significantly improved the prognosis of leukemia patients. Further efforts are now focusing on the development of immunotherapies that are able to target leukemic cells more specifically, comprising monoclonal antibodies, chimeric antigen receptor (CAR) T cells, and dendritic cell- or peptide-based vaccination strategies. One main prerequisite for such antigen-specific approaches is the selection of suitable target structures on leukemic cells. In general, the targets for anti-cancer immunotherapies can be divided into two groups: (1) T-cell epitopes relying on the presentation of peptides via human leukocyte antigen (HLA) molecules and (2) surface structures, which are HLA-independently expressed on cancer cells. This review discusses the most promising tumor antigens as well as the underlying discovery and selection strategies for the development of anti-leukemia immunotherapies.
Collapse
Affiliation(s)
- Jens Bauer
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Annika Nelde
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Tatjana Bilich
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Juliane S Walz
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
24
|
Calvo Tardón M, Allard M, Dutoit V, Dietrich PY, Walker PR. Peptides as cancer vaccines. Curr Opin Pharmacol 2019; 47:20-26. [PMID: 30831470 DOI: 10.1016/j.coph.2019.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/30/2022]
Abstract
Cancer vaccines based on synthetic peptides are a safe, well-tolerated immunotherapy able to specifically stimulate tumor-reactive T cells. However, their clinical efficacy does not approach that achieved with other immunotherapies such as immune checkpoint blockade. Nevertheless, major advances have been made in selecting tumor antigens to target, identifying epitopes binding to classical and non-classical HLA molecules, and incorporating these into optimal sized peptides for formulation into a vaccine. Limited potency of currently used adjuvants and the immunosuppressive tumor microenvironment are now understood to be major impediments to vaccine efficacy that need to be overcome. Rationally designed combination therapies are now being tested and should ultimately enable peptide vaccination to be added to immuno-oncology treatment options.
Collapse
Affiliation(s)
- Marta Calvo Tardón
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Mathilde Allard
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Center for Translational Research in Onco-Hematology, Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Center for Translational Research in Onco-Hematology, Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
25
|
Wolf Y, Samuels Y. Cancer research in the era of immunogenomics. ESMO Open 2018; 3:e000475. [PMID: 30622743 PMCID: PMC6307593 DOI: 10.1136/esmoopen-2018-000475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022] Open
Abstract
The most meaningful advancement in cancer treatment in recent years has been the emergence of immunotherapy. Checkpoint inhibitor blockade and adoptive T cell therapy have shown remarkable clinical effects in a wide range of tumour types. Despite these advances, many tumours do not respond to these treatments, which raises the need to further investigate how patients can benefit from immunotherapy. This effort can now take advantage of the recent technological progress in single-cell, high-throughput sequencing and computational efforts. In this review, we will discuss advances in different immunotherapies and the principles of cancer immunogenomics, with an emphasis on the detection of cancer neoantigens with human leucocyte antigen peptidomics, and how these principles can be further used for more efficient clinical output.
Collapse
Affiliation(s)
- Yochai Wolf
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Durgeau A, Virk Y, Gros G, Voilin E, Corgnac S, Djenidi F, Salmon J, Adam J, de Montpréville V, Validire P, Ferrone S, Chouaib S, Eggermont A, Soria JC, Lemonnier F, Tartour E, Chaput N, Besse B, Mami-Chouaib F. Human preprocalcitonin self-antigen generates TAP-dependent and -independent epitopes triggering optimised T-cell responses toward immune-escaped tumours. Nat Commun 2018; 9:5097. [PMID: 30504837 PMCID: PMC6269466 DOI: 10.1038/s41467-018-07603-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
Tumours often evade CD8 T-cell immunity by downregulating TAP. T-cell epitopes associated with impaired peptide processing are immunogenic non-mutated neoantigens that emerge during tumour immune evasion. The preprocalcitonin (ppCT)16-25 neoepitope belongs to this category of antigens. Here we show that most human lung tumours display altered expression of TAP and frequently express ppCT self-antigen. We also show that ppCT includes HLA-A2-restricted epitopes that are processed by TAP-independent and -dependent pathways. Processing occurs in either the endoplasmic reticulum, by signal peptidase and signal peptide peptidase, or in the cytosol after release of a signal peptide precursor or retrotranslocation of a procalcitonin substrate by endoplasmic-reticulum-associated degradation. Remarkably, ppCT peptide-based immunotherapy induces efficient T-cell responses toward antigen processing and presenting machinery-impaired tumours transplanted into HLA-A*0201-transgenic mice and in NOD-scid-Il2rγnull mice adoptively transferred with human PBMC. Thus, ppCT-specific T lymphocytes are promising effectors for treatment of tumours that have escaped immune recognition.
