1
|
Xiao H, Jiang N, Zhang H, Wang S, Pi Q, Chen H, He X, Luo W, Lu Y, Deng Y, Zhong Z. Inhibitors of APE1 redox and ATM synergistically sensitize osteosarcoma cells to ionizing radiation by inducing ferroptosis. Int Immunopharmacol 2024; 139:112672. [PMID: 39032469 DOI: 10.1016/j.intimp.2024.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The resistance of osteosarcoma (OS) to ionizing radiation (IR) is an obstacle for effective patient treatment. Apurinic/apyrimidinic endonuclease-reduction/oxidation factor 1 (APE1/Ref-1) is a multifunctional protein with DNA repair and reduction/oxidation (redox) activities. We previously revealed the role of APE1 in OS radioresistance; however, whether the redox activity of APE1 is involved in OS radioresistance is unclear. APE1 regulates the activation of ataxia-telangiectasia mutated (ATM), an initiator of DNA damage response that mediates radioresistance in other cancers. The role of APE1 redox activity and ATM activation in OS radioresistance is unknown. Our study revealed that IR increased APE1 expression and ATM activation in OS cells, and APE1 directly regulated ATM activation by its redox activity. The combined use of an APE1 redox inhibitor and ATM inhibitor effectively sensitized OS cells to IR in vitro and in vivo. Mechanistically, the increased radiosensitization of OS cells by the combined use of the two inhibitors was mediated by increased ferroptosis. Co-treatment with the two inhibitors significantly decreased expression of the common targeted transcription factor P53 compared with single inhibitor treatment. Collectively, APE1 redox activity, ATM activation and their crosstalk play important roles in the resistance of OS to irradiation. Synergetic inhibition of APE1 redox activity and ATM activation sensitized OS cells to IR by inducing ferroptosis, which provides a promising strategy for OS radiotherapy.
Collapse
Affiliation(s)
- Hanxi Xiao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China; Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing 400038, China; Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Nan Jiang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hongbin Zhang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shuai Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qin Pi
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Huawei Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xuan He
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Luo
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yonghui Lu
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Youcai Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, China; Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China; Department of Oncology, The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| |
Collapse
|
2
|
Gilad Y, Shimon O, Han SJ, Lonard DM, O’Malley BW. Steroid receptor coactivators in Treg and Th17 cell biology and function. Front Immunol 2024; 15:1389041. [PMID: 38698860 PMCID: PMC11063348 DOI: 10.3389/fimmu.2024.1389041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Steroid receptor coactivators (SRCs) are master regulators of transcription that play key roles in human physiology and pathology. SRCs are particularly important for the regulation of the immune system with major roles in lymphocyte fate determination and function, macrophage activity, regulation of nuclear factor κB (NF-κB) transcriptional activity and other immune system biology. The three members of the p160 SRC family comprise a network of immune-regulatory proteins that can function independently or act in synergy with each other, and compensate for - or moderate - the activity of other SRCs. Recent evidence indicates that the SRCs are key participants in governing numerous aspects of CD4+ T cell biology. Here we review findings that establish the SRCs as essential regulators of regulatory T cells (Tregs) and T helper 17 (Th17) cells, with a focus on their crucial roles in Treg immunity in cancer and Treg-Th17 cell phenotypic plasticity.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
| | - Ortal Shimon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Zhang W, Cao X, Wu H, Zhong X, Shi Y, Sun Z. Function of Steroid Receptor Coactivators in T Cells and Cancers: Implications for Cancer Immunotherapy. Crit Rev Immunol 2024; 44:111-126. [PMID: 38848298 PMCID: PMC11902286 DOI: 10.1615/critrevimmunol.2024051613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Steroid receptor coactivator (SRC) family members (SRC1, SRC2 and SRC3) are transcriptional co-regulators. SRCs orchestrate gene transcription by inducing transactivation of nuclear receptors and other transcription factors. Overexpression of SRCs is widely implicated in a range of cancers, especially hormone-related cancers. As coactivators, SRCs regulate multiple metabolic pathways involved in tumor growth, invasion, metastasis, and chemo-resistance. Emerging evidence in recent years suggest that SRCs also regulate maturation, differentiation, and cytotoxicity of T cells by controlling metabolic activities. In this review, we summarize the current understanding of the function of SRCs in T cells as well as cancer cells. Importantly, the controversies of targeting SRCs for cancer immunotherapy as well as possible reconciliation strategies are also discussed.
Collapse
Affiliation(s)
- Wencan Zhang
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Hongmin Wu
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Xiancai Zhong
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Yun Shi
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Zuoming Sun
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| |
Collapse
|
4
|
Yang L, Lu Y, Zhang Z, Chen Y, Chen N, Chen F, Qi Y, Han C, Xu Y, Chen M, Shen M, Wang S, Zeng H, Su Y, Hu M, Wang J. Oxymatrine boosts hematopoietic regeneration by modulating MAPK/ERK phosphorylation after irradiation-induced hematopoietic injury. Exp Cell Res 2023; 427:113603. [PMID: 37075826 DOI: 10.1016/j.yexcr.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Hematopoietic toxicity due to ionizing radiation (IR) is a leading cause of death in nuclear incidents, occupational hazards, and cancer therapy. Oxymatrine (OM), an extract originating from the root of Sophora flavescens (Kushen), possesses extensive pharmacological properties. In this study, we demonstrate that OM treatment accelerates hematological recovery and increases the survival rate of mice subjected to irradiation. This outcome is accompanied by an increase in functional hematopoietic stem cells (HSCs), resulting in an enhanced hematopoietic reconstitution ability. Mechanistically, we observed significant activation of the MAPK signaling pathway, accelerated cellular proliferation, and decreased cell apoptosis. Notably, we identified marked increases in the cell cycle transcriptional regulator Cyclin D1 (Ccnd1) and the anti-apoptotic protein BCL2 in HSC after OM treatment. Further investigation revealed that the expression of Ccnd1 transcript and BCL2 levels were reversed upon specific inhibition of ERK1/2 phosphorylation, effectively negating the rescuing effect of OM. Moreover, we determined that targeted inhibition of ERK1/2 activation significantly counteracted the regenerative effect of OM on human HSCs. Taken together, our results suggest a crucial role for OM in hematopoietic reconstitution following IR via MAPK signaling pathway-mediated mechanisms, providing theoretical support for innovative therapeutic applications of OM in addressing IR-induced injuries in humans.
Collapse
Affiliation(s)
- Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yin Chen
- Department of Gynaecology and Obstetrics, 958 Hospital of PLA Army, Chongqing, 400038, China.
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Chinese PLA Center for Disease Control and Prevention, No. 20 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
5
|
Gilad Y, Lonard DM, O’Malley BW. Steroid receptor coactivators - their role in immunity. Front Immunol 2022; 13:1079011. [PMID: 36582250 PMCID: PMC9793089 DOI: 10.3389/fimmu.2022.1079011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Steroid Receptor Coactivators (SRCs) are essential regulators of transcription with a wide range of impact on human physiology and pathology. In immunology, SRCs play multiple roles; they are involved in the regulation of nuclear factor-κB (NF-κB), macrophage (MΦ) activity, lymphoid cells proliferation, development and function, to name just a few. The three SRC family members, SRC-1, SRC-2 and SRC-3, can exert their immunological function either in an independent manner or act in synergy with each other. In certain biological contexts, one SRC family member can compensate for lack of activity of another member, while in other cases one SRC can exert a biological function that competes against the function of another family counterpart. In this review we illustrate the diverse biological functionality of the SRCs with regard to their role in immunity. In the light of recent development of SRC small molecule inhibitors and stimulators, we discuss their potential relevance as modulators of the immunological activity of the SRCs for therapeutic purposes.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| |
Collapse
|
6
|
Hu M, Lu Y, Wang S, Zhang Z, Qi Y, Chen N, Shen M, Chen F, Chen M, Yang L, Chen S, Zeng D, Wang F, Su Y, Xu Y, Wang J. CD63 acts as a functional marker in maintaining hematopoietic stem cell quiescence through supporting TGFβ signaling in mice. Cell Death Differ 2022; 29:178-191. [PMID: 34363017 PMCID: PMC8738745 DOI: 10.1038/s41418-021-00848-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem cell (HSC) fate is tightly controlled by various regulators, whereas the underlying mechanism has not been fully uncovered due to the high heterogeneity of these populations. In this study, we identify tetraspanin CD63 as a novel functional marker of HSCs in mice. We show that CD63 is unevenly expressed on the cell surface in HSC populations. Importantly, HSCs with high CD63 expression (CD63hi) are more quiescent and have more robust self-renewal and myeloid differentiation abilities than those with negative/low CD63 expression (CD63-/lo). On the other hand, using CD63 knockout mice, we find that loss of CD63 leads to reduced HSC numbers in the bone marrow. In addition, CD63-deficient HSCs exhibit impaired quiescence and long-term repopulating capacity, accompanied by increased sensitivity to irradiation and 5-fluorouracil treatment. Further investigations demonstrate that CD63 is required to sustain TGFβ signaling activity through its interaction with TGFβ receptors I and II, thereby playing an important role in regulating the quiescence of HSCs. Collectively, our data not only reveal a previously unrecognized role of CD63 but also provide us with new insights into HSC heterogeneity.
