1
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
2
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
3
|
Isse FA, El-Sherbeni AA, El-Kadi AOS. The multifaceted role of cytochrome P450-Derived arachidonic acid metabolites in diabetes and diabetic cardiomyopathy. Drug Metab Rev 2022; 54:141-160. [PMID: 35306928 DOI: 10.1080/03602532.2022.2051045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding lipid metabolism is a critical key to understanding the pathogenesis of Diabetes Mellitus (DM). It is known that 60-90% of DM patients are obese or used to be obese. The incidence of obesity is rising owing to the modern sedentary lifestyle that leads to insulin resistance and increased levels of free fatty acids, predisposing tissues to utilize more lipids with less glucose uptake. However, the exact mechanism is not yet fully elucidated. Diabetic cardiomyopathy seems to be associated with these alterations in lipid metabolism. Arachidonic acid (AA) is an important fatty acid that is metabolized to several bioactive compounds by cyclooxygenases, lipoxygenases, and the more recently discovered, cytochrome P450 (P450) enzymes. P450 metabolizes AA to either epoxy-AA (EETs) or hydroxy-AA (HETEs). Studies showed that EETs could have cardioprotective effects and beneficial effects in reversing abnormalities in glucose and insulin homeostasis. Conversely, HETEs, most importantly 12-HETE and 20-HETE, were found to interfere with normal glucose and insulin homeostasis and thus, might be involved in diabetic cardiomyopathy. In this review, we highlight the role of P450-derived AA metabolites in the context of DM and diabetic cardiomyopathy and their potential use as a target for developing new treatments for DM and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Fadumo Ahmed Isse
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ayman O S El-Kadi
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1448. [PMID: 30884210 PMCID: PMC6688910 DOI: 10.1002/wsbm.1448] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Small arteries in the body control vascular resistance, and therefore, blood pressure and blood flow. Endothelial and smooth muscle cells in the arterial walls respond to various stimuli by altering the vascular resistance on a moment to moment basis. Smooth muscle cells can directly influence arterial diameter by contracting or relaxing, whereas endothelial cells that line the inner walls of the arteries modulate the contractile state of surrounding smooth muscle cells. Cytosolic calcium is a key driver of endothelial and smooth muscle cell functions. Cytosolic calcium can be increased either by calcium release from intracellular stores through IP3 or ryanodine receptors, or the influx of extracellular calcium through ion channels at the cell membrane. Depending on the cell type, spatial localization, source of a calcium signal, and the calcium-sensitive target activated, a particular calcium signal can dilate or constrict the arteries. Calcium signals in the vasculature can be classified into several types based on their source, kinetics, and spatial and temporal properties. The calcium signaling mechanisms in smooth muscle and endothelial cells have been extensively studied in the native or freshly isolated cells, therefore, this review is limited to the discussions of studies in native or freshly isolated cells. This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
5
|
Abstract
Biologically active epoxyeicosatrienoic acid (EET) regioisomers are synthesized from arachidonic acid by cytochrome P450 epoxygenases of endothelial, myocardial, and renal tubular cells. EETs relax vascular smooth muscle and decrease inflammatory cell adhesion and cytokine release. Renal EETs promote sodium excretion and vasodilation to decrease hypertension. Cardiac EETs reduce infarct size after ischemia-reperfusion injury and decrease fibrosis and inflammation in heart failure. In diabetes, EETs improve insulin sensitivity, increase glucose tolerance, and reduce the renal injury. These actions of EETs emphasize their therapeutic potential. To minimize metabolic inactivation, 14,15-EET agonist analogs with stable epoxide bioisosteres and carboxyl surrogates were developed. In preclinical rat models, a subset of agonist analogs, termed EET-A, EET-B, and EET-C22, are orally active with good pharmacokinetic properties. These orally active EET agonists lower blood pressure and reduce cardiac and renal injury in spontaneous and angiotensin hypertension. Other beneficial cardiovascular actions include improved endothelial function and cardiac antiremodeling actions. In rats, EET analogs effectively combat acute and chronic kidney disease including drug- and radiation-induced kidney damage, hypertension and cardiorenal syndrome kidney damage, and metabolic syndrome and diabetes nephropathy. The compelling preclinical efficacy supports the prospect of advancing EET analogs to human clinical trials for kidney and cardiovascular diseases.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/administration & dosage
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- Administration, Oral
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/physiopathology
- Fatty Acids, Monounsaturated/administration & dosage
- Fatty Acids, Monounsaturated/chemistry
- Humans
- Hypertension/drug therapy
- Hypertension/physiopathology
- Kidney Diseases/drug therapy
- Kidney Diseases/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Structure-Activity Relationship
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- William B Campbell
- *Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI; and †Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | | |
Collapse
|
6
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
7
|
Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, Gutterman DD. Endothelium-Derived Hyperpolarization and Coronary Vasodilation: Diverse and Integrated Roles of Epoxyeicosatrienoic Acids, Hydrogen Peroxide, and Gap Junctions. Microcirculation 2016; 23:15-32. [PMID: 26541094 DOI: 10.1111/micc.12255] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
Abstract
Myocardial perfusion and coronary vascular resistance are regulated by signaling metabolites released from the local myocardium that act either directly on the VSMC or indirectly via stimulation of the endothelium. A prominent mechanism of vasodilation is EDH of the arteriolar smooth muscle, with EETs and H(2)O(2) playing important roles in EDH in the coronary microcirculation. In some cases, EETs and H(2)O(2) are released as transferable hyperpolarizing factors (EDHFs) that act directly on the VSMCs. By contrast, EETs and H(2)O(2) can also promote endothelial KCa activity secondary to the amplification of extracellular Ca(2+) influx and Ca(2+) mobilization from intracellular stores, respectively. The resulting endothelial hyperpolarization may subsequently conduct to the media via myoendothelial gap junctions or potentially lead to the release of a chemically distinct factor(s). Furthermore, in human isolated coronary arterioles dilator signaling involving EETs and H(2)O(2) may be integrated, being either complimentary or inhibitory depending on the stimulus. With an emphasis on the human coronary microcirculation, this review addresses the diverse and integrated mechanisms by which EETs and H(2)O(2) regulate vessel tone and also examines the hypothesis that myoendothelial microdomain signaling facilitates EDH activity in the human heart.
Collapse
Affiliation(s)
| | - Shaun L Sandow
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nilima Shukla
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Yanping Liu
- Division of Research Infrastructure, National Center for Research Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie Y Jeremy
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - David D Gutterman
- Division of Cardiovascular Medicine, Departments of Medicine, Physiology and Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Marowsky A, Haenel K, Bockamp E, Heck R, Rutishauser S, Mule N, Kindler D, Rudin M, Arand M. Genetic enhancement of microsomal epoxide hydrolase improves metabolic detoxification but impairs cerebral blood flow regulation. Arch Toxicol 2016; 90:3017-3027. [PMID: 26838043 PMCID: PMC5104800 DOI: 10.1007/s00204-016-1666-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/06/2016] [Indexed: 01/05/2023]
Abstract
Microsomal epoxide hydrolase (mEH) is a detoxifying enzyme for xenobiotic compounds. Enzymatic activity of mEH can be greatly increased by a point mutation, leading to an E404D amino acid exchange in its catalytic triad. Surprisingly, this variant is not found in any vertebrate species, despite the obvious advantage of accelerated detoxification. We hypothesized that this evolutionary avoidance is due to the fact that the mEH plays a dualistic role in detoxification and control of endogenous vascular signaling molecules. To test this, we generated mEH E404D mice and assessed them for detoxification capacity and vascular dynamics. In liver microsomes from these mice, turnover of the xenobiotic compound phenanthrene-9,10-oxide was four times faster compared to WT liver microsomes, confirming accelerated detoxification. mEH E404D animals also showed faster metabolization of a specific class of endogenous eicosanoids, arachidonic acid-derived epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). Significantly higher DHETs/EETs ratios were found in mEH E404D liver, urine, plasma, brain and cerebral endothelial cells compared to WT controls, suggesting a broad impact of the mEH mutant on endogenous EETs metabolism. Because EETs are strong vasodilators in cerebral vasculature, hemodynamics were assessed in mEH E404D and WT cerebral cortex and hippocampus using cerebral blood volume (CBV)-based functional magnetic resonance imaging (fMRI). Basal CBV0 levels were similar between mEH E404D and control mice in both brain areas. But vascular reactivity and vasodilation in response to the vasodilatory drug acetazolamide were reduced in mEH E404D forebrain compared to WT controls by factor 3 and 2.6, respectively. These results demonstrate a critical role for mEH E404D in vasodynamics and suggest that deregulation of endogenous signaling pathways is the undesirable gain of function associated with the E404D variant.
Collapse
Affiliation(s)
- Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Karen Haenel
- Institute of Complex Systems (ICS-6), Research Center Julich, Wilhelm-Johnen-Straße, 52425, Julich, Germany
| | - Ernesto Bockamp
- Institute of Translational Immunology, University of Mainz, Obere Zahlbacherstrasse 63, 55131, Mainz, Germany
| | - Rosario Heck
- Institute of Translational Immunology, University of Mainz, Obere Zahlbacherstrasse 63, 55131, Mainz, Germany
| | - Sibylle Rutishauser
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nandkishor Mule
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Diana Kindler
- Institute for Biomedical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland
| | - Markus Rudin
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute for Biomedical Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
9
|
Qiu H, Li N, Liu JY, Harris TR, Hammock BD, Chiamvimonvat N. Soluble epoxide hydrolase inhibitors and heart failure. Cardiovasc Ther 2015; 29:99-111. [PMID: 20433684 DOI: 10.1111/j.1755-5922.2010.00150.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular disease remains one of the leading causes of death in the Western societies. Heart failure (HF) is due primarily to progressive myocardial dysfunction accompanied by myocardial remodeling. Once HF develops, the condition is, in most cases, irreversible and is associated with a very high mortality rate. Soluble epoxide hydrolase (sEH) is an enzyme that catalyzes the hydrolysis of epoxyeicosatrienoic acids (EETs), which are lipid mediators derived from arachidonic acid through the cytochrome P450 epoxygenase pathway. EETs have been shown to have vasodilatory, antiinflammatory, and cardioprotective effects. When EETs are hydrolyzed by sEH to corresponding dihydroxyeicosatrienoic acids, their cardioprotective activities become less pronounced. In line with the recent genetic study that has identified sEH as a susceptibility gene for HF, the sEH enzyme has received considerable attention as an attractive therapeutic target for cardiovascular diseases. Indeed, sEH inhibition has been demonstrated to have antihypertensive and antiinflammatory actions, presumably due to the increased bioavailability of endogenous EETs and other epoxylipids, and several potent sEH inhibitors have been developed and tested in animal models of cardiovascular disease including hypertension, cardiac hypertrophy, and ischemia/reperfusion injury. sEH inhibitor treatment has been shown to effectively prevent pressure overload- and angiotensin II-induced cardiac hypertrophy and reverse the pre-established cardiac hypertrophy caused by chronic pressure overload. Application of sEH inhibitors in several cardiac ischemia/reperfusion injury models reduced infarct size and prevented the progressive cardiac remodeling. Moreover, the use of sEH inhibitors prevented the development of electrical remodeling and ventricular arrhythmias associated with cardiac hypertrophy and ischemia/reperfusion injury. The data published to date support the notion that sEH inhibitors may represent a promising therapeutic approach for combating detrimental cardiac remodeling and HF.
Collapse
Affiliation(s)
- Hong Qiu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA Department of Veterans Affairs, Northern California Health Care System Mather, CA, USA Department of Entomology and UC Davis Cancer Center, University of California, Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ellinsworth DC, Shukla N, Fleming I, Jeremy JY. Interactions between thromboxane A₂, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. Cardiovasc Res 2014; 102:9-16. [PMID: 24469536 DOI: 10.1093/cvr/cvu015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelium-dependent smooth muscle hyperpolarization (EDH) increasingly predominates over endothelium-derived nitric oxide (NO) as a participant in vasodilation as vessel size decreases. Its underlying nature is highly variable between vessel types, species, disease states, and exact experimental conditions, and is variably mediated by one or more transferable endothelium-derived hyperpolarizing factors and/or the electrotonic spread of endothelial hyperpolarization into the media via gap junctions. Although generally regarded (and studied) as a mechanism that is independent of NO and prostanoids, evidence has emerged that the endothelium-derived contracting factor and prostanoid thromboxane A2 can modulate several signalling components central to EDH, and therefore potentially curtail vasodilation through mechanisms that are distinct from those putatively involved in direct smooth muscle contraction. Notably, vascular production of thromboxane A2 is elevated in a number of cardiovascular disease states that promote endothelial dysfunction. This review will therefore discuss the mechanisms through which thromboxane A2 interacts with and modulates EDH, and will also consider the implications of such cross-talk in vasodilator control in health and disease.
Collapse
Affiliation(s)
- David C Ellinsworth
- Bristol Heart Institute, University of Bristol, Queens Building Level 7, Upper Maudlin St, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | | | | | | |
Collapse
|
11
|
Alsaad AMS, Zordoky BNM, Tse MMY, El-Kadi AOS. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev 2013; 45:173-95. [PMID: 23600686 DOI: 10.3109/03602532.2012.754460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A plethora of studies have demonstrated the expression of cytochrome P450 (CYP) and soluble epoxide hydrolase (sEH) enzymes in the heart and other cardiovascular tissues. In addition, the expression of these enzymes is altered during several cardiovascular diseases (CVDs), including cardiac hypertrophy (CH). The alteration in CYP and sEH expression results in derailed CYP-mediated arachidonic acid (AA) metabolism. In animal models of CH, it has been reported that there is an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and a decrease in epoxyeicosatrienoic acids (EETs). Further, inhibiting 20-HETE production by CYP ω-hydroxylase inhibitors and increasing EET stability by sEH inhibitors have been proven to protect against CH as well as other CVDs. Therefore, CYP-mediated AA metabolites 20-HETE and EETs are potential key players in the pathogenesis of CH. Some studies have investigated the molecular mechanisms by which these metabolites mediate their effects on cardiomyocytes and vasculature leading to pathological CH. Activation of several intracellular signaling cascades, such as nuclear factor of activated T cells, nuclear factor kappa B, mitogen-activated protein kinases, Rho-kinases, Gp130/signal transducer and activator of transcription, extracellular matrix degradation, apoptotic cascades, inflammatory cytokines, and oxidative stress, has been linked to the pathogenesis of CH. In this review, we discuss how 20-HETE and EETs can affect these signaling pathways to result in, or protect from, CH, respectively. However, further understanding of these metabolites and their effects on intracellular cascades will be required to assess their potential translation to therapeutic approaches for the prevention and/or treatment of CH and heart failure.
Collapse
Affiliation(s)
- Abdulaziz M S Alsaad
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Center for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | |
Collapse
|
12
|
Gauthier KM, Cepura CJ, Campbell WB. ACE inhibition enhances bradykinin relaxations through nitric oxide and B1 receptor activation in bovine coronary arteries. Biol Chem 2013; 394:1205-12. [PMID: 23729620 PMCID: PMC3979287 DOI: 10.1515/hsz-2012-0348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/16/2013] [Indexed: 11/15/2022]
Abstract
Bradykinin causes vascular relaxations through release of endothelial relaxing factors including prostacyclin, nitric oxide (NO) and epoxyeicosatrienoic acids (EETs). Bradykinin is metabolized by angiotensin converting enzyme (ACE) and ACE inhibition enhances bradykinin relaxations. Our goal was to characterize the role of bradykinin receptors and endothelial factors in ACE inhibitor-enhanced relaxations in bovine coronary arteries. In U46619 preconstricted arteries, bradykinin (10-11-10-8m) caused concentration-dependent relaxations (maximal relaxation ≥100%, log EC50=-9.8±0.1). In the presence of the NO synthase inhibitor, N-nitro-L-arginine (L-NA, 30 μm) and the cyclooxygenase inhibitor, indomethacin (10 μm), relaxations were reduced by an inhibitor of EET synthesis, miconazole (10 μm) (maximal relaxation=55±10%). Bradykinin relaxations were inhibited by the bradykinin 2 (B2) receptor antagonist, D-Arg0-Hyp3-Thi5,8-D-Phe7-bradykinin (1 μm) (log EC50=-8.5±0.1) but not altered by the B1 receptor antagonist, des-Arg9[Leu8]bradykinin (1 μm). Mass spectrometric analysis of bovine coronary artery bradykinin metabolites revealed a time-dependent increase in bradykinin (1-5) and (1-7) suggesting metabolism by ACE. ACE inhibition with captopril (50 μm) enhanced bradykinin relaxations (log EC50=-10.3±0.1). The enhanced relaxations were eliminated by L-NA or the B1 receptor antagonist but not the B2 receptor antagonist. Our results demonstrate that ACE inhibitor-enhanced bradykinin relaxations of bovine coronary arteries occur through endothelial cell B1 receptor activation and NO.
Collapse
Affiliation(s)
- Kathryn M Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | | |
Collapse
|
13
|
Endothelial control of vasodilation: integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids. Pflugers Arch 2013; 466:389-405. [PMID: 23748495 DOI: 10.1007/s00424-013-1303-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/17/2022]
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) are fatty acid epoxides that play an important role in the control of vascular tone in selected coronary, renal, carotid, cerebral and skeletal muscle arteries. Vasodilation due to endothelium-dependent smooth muscle hyperpolarization (EDH) has been suggested to involve EETs as a transferable endothelium-derived hyperpolarizing factor. However, this activity may also be due to EETs interacting with the components of other primary EDH-mediated vasodilator mechanisms. Indeed, the transfer of hyperpolarization initiated in the endothelium to the adjacent smooth muscle via gap junction connexins occurs separately or synergistically with the release of K(+) ions at discrete myoendothelial microdomain signalling sites. The net effects of such activity are smooth muscle hyperpolarization, closure of voltage-dependent Ca(2+) channels, phospholipase C deactivation and vasodilation. The spatially localized and key components of the microdomain signalling complex are the inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum Ca(2+) store, Ca(2+)-activated K(+) (KCa), transient receptor potential (TRP) and inward-rectifying K(+) channels, gap junctions and the smooth muscle Na(+)/K(+)-ATPase. Of these, TRP channels and connexins are key endothelial effector targets modulated by EETs. In an integrated manner, endogenous EETs enhance extracellular Ca(2+) influx (thereby amplifying and prolonging KCa-mediated endothelial hyperpolarization) and also facilitate the conduction of this hyperpolarization to spatially remote vessel regions. The contribution of EETs and the receptor and channel subtypes involved in EDH-related microdomain signalling, as a candidate for a universal EDH-mediated vasodilator mechanism, vary with vascular bed, species, development and disease and thus represent potentially selective targets for modulating specific artery function.
Collapse
|
14
|
Zhang W, Davis CM, Edin ML, Lee CR, Zeldin DC, Alkayed NJ. Role of endothelial soluble epoxide hydrolase in cerebrovascular function and ischemic injury. PLoS One 2013; 8:e61244. [PMID: 23585883 PMCID: PMC3621731 DOI: 10.1371/journal.pone.0061244] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
Soluble Epoxide Hydrolase (sEH) is a key enzyme in the metabolism and termination of action of epoxyeicosatrienoic acids, derivatives of arachidonic acid, which are protective against ischemic stroke. Mice lacking sEH globally are protected from injury following stroke; however, little is known about the role of endothelial sEH in brain ischemia. We generated transgenic mice with endothelial-specific expression of human sEH (Tie2-hsEH), and assessed the effect of transgenic overexpression of endothelial sEH on endothelium-dependent vascular reactivity and ischemic injury following middle cerebral artery occlusion (MCAO). Compared to wild-type, male Tie2-hsEH mice exhibited impaired vasodilation in response to stimulation with 1 µM acetylcholine as assessed by laser-Doppler perfusion monitoring in an in-vivo cranial window preparation. No difference in infarct size was observed between wild-type and Tie2-hsEH male mice. In females, however, Tie2-hsEH mice sustained larger infarcts in striatum, but not cortex, compared to wild-type mice. Sex difference in ischemic injury was maintained in the cortex of Tie2-hsEH mice. In the striatum, expression of Tie2-hsEH resulted in a sex difference, with larger infarct in females than males. These findings demonstrate that transgenic expression of sEH in endothelium results in impaired endothelium-dependent vasodilation in the cerebral circulation, and that females are more susceptible to enhanced ischemic damage as a result of increased endothelial sEH than males, especially in end-arteriolar striatal region.
Collapse
Affiliation(s)
- Wenri Zhang
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | | | | | | | | | | |
Collapse
|
15
|
Davis CM, Siler DA, Alkayed NJ. Endothelium-derived hyperpolarizing factor in the brain: influence of sex, vessel size and disease state. ACTA ACUST UNITED AC 2011; 7:293-303. [PMID: 21612351 DOI: 10.2217/whe.11.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endothelial layer of cells lining the intimal surface of blood vessels is essential for vascular function. The endothelium releases multiple vasodilator and protective factors, including nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor; an imbalance in these factors predisposes individuals to vascular diseases such as stroke. These factors are differentially regulated by vessel size, sex hormones and disease state, therefore playing differential roles in different tissues following vascular injury. In particular, the endothelium-derived hyperpolarizing factor candidate termed epoxyeicosatrienoic acid, plays a prominent role in microvessel function, especially after ischemia, thereby making this signaling pathway an attractive target for therapy in vascular disease, including stroke.
Collapse
Affiliation(s)
- Catherine M Davis
- Cerebrovascular Research Division, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
16
|
Sulfurous gases as biological messengers and toxins: comparative genetics of their metabolism in model organisms. J Toxicol 2011; 2011:394970. [PMID: 22131987 PMCID: PMC3216388 DOI: 10.1155/2011/394970] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/11/2011] [Indexed: 01/31/2023] Open
Abstract
Gasotransmitters are biologically produced gaseous signalling molecules. As gases with potent biological activities, they are toxic as air pollutants, and the sulfurous compounds are used as fumigants. Most investigations focus on medical aspects of gasotransmitter biology rather than toxicity toward invertebrate pests of agriculture. In fact, the pathways for the metabolism of sulfur containing gases in lower organisms have not yet been described. To address this deficit, we use protein sequences from Homo sapiens to query Genbank for homologous proteins in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. In C. elegans, we find genes for all mammalian pathways for synthesis and catabolism of the three sulfur containing gasotransmitters, H2S, SO2 and COS. The genes for H2S synthesis have actually increased in number in C. elegans. Interestingly, D. melanogaster and Arthropoda in general, lack a gene for 3-mercaptopyruvate sulfurtransferase, an enzym for H2S synthesis under reducing conditions.
Collapse
|
17
|
Aqueous-methanolic extract of sweet flag (Acorus calamus) possesses cardiac depressant and endothelial-derived hyperpolarizing factor-mediated coronary vasodilator effects. J Nat Med 2011; 66:119-26. [DOI: 10.1007/s11418-011-0561-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/14/2011] [Indexed: 12/21/2022]
|
18
|
Wong SL, Huang Y. Targeting soluble epoxide hydrolase via peroxisome proliferator-activated receptor γ: A new therapeutic strategy for vascular complications. Clin Exp Pharmacol Physiol 2011; 38:356-7. [DOI: 10.1111/j.1440-1681.2011.05507.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Harder DR, Narayanan J, Gebremedhin D. Pressure-induced myogenic tone and role of 20-HETE in mediating autoregulation of cerebral blood flow. Am J Physiol Heart Circ Physiol 2011; 300:H1557-65. [PMID: 21257913 PMCID: PMC3283039 DOI: 10.1152/ajpheart.01097.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/20/2011] [Indexed: 11/22/2022]
Abstract
While myogenic force in response to a changing arterial pressure has been described early in the 20th century, it was not until 1984 that the effect of a sequential increase in intraluminal pressure on cannulated cerebral arterial preparations was found to result in pressure-dependent membrane depolarization associated with spike generation and reduction in lumen diameter. Despite a great deal of effort by different laboratories and investigators, the identification of the existence of a mediator of the pressure-induced myogenic constriction in arterial muscle remained a challenge. It was the original finding by our laboratory that demonstrated the capacity of cerebral arterial muscle cells to express the cytochrome P-450 4A enzyme that catalyzes the formation of the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid, the production of which in cerebral arterial muscle cells increases with the elevation in intravascular pressure. 20-HETE activates protein kinase C and causes the inhibition of Ca(²+)-activated K(+) channels, depolarizes arterial muscle cell membrane, and activates L-type Ca(²+) channel to increase intracellular Ca(²+) levels and evoke vasoconstriction. The inhibition of 20-HETE formation attenuates pressure-induced arterial myogenic constriction in vitro and blunts the autoregulation of cerebral blood flow in vivo. We suggest that the formation and action of cytochrome P-450-derived 20-HETE in cerebral arterial muscle could play a critically important role in the control of cerebral arterial tone and the autoregulation of cerebral blood flow under physiological conditions.
Collapse
Affiliation(s)
- David R Harder
- Medical College of Wisconsin, Clinical and Translational Science Inst., Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
20
|
Nayeem MA, Zeldin DC, Boegehold MA, Falck JR. Salt modulates vascular response through adenosine A(2A) receptor in eNOS-null mice: role of CYP450 epoxygenase and soluble epoxide hydrolase. Mol Cell Biochem 2010; 350:101-11. [PMID: 21161333 DOI: 10.1007/s11010-010-0686-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/02/2010] [Indexed: 11/30/2022]
Abstract
High salt (HS) intake can change the arterial tone in mice, and the nitric oxide (NO) acts as a mediator to some of the receptors mediated vascular response. The main aim of this study was to explore the mechanism behind adenosine-induced vascular response in HS-fed eNOS(+/+) and eNOS(-/-) mice The modulation of vascular response by HS was examined using aortas from mice (eNOS(+/+) and eNOS(-/-)) fed 4% (HS) or 0.45% (NS) NaCl-diet through acetylcholine (ACh), NECA (adenosine-analog), CGS 21680 (A(2A) AR-agonist), MS-PPOH (CYP epoxygenase-blocker; 10(-5) M), AUDA (sEH-blocker; 10(-5) M), and DDMS (CYP4A-blocker; 10(-5) M). ACh-response was greater in HS-eNOS(+/+) (+59.3 ± 6.3%) versus NS-eNOS(+/+) (+33.3 ± 8.0%; P < 0.05). However, there was no response in both HS-eNOS(-/-) and NS-eNOS(-/-). NECA-response was greater in HS-eNOS(-/-) (+37.4 ± 3.2%) versus NS-eNOS(-/-) (+7.4.0 ± 3.8%; P < 0.05). CGS 21680-response was also greater in HS-eNOS(-/-) (+45.4 ± 5.2%) versus NS-eNOS(-/-)(+5.1 ± 5.0%; P < 0.05). In HS-eNOS(-/-), the CGS 21680-response was reduced by MS-PPOH (+7.3 ± 3.2%; P < 0.05). In NS-eNOS(-/-), the CGS 21680-response was increased by AUDA (+38.2 ± 3.3%; P < 0.05) and DDMS (+30.1 ± 4.1%; P < 0.05). Compared to NS, HS increased CYP2J2 in eNOS(+/+) (35%; P < 0.05) and eNOS(-/-) (61%; P < 0.05), but decreased sEH in eNOS(+/+) (74%; P < 0.05) and eNOS(-/-) (40%; P < 0.05). Similarly, CYP4A decreased in HS-eNOS(+/+) (35%; P < 0.05) and HS-eNOS(-/-) (34%; P < 0.05). These data suggest that NS causes reduced-vasodilation in both eNOS(+/+) and eNOS(-/-) via sEH and CYP4A. However, HS triggers possible A(2A)AR-induced relaxation through CYP epoxygenase in both eNOS(+/+) and eNOS(-/-).
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | |
Collapse
|
21
|
Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch 2010; 459:881-95. [PMID: 20224870 DOI: 10.1007/s00424-010-0804-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/08/2010] [Accepted: 02/12/2010] [Indexed: 12/28/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid that are produced by the vascular endothelium in response to agonists such as bradykinin and acetylcholine or physical stimuli such as shear stress or cyclic stretch. In the vasculature, the EETs have biological actions that are involved in the regulation of vascular tone, hemostasis, and inflammation. In preconstricted arteries in vitro, EETs activate calcium-activated potassium channels on vascular smooth muscle and the endothelium causing membrane hyperpolarization and relaxation. These effects are observed in a variety of arteries from experimental animals and humans; however, this is not a universal finding in all arteries. The mechanism of EET action may vary. In some arteries, EETs are released from the endothelium and are transferred to the smooth muscle where they cause potassium channel activation, hyperpolarization, and relaxation through a guanine nucleotide binding protein-coupled mechanism or transient receptor potential (TRP) channel activation. In other arteries, EETs activate TRP channels on the endothelium to cause endothelial hyperpolarization that is transferred to the smooth muscle by gap junctions or potassium ion. Some arteries use a combination of mechanisms. Acetylcholine and bradykinin increase blood flow in dogs and humans that is inhibited by potassium channel blockers and cytochrome P450 inhibitors. Thus, the EETs are endothelium-derived hyperpolarizing factors mediating a portion of the relaxations to acetylcholine, bradykinin, shear stress, and cyclic stretch and regulate vascular tone in vitro and in vivo.
Collapse
Affiliation(s)
- William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
22
|
Zordoky BNM, El-Kadi AOS. Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 2010; 125:446-63. [PMID: 20093140 DOI: 10.1016/j.pharmthera.2009.12.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 01/27/2023]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death in the developed countries. Taking into account the mounting evidence about the role of cytochrome P450 (CYP) enzymes in cardiovascular physiology, CYP polymorphisms can be considered one of the major determinants of individual susceptibility to CVDs. One of the important physiological roles of CYP enzymes is the metabolism of arachidonic acid. CYP epoxygenases such as CYP1A2, CYP2C, and CYP2J2 metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which generally possess vasodilating, anti-inflammatory, anti-apoptotic, anti-thrombotic, natriuretic, and cardioprotective effects. Therefore, genetic polymorphisms causing lower activity of these enzymes are generally associated with an increased risk of several CVDs such as hypertension and coronary artery disease. EETs are further metabolized by soluble epoxide hydrolase (sEH) to the less biologically active dihydroxyeicosatrienoic acids (DHETs). Therefore, sEH polymorphism has also been shown to affect arachidonic acid metabolism and to be associated with CVDs. On the other hand, CYP omega-hydroxylases such as CYP4A11 and CYP4F2 metabolize arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) which has both vasoconstricting and natriuretic effects. Genetic polymorphisms causing lower activity of these enzymes are generally associated with higher risk of hypertension. Nevertheless, some studies have denied the association between polymorphisms in the arachidonic acid pathway and CVDs. Therefore, more research is needed to confirm this association and to better understand the pathophysiologic mechanisms behind it.
Collapse
Affiliation(s)
- Beshay N M Zordoky
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | | |
Collapse
|
23
|
Chawengsub Y, Gauthier KM, Campbell WB. Role of arachidonic acid lipoxygenase metabolites in the regulation of vascular tone. Am J Physiol Heart Circ Physiol 2009; 297:H495-507. [PMID: 19525377 DOI: 10.1152/ajpheart.00349.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of vascular endothelial cells with agonists such as acetylcholine (ACh) or bradykinin or with shear stress activates phospholipases and releases arachidonic acid (AA). AA is metabolized by cyclooxygenases, cytochrome P-450s, and lipoxygenases (LOs) to vasoactive products. In some arteries, a substantial component of the vasodilator response is dependent on LO metabolites of AA. Nitric oxide (NO)- and prostaglandin (PG)-independent vasodilatory responses to ACh and AA are reduced by inhibitors of LO and by antisense oligonucleotides specifically against 15-LO-1. Vasoactive 15-LO metabolites derived from the vascular endothelium include 15-hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-HEETA) that is hydrolyzed by soluble epoxide hydrolase to 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA). HEETA and THETA are endothelium-derived hyperpolarizing factors that induce vascular relaxations by activation of smooth muscle apamin-sensitive, calcium-activated, small-conductance K(+) channels causing hyperpolarization. In other arteries, the 12-LO metabolite 12-hydroxyeicosatetraenoic acid is synthesized by the vascular endothelium and relaxes smooth muscle by large-conductance, calcium-activated K(+) channel activation. Thus formation of vasodilator eicosanoids derived from LO pathways contributes to the regulation of vascular tone, local blood flow, and blood pressure.
Collapse
Affiliation(s)
- Yuttana Chawengsub
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
24
|
Iliff JJ, Alkayed NJ. Soluble Epoxide Hydrolase Inhibition: Targeting Multiple Mechanisms of Ischemic Brain Injury with a Single Agent. FUTURE NEUROLOGY 2009; 4:179-199. [PMID: 19779591 DOI: 10.2217/14796708.4.2.179] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolic conversion and degradation of P450 eicosanoids called epoxyeicosatrienoic acids (EETs). Genetic variations in the sEH gene, designated EPHX2, are associated with ischemic stroke risk. In experimental studies, sEH inhibition and gene deletion reduce infarct size after focal cerebral ischemia in mice. Although the precise mechanism of protection afforded by sEH inhibition remains under investigation, EETs exhibit a wide array of potentially beneficial actions in stroke, including vasodilation, neuroprotection, promotion of angiogenesis and suppression of platelet aggregation, oxidative stress and post-ischemic inflammation. Herein we argue that by capitalizing on this broad protective profile, sEH inhibition represents a prototype "combination therapy" targeting multiple mechanisms of stroke injury with a single agent.
Collapse
Affiliation(s)
- Jeffrey J Iliff
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland OR 97239
| | | |
Collapse
|
25
|
Vascular control in humans: focus on the coronary microcirculation. Basic Res Cardiol 2009; 104:211-27. [PMID: 19190954 DOI: 10.1007/s00395-009-0775-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/15/2008] [Indexed: 12/27/2022]
Abstract
Myocardial perfusion is regulated by a variety of factors that influence arteriolar vasomotor tone. An understanding of the physiological and pathophysiological factors that modulate coronary blood flow provides the basis for the judicious use of medications for the treatment of patients with coronary artery disease. Vasomotor properties of the coronary circulation vary among species. This review highlights the results of recent studies that examine the mechanisms by which the human coronary microcirculation is regulated in normal and disease states, focusing on diabetes. Multiple pathways responsible for myogenic constriction and flow-mediated dilation in human coronary arterioles are addressed. The important role of endothelium-derived hyperpolarizing factors, their interactions in mediating dilation, as well as speculation regarding the clinical significance are emphasized. Unique properties of coronary arterioles in human vs. other species are discussed.
Collapse
|
26
|
Zhang R, Mio Y, Pratt PF, Lohr N, Warltier DC, Whelan HT, Zhu D, Jacobs ER, Medhora M, Bienengraeber M. Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol 2008; 46:4-14. [PMID: 18930064 DOI: 10.1016/j.yjmcc.2008.09.707] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 08/30/2008] [Accepted: 09/10/2008] [Indexed: 12/16/2022]
Abstract
Photobiomodulation with near infrared light (NIR) provides cellular protection in various disease models. Previously, infrared light emitted by a low-energy laser has been shown to significantly improve recovery from ischemic injury of the canine heart. The goal of this investigation was to test the hypothesis that NIR (670 nm) from light emitting diodes produces cellular protection against hypoxia and reoxygenation-induced cardiomyocyte injury. Additionally, nitric oxide (NO) was investigated as a potential cellular mediator of NIR. Our results demonstrate that exposure to NIR at the time of reoxygenation protects neonatal rat cardiomyocytes and HL-1 cells from injury, as assessed by lactate dehydrogenase release and MTT assay. Similarly, indices of apoptosis, including caspase 3 activity, annexin binding and the release of cytochrome c from mitochondria into the cytosol, were decreased after NIR treatment. NIR increased NO in cardiomyocytes, and the protective effect of NIR was completely reversed by the NO scavengers carboxy-PTIO and oxyhemoglobin, but only partially blocked by the NO synthase (NOS) inhibitor L-NMMA. Mitochondrial metabolism, measured by ATP synthase activity, was increased by NIR, and NO-induced inhibition of oxygen consumption with substrates for complex I or complex IV was reversed by exposure to NIR. Taken together these data provide evidence for protection against hypoxia and reoxygenation injury in cardiomyocytes by NIR in a manner that is dependent upon NO derived from NOS and non-NOS sources.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53326, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Roles of epoxyeicosatrienoic acids in vascular regulation and cardiac preconditioning. J Cardiovasc Pharmacol 2008; 50:601-8. [PMID: 18091575 DOI: 10.1097/fjc.0b013e318159cbe3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Continuing investigations of the roles of cytochrome P450 (CYP) arachidonic acid epoxygenase metabolites in the regulation of cardiovascular physiology and pathophysiology have revealed their complex and diverse biological effects. Often these metabolites demonstrate protective properties that are revealed during cardiovascular disease. In this regard, the epoxyeicosatrienoic acids (EETs) are an emerging target for pharmacological manipulation aimed at enhancing their cardiac and vascular protective mechanisms. This review will focus on the role of EETs in the regulation of vascular tone, with emphasis on the coronary circulation, their role in limiting platelet aggregation, vascular inflammation and EET contribution to preconditioning of the ischemic myocardium. Production and metabolism of EETs as well as their specific cellular signaling mechanisms are discussed.
Collapse
|
28
|
Dhanasekaran A, Gruenloh SK, Buonaccorsi JN, Zhang R, Gross GJ, Falck JR, Patel PK, Jacobs ER, Medhora M. Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am J Physiol Heart Circ Physiol 2007; 294:H724-35. [PMID: 18055514 DOI: 10.1152/ajpheart.00979.2007] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) reduce infarction of the myocardium after ischemia-reperfusion injury to rodent and dog hearts mainly by opening sarcolemmal and mitochondrial potassium channels. Other mediators for the action of EET have been proposed, although no definitive pathway or mechanism has yet been reported. Using cultured cells from two rodent species, immortalized myocytes from a mouse atrial lineage (HL-1) and primary myocytes derived from neonatal rat hearts, we observed that pretreatment with EETs (1 microM of 14,15-, 11,12-, or 8,9-EET) attenuated apoptosis after exposure to hypoxia and reoxygenation (H/R). EETs also preserved the functional beating of neonatal myocytes in culture after exposure to H/R. We demonstrated that EETs increased the activity of the prosurvival enzyme phosphatidylinositol 3-kinase (PI3K). In fact, cardiomyocytes pretreated with EET and exposed to H/R exhibited antiapoptotic changes in at least five downstream effectors of PI3K, protein kinase B (Akt), Bcl-x(L)/Bcl-2-associated death promoter, caspases-9 and -3 activities, and the expression of the X-linked inhibitor of apoptosis, compared with vehicle-treated controls. The PI3K/Akt pathway is one of the strongest intracellular prosurvival signaling systems. Our studies show that EETs regulate multiple molecular effectors of this pathway. Understanding the targets of action of EET-mediated protection will promote the development of these fatty acids as therapeutic agents against cardiac ischemia-reperfusion.
Collapse
Affiliation(s)
- Anuradha Dhanasekaran
- Division of Pulmonary and Critical Care Medicine, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The endothelium regulates vascular tone through the release of a number of soluble mediators, including NO, prostaglandin I2, and endothelium-derived hyperpolarizing factor. Epoxyeicosatrienoic acids are cytochrome P450 epoxygenase metabolites of arachidonic acid. They are synthesized by the vascular endothelium and open calcium-activated potassium channels, hyperpolarize the membrane, and relax vascular smooth muscle. Endothelium-dependent relaxations to acetylcholine, bradykinin, and shear stress that are not inhibited by cyclooxygenase and NO synthase inhibitors are mediated by the endothelium-derived hyperpolarizing factor. In arteries from experimental animals and humans, the non-NO, non-prostaglandin-mediated relaxations and endothelium-dependent hyperpolarizations are blocked by cytochrome P450 inhibitors, calcium-activated potassium channel blockers, and epoxyeicosatrienoic acid antagonists. Acetylcholine and bradykinin stimulate epoxyeicosatrienoic acid release from endothelial cells and arteries. These findings indicate that epoxyeicosatrienoic acids act as endothelium-derived hyperpolarizing factors and regulate arterial tone.
Collapse
Affiliation(s)
- William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
30
|
Abstract
The importance of endothelium-derived nitric oxide in coronary vascular regulation is well-established and the loss of this vasodilator compound is associated with endothelial dysfunction, tissue hypoperfusion and atherosclerosis. Numerous studies indicate that the endothelium produces another class of compounds, the epoxyeicosatrienoic acids (EETs), which may partially compensate for the loss of nitric oxide in cardiovascular disease. The EETs are endogenous lipids which are derived through the metabolism of arachidonic acid by cytochrome P450 epoxygenase enzymes. Also, EETs hyperpolarize vascular smooth muscle and induce dilation of coronary arteries and arterioles, and therefore may be endogenous mediators of coronary vasomotor tone and myocardial perfusion. In addition, EETs have been shown to inhibit vascular smooth muscle migration, decrease inflammation, inhibit platelet aggregation and decrease adhesion molecule expression, therefore representing an endogenous protective mechanism against atherosclerosis. Endogenous EETs are degraded to less active dihydroxyeicosatrienoic acids by soluble epoxide hydrolase. Pharmacological inhibition of soluble epoxide hydrolase has received considerable attention as a potential approach to enhance EET-mediated vascular protection, and several compounds have appeared promising in recent animal studies. The present review discusses the emerging role of EETs in coronary vascular function, as well as recent advancements in the development of pharmacological agents to enhance EET bioavailability.
Collapse
Affiliation(s)
- B T Larsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Veterans Administration Medical Center, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
31
|
Dhanasekaran A, Al-Saghir R, Lopez B, Zhu D, Gutterman DD, Jacobs ER, Medhora M. Protective effects of epoxyeicosatrienoic acids on human endothelial cells from the pulmonary and coronary vasculature. Am J Physiol Heart Circ Physiol 2006; 291:H517-31. [PMID: 16617127 DOI: 10.1152/ajpheart.00953.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P-450 (CYP) metabolites synthesized from the essential fatty acid arachidonic acid to generate four regioisomers, 14,15-, 11,12-, 8,9-, and 5,6-EET. Cultured human coronary artery endothelial cells (HCAECs) contain endogenous EETs that are increased by stimulation with physiological agonists such as bradykinin. Because EETs are known to modulate a number of vascular functions, including angiogenesis, we tested each of the four regioisomers to characterize their effects on survival and apoptosis of HCAECs and cultured human lung microvascular endothelial cells (HLMVECs). A single application of physiologically relevant concentration of 14,15-, 11,12-, and 8,9-EET but not 5,6-EET (0.75-300 nM) promoted concentration-dependent increase in cell survival of HLMVECs and HCAECs after removal of serum. The lipids also protected the same cells from death via the intrinsic, as well as extrinsic, pathways of apoptosis. EETs did not increase intracellular calcium concentration ([Ca2+]i) or phosphorylate mitogen-activated protein kinase p44/42 when applied to these cells, and their protective action was attenuated by the phosphotidylinositol-3 kinase inhibitor wortmannin (10 microM) but not the cyclooxygenase inhibitor indomethacin (20 microM). Our results demonstrate for the first time the capacity of EETs to enhance human endothelial cell survival by inhibiting both the intrinsic, as well as extrinsic, pathways of apoptosis, an important underlying mechanism that may promote angiogenesis and endothelial survival during atherosclerosis and related cardiovascular ailments.
Collapse
Affiliation(s)
- Anuradha Dhanasekaran
- Division of Pulmonary and Critical Care, Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Harris TR, Morisseau C, Walzem RL, Ma SJ, Hammock BD. The cloning and characterization of a soluble epoxide hydrolase in chicken. Poult Sci 2006; 85:278-87. [PMID: 16523628 PMCID: PMC1764503 DOI: 10.1093/ps/85.2.278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mammalian soluble epoxide hydrolase (sEH) plays a role in the regulation of blood pressure and vascular homeostasis through its hydrolysis of the endothelial-derived messenger molecules, the epoxyeicosatrienoic acids. This study reports the cloning and expression of a sEH homolog from chicken liver. The resulting 63-kDa protein has an isoelectric point of 6.1. The recombinant enzyme displayed epoxide hydrolase activity when assayed with [3H]-trans-1,3-diphenylpropene oxide (t-DPPO), as well as trans-9,10-epoxystearate and the cis-8,9-, 11,12-, and 14,15- epoxyeicosatrienoic acids. The chicken enzyme displayed a lower kcat:Km for t-DPPO than the mammalian enzymes. The enzyme was sensitive to urea-based inhibitors developed for mammalian sEH. Such compounds could be used to study the role of chicken sEH in conditions in which endothelial-derived vasodilation is believed to be impaired, such as pulmonary hypertension syndrome.
Collapse
Affiliation(s)
- T. R. Harris
- Department of Entomology and Cancer Research Center, University of California, Davis 95616; and
| | - C. Morisseau
- Department of Entomology and Cancer Research Center, University of California, Davis 95616; and
| | - R. L. Walzem
- Department of Poultry Science, Texas A&M University, College Station 77843-2472
| | - S. J. Ma
- Department of Entomology and Cancer Research Center, University of California, Davis 95616; and
| | - B. D. Hammock
- Department of Entomology and Cancer Research Center, University of California, Davis 95616; and
- Corresponding author:
| |
Collapse
|
33
|
Campbell WB, Holmes BB, Falck JR, Capdevila JH, Gauthier KM. Regulation of potassium channels in coronary smooth muscle by adenoviral expression of cytochromeP-450 epoxygenase. Am J Physiol Heart Circ Physiol 2006; 290:H64-71. [PMID: 16143653 DOI: 10.1152/ajpheart.00516.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are endothelium-derived cytochrome P-450 (CYP) metabolites of arachidonic acid that relax vascular smooth muscle by large-conductance calcium-activated potassium (BKCa) channel activation and membrane hyperpolarization. We hypothesized that if smooth muscle cells (SMCs) had the capacity to synthesize EETs, endogenous EET production would increase BKCachannel activity. Bovine coronary SMCs were transduced with adenovirus coding the CYP Bacillus megaterium -3 (F87V) (CYP BM-3) epoxygenase that metabolizes arachidonic acid exclusively to 14( S),15( R)-EET. Adenovirus containing the cytomegalovirus promoter- Escherichia coli β-galactosidase was used as a control. With the use of an anti-CYP BM-3 (F87V) antibody, a 124-kDa immunoreactive protein was detected only in CYP BM-3-transduced cells. Protein expression increased with increasing amounts of virus. When CYP BM-3-transduced cells were incubated with [14C]arachidonic acid, HPLC analysis detected 14,15-dihydroxyeicosatrienoic acid (14,15-DHET) and 14,15-EET. The identity of 14,15-EET and 14,15-DHET was confirmed by mass spectrometry. In CYP BM-3-transduced cells, methacholine (10−5M) increased 14,15-EET release twofold and BKCachannel activity fourfold in cell-attached patches. Methacholine-induced increases in BKCachannel activity were blocked by the CYP inhibitor 17-octadecynoic acid (10−5M). 14( S),15( R)-EET was more potent than 14( R),15( S)-EET in relaxing bovine coronary arteries and activating BKCachannels. Thus CYP BM-3 adenoviral transduction confers SMCs with epoxygenase activity. These cells acquire the capacity to respond to the vasodilator agonist by synthesizing 14( S),15( R)-EET from endogenous arachidonic acid to activate BKCachannels. These studies indicate that 14( S),15( R)-EET is a sufficient endogenous activator of BKCachannels in coronary SMCs.
Collapse
Affiliation(s)
- William B Campbell
- Dept. of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
34
|
Larsen BT, Miura H, Hatoum OA, Campbell WB, Hammock BD, Zeldin DC, Falck JR, Gutterman DD. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK(Ca) channels: implications for soluble epoxide hydrolase inhibition. Am J Physiol Heart Circ Physiol 2005; 290:H491-9. [PMID: 16258029 PMCID: PMC1456013 DOI: 10.1152/ajpheart.00927.2005] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolized by soluble epoxide hydrolase (sEH) to form dihydroxyeicosatrienoic acids (DHETs) and are putative endothelium-derived hyperpolarizing factors (EDHFs). EDHFs modulate microvascular tone; however, the chemical identity of EDHF in the human coronary microcirculation is not known. We examined the capacity of EETs, DHETs, and sEH inhibition to affect vasomotor tone in isolated human coronary arterioles (HCAs). HCAs from right atrial appendages were prepared for videomicroscopy and immunohistochemistry. In vessels preconstricted with endothelin-1, three EET regioisomers (8,9-, 11,12-, and 14,15-EET) each induced a concentration-dependent dilation that was sensitive to blockade of large-conductance Ca2+-activated K+ (BK(Ca)) channels by iberiotoxin. EET-induced dilation was not altered by endothelial denudation. 8,9-, 11,12-, and 14,15-DHET also dilated HCA via activation of BK(Ca) channels. Dilation was less with 8,9- and 14,15-DHET but was similar with 11,12-DHET, compared with the corresponding EETs. Immunohistochemistry revealed prominent expression of cytochrome P-450 (CYP450) 2C8, 2C9, and 2J2, enzymes that may produce EETs, as well as sEH, in HCA. Inhibition of sEH by 1-cyclohexyl-3-dodecylurea (CDU) enhanced dilation caused by 14,15-EET but reduced dilation observed with 11,12-EET. DHET production from exogenous EETs was reduced in vessels pretreated with CDU compared with control, as measured by liquid chromatography electrospray-ionization mass spectrometry. In conclusion, EETs and DHETs dilate HCA by activating BK(Ca) channels, supporting a role for EETs/DHETs as EDHFs in the human heart. CYP450s and sEH may be endogenous sources of these compounds, and sEH inhibition has the potential to alter myocardial perfusion, depending on which EETs are produced endogenously.
Collapse
Affiliation(s)
- Brandon T. Larsen
- Departments of Pharmacology and Toxicology
- Cardiovascular Center, Medical College of Wisconsin and
| | - Hiroto Miura
- Medicine, and the
- Cardiovascular Center, Medical College of Wisconsin and
| | - Ossama A. Hatoum
- Medicine, and the
- Cardiovascular Center, Medical College of Wisconsin and
| | | | - Bruce D. Hammock
- Department of Entomology and Cancer Research Center, University of California, Davis, California
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - John R. Falck
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David D. Gutterman
- Departments of Pharmacology and Toxicology
- Medicine, and the
- Cardiovascular Center, Medical College of Wisconsin and
- Veterans Affairs Medical Center, Milwaukee, Wisconsin
- Address for reprint requests and other correspondence: D. D. Gutterman, Northwestern Mutual Professor of Medicine, Senior Associate Dean for Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226 (e-mail: )
| |
Collapse
|
35
|
Losapio JL, Sprague RS, Lonigro AJ, Stephenson AH. 5,6-EET-induced contraction of intralobar pulmonary arteries depends on the activation of Rho-kinase. J Appl Physiol (1985) 2005; 99:1391-6. [PMID: 15961610 DOI: 10.1152/japplphysiol.00473.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism mediating epoxyeicosatrienoic acid (EET)-induced contraction of intralobar pulmonary arteries (PA) is currently unknown. EET-induced contraction of PA has been reported to require intact endothelium and activation of the thromboxane/endoperoxide (TP) receptor. Because TP receptor occupation with the thromboxane mimetic U-46619 contracts pulmonary artery via Rho-kinase activation, we examined the hypothesis that 5,6-EET-induced contraction of intralobar rabbit pulmonary arteries is mediated by a Rho-kinase-dependent signaling pathway. In isolated rings of second-order intralobar PA (1–2 mm OD) at basal tension, 5,6-EET (0.3–10 μM) induced increases in active tension that were inhibited by Y-27632 (1 μM) and HA-1077 (10 μM), selective inhibitors of Rho-kinase activity. In PA in which smooth muscle intracellular Ca2+ concentration ([Ca2+]i) was increased with KCl (25 mM) to produce a submaximal contraction, 5,6-EET (1 μM) induced a contraction that was 7.0 ± 1.6 times greater than without KCl. 5,6-EET (10 μM) also contracted β-escin permeabilized PA in which [Ca2+]i was clamped at a concentration resulting in a submaximal contraction. Y-27632 inhibited the 5,6-EET-induced contraction in permeabilized PA. 5,6-EET (10 μM) increased phosphorylation of myosin light chain (MLC), increasing the ratio of phosphorylated MLC/total MLC from 0.10 ± 0.03 to 0.30 ± 0.02. Y-27632 prevented this increase in MLC phosphorylation. These data suggest that 5,6-EET induces contraction in intralobar PA by increasing Rho-kinase activity, phosphorylating MLC, and increasing the Ca2+ sensitivity of the contractile apparatus.
Collapse
Affiliation(s)
- Jennifer L Losapio
- Department of Pharmacological and Physiological Science, Saint Louis University, MO 63104, USA
| | | | | | | |
Collapse
|
36
|
Yang Q, He GW. Effect of cardioplegic and organ preservation solutions and their components on coronary endothelium-derived relaxing factors. Ann Thorac Surg 2005; 80:757-767. [PMID: 16039259 DOI: 10.1016/j.athoracsur.2004.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 09/30/2004] [Accepted: 10/04/2004] [Indexed: 12/19/2022]
Abstract
Cardioplegic (and organ preservation) solutions were initially designed to protect the myocardium (cardiac myocytes) during cardiac operation (and heart transplantation). Because of differences between cardiac myocytes and vascular (endothelial and smooth muscle) cells in structure and function, the solutions may have an adverse effect on coronary vascular cells. However, such effect is often complicated by many other factors such as ischemia-reperfusion injury, temperature, and perfusion pressure or duration. To evaluate the effect of a solution on the coronary endothelial function, a number of points should be taken into consideration. First, the overall effect on endothelium should be identified. Second, the effect of the solution on the individual endothelium-derived relaxing factors (nitric oxide, prostacyclin, and endothelium-derived hyperpolarizing factor) must be distinguished. Third, the effect of each major component of the solution should be investigated. Lastly, the effect of a variety of new additives in the solution may be studied. Based on available literature these issues are reviewed to provide information for further development of cardioplegic or organ preservation solutions.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
37
|
Griffith TM. Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol 2005; 141:881-903. [PMID: 15028638 PMCID: PMC1574270 DOI: 10.1038/sj.bjp.0705698] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An endothelium-derived hyperpolarizing factor (EDHF) that is distinct from nitric oxide (NO) and prostanoids has been widely hypothesized to hyperpolarize and relax vascular smooth muscle following stimulation of the endothelium by agonists. Candidates as diverse as K(+) ions, eicosanoids, hydrogen peroxide and C-type natriuretic peptide have been implicated as the putative mediator, but none has emerged as a 'universal EDHF'. An alternative explanation for the EDHF phenomenon is that direct intercellular communication via gap junctions allows passive spread of agonist-induced endothelial hyperpolarization through the vessel wall. In some arteries, eicosanoids and K(+) ions may themselves initiate a conducted endothelial hyperpolarization, thus suggesting that electrotonic signalling may represent a general mechanism through which the endothelium participates in the regulation of vascular tone.
Collapse
Affiliation(s)
- Tudor M Griffith
- Department of Diagnostic Radiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN.
| |
Collapse
|
38
|
Gauthier KM, Edwards EM, Falck JR, Reddy DS, Campbell WB. 14,15-Epoxyeicosatrienoic Acid Represents a Transferable Endothelium-Dependent Relaxing Factor in Bovine Coronary Arteries. Hypertension 2005; 45:666-71. [PMID: 15699460 DOI: 10.1161/01.hyp.0000153462.06604.5d] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bradykinin causes arterial relaxation and hyperpolarization, which is mediated by a transferable endothelium-derived hyperpolarizing factor (EDHF). In coronary arteries, epoxyeicosatrienoic acids (EETs) are involved in the EDHF response. However, the role of EETs as transferable mediators of EDHF-dependent relaxation remains poorly defined. Two small bovine coronary arteries were cannulated and perfused in tandem in the presence of the nitric oxide synthase inhibitor, nitro-
l
-arginine (30 μmol/L), and the cyclooxygenase inhibitor, indomethacin (10 μmol/L). Luminal perfusate from donor arteries with intact endothelium perfused endothelium-denuded detector arteries. Detector arteries were constricted with U46619 and diameters were monitored. Bradykinin (10 nmol/L) added to detector arteries did not induce dilation (5±2%), whereas bradykinin addition to donor arteries dilated detector arteries by 26.5±7% (
P
<0.05). These dilations were blocked by donor artery endothelium removal and detector artery treatment with the EET-selective antagonist, 14,15-epoxyeicosa-5(Z)-monoenoic acid (14,15-EEZE; 10 μmol/L, −5±6%) but not 14,15-EEZE treatment of donor arteries (20±5%). 14,15-EET (0.1 to 10 μmol/L) added to detector arteries induced maximal dilations of 82±5% that were inhibited 50% by detector artery treatment with 14,15-EEZE (32±12%) but not donor artery treatment with 14,15-EEZE. Liquid chromatography–electrospray ionization mass spectrometry analysis verified the presence of 14,15-EET in the perfusate from an endothelium-intact but not denuded artery. These results show that bradykinin stimulates donor artery 14,15-EET release that dilates detector arteries. 14,15-EEZE blocked the donor artery, endothelium-dependent, bradykinin-induced relaxations, and attenuated relaxations to 14,15-EET. These results suggest that EETs are transferable EDHFs in coronary arteries.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors
- 8,11,14-Eicosatrienoic Acid/metabolism
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Biological Assay
- Bradykinin/pharmacology
- Cattle
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/physiology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Endothelium-Dependent Relaxing Factors/metabolism
- In Vitro Techniques
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Vasodilation/physiology
Collapse
Affiliation(s)
- Kathryn M Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
39
|
Yang W, Gauthier KM, Reddy LM, Sangras B, Sharma KK, Nithipatikom K, Falck JR, Campbell WB. Stable 5,6-epoxyeicosatrienoic acid analog relaxes coronary arteries through potassium channel activation. Hypertension 2005; 45:681-6. [PMID: 15699458 DOI: 10.1161/01.hyp.0000153790.12735.f9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5,6-epoxyeicosatrienoic acid (5,6-EET) is a cytochrome P450 epoxygenase metabolite of arachidonic acid that causes vasorelaxation. However, investigations of its role in biological systems have been limited by its chemical instability. We developed a stable agonist of 5,6-EET, 5-(pentadeca-3(Z),6(Z),9(Z)-trienyloxy)pentanoic acid (PTPA), in which the 5,6-epoxide was replaced with a 5-ether. PTPA obviates chemical and enzymatic hydrolysis. In bovine coronary artery rings precontracted with U46619, PTPA (1 nmol/L to 10 micromol/L) induced concentration-dependent relaxations, with maximal relaxation of 86+/-5% and EC50 of 1 micromol/L. The relaxations were inhibited by the cyclooxygenase inhibitor indomethacin (10 micromol/L; max relaxation 43+/-9%); the ATP-sensitive K+ channel inhibitor glybenclamide (10 micromol/L; max relaxation 49+/-6%); and the large conductance calcium-activated K+ channel inhibitor iberiotoxin (100 nmol/L; max relaxation 38+/-6%) and abolished by the combination of iberiotoxin with indomethacin or glybenclamide or increasing extracellular K+ to 20 mmol/L. Whole-cell outward K+ current was increased nearly 6-fold by PTPA (10 micromol/L), which was also blocked by iberiotoxin. Additionally, we synthesized 5-(pentadeca-6(Z),9(Z)-dienyloxy)pentanoic acid and 5-(pentadeca-3(Z),9(Z)-dienyloxy)pentanoic acid (PDPA), PTPA analogs that lack the 8,9 or 11,12 double bonds of arachidonic acid and therefore are not substrates for cyclooxygenase. The PDPAs caused concentration-dependent relaxations (max relaxations 46+/-13% and 52+/-7%, respectively; EC50 1micromol/L), which were not altered by glybenclamide but blocked by iberiotoxin. These studies suggested that PTPA induces relaxation through 2 mechanisms: (1) cyclooxygenase-dependent metabolism to 5-ether-containing prostaglandins that activate ATP-sensitive K+ channels and (2) activation of smooth muscle large conductance calcium-activated K+ channels. PDPAs only activate large conductance calcium-activated K+ channels.
Collapse
Affiliation(s)
- Wenqi Yang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sacerdoti D, Gatta A, McGiff JC. Role of cytochrome P450-dependent arachidonic acid metabolites in liver physiology and pathophysiology. Prostaglandins Other Lipid Mediat 2004; 72:51-71. [PMID: 14626496 DOI: 10.1016/s1098-8823(03)00077-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arachidonic acid (AA) can undergo monooxygenation or epoxidation by enzymes in the cytochrome P450 (CYP) family in the brain, kidney, lung, vasculature, and the liver. CYP-AA metabolites, 19- and 20-hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs) and diHETEs have different biological properties based on sites of production and can be stored in tissue lipids and released in response to hormonal stimuli. 20-HETE is a vasoconstrictor, causing blockade of Ca(++)-activated K(+) (KCa) channels. Inhibition of the formation of nitric oxide (NO) by 20-HETE mediates most of the cGMP-independent component of the vasodilator response to NO. 20-HETE elicits a potent dilator response in human and rabbit pulmonary vascular and bronchiole rings that is dependent on an intact endothelium and COX. 20-HETE is also a vascular oxygen sensor, inhibits Na(+)/K(+)-ATPase activity, is an endogenous inhibitor of the Na(+)-K(+)-2Cl(-)cotransporter, mediates the mitogenic actions of vasoactive agents and growth factors in many tissues and plays a significant role in angiogenesis. EETs, produced by the vascular endothelium, are potent dilators. EETs hyperpolarize VSM cells by activating KCa channels. Several investigators have proposed that one or more EETs may serve as endothelial-derived hyperpolarizing factors (EDHF). EETs constrict human and rabbit bronchioles, are potent mediators of insulin and glucagon release in isolated rat pancreatic islets, and have anti-inflammatory activity. Compared with other organs, the liver has the highest total CYP content and contains the highest levels of individual CYP enzymes involved in the metabolism of fatty acids. In humans, 50-75% of CYP-dependent AA metabolites formed by liver microsomes are omega/omega-OH-AA, mainly w-OH-AA, i.e. 20HETE, and 13-28% are EETs. Very little information is available on the role of 19- and 20-HETE and EETs in liver function. EETs are involved in vasopressin-induced glycogenolysis, probably via the activation of phosphorylase. In the portal vein, inhibition of EETs exerts profound effects on a variety of K-channel activities in smooth muscles of this vessel. 20-HETE is a weak, COX-dependent, vasoconstrictor of the portal circulation. EETs, particularly 11,12-EET, cause vasoconstriction of the porto-sinusoidal circulation. Increased synthesis of EETs in portal vessels and/or sinusoids or increased levels in blood from the meseneric circulation may participate in the pathophysiology of portal hypertension of cirrhosis. CYP-dependent AA metabolites are involved in the pathophysiology of portal hypertension, not only by increasing resistance in the porto-sinusoidal circulation, but also by increasing portal inflow through mesenteric vasodilatation. In patients with cirrhosis, urinary 20-HETE is several-fold higher than PGs and TxB2, whereas in normal subjects, 20-HETE and PGs are excreted at similar rates. Thus, 20-HETE is probably produced in increased amounts in the preglomerular microcirculation accounting for the functional decrease of flow and increase in sodium reabsorption. In conclusion, CYP-AA metabolites represent a group of compounds that participate in the regulation of liver metabolic activity and hemodynamics. They appear to be deeply involved in abnormalities related to liver diseases, particularly cirrhosis, and play a key role in the pathophysiology of portal hypertension and renal failure.
Collapse
Affiliation(s)
- David Sacerdoti
- Department of Clinical and Experimental Medicine, Azienda Ospedaliera and University of Padova, Clinica Medica 5, Via Giustiniani 2, 35100 Padova, Italy.
| | | | | |
Collapse
|
41
|
Wang H, Lin L, Jiang J, Wang Y, Lu ZY, Bradbury JA, Lih FB, Wang DW, Zeldin DC. Up-regulation of endothelial nitric-oxide synthase by endothelium-derived hyperpolarizing factor involves mitogen-activated protein kinase and protein kinase C signaling pathways. J Pharmacol Exp Ther 2003; 307:753-64. [PMID: 12975498 DOI: 10.1124/jpet.103.052787] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytochrome P450 (P450)-dependent metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs), are proposed to be endothelium-derived hyperpolarizing factors (EDHF) that affect vascular tone; however, the effects of EDHF on endothelial-derived nitric oxide biosynthesis remain unknown. We examined the regulation of endothelial nitric-oxide synthase (eNOS) by EDHF and investigated the relevant signaling pathways involved. The P450 epoxygenases CYP102 F87V mutant, CYP2C11-CYPOR, and CYP2J2 were transfected into cultured bovine aortic endothelial cells, and the effects of endogenously formed or exogenously applied EETs on eNOS expression and activity were assessed. Transfection with the P450 epoxygenases led to increased eNOS protein expression, an effect that was attenuated by cotreatment with the P450 inhibitor 17-ODYA. Northern analysis demonstrated that P450 transfection led to increased eNOS mRNA levels consistent with an effect at the pretranslational level. P450 epoxygenase transfection resulted in increased eNOS activity as measured by the conversion of L-arginine to L-citrulline. Addition of synthetic EETs (50-200 nM) to the culture media also increased eNOS expression and activity. Treatment with mitogen-activated protein kinase (MAPK), MAPK kinase, and protein kinase C inhibitors apigenin, 2'-amino-3'-methoxyflavone (PD98059), and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), respectively, significantly inhibited the effects of P450 transfection on eNOS expression. Overexpression of P450 epoxygenases or addition of synthetic EETs increased Thr495 phosphorylation of eNOS, an effect that was inhibited by both apigenin and PD98059. Overexpression of P450 epoxygenases in rats resulted in increased aortic eNOS expression, providing direct evidence that EDHF can influence vascular eNOS levels in vivo. Based on this data, we conclude that EDHF up-regulates eNOS via activation of MAPK and protein kinase C signaling pathways.
Collapse
Affiliation(s)
- Hong Wang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, #1095 Jie Fang Da Dao Avenue, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gauthier KM, Jagadeesh SG, Falck JR, Campbell WB. 14,15-epoxyeicosa-5(Z)-enoic-mSI: a 14,15- and 5,6-EET antagonist in bovine coronary arteries. Hypertension 2003; 42:555-61. [PMID: 12953017 DOI: 10.1161/01.hyp.0000091265.94045.c7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelium-dependent hyperpolarizations and relaxation of vascular smooth muscle induced by acetylcholine and bradykinin are mediated by endothelium-derived hyperpolarizing factors (EDHFs). In bovine coronary arteries, arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs), function as EDHFs. The 14,15-EET analog 14,15-epoxyeicosa-5(Z)-enoic-methylsulfonylimide (14,15-EEZE-mSI) was synthesized and tested for agonist and antagonist activity. In U46619-preconstricted bovine coronary arterial rings, 14,15-, 11,12-, 8,9-, and 5,6-EET induced maximal concentration-related relaxation averaging 75% to 87% at 10 micromol/L, whereas, 14,15-EEZE-mSI induced maximal relaxation averaging only 7%. 14,15-EEZE-mSI (10 micromol/L) preincubation inhibited relaxation to 14,15- and 5,6- EET but not 11,12- or 8,9- EET. 14,15-EEZE-mSI also inhibited indomethacin-resistant relaxation to arachidonic acid and indomethacin-resistant and l-nitroarginine-resistant relaxation to bradykinin and methacholine. It did not alter the relaxation to sodium nitroprusside, iloprost, or the K+ channel openers bimakalim or NS1619. In cell-attached patches of isolated bovine coronary arterial smooth muscle cells, 14,15-EEZE-mSI (100 nmol/L) blocked the 14,15-EET-induced (100 nmol/L) activation of large-conductance, calcium-activated K+ channels. Mass spectrometric analysis of rat renal cortical microsomes incubated with arachidonic acid showed that 14,15-EEZE-mSI (10 micromol/L) increased EET concentrations while decreasing the concentrations of the corresponding dihydroxyeicosatrienoic acids. Therefore, 14,15-EEZE-mSI inhibits relaxation to 5,6- and 14,15- EET and the K+ channel activation by 14,15-EET. It also inhibits the EDHF component of bradykinin-induced, methacholine-induced, and arachidonic acid-induced relaxation. These results suggest that 14,15- or 5,6 -EET act as an EDHF in bovine coronary arteries.
Collapse
Affiliation(s)
- Kathryn M Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
43
|
Wang X, Trottier G, Loutzenhiser R. Determinants of renal afferent arteriolar actions of bradykinin: evidence that multiple pathways mediate responses attributed to EDHF. Am J Physiol Renal Physiol 2003; 285:F540-9. [PMID: 12734100 DOI: 10.1152/ajprenal.00127.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The determinants of bradykinin (BK)-induced afferent arteriolar vasodilation were investigated in the in vitro perfused hydronephrotic rat kidney. BK elicited a concentration-dependent vasodilation of afferent arterioles that had been preconstricted with ANG II (0.1 nmol/l), but this dilation was transient in character. Pretreatment with the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (100 micromol/l) and the cyclooxygenase inhibitor ibuprofen (10 micromol/l) did not prevent this dilation when tone was established by ANG II but fully blocked the response when tone was established by elevated extracellular KCl, which suggests roles for both NO and endothelium-derived hyperpolarizing factor (EDHF). We had previously shown that the EDHF-like response of the afferent arteriole evoked by ACh was fully abolished by a combination of charybdotoxin (ChTX;10 nmol/l) and apamin (AP; 1 micromol/l). However, in the current study, treatment with ChTX plus AP only reduced the EDHF-like component of the BK response from 98 +/- 5 to 53 +/- 6% dilation. Tetraethylammonium (TEA; 1 mmol/l), which had no effect on the EDHF-induced vasodilation associated with ACh, reduced the EDHF-like response to BK to 88 +/- 3% dilation. However, the combination of TEA plus ChTX plus AP abolished the response (0.3 +/- 1% dilation). Similarly, 17-octadecynoic acid (17-ODYA) did not prevent the dilation when it was administered alone (77 +/- 9% dilation) but fully abolished the EDHF-like response when added in combination with ChTX plus AP (-0.5 +/- 4% dilation). These findings suggest that BK acts via multiple EDHFs: one that is similar to that evoked by ACh in that it is blocked by ChTX plus AP, and a second that is blocked by either TEA or 17-ODYA. Our finding that a component of the BK response is sensitive to TEA and 17-ODYA is consistent with previous suggestions that the EDHF released by BK is an epoxyeicosatrienoic acid.
Collapse
Affiliation(s)
- Xuemei Wang
- Dept. of Pharmacology and Therapeutics, Univ. of Calgary, Alberta, Canada
| | | | | |
Collapse
|
44
|
Ayajiki K, Fujioka H, Toda N, Okada S, Minamiyama Y, Imaoka S, Funae Y, Watanabe S, Nakamura A, Okamura T. Mediation of arachidonic acid metabolite(s) produced by endothelial cytochrome P-450 3A4 in monkey arterial relaxation. Hypertens Res 2003; 26:237-43. [PMID: 12675279 DOI: 10.1291/hypres.26.237] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated mechanisms of endothelium-dependent relaxation by acetylcholine resistant to indomethacin and N(G)-nitro-L-arginine and sensitive to cytochrome P-450 (CYP) inhibitors or charybdotoxin + apamin in the monkey lingual artery. Treatment with quinacrine, an inhibitor of phospholipase A2, abolished the relaxation by acetylcholine. However, treatment with alpha-glycyrrhetinic acid, an inhibitor of gap junctions, or catalase, an enzyme which dismutates hydrogen peroxide to form water and oxygen, did not affect the relaxation by acetylcholine. Immunohistochemistry demonstrated the presence of CYP3A4 in endothelial cells of the artery. Anti-CYP3A4 antibody inhibited relaxations by products of arachidonic acid incubated with human liver microsomes rich in CYPs in the endothelium-denuded artery. Purified CYP3A4 produced epoxyeicosatrienoic acids (EETs) from arachidonic acid, and the production was abolished by a selective CYP3A inhibitor, ketoconazole. It may be concluded that endothelium-derived relaxing substance(s) other than nitric oxide and prostanoids in the monkey lingual artery opens charybdotoxin + apamin-sensitive K+ channels in smooth muscle cells, and arachidonic acid metabolite(s) produced by endothelial CYP3A4 is likely to be the major substance.
Collapse
Affiliation(s)
- Kazuhide Ayajiki
- Department of Pharmacology, Shiga University of Medical Science, Seta, Ohtsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, Platonov M, Koshal A, Hashimoto K, Campbell WB, Falck JR, Michelakis ED. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation 2003; 107:769-76. [PMID: 12578883 DOI: 10.1161/01.cir.0000047278.28407.c2] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Left internal mammary arteries (LIMAs) synthesize endothelium-derived hyperpolarizing factor (EDHF), a short-lived K(+) channel activator that persists after inhibition of nitric oxide (NO) and prostaglandin synthesis. EDHF hyperpolarizes and relaxes smooth muscle cells (SMCs). The identity of EDHF in humans is unknown. We hypothesized that EDHF (1) is 11,12-epoxyeicosatrienoic acid (11,12-EET); (2) is generated by cytochrome P450-2C, CYP450-2C; and (3) causes relaxation by opening SMC large-conductance Ca(2+)-activated K(+) channels (BK(Ca)). METHODS AND RESULTS The identity of EDHF and its mechanism of action were assessed in 120 distal human LIMAs and 20 saphenous veins (SVs) obtained during CABG. The predominant EET synthesized by LIMAs is 11,12-EET. Relaxations to exogenous 11,12-EET and endogenous EDHF are of similar magnitudes. Inhibition of EET synthesis by chemically distinct CYP450 inhibitors (17-octadecynoic acid, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide), or a selective EET antagonist (4,15-epoxyeicosa-5(Z)-enoic acid) impairs EDHF relaxation. 11,12-EET activates a BK(Ca) current and hyperpolarizes LIMA SMCs. Inhibitors of BK(Ca) but not inward-rectifier or small-conductance K(Ca) channels abolish relaxation to endogenous EDHF and exogenous 11,12-EET. BK(Ca) and CYP450-2C mRNA and proteins are more abundant in LIMAs than in SVs, perhaps explaining the lack of EDHF activity of the SV. Laser capture microdissection and quantitative RT-PCR demonstrate that BK(Ca) channels are primarily in vascular SMCs, whereas the CYP450-2C enzyme is present in both the endothelium and SMCs. CONCLUSIONS In human LIMAs, EDHF is 11,12-EET produced by an EDHF synthase CYP450-2C and accounting for approximately 40% of net endothelial relaxation. 11,12-EET causes relaxation by activating SMC BK(Ca) channels.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Acetylcholine/pharmacology
- Biological Factors/metabolism
- Bradykinin/pharmacology
- Cytochrome P-450 Enzyme System/metabolism
- Humans
- In Vitro Techniques
- Large-Conductance Calcium-Activated Potassium Channels
- Mammary Arteries/drug effects
- Mammary Arteries/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide Synthase/metabolism
- Patch-Clamp Techniques
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Calcium-Activated/antagonists & inhibitors
- Potassium Channels, Calcium-Activated/metabolism
- Prostaglandin-Endoperoxide Synthases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Vasodilation/drug effects
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Stephen L Archer
- Vascular Biology Group, Cardiology Surgery, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang Q, Ge Z, Yang C, Huang Y, He G. Bioassay of endothelium‐derived hyperpolarizing factor with abolishment of nitric oxide and the role of gap junctions in the porcine coronary circulation. Drug Dev Res 2003; 58:99-110. [DOI: 10.1002/ddr.10137] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractPrevious bioassays of endothelium‐derived hyperpolarizing factor (EDHF) were partially related to the residual nitric oxide (NO) resistant to NO synthase inhibitors. Further, the role of gap junctions in EDHF is controversial. We performed a bioassay of EDHF with abolishment of NO production by using the NOS inhibitor NG‐nitro‐l‐arginine (l‐NNA) plus the NO scavenger hemoglobin (Hb) and examined the role of gap junctions/K+ channels related to EDHF in porcine coronary large and microarteries in an organ chamber/myograph. Bradykinin (BK)‐induced EDHF‐mediated relaxation and hyperpolarization (by a microelectrode) were studied with indomethacin (7 µM), l‐NNA (300 µM), and Hb (20 µM). NO concentrations ([NO]) were measured electrochemically. In large coronary arteries, BK increased [NO] (9.3±1.7 nM vs. 166.7±18.3 nM, P<0.01) that was significantly reduced by l‐NNA (49.3±7.8 nM, P<0.01) and eliminated by Hb, and hyperpolarized the downstream endothelium‐denuded artery by 9.0±1.4 mV (P<0.01) that was reduced but not abolished by l‐NNA and Hb (5.6±0.7 mV, P<0.01). In microarteries, elimination of NO decreased but did not abolish the hyperpolarization (−63.8±1.5 mV vs. −56.9±1.6 mV, P=0.01) and relaxation (70.2±5.7% vs. 42.3±4.4%, P<0.01). Charybdotoxin (0.1 µM) and apamin (0.5 µM), but neither glybenclimide (3 µM) nor gap junction inhibitors (18α‐glycyrrhetinic acid, 1‐heptanol, and gap 27) reduced the EDHF‐mediated response. We conclude that in porcine coronary arteries, with the abolishment of NO by NOS inhibitors plus the NO scavenger Hb, the non‐NO EDHF exists and is transferable from an endothelium‐intact artery to an endothelium‐denuded artery. Compared with the significant involvement of calcium‐activated K+ channels, the gap junctions may only play a minimal role in the EDHF‐mediated response even in the microcirculation of the porcine coronary artery. Drug Dev. Res. 58:99–110, 2003. © 2003 Wiley‐Liss, Inc.
Collapse
|
47
|
Obara K, Koide M, Nakayama K. 20-Hydroxyeicosatetraenoic acid potentiates stretch-induced contraction of canine basilar artery via PKC alpha-mediated inhibition of KCa channel. Br J Pharmacol 2002; 137:1362-70. [PMID: 12466247 PMCID: PMC1573599 DOI: 10.1038/sj.bjp.0704960] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The present study was undertaken to elucidate whether PKCalpha plays a role in the mechanism of the stretch-induced contraction potentiated by 20-hydroxyeicosatetraenoic acid (20-HETE). The effects of 20-HETE on the canine basilar artery were compared with those of iberiotoxin, a blocker of large conductance Ca(2+)-activated K(+) channels (K(Ca) channels), as this blocker was shown earlier to sensitize these arteries to mechanical stretch. 2. Slow stretch at rates of 0.1 to 3 mm s(-1) did not produce any contraction in normal physiological solution. 3. In the presence of 20-HETE, the slow stretch could produce contraction, which was inhibited by nicardipine, a 1,4-dihydropyridine Ca(2+) channel blocker, and gadolinium, a blocker of stretch-activated cation channels. 4. 20-HETE inhibited whole-cell K(+) current and depolarized the membrane by approximately 10 mV. These effects of 20-HETE were similar to those of iberiotoxin. 5. Calphostin C, an inhibitor of protein kinase C (PKC), inhibited the action of 20-HETE, but not that of iberiotoxin. 6. In response to 20-HETE PKCalpha isoform was translocated from the cytosol to the membrane fraction, which translocation was inhibited by calphostin C. 7. These results suggest that 20-HETE induced sensitization of the canine basilar artery to stretch was caused by PKCalpha-mediated inhibition of K(Ca) channel activity.
Collapse
Affiliation(s)
- Kazuo Obara
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Masayo Koide
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Koichi Nakayama
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Author for correspondence:
| |
Collapse
|
48
|
Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: bringing the concepts together. Trends Pharmacol Sci 2002; 23:374-80. [PMID: 12377579 DOI: 10.1016/s0165-6147(02)02050-3] [Citation(s) in RCA: 590] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endothelial cells synthesize and release vasoactive mediators in response to various neurohumoural substances (e.g. bradykinin or acetylcholine) and physical stimuli (e.g. cyclic stretch or fluid shear stress). The best-characterized endothelium-derived relaxing factors are nitric oxide and prostacyclin. However, an additional relaxant pathway associated with smooth muscle hyperpolarization also exists. This hyperpolarization was originally attributed to the release of an endothelium-derived hyperpolarizing factor (EDHF) that diffuses to and activates smooth muscle K(+) channels. More recent evidence suggests that endothelial cell receptor activation by these neurohumoural substances opens endothelial cell K(+) channels. Several mechanisms have been proposed to link this pivotal step to the subsequent smooth muscle hyperpolarization. The main concepts are considered in detail in this review.
Collapse
Affiliation(s)
- Rudi Busse
- Institut für Kardiovaskuläre Physiologie, Klinikum der J.W. Goethe-Universität, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Gauthier KM, Deeter C, Krishna UM, Reddy YK, Bondlela M, Falck JR, Campbell WB. 14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res 2002; 90:1028-36. [PMID: 12016270 DOI: 10.1161/01.res.0000018162.87285.f8] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelium-dependent hyperpolarization and relaxation of vascular smooth muscle are mediated by endothelium-derived hyperpolarizing factors (EDHFs). EDHF candidates include cytochrome P-450 metabolites of arachidonic acid, K(+), hydrogen peroxide, or electrical coupling through gap junctions. In bovine coronary arteries, epoxyeicosatrienoic acids (EETs) appear to function as EDHFs. A 14,15-EET analogue, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) was synthesized and identified as an EET-specific antagonist. In bovine coronary arterial rings preconstricted with U46619, 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET induced concentration-related relaxations. Preincubation of the arterial rings with 14,15-EEZE (10 micromol/L) inhibited the relaxations to 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET but was most effective in inhibiting 14,15-EET-induced relaxations. 14,15-EEZE also inhibited indomