1
|
Zhou MM, Cole PA. Targeting lysine acetylation readers and writers. Nat Rev Drug Discov 2025; 24:112-133. [PMID: 39572658 PMCID: PMC11798720 DOI: 10.1038/s41573-024-01080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 02/06/2025]
Abstract
Lysine acetylation is a major post-translational modification in histones and other proteins that is catalysed by the 'writer' lysine acetyltransferases (KATs) and mediates interactions with bromodomains (BrDs) and other 'reader' proteins. KATs and BrDs play key roles in regulating gene expression, cell growth, chromatin structure, and epigenetics and are often dysregulated in disease states, including cancer. There have been accelerating efforts to identify potent and selective small molecules that can target individual KATs and BrDs with the goal of developing new therapeutics, and some of these agents are in clinical trials. Here, we summarize the different families of KATs and BrDs, discuss their functions and structures, and highlight key advances in the design and development of chemical agents that show promise in blocking the action of these chromatin proteins for disease treatment.
Collapse
Affiliation(s)
- Ming-Ming Zhou
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Lyu K, Ren Y, Mou J, Yang Y, Pan Y, Zhang H, Li Y, Cao D, Chen L, Chen D, Guo D, Xiong B. Structure-Based Rational Design and Evaluation of BET-Aurora Kinase Dual-Inhibitors for Treatment of Cancers. J Med Chem 2025; 68:1344-1364. [PMID: 39844725 DOI: 10.1021/acs.jmedchem.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor 27, we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors. Compound 38 exhibited strong affinity toward both BRD4 and Aurora kinase A. It also showed good antiproliferative activities on diverse cancer cell lines, good pharmacokinetic profiles, and favorable antitumor efficacy in renal cell cancer and colon cancer xenograft models with TGI of 45.99% and 53.06%, respectively. The development of compound 38 reinforces the concept that a rational design may achieve dual inhibitors targeting specific kinases and bromodomain proteins.
Collapse
Affiliation(s)
- Kaikai Lyu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Yunfang Yang
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Yaoyao Pan
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Huijie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
3
|
Delrieu L, Hamaidia S, Montaut E, Garcia-Sandoval AC, Teste C, Betton-Fraisse P, Bonnefoix T, Carras S, Gressin R, Lefebvre C, Govin J, Emadali A. BET inhibition revealed varying MYC dependency mechanisms independent of gene alterations in aggressive B-cell lymphomas. Clin Epigenetics 2024; 16:185. [PMID: 39702340 DOI: 10.1186/s13148-024-01788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND MYC-driven lymphomas are a subset of B-cell lymphomas characterized by genetic alterations that dysregulate the expression of the MYC oncogene. When overexpressed, typically through chromosomal translocations, amplifications, or other mechanisms, MYC can drive uncontrolled cell growth and contribute to cancer development. MYC-driven lymphomas are described as aggressive entities which require intensive treatment approaches and can be associated with poor prognosis. In the absence of direct MYC-targeting therapy, epigenetic drugs called BET inhibitors (BETi) were shown to reduce MYC levels by disrupting BRD4-dependent transcription associated with the expression of MYC, as well as other oncogenes. Here, we used BETi as molecular tools to better understand oncogenic dependencies in a panel of cell line models of MYC-driven B-cell lymphoma selected to represent their genetic heterogeneity. RESULTS We first showed that, in these models, MYC expression level does not strictly correlate to the presence of gene alterations. Our data also demonstrated that BETi induces similar growth arrest in all lymphoma cell lines independently of MYC mutational status or expression level. In contrast, BETi-induced cell death was only observed in two cell lines presenting the highest level of MYC protein. This suggests that some MYC-driven lymphoma could present a stronger dependency on MYC for their survival which cannot be predicted on the sole basis on their genetics. This hypothesis was confirmed by gene invalidation experiments, which showed that MYC loss recapitulates the effect of BETi treatment on both cell proliferation and survival, confirming MYC oncogene dependency in models sensitive to BETi cytotoxicity. In contrast, the growth arrest observed in cell lines resistant to BETi-induced apoptosis is not mediated through MYC, but rather through alternative pro-proliferative or oncogenic pathways. Gene expression profiling revealed the basal activation of a specific non-canonical WNT/Hippo pathway in cell death-resistant cell lines that could be targeted in combination therapy to restore BETi cytotoxicity. CONCLUSION This work brings new insights into the complexity of MYC-dependencies and unravels a novel targetable oncogenic pathway in aggressive B-cell lymphomas.
Collapse
Affiliation(s)
- Loris Delrieu
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France
| | - Sieme Hamaidia
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France
- Recherche and Innovation Unit, Grenoble Alpes University Hospital, Grenoble, France
| | - Emilie Montaut
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France
- Recherche and Innovation Unit, Grenoble Alpes University Hospital, Grenoble, France
| | | | - Camille Teste
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France
| | | | - Thierry Bonnefoix
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France
- Recherche and Innovation Unit, Grenoble Alpes University Hospital, Grenoble, France
| | - Sylvain Carras
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France
- Hematology, Oncogenetics and Immunology Unit, Grenoble Alpes University Hospital, Grenoble, France
- Department of Clinical Hematology, Grenoble Alpes University Hospital, Grenoble, France
| | - Rémy Gressin
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France
- Department of Clinical Hematology, Grenoble Alpes University Hospital, Grenoble, France
| | - Christine Lefebvre
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France
- Hematology, Oncogenetics and Immunology Unit, Grenoble Alpes University Hospital, Grenoble, France
| | - Jérôme Govin
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France
| | - Anouk Emadali
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France.
- Recherche and Innovation Unit, Grenoble Alpes University Hospital, Grenoble, France.
| |
Collapse
|
4
|
Carturan A, Morè S, Poloni A, Rupoli S, Morsia E. Shaping the Future of Myeloproliferative Neoplasm Therapy: Immune-Based Strategies and Targeted Innovations. Cancers (Basel) 2024; 16:4113. [PMID: 39682299 DOI: 10.3390/cancers16234113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous cutting-edge immunotherapy approaches have been developed for hematological malignancies, such as immune-checkpoint inhibitors for lymphomas, chimeric antigen receptor (CAR)-T-cell treatments for B-cell cancers, and monoclonal antibody therapies for acute myeloid leukemia (AML). However, achieving similar breakthroughs in MPNs has proven challenging. The key obstacles include the absence of universally expressed and MPN-specific surface markers, significant cellular and molecular variability among both individual patients and across different MPN subtypes, and the failure of treatments to stimulate an anti-tumor immune response due to the immune system disruptions caused by the myeloid neoplasm. Currently, there are several innovative therapies in clinical trials for MPNs. These include new JAK inhibitors with greater specificity for JAK2, as well as "add-on" medications designed to enhance the effectiveness of ruxolitinib, in both patients who are new to the drug and in those who have shown suboptimal responses. Additionally, there is ongoing exploration of novel therapeutic targets. In this review, we will explore the immunotherapy approaches that are currently used in clinical practice for MPNs, as well as emerging strategies that are likely to change the treatment of these diseases in the coming years.
Collapse
Affiliation(s)
- Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Morè
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Serena Rupoli
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Erika Morsia
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
5
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
6
|
Zou D, Feng S, Hu B, Guo M, Lv Y, Ma R, Du Y, Feng J. Bromodomain proteins as potential therapeutic targets for B-cell non-Hodgkin lymphoma. Cell Biosci 2024; 14:143. [PMID: 39580422 PMCID: PMC11585172 DOI: 10.1186/s13578-024-01326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND B-cell non-Hodgkin lymphoma (B-NHL) is the most common type of lymphoma and is significantly heterogeneous among various subtypes. Despite of considerable advancements in treatment strategies for B-NHL, the prognosis of relapsed/refractory patients remains poor. MAIN TEXT It has been indicated that epigenetic dysregulation is critically associated with the pathogenesis of most hematological malignancies, resulting in the clinical targeting of epigenetic modifications. Bromodomain (BRD) proteins are essential epigenetic regulators which contain eight subfamilies, including BRD and extra-terminal domain (BET) family, histone acetyltransferases (HATs) and HAT-related proteins, transcriptional coactivators, transcriptional mediators, methyltransferases, helicases, ATP-dependent chromatin-remodeling complexes, and nuclear-scaffolding proteins. Most pre-clinical and clinical studies on B-NHL have focused predominantly on the BET family and the use of BET inhibitors as mono-treatment or co-treatment with other anti-tumor drugs. Furthermore, preclinical models of B-NHL have revealed that BET degraders are more active than BET inhibitors. Moreover, with the development of BET inhibitors and degraders, non-BET BRD protein inhibitors have also been designed and have shown antitumor activities in B-NHL preclinical models. This review summarized the mechanism of BRD proteins and the recent progress of BRD protein-related drugs in B-NHL. This study aimed to collect the most recent evidences and summarize possibility on whether BRD proteins can serve as therapeutic targets for B-NHL. CONCLUSION In summary, BRD proteins are critical epigenetic regulatory factors and may be potential therapeutic targets for B-NHL.