Collapse
Affiliation(s)
- Aurélie Durgeau
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,ElyssaMed, Paris Biotech Santé, 75014, Paris, France
| | - Yasemin Virk
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Gwendoline Gros
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Elodie Voilin
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Fayçal Djenidi
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Jérôme Salmon
- CNRS (Centre National de la Recherche Scientifique) UMR 8122, Gustave Roussy, Faculté de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Julien Adam
- INSERM U 981, Gustave Roussy, Faculté de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Vincent de Montpréville
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,Service d'Anatomie Pathologique, Centre Chirurgical Marie-Lannelongue, 92350, Le-Plessis-Robinson, France
| | - Pierre Validire
- Service d'Anatomie Pathologique, Institut Mutualiste Montsouris, 75014, Paris, France
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,Thumbay Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, UAE
| | - Alexander Eggermont
- Cancer Institute, Gustave Roussy Cancer Campus, Grand Paris, 94805, Villejuif, France
| | - Jean-Charles Soria
- Department of Drug Development (DITEP), Gustave Roussy, 94805, Villejuif, France
| | - François Lemonnier
- Département Endocrinologie, Métabolisme et Diabète, Equipe Immunologie des Diabètes, INSERM U1016, 75014, Paris, France
| | - Eric Tartour
- INSERM U970, Paris Cardiovascular Research Centre, Université Paris-Descartes, Sorbonne Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Hôpital Européen Georges Pompidou, Service d'Immunologie Biologique, 75015, Paris, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, and CNRS-UMS 3655 and INSERM-US23, Gustave Roussy Cancer Campus, Villejuif, France.,Faculté de Pharmacie, University Paris-Sud, F-92296, Chatenay-Malabry, France
| | - Benjamin Besse
- Département de Médecine, Gustave Roussy, 94805, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.
| |
Collapse
|
27
|
Wang D, Niu X, Wang Z, Song CL, Huang Z, Chen KN, Duan J, Bai H, Xu J, Zhao J, Wang Y, Zhuo M, Xie XS, Kang X, Tian Y, Cai L, Han JF, An T, Sun Y, Gao S, Zhao J, Ying J, Wang L, He J, Wang J. Multiregion Sequencing Reveals the Genetic Heterogeneity and Evolutionary History of Osteosarcoma and Matched Pulmonary Metastases. Cancer Res 2018; 79:7-20. [PMID: 30389703 DOI: 10.1158/0008-5472.can-18-1086] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Di Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xiaohui Niu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Zhen Huang
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing, China
| | - Ke-Neng Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), The First Department of Thoracic Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Beijing Cancer Hospital, Peking University, Beijing, China
| | - Yu Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Minglei Zhuo
- Department of Thoracic Medical Oncology, Beijing Cancer Hospital, Peking University, Beijing, China
| | - X Sunney Xie
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Xiaozheng Kang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), The First Department of Thoracic Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanhua Tian
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liangliang Cai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie-Fei Han
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tongtong An
- Department of Thoracic Medical Oncology, Beijing Cancer Hospital, Peking University, Beijing, China
| | - Yu Sun
- Department of Pathology, Beijing Cancer Hospital, Peking University, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Zhao
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Luhua Wang
- Department of Radiotherapy, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
Erdmann M, Uslu U, Wiesinger M, Brüning M, Altmann T, Strasser E, Schuler G, Schuler-Thurner B. Automated closed-system manufacturing of human monocyte-derived dendritic cells for cancer immunotherapy. J Immunol Methods 2018; 463:89-96. [PMID: 30266448 DOI: 10.1016/j.jim.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
Dendritic cell (DC)-based vaccines have been successfully used for immunotherapy of cancer and infections. A major obstacle is the need for high-level class A cleanroom cGMP facilities for DC generation. The CliniMACS Prodigy® (Prodigy) represents a new platform integrating all GMP-compliant manufacturing steps in a closed system for automated production of various cellular products, notably T cells, NK cells and CD34+ cells. We now systematically tested its suitability for producing human mature monocyte-derived DCs (Mo-DCs), and optimized it by directly comparing the Prodigy approach to our established standard production of Mo-DCs from elutriated monocytes in dishes or bags. Upon step-by-step identification of an optimal cell concentration for the Prodigy's CentriCult culture chamber, the total yield (% of input CD14+ monocytes), phenotype, and functionality of mature Mo-DCs were equivalent to those generated by the standard protocol. Technician's labor time was comparable for both methods, but the Prodigy approach significantly reduced hands-on time and high-level clean room resources. In summary, using our optimized conditions for the CliniMACS Prodigy, human Mo-DCs for clinical application can be generated almost automatically in a fully closed system. A significant drawback of the Prodigy approach was, however, that due to the limited size of the CentriCult culture chamber, in contrast to our standard semi-closed elutriation approach, only one fourth of an apheresis could be processed at once.
Collapse
Affiliation(s)
- Michael Erdmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany.
| | - Ugur Uslu
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| | - Manuel Wiesinger
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| | | | | | - Erwin Strasser
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Transfusion Medicine and Haemostaseology, Erlangen, Germany
| | - Gerold Schuler
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| | - Beatrice Schuler-Thurner
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Germany
| |
Collapse
|
29
|
Abstract
This review discusses the rapidly evolving field of immunotherapy research, focusing on the types of cancer antigens that can be recognised by the immune system and potential methods by which neoantigens can be exploited clinically to successfully target and clear tumour cells. Recent studies suggest that the likelihood of successful immunotherapeutic targeting of cancer will be reliant on immune response to neoantigens. This type of cancer-specific antigen arises from somatic variants that result in alteration of the expressed protein sequence. Massively parallel sequencing techniques now allow the rapid identification of these genomic mutations, and algorithms can be used to predict those that will be processed by the proteasome, bind to the transporter complex and encode peptides that bind strongly to individual MHC molecules. The emerging data from assessment of the immunogenicity of neoantigens suggests that only a minority of mutations will form targetable epitopes and therefore the potential for immunotherapeutic targeting will be greater in cancers with a higher frequency of protein-altering somatic variants. It is evident that neoantigens contribute to the success of some immunotherapeutic interventions and that there is significant scope for specific targeting of these antigens to develop new treatment approaches.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Genetics and Immunology Research Group, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
30
|
Kalaora S, Wolf Y, Feferman T, Barnea E, Greenstein E, Reshef D, Tirosh I, Reuben A, Patkar S, Levy R, Quinkhardt J, Omokoko T, Qutob N, Golani O, Zhang J, Mao X, Song X, Bernatchez C, Haymaker C, Forget MA, Creasy C, Greenberg P, Carter BW, Cooper ZA, Rosenberg SA, Lotem M, Sahin U, Shakhar G, Ruppin E, Wargo JA, Friedman N, Admon A, Samuels Y. Combined Analysis of Antigen Presentation and T-cell Recognition Reveals Restricted Immune Responses in Melanoma. Cancer Discov 2018; 8:1366-1375. [PMID: 30209080 DOI: 10.1158/2159-8290.cd-17-1418] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/26/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
The quest for tumor-associated antigens (TAA) and neoantigens is a major focus of cancer immunotherapy. Here, we combine a neoantigen prediction pipeline and human leukocyte antigen (HLA) peptidomics to identify TAAs and neoantigens in 16 tumors derived from seven patients with melanoma and characterize their interactions with their tumor-infiltrating lymphocytes (TIL). Our investigation of the antigenic and T-cell landscapes encompassing the TAA and neoantigen signatures, their immune reactivity, and their corresponding T-cell identities provides the first comprehensive analysis of cancer cell T-cell cosignatures, allowing us to discover remarkable antigenic and TIL similarities between metastases from the same patient. Furthermore, we reveal that two neoantigen-specific clonotypes killed 90% of autologous melanoma cells, both in vitro and in vivo, showing that a limited set of neoantigen-specific T cells may play a central role in melanoma tumor rejection. Our findings indicate that combining HLA peptidomics with neoantigen predictions allows robust identification of targetable neoantigens, which could successfully guide personalized cancer immunotherapies.Significance: As neoantigen targeting is becoming more established as a powerful therapeutic approach, investigating these molecules has taken center stage. Here, we show that a limited set of neoantigen-specific T cells mediates tumor rejection, suggesting that identifying just a few antigens and their corresponding T-cell clones could guide personalized immunotherapy. Cancer Discov; 8(11); 1366-75. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1333.
Collapse
Affiliation(s)
- Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yochai Wolf
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Feferman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Reshef
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexandre Reuben
- Departments of Surgical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sushant Patkar
- Cancer Data Science Lab, National Cancer Institute, NIH, Rockville, Maryland
| | - Ronen Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tana Omokoko
- BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Nouar Qutob
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jianhua Zhang
- Departments of Surgical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xizeng Mao
- Departments of Surgical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xingzhi Song
- Departments of Surgical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caitlin Creasy
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Polina Greenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Brett W Carter
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zachary A Cooper
- Departments of Surgical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Medical School, Jerusalem, Israel
| | - Ugur Sahin
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University GmbH, Mainz, Germany
| | - Guy Shakhar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, NIH, Rockville, Maryland
| | - Jennifer A Wargo
- Departments of Surgical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Arie Admon
- Department of Biology, Technion, Haifa, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
31
|
Zamora AE, Crawford JC, Thomas PG. Hitting the Target: How T Cells Detect and Eliminate Tumors. THE JOURNAL OF IMMUNOLOGY 2018; 200:392-399. [PMID: 29311380 DOI: 10.4049/jimmunol.1701413] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022]
Abstract
The successes of antitumor immuno-based therapies and the application of next-generation sequencing to mutation profiling have produced insights into the specific targets of antitumor T cells. Mutated proteins have tremendous potential as targets for interventions using autologous T cells or engineered cell therapies and may serve as important correlates of efficacy for immunoregulatory interventions including immune checkpoint blockade. As mutated self, tumors present an exceptional case for host immunity, which has primarily evolved in response to foreign pathogens. Tumor Ags' resemblance to self may limit immune recognition, but key features appear to be the same between antipathogen and antitumor responses. Determining which targets will make efficacious Ags and which responses might be elicited therapeutically are key questions for the field. Here we discuss current knowledge on antitumor specificity, the mutations that provide immunogenic targets, and how cross-reactivity and immunodominance may contribute to variation in immune responses among tumor types.
Collapse
Affiliation(s)
- Anthony E Zamora
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
32
|
Hutchison S, Pritchard AL. Identifying neoantigens for use in immunotherapy. Mamm Genome 2018; 29:714-730. [PMID: 30167844 PMCID: PMC6267674 DOI: 10.1007/s00335-018-9771-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
This review focuses on the types of cancer antigens that can be recognised by the immune system and form due to alterations in the cancer genome, including cancer testis, overexpressed and neoantigens. Specifically, neoantigens can form when cancer cell-specific mutations occur that result in alterations of the protein from ‘self’. This type of antigen can result in an immune response sufficient to clear tumour cells when activated. Furthermore, studies have reported that the likelihood of successful immunotherapeutic targeting of cancer by many different methods was reliant on immune response to neoantigens. The recent resurgence of interest in the immune response to tumour cells, in conjunction with technological advances, has resulted in a large increase in the predicted, identified and functionally confirmed neoantigens. This growth in identified neoantigen sequences has increased the contents of training sets for algorithms, which in turn improves the prediction of which genetic mutations may form neoantigens. Additionally, algorithms predicting how proteins will be processed into peptide epitopes by the proteasome and which peptides bind to the transporter complex are also improving with this research. Now that large screens of all the tumour-specific protein altering mutations are possible, the emerging data from assessment of the immunogenicity of neoantigens suggest that only a minority of variants will form targetable epitopes. The potential for immunotherapeutic targeting of neoantigens will therefore be greater in cancers with a higher frequency of protein altering somatic variants. There is considerable potential in the use of neoantigens to treat patients, either alone or in combination with other immunotherapies and with continued advancements, these potentials will be realised.
Collapse
Affiliation(s)
- Sharon Hutchison
- Genetics and Immunology Research Group, University of the Highlands and Islands, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK
| | - Antonia L Pritchard
- Genetics and Immunology Research Group, University of the Highlands and Islands, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
33
|
Abstract
Somatic variations are frequent and important drivers in cancers. Amino acid substitutions can yield neoantigens that are detected by the immune system. Neoantigens can lead to immune response and tumor rejection. Although neoantigen load and occurrence have been widely studied, a detailed pan-cancer analysis of the occurrence and characterization of neoepitopes is missing. We investigated the proteome-wide amino acid substitutions in 8-, 9-, 10-, and 11-mer peptides in 30 cancer types with the NetMHC 4.0 software. 11,316,078 (0.24%) of the predicted 8-, 9-, 10-, and 11-mer peptides were highly likely neoepitope candidates and were derived from 95.44% of human proteins. Binding affinity to MHC molecules is just one of the many epitope features. The most likely epitopes are those which are detected by several MHCs and of several peptide lengths. 9-mer peptides are the most common among the high binding neoantigens. 0.17% of all variants yield more than 100 neoepitopes and are considered as the best candidates for any application. Amino acid distributions indicate that variants at all positions in neoepitopes of any length are, on average, more hydrophobic than the wild-type residues. We characterized properties of neoepitopes in 30 cancer types and estimated the likely numbers of tumor-derived epitopes that could induce an immune response. We found that amino acid distributions, at all positions in neoepitopes of all lengths, contain more hydrophobic residues than the wild-type sequences implying that the hydropathy nature of neoepitopes is an important property. The neoepitope characteristics can be employed for various applications including targeted cancer vaccine development for precision medicine.
Collapse
|
34
|
Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Front Immunol 2018; 9:14. [PMID: 29403496 PMCID: PMC5786548 DOI: 10.3389/fimmu.2018.00014] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA)-4 and programmed cell death (PD)-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lymphocytes appear to play a major role in the response to these immune checkpoint inhibitors (ICI). Cytotoxic T lymphocytes (CTL) eliminate malignant cells through recognition by the T-cell receptor (TCR) of specific antigenic peptides presented on the surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin complexes, and through killing of target cells, mainly by releasing the content of secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, on target cells, are involved in strengthening the interaction between CTL and tumor cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and peripheral blood lymphocytes (PBL) of patients with varied cancers. TCRβ-chain gene usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site compared to autologous PBL. Moreover, functional studies indicated that these CTL mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell immunity. Accordingly, it has been shown that the presence of T lymphocytes directed toward tumor neoantigens is associated with patient response to immunotherapies, including ICI, adoptive cell transfer, and dendritic cell-based vaccines. These tumor-specific mutation-derived antigens open up new perspectives for development of effective second-generation therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Aurélie Durgeau
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,ElyssaMed, Paris Biotech Santé, Paris, France
| | - Yasemin Virk
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
35
|
Abstract
Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance.
Collapse
Affiliation(s)
- Fabian V Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
36
|
Seliktar-Ofir S, Merhavi-Shoham E, Itzhaki O, Yunger S, Markel G, Schachter J, Besser MJ. Selection of Shared and Neoantigen-Reactive T Cells for Adoptive Cell Therapy Based on CD137 Separation. Front Immunol 2017; 8:1211. [PMID: 29067023 PMCID: PMC5641376 DOI: 10.3389/fimmu.2017.01211] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022] Open
Abstract
Adoptive cell therapy (ACT) of autologous tumor infiltrating lymphocytes (TIL) is an effective immunotherapy for patients with solid tumors, yielding objective response rates of around 40% in refractory patients with metastatic melanoma. Most clinical centers utilize bulk, randomly isolated TIL from the tumor tissue for ex vivo expansion and infusion. Only a minor fraction of the administered T cells recognizes tumor antigens, such as shared and mutation-derived neoantigens, and consequently eliminates the tumor. Thus, there are many ongoing effects to identify and select tumor-specific TIL for therapy; however, those approaches are very costly and require months, which is unreasonable for most metastatic patients. CD137 (4-1BB) has been identified as a co-stimulatory marker, which is induced upon the specific interaction of T cells with their target cell. Therefore, CD137 can be a useful biomarker and an important tool for the selection of tumor-reactive T cells. Here, we developed and validated a simple and time efficient method for the selection of CD137-expressing T cells for therapy based on magnetic bead separation. CD137 selection was performed with clinical grade compliant reagents, and TIL were expanded in a large-scale manner to meet cell numbers required for the patient setting in a GMP facility. For the first time, the methodology was designed to comply with both clinical needs and limitations, and its feasibility was assessed. CD137-selected TIL demonstrated significantly increased antitumor reactivity and were enriched for T cells recognizing neoantigens as well as shared tumor antigens. CD137-based selection enabled the enrichment of tumor-reactive T cells without the necessity of knowing the epitope specificity or the antigen type. The direct implementation of the CD137 separation method to the cell production of TIL may provide a simple way to improve the clinical efficiency of TIL ACT.
Collapse
Affiliation(s)
- Sivan Seliktar-Ofir
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Merhavi-Shoham
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Orit Itzhaki
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Yunger
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Gal Markel
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Johanns TM, Bowman-Kirigin JA, Liu C, Dunn GP. Targeting Neoantigens in Glioblastoma: An Overview of Cancer Immunogenomics and Translational Implications. Neurosurgery 2017; 64:165-176. [PMID: 28899059 PMCID: PMC6287409 DOI: 10.1093/neuros/nyx321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/27/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Tanner M. Johanns
- Division of Oncology, Department of Medicine, Washington University School of
Medicine, St. Louis, Missouri
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington
Univer-sity School of Medicine, St. Louis, Missouri
| | - Jay A. Bowman-Kirigin
- Center for Human Immunology and Immunotherapy Prog-rams, Washington University
School of Medicine, St. Louis, Missouri
- Depart-ment of Neurological Surgery, Washing-ton University School of Medicine,
St. Louis, Missouri
| | - Connor Liu
- Center for Human Immunology and Immunotherapy Prog-rams, Washington University
School of Medicine, St. Louis, Missouri
- Depart-ment of Neurological Surgery, Washing-ton University School of Medicine,
St. Louis, Missouri
| | - Gavin P. Dunn
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington
Univer-sity School of Medicine, St. Louis, Missouri
- Depart-ment of Neurological Surgery, Washing-ton University School of Medicine,
St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of
Medicine, St. Louis, Missouri
| |
Collapse
|
38
|
Abstract
Adoptive cell therapy (ACT) of tumor-infiltrating lymphocytes (TILs) is a powerful form of immunotherapy by inducing durable complete responses that significantly extend the survival of melanoma patients. Mutation-derived neoantigens were recently identified as key factors for tumor recognition and rejection by TILs. The isolation of T-cell receptor (TCR) genes directed against neoantigens and their retransduction into peripheral T cells may provide a new form of ACT.Genetic modifications of T cells with chimeric antigen receptors (CARs) have demonstrated remarkable clinical results in hematologic malignancies, but are so far less effective in solid tumors. Only very limited reports exist in melanoma. Progress in CAR T-cell engineering, including neutralization of inhibitory signals or additional safety switches, may open opportunities also in melanoma.We review clinical results and latest developments of adoptive therapies with TILs, T-cell receptor, and CAR-modified T cells and discuss future directions for the treatment of melanoma.
Collapse
|
39
|
Fecek RJ, Storkus WJ. Combination strategies to enhance the potency of monocyte-derived dendritic cell-based cancer vaccines. Immunotherapy 2017; 8:1205-18. [PMID: 27605069 DOI: 10.2217/imt-2016-0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are potent inducers of adaptive immunity and their clinical use in cancer vaccine formulations remains an area of active translational and clinical investigation. Although cancer vaccines applied as monotherapies have had a modest history of clinical success, there is great enthusiasm for novel therapeutic strategies combining DC-based cancer vaccines with agents that 'normalize' immune function in the tumor microenvironment (TME). Broadly, these combination vaccines are designed to antagonize/remove immunosuppressive networks within the TME that serve to limit the antitumor action of vaccine-induced T cells and/or to condition the TME to facilitate the recruitment and optimal function and durability of vaccine-induced T cells. Such combination regimens are expected to dramatically enhance the clinical potency of DC-based cancer vaccine platforms.
Collapse
Affiliation(s)
- Ronald J Fecek
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Walter J Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Immunology, University of Pittsburgh School of Medicine, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, PA, USA.,Department of Bioengineering, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| |
Collapse
|
40
|
Gross S, Erdmann M, Haendle I, Voland S, Berger T, Schultz E, Strasser E, Dankerl P, Janka R, Schliep S, Heinzerling L, Sotlar K, Coulie P, Schuler G, Schuler-Thurner B. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients. JCI Insight 2017; 2:91438. [PMID: 28422751 DOI: 10.1172/jci.insight.91438] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Reports on long-term (≥10 years) effects of cancer vaccines are missing. Therefore, in 2002, we initiated a phase I/II trial in cutaneous melanoma patients to further explore the immunogenicity of our DC vaccine and to establish its long-term toxicity and clinical benefit after a planned 10-year followup. METHODS Monocyte-derived DCs matured by TNFα, IL-1β, IL-6, and PGE2 and then loaded with 4 HLA class I and 6 class II-restricted tumor peptides were injected intradermally in high doses over 2 years. We performed serial immunomonitoring in all 53 evaluable patients. RESULTS Vaccine-specific immune responses including high-affinity, IFNγ-producing CD4+ and lytic polyfunctional CD8+ T cells were de novo induced or boosted in most patients. Exposure of mature DCs to trimeric soluble CD40 ligand, unexpectedly, did not further enhance such immune responses, while keyhole limpet hemocyanin (KLH) pulsing to provide unspecific CD4+ help promoted CD8+ T cell responses - notably, their longevity. An unexpected 19% of nonresectable metastatic melanoma patients are still alive after 11 years, a survival rate similar to that observed in ipilimumab-treated patients and achieved without any major (>grade 2) toxicity. Survival correlated significantly with the development of intense vaccine injection site reactions, and with blood eosinophilia after the first series of vaccinations, suggesting that prolonged survival was a consequence of DC vaccination. CONCLUSIONS Long-term survival in advanced melanoma patients undergoing DC vaccination is similar to ipilimumab-treated patients and occurs upon induction of tumor-specific T cells, blood eosinophilia, and strong vaccine injection site reactions occurring after the initial vaccinations. TRIAL REGISTRATION ClinicalTrials.gov NCT00053391. FUNDING European Community, Sixth Framework Programme (Cancerimmunotherapy LSHC-CT-2006-518234; DC-THERA LSHB-CT-2004-512074), and German Research Foundation (CRC 643, C1, Z2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter Dankerl
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rolf Janka
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | | | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Pierre Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
41
|
Karasaki T, Nagayama K, Kuwano H, Nitadori JI, Sato M, Anraku M, Hosoi A, Matsushita H, Takazawa M, Ohara O, Nakajima J, Kakimi K. Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing. Cancer Sci 2017; 108:170-177. [PMID: 27960040 PMCID: PMC5329159 DOI: 10.1111/cas.13131] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 01/09/2023] Open
Abstract
The importance of neoantigens for cancer immunity is now well-acknowledged. However, there are diverse strategies for predicting and prioritizing candidate neoantigens, and thus reported neoantigen loads vary a great deal. To clarify this issue, we compared the numbers of neoantigen candidates predicted by four currently utilized strategies. Whole-exome sequencing and RNA sequencing (RNA-Seq) of four non-small-cell lung cancer patients was carried out. We identified 361 somatic missense mutations from which 224 candidate neoantigens were predicted using MHC class I binding affinity prediction software (strategy I). Of these, 207 exceeded the set threshold of gene expression (fragments per kilobase of transcript per million fragments mapped ≥1), resulting in 124 candidate neoantigens (strategy II). To verify mutant mRNA expression, sequencing of amplicons from tumor cDNA including each mutation was undertaken; 204 of the 207 mutations were successfully sequenced, yielding 121 mutant mRNA sequences, resulting in 75 candidate neoantigens (strategy III). Sequence information was extracted from RNA-Seq to confirm the presence of mutated mRNA. Variant allele frequencies ≥0.04 in RNA-Seq were found for 117 of the 207 mutations and regarded as expressed in the tumor, and finally, 72 candidate neoantigens were predicted (strategy IV). Without additional amplicon sequencing of cDNA, strategy IV was comparable to strategy III. We therefore propose strategy IV as a practical and appropriate strategy to predict candidate neoantigens fully utilizing currently available information. It is of note that different neoantigen loads were deduced from the same tumors depending on the strategies applied.
Collapse
Affiliation(s)
- Takahiro Karasaki
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Nagayama
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Kuwano
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichi Nitadori
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Anraku
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akihiro Hosoi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan.,Medinet Co. Ltd, Yokohama, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaki Takazawa
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
42
|
Use of HLA peptidomics and whole exome sequencing to identify human immunogenic neo-antigens. Oncotarget 2017; 7:5110-7. [PMID: 26819371 PMCID: PMC4868674 DOI: 10.18632/oncotarget.6960] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/30/2015] [Indexed: 01/08/2023] Open
Abstract
The antigenicity of cells is demarcated by the peptides bound by their Human Leucocyte Antigen (HLA) molecules. Through this antigen presentation, T cell specificity response is controlled. As a fraction of the expressed mutated peptides is presented on the HLA, these neo-epitopes could be immunogenic. Such neo-antigens have recently been identified through screening for predicted mutated peptides, using synthetic peptides or ones expressed from minigenes, combined with screening of patient tumor-infiltrating lymphocytes (TILs). Here we present a time and cost-effective method that combines whole-exome sequencing analysis with HLA peptidome mass spectrometry, to identify neo-antigens in a melanoma patient. Of the 1,019 amino acid changes identified through exome sequencing, two were confirmed by mass spectrometry to be presented by the cells. We then synthesized peptides and evaluated the two mutated neo-antigens for reactivity with autologous bulk TILs, and found that one yielded mutant-specific T-cell response. Our results demonstrate that this method can be used for immune response prediction and promise to provide an alternative approach for identifying immunogenic neo-epitopes in cancer.
Collapse
|
43
|
Kumai T, Kobayashi H, Harabuchi Y, Celis E. Peptide vaccines in cancer-old concept revisited. Curr Opin Immunol 2016; 45:1-7. [PMID: 27940327 DOI: 10.1016/j.coi.2016.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 02/04/2023]
Abstract
Synthetic peptide vaccines aim to elicit and expand tumor-specific T cells capable of controlling or eradicating the tumor. Despite the high expectations based on preclinical studies, the results of clinical trials using peptide vaccines have been disappointing. Thus, many researchers in the field have considered peptide vaccines as outdated and no longer viable for cancer therapy. However, recent progress in understanding the critical roles of immune adjuvants, modes of vaccine administration and T cell dynamics has lead to a rebirth of this approach and reconsidering the use of peptide vaccines for treating malignant disorders.
Collapse
Affiliation(s)
- Takumi Kumai
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States; Department of Pathology, Asahikawa Medical University, Asahikawa, Japan; Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan; Department of Innovative Research for Diagnosis and Treatment of Head & Neck Cancer, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States.
| |
Collapse
|
44
|
Kranz LM, Birtel M, Hilscher L, Grunwitz C, Petschenka J, Vascotto F, Vormehr M, Voss RH, Kreiter S, Diken M. CIMT 2016: Mechanisms of efficacy in cancer immunotherapy - Report on the 14th Annual Meeting of the Association for Cancer Immunotherapy May 10-12 2016, Mainz, Germany. Hum Vaccin Immunother 2016; 12:2805-2812. [PMID: 27435168 PMCID: PMC5137546 DOI: 10.1080/21645515.2016.1206677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Lena M Kranz
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,b Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Matthias Birtel
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,b Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Lina Hilscher
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Christian Grunwitz
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,c BioNTech RNA Pharmaceuticals GmbH , Mainz , Germany
| | - Jutta Petschenka
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Fulvia Vascotto
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Mathias Vormehr
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany.,c BioNTech RNA Pharmaceuticals GmbH , Mainz , Germany
| | - Ralf-Holger Voss
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Sebastian Kreiter
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| | - Mustafa Diken
- a TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH , Mainz , Germany
| |
Collapse
|
45
|
Tsukahara T, Emori M, Murata K, Mizushima E, Shibayama Y, Kubo T, Kanaseki T, Hirohashi Y, Yamashita T, Sato N, Torigoe T. The future of immunotherapy for sarcoma. Expert Opin Biol Ther 2016; 16:1049-57. [PMID: 27158940 DOI: 10.1080/14712598.2016.1188075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The use of immunotherapeutic challenges for sarcoma has a long history. Despite the existence of objective responses, immunotherapy has been overshadowed by the results of chemotherapy, especially for osteosarcoma. However, the prognosis for non-responders to chemotherapy is still poor and immunotherapy is now focused on again. AREAS COVERED We reviewed the following types of clinical trials of immunotherapy for sarcoma: (i) vaccination with autologous tumor cells, (ii) vaccination with peptides derived from tumor-associated antigens, (iii) adoptive cell transfer using engineered T cells expressing T cell receptor directed at NY-ESO-1 and (iv) immune checkpoint inhibitors targeting CTLA-4 and PD1/PDL1. EXPERT OPINION The immunogenicity of sarcoma might be lower than that of melanoma. Patients with small lesions who have not received any chemotherapy are good candidates for peptide-based immunotherapy. Combining peptide vaccination and immune checkpoint inhibitors is an attractive option, and long-lived memory T cells are attracting attention. Memory T stem cells defined by CD95+ are long-lived and have the capacity for self-renewal and multidifferentiation. We also identified a novel memory T cell population, young memory T cells defined by CD73+CXCR3+. Regulation of such memory T stem cells will be useful for peptide vaccination and adoptive cell transfer.
Collapse
Affiliation(s)
- Tomohide Tsukahara
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Makoto Emori
- b Department of Orthopaedic Surgery , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Kenji Murata
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan.,b Department of Orthopaedic Surgery , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Emi Mizushima
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan.,b Department of Orthopaedic Surgery , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Yuji Shibayama
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan.,b Department of Orthopaedic Surgery , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Terufumi Kubo
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Takayuki Kanaseki
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Yoshihiko Hirohashi
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Toshihiko Yamashita
- b Department of Orthopaedic Surgery , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Noriyuki Sato
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Toshihiko Torigoe
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| |
Collapse
|
46
|
Katakowski M, Chopp M. Exosomes as Tools to Suppress Primary Brain Tumor. Cell Mol Neurobiol 2016; 36:343-52. [PMID: 26983831 PMCID: PMC11482504 DOI: 10.1007/s10571-015-0280-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
Abstract
Exosomes are small microvesicles released by cells that efficiently transfer their molecular cargo to other cells, including tumor. Exosomes may pass the blood-brain barrier and have been demonstrated to deliver RNAs contained within to brain. As they are non-viable, the risk profile of exosomes is thought to be less than that of cellular therapies. Exosomes can be manufactured at scale in culture, and exosomes can be engineered to incorporate therapeutic miRNAs, siRNAs, or chemotherapeutic molecules. As natural biological delivery vehicles, interest in the use of exosomes as therapeutic delivery agents is growing. We previously demonstrated a novel treatment whereby mesenchymal stromal cells were employed to package tumor-suppressing miR-146b into exosomes, which were then used to reduce malignant glioma growth in rat. The use of exosomes to raise the immune system against tumor is also drawing interest. Exosomes from dendritic cells which are antigen-presenting, and have been used for treatment of brain tumor may be divided into three categories: (1) exosomes for immunomodulation-based therapy, (2) exosomes as delivery vehicles for anti-tumor nucleotides, and (3) exosomes as drug delivery vehicles. Here, we will provide an overview of these three applications of exosomes to treat brain tumor, and examine their prospects on the long road to clinical use.
Collapse
Affiliation(s)
- Mark Katakowski
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
- Department of Physics, Oakland University, Rochester, MI, USA.
| |
Collapse
|