Collapse
Affiliation(s)
- Mengjia Hu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yukai Lu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Song Wang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zihao Zhang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yan Qi
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Naicheng Chen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mingqiang Shen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fang Chen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mo Chen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lijing Yang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shilei Chen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Dongfeng Zeng
- grid.410570.70000 0004 1760 6682Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fengchao Wang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yongping Su
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yang Xu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Junping Wang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Tan S, Guo X, Li M, Wang T, Wang Z, Li C, Wu Z, Li N, Gao L, Liang X, Ma C. Transcription factor Zhx2 restricts NK cell maturation and suppresses their antitumor immunity. J Exp Med 2021; 218:e20210009. [PMID: 34279541 PMCID: PMC8292132 DOI: 10.1084/jem.20210009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 02/03/2023] Open
Abstract
The maturation and functional competence of natural killer (NK) cells is a tightly controlled process that relies on transcription factors (TFs). Here, we identify transcriptional repressor zinc fingers and homeoboxes 2 (Zhx2) as a novel regulator that restricts NK cell maturation and function. Mice with Zhx2 conditional deletion in NK cells (Zhx2Δ/Δ) showed accumulation of matured NK cells. Loss of Zhx2 enhanced NK cell survival and NK cell response to IL-15. Transcriptomic analysis revealed Zeb2, a key TF in NK cell terminal maturation, as a direct downstream target of Zhx2. Therapeutically, transfer of Zhx2-deficient NK cells resulted in inhibition of tumor growth and metastasis in different murine models. Our findings collectively unmask a previously unrecognized role of Zhx2 as a novel negative regulator in NK cell maturation and highlight its therapeutic potential as a promising strategy to enhance NK cell-mediated tumor surveillance.
Collapse
Affiliation(s)
- Siyu Tan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xiaowei Guo
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Mengzhen Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Nailin Li
- Clinical Pharmacology Group, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| |
Collapse
|
8
|
SRC-3, a Steroid Receptor Coactivator: Implication in Cancer. Int J Mol Sci 2021; 22:ijms22094760. [PMID: 33946224 PMCID: PMC8124743 DOI: 10.3390/ijms22094760] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Steroid receptor coactivator-3 (SRC-3), also known as amplified in breast cancer 1 (AIB1), is a member of the SRC family. SRC-3 regulates not only the transcriptional activity of nuclear receptors but also many other transcription factors. Besides the essential role of SRC-3 in physiological functions, it also acts as an oncogene to promote multiple aspects of cancer. This review updates the important progress of SRC-3 in carcinogenesis and summarizes its mode of action, which provides clues for cancer therapy.
Collapse
|
9
|
Identification of a novel immune microenvironment signature predicting survival and therapeutic options for bladder cancer. Aging (Albany NY) 2020; 13:2780-2802. [PMID: 33408272 PMCID: PMC7880321 DOI: 10.18632/aging.202327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022]
Abstract
Few studies have investigated the potential of tumor immune microenvironment genes as indicators of urinary bladder cancer. Here, we sought to establish an immune-related gene signature for determining prognosis and treatment options. We developed a ten-gene tumor immune microenvironment signature and evaluated its prognostic capacity on internal and external cohorts. Multivariate Cox regression and nomogram analyses revealed the prognostic risk model as an independent and effective indicator of prognosis. We observed lower proportions of CD8+ T cells, dendritic cells, regulatory T cells, higher proportions of macrophages and neutrophils in high UBC risk group. UBC tissues with high-risk score tend to exhibit high TP53 and RB1 mutation rates, high PD1/PD-L1 expression and poor-survival basal squamous subtypes, while those with low-risk score tend to have high FGFR3 mutation rates and luminal papillary subtypes. Unexpectedly, we found a highly significant positive correlation between glycolytic genes and risk score, highlighting metabolic competition in tumor ecosystem and potential therapeutic avenues. Our study thus revealed a tumor immune microenvironment signature for predicting prognostic and response to immune checkpoint inhibitors against bladder cancer. Prospective studies are required to further test the predictive capacity of this model.
Collapse
|