Collapse
Affiliation(s)
- Dan Zou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Sitong Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bowen Hu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Mengya Guo
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Du
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
7
|
Vlahopoulos SA. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int J Mol Sci 2024; 25:8621. [PMID: 39201306 PMCID: PMC11354898 DOI: 10.3390/ijms25168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammation is activated by diverse triggers that induce the expression of cytokines and adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions that help the immune system clear the primary cause of tissue damage, whether this is an infection, a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of strong mediators of inflammation occur, while long-term changes occur to specific groups of cells. Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity if they remain active beyond the boundaries of essential function. The transcriptional regulator NFκB enables some of the fundamental gene expression changes during inflammation, as well as during tissue development. During recurrence of malignant disease, cell stress-induced alterations enable the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the immune system. A number of those alterations occur due to significant defects in feedback signal cascades that control the activity of NFκB. Specifically, cell stress contributes to feedback defects as it overrides modules that otherwise control inflammation to protect host tissue. NFκB is involved in both the suppression and promotion of cancer, and the key distinctive feature that determines its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of this question, namely the mechanism that enables a divergent response of cancer cells to critical inflammatory stimuli and to cell stress in general.
Collapse
|
8
|
Majirská M, Pilátová MB, Kudličková Z, Vojtek M, Diniz C. Targeting hematological malignancies with isoxazole derivatives. Drug Discov Today 2024; 29:104059. [PMID: 38871112 DOI: 10.1016/j.drudis.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compounds with a heterocyclic isoxazole ring are well known for their diverse biologic activities encompassing antimicrobial, antipsychotic, immunosuppressive, antidiabetic and anticancer effects. Recent studies on hematological malignancies have also shown that some of the isoxazole-derived compounds feature encouraging cancer selectivity, low toxicity to normal cells and ability to overcome cancer drug resistance of conventional treatments. These characteristics are particularly promising because patients with hematological malignancies face poor clinical outcomes caused by cancer drug resistance or relapse of the disease. This review summarizes the knowledge on isoxazole-derived compounds toward hematological malignancies and provides clues on their mechanism(s) of action (apoptosis, cell cycle arrest, ROS production) and putative pharmacological targets (c-Myc, BET, ATR, FLT3, HSP90, CARM1, tubulin, PD-1/PD-L1, HDACs) wherever known.
Collapse
Affiliation(s)
- Monika Majirská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia.
| | - Zuzana Kudličková
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Ji Y, Chen W, Wang X. Bromodomain and Extraterminal Domain Protein 2 in Multiple Human Diseases. J Pharmacol Exp Ther 2024; 389:277-288. [PMID: 38565308 DOI: 10.1124/jpet.123.002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Bromodomain and extraterminal domain protein 2 (BRD2), a member of the bromodomain and extraterminal domain (BET) protein family, is a crucial epigenetic regulator with significant function in various diseases and cellular processes. The central function of BRD2 is modulating gene transcription by binding to acetylated lysine residues on histones and transcription factors. This review highlights key findings on BRD2 in recent years, emphasizing its roles in maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. BRD2's diverse functions are underscored by its involvement in diseases such as malignant tumors, neurologic disorders, inflammatory conditions, metabolic diseases, and virus infection. Notably, the potential role of BRD2 as a diagnostic marker and therapeutic target is discussed in the context of various diseases. Although pan inhibitors targeting the BET family have shown promise in preclinical studies, a critical need exists for the development of highly selective BRD2 inhibitors. In conclusion, this review offers insights into the multifaceted nature of BRD2 and calls for continued research to unravel its intricate mechanisms and harness its therapeutic potential. SIGNIFICANCE STATEMENT: BRD2 is involved in the occurrence and development of diseases through maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. Targeting BRD2 through protein degradation-targeting complexes technology is emerging as a promising therapeutic approach for malignant cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| |
Collapse
|
10
|
Li S, Zhang L, Wang L, Ji J, He J, Zheng X, Cao L, Li K. BiMPADR: A Deep Learning Framework for Predicting Adverse Drug Reactions in New Drugs. Molecules 2024; 29:1784. [PMID: 38675604 PMCID: PMC11051887 DOI: 10.3390/molecules29081784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Detecting the unintended adverse reactions of drugs (ADRs) is a crucial concern in pharmacological research. The experimental validation of drug-ADR associations often entails expensive and time-consuming investigations. Thus, a computational model to predict ADRs from known associations is essential for enhanced efficiency and cost-effectiveness. Here, we propose BiMPADR, a novel model that integrates drug gene expression into adverse reaction features using a message passing neural network on a bipartite graph of drugs and adverse reactions, leveraging publicly available data. By combining the computed adverse reaction features with the structural fingerprints of drugs, we predict the association between drugs and adverse reactions. Our models obtained high AUC (area under the receiver operating characteristic curve) values ranging from 0.861 to 0.907 in an external drug validation dataset under differential experiment conditions. The case study on multiple BET inhibitors also demonstrated the high accuracy of our predictions, and our model's exploration of potential adverse reactions for HWD-870 has contributed to its research and development for market approval. In summary, our method would provide a promising tool for ADR prediction and drug safety assessment in drug discovery and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Cao
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China; (S.L.); (L.Z.); (L.W.); (J.J.); (J.H.); (X.Z.)
| | - Kang Li
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China; (S.L.); (L.Z.); (L.W.); (J.J.); (J.H.); (X.Z.)
| |
Collapse
|
11
|
Stein EM, Fathi AT, Harb WA, Colak G, Fusco A, Mangan JK. Results from phase 1 of the MANIFEST clinical trial to evaluate the safety and tolerability of pelabresib in patients with myeloid malignancies. Leuk Lymphoma 2024; 65:503-510. [PMID: 38259250 DOI: 10.1080/10428194.2023.2300710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Pelabresib (CPI-0610), a BET protein inhibitor, is in clinical development for hematologic malignancies, given its ability to target NF-κB gene expression. The MANIFEST phase 1 study assessed pelabresib in patients with acute leukemia, high-risk myelodysplastic (MDS) syndrome, or MDS/myeloproliferative neoplasms (MDS/MPNs) (NCT02158858). Forty-four patients received pelabresib orally once daily (QD) at various doses (24-400 mg capsule or 225-275 mg tablet) on cycles of 14 d on and 7 d off. The most frequent drug-related adverse events were nausea, decreased appetite, and fatigue. The maximum tolerated dose (MTD) was 225 mg tablet QD. One patient with chronic myelomonocytic leukemia (CMML) showed partial remission. In total, 25.8% of acute myeloid leukemia (AML) patients and 38.5% of high-risk MDS patients had stable disease. One AML patient and one CMML patient showed peripheral hematologic response. The favorable safety profile supports the ongoing pivotal study of pelabresib in patients with myelofibrosis using the recommended phase 2 dose of 125 mg tablet QD.CLINICAL TRIAL REGISTRATION: NCT02158858.
Collapse
Affiliation(s)
- Eytan M Stein
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amir T Fathi
- Leukemia Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wael A Harb
- Horizon Oncology and Research Center, Lafayette, IN, USA
| | - Gozde Colak
- Constellation Pharmaceuticals, Inc., a MorphoSys Company, Boston, MA, USA
| | - Andrea Fusco
- Constellation Pharmaceuticals, Inc., a MorphoSys Company, Boston, MA, USA
| | - James K Mangan
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. The potential of BRD4 inhibition in tumour mechanosignaling. J Cell Mol Med 2023; 27:4215-4218. [PMID: 37994501 PMCID: PMC10746939 DOI: 10.1111/jcmm.18057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biopathology, ‘Eginition’ Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
13
|
Mascarenhas J, Kremyanskaya M, Patriarca A, Palandri F, Devos T, Passamonti F, Rampal RK, Mead AJ, Hobbs G, Scandura JM, Talpaz M, Granacher N, Somervaille TCP, Hoffman R, Wondergem MJ, Salama ME, Colak G, Cui J, Kiladjian JJ, Vannucchi AM, Verstovsek S, Curto-García N, Harrison C, Gupta V. MANIFEST: Pelabresib in Combination With Ruxolitinib for Janus Kinase Inhibitor Treatment-Naïve Myelofibrosis. J Clin Oncol 2023; 41:4993-5004. [PMID: 36881782 PMCID: PMC10642902 DOI: 10.1200/jco.22.01972] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 12/23/2022] [Indexed: 03/09/2023] Open
Abstract
PURPOSE Standard therapy for myelofibrosis comprises Janus kinase inhibitors (JAKis), yet spleen response rates of 30%-40%, high discontinuation rates, and a lack of disease modification highlight an unmet need. Pelabresib (CPI-0610) is an investigational, selective oral bromodomain and extraterminal domain inhibitor (BETi). METHODS MANIFEST (ClinicalTrails.gov identifier: NCT02158858), a global, open-label, nonrandomized, multicohort, phase II study, includes a cohort of JAKi-naïve patients with myelofibrosis treated with pelabresib and ruxolitinib. The primary end point is a spleen volume reduction of ≥ 35% (SVR35) at 24 weeks. RESULTS Eighty-four patients received ≥ 1 dose of pelabresib and ruxolitinib. The median age was 68 (range, 37-85) years; 24% of patients were intermediate-1 risk, 61% were intermediate-2 risk, and 16% were high risk as per the Dynamic International Prognostic Scoring System; 66% (55 of 84) of patients had a hemoglobin level of < 10 g/dL at baseline. At 24 weeks, 68% (57 of 84) achieved SVR35, and 56% (46 of 82) achieved a total symptom score reduction of ≥ 50% (TSS50). Additional benefits at week 24 included 36% (29 of 84) of patients with improved hemoglobin levels (mean, 1.3 g/dL; median, 0.8 g/dL), 28% (16 of 57) with ≥ 1 grade improvement in fibrosis, and 29.5% (13 of 44) with > 25% reduction in JAK2V617F-mutant allele fraction, which was associated with SVR35 response (P = .018, Fisher's exact test). At 48 weeks, 60% (47 of 79) of patients had SVR35 response. Grade 3 or 4 toxicities seen in ≥ 10% patients were thrombocytopenia (12%) and anemia (35%), leading to treatment discontinuation in three patients. 95% (80 of 84) of the study participants continued combination therapy beyond 24 weeks. CONCLUSION The rational combination of the BETi pelabresib and ruxolitinib in JAKi-naïve patients with myelofibrosis was well tolerated and showed durable improvements in spleen and symptom burden, with associated biomarker findings of potential disease-modifying activity.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marina Kremyanskaya
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrea Patriarca
- Hematology Unit, Department of Translational Medicine, University of Eastern Piedmont and AOU Maggiore della Carità, Novara, Italy
| | - Francesca Palandri
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology “Seràgnoli”, Bologna, Italy
| | - Timothy Devos
- Department of Hematology, University Hospitals Leuven and Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven, Belgium
| | | | | | - Adam J. Mead
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Gabriella Hobbs
- Division of Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Moshe Talpaz
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | | | - Tim C. P. Somervaille
- The Christie NHS Foundation Trust & Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Gozde Colak
- Constellation Pharmaceuticals Inc, a MorphoSys Company, Boston, MA
| | - Jike Cui
- Constellation Pharmaceuticals Inc, a MorphoSys Company, Boston, MA
| | | | | | - Srdan Verstovsek
- Leukemia Department, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Claire Harrison
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Vikas Gupta
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Palumbo GA, Duminuco A. Myelofibrosis: In Search for BETter Targeted Therapies. J Clin Oncol 2023; 41:5044-5048. [PMID: 37751563 DOI: 10.1200/jco.23.00833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Giuseppe A Palumbo
- Department of Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Andrea Duminuco
- Postgraduate School of Hematology, University of Catania, Catania, Italy
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
15
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
16
|
Gupta V, Mascarenhas J, Kremyanskaya M, Rampal RK, Talpaz M, Kiladjian JJ, Vannucchi AM, Verstovsek S, Colak G, Dey D, Harrison C. Matching-adjusted indirect comparison of the pelabresib-ruxolitinib combination vs JAKi monotherapy in myelofibrosis. Blood Adv 2023; 7:5421-5432. [PMID: 37530627 PMCID: PMC10509667 DOI: 10.1182/bloodadvances.2023010628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Janus kinase inhibitors (JAKis) ruxolitinib, fedratinib, and pacritinib are the current standard of care in symptomatic myelofibrosis (MF). However, progressive disease and toxicities frequently lead to JAKi discontinuation. Preclinical data indicate that combining JAK and bromodomain and extraterminal (BET) domain inhibition leads to overlapping effects in MF. Pelabresib (CPI-0610), an oral, small-molecule BET1,2 inhibitor (BETi), in combination with ruxolitinib showed improvements in spleen volume reduction (SVR35) and total symptom score reduction (TSS50) from baseline in the phase 2 MANIFEST study (NCT02158858) in patients with MF. Given the absence of a head-to-head clinical comparison between JAKi monotherapy and JAKi with BETi combination therapy, we performed an unanchored matching-adjusted indirect comparison analysis to adjust for differences between studies and allow for the comparison of SVR35, TSS50, and TSS measured at several timepoints in arm 3 of MANIFEST (pelabresib with ruxolitinib in JAKi treatment-naive patients with MF), with data from the following JAKi monotherapy studies in JAKi treatment-naive patients: COMFORT-I and COMFORT-II (ruxolitinib), SIMPLIFY-1 (ruxolitinib and momelotinib), and JAKARTA (fedratinib). Response rate ratios >1 were observed for pelabresib with ruxolitinib vs all comparators for SVR35 and TSS50 at week 24. Improvements in TSS were observed as early as week 12 and were durable. These results indicate that pelabresib with ruxolitinib may have a potentially higher efficacy than JAKi monotherapy in JAKi treatment-naive MF.
Collapse
Affiliation(s)
- Vikas Gupta
- Princess Margaret Cancer Centre, Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marina Kremyanskaya
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Raajit K. Rampal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Moshe Talpaz
- Hematology Clinic, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | | | - Alessandro M. Vannucchi
- Department of Hematology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Srdan Verstovsek
- Leukemia Department, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gozde Colak
- Constellation Pharmaceuticals Inc, a MorphoSys company, Boston, MA
| | | | - Claire Harrison
- Department of Haematology, Guy’s and St Thomas’ National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
Fernández S, Díaz E, Rita CG, Estévez M, Montalbán C, García JF. BET inhibitors induce NF-κB and E2F downregulation in Hodgkin and Reed-Sternberg cells. Exp Cell Res 2023; 430:113718. [PMID: 37468057 DOI: 10.1016/j.yexcr.2023.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
The prognosis of patients with relapsed and/or refractory classic Hodgkin lymphoma (cHL) continues to be poor. Therefore, there is a continuing need to develop novel therapies and to rationalize the use of target combinations. In recent years there has been growing interest in epigenetic targets for hematological malignancies under the rationale of the presence of common alterations in epigenetic transcriptional regulation. Since Hodgkin and Reed-Sternberg (HRS) cells have frequent inactivating mutations of the CREBBP and EP300 acetyltransferases, bromodomain and extra-terminal (BET) inhibitors can be a rational therapy for cHL. Here we aimed to confirm the efficacy of BET inhibitors (iBETs) using representative cell models and functional experiments, and to further explore biological mechanisms under iBET treatment using whole-transcriptome analyses. Our results reveal cytostatic rather than cytotoxic activity through the induction of G1/S and G2/M cell-cycle arrest, in addition to variable MYC downregulation. Additionally, massive changes in the transcriptome induced by the treatment include downregulation of relevant pathways in cHL disease: NF-kB and E2F, among others. Our findings support the therapeutic use of iBETs in selected cHL patients and reveal previously unknown biological mechanisms and consequences of pan-BET inhibition.
Collapse
Affiliation(s)
- Sara Fernández
- Translational Research Laboratory, MD Anderson Cancer Center Madrid, Spain
| | - Eva Díaz
- Translational Research Laboratory, MD Anderson Cancer Center Madrid, Spain
| | - Claudia G Rita
- Flow Cytometry Unit, Eurofins-Megalab, MD Anderson Cancer Center Madrid, Spain
| | - Mónica Estévez
- Department of Hematology, MD Anderson Cancer Center Madrid, Spain
| | - Carlos Montalbán
- Department of Hematology, MD Anderson Cancer Center Madrid, Spain
| | - Juan F García
- Translational Research Laboratory, MD Anderson Cancer Center Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|
18
|
Duminuco A, Vetro C, Giallongo C, Palumbo GA. The pharmacotherapeutic management of patients with myelofibrosis: looking beyond JAK inhibitors. Expert Opin Pharmacother 2023; 24:1449-1461. [PMID: 37341682 DOI: 10.1080/14656566.2023.2228695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The approach to myelofibrosis (MF) has been revolutionized in recent years, overcoming the traditional therapies, often not very effective. Janus kinase inhibitors (JAKi - from ruxolitinib up to momelotinib) were the first class of drugs with considerable results. AREAS COVERED Ongoing, new molecules are being tested that promise to give hope even to those patients not eligible for bone marrow transplants who become intolerant or are refractory to JAKi, for which therapeutic hopes are currently limited. Telomerase, murine double minute 2 (MDM2), phosphatidylinositol 3-kinase δ (PI3Kδ), BCL-2/xL, and bromodomain and extra-terminal motif (BET) inhibitors are the drugs with promising results in clinical trials and close to closure with consequent placing on the market, finally allowing JAK to look beyond. The novelty of the MF field was searched in the PubMed database, and the recently completed/ongoing trials are extrapolated from the ClinicalTrial website. EXPERT OPINION From this point of view, the use of new molecules widely described in this review, probably in association with JAKi, will represent the future treatment of choice in MF, leaving, in any case, the potential new approaches actually in an early stage of development, such as the use of immunotherapy in targeting CALR, which is coming soon.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | - Calogero Vetro
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | - Cesarina Giallongo
- Dipartimento di Scienze Mediche Chirurgiche E Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
- Dipartimento di Scienze Mediche Chirurgiche E Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
19
|
To KKW, Xing E, Larue RC, Li PK. BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications. Molecules 2023; 28:molecules28073043. [PMID: 37049806 PMCID: PMC10096006 DOI: 10.3390/molecules28073043] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The mammalian bromodomain and extra-terminal domain (BET) family of proteins consists of four conserved members (Brd2, Brd3, Brd4, and Brdt) that regulate numerous cancer-related and immunity-associated genes. They are epigenetic readers of histone acetylation with broad specificity. BET proteins are linked to cancer progression due to their interaction with numerous cellular proteins including chromatin-modifying factors, transcription factors, and histone modification enzymes. The spectacular growth in the clinical development of small-molecule BET inhibitors underscores the interest and importance of this protein family as an anticancer target. Current approaches targeting BET proteins for cancer therapy rely on acetylation mimics to block the bromodomains from binding chromatin. However, bromodomain-targeted agents are suffering from dose-limiting toxicities because of their effects on other bromodomain-containing proteins. In this review, we provided an updated summary about the evolution of small-molecule BET inhibitors. The design of bivalent BET inhibitors, kinase and BET dual inhibitors, BET protein proteolysis-targeting chimeras (PROTACs), and Brd4-selective inhibitors are discussed. The novel strategy of targeting the unique C-terminal extra-terminal (ET) domain of BET proteins and its therapeutic significance will also be highlighted. Apart from single agent treatment alone, BET inhibitors have also been combined with other chemotherapeutic modalities for cancer treatment demonstrating favorable clinical outcomes. The investigation of specific biomarkers for predicting the efficacy and resistance of BET inhibitors is needed to fully realize their therapeutic potential in the clinical setting.
Collapse
|
20
|
Considerations to comprehensive care for the older individual with myelofibrosis. Best Pract Res Clin Haematol 2022; 35:101371. [DOI: 10.1016/j.beha.2022.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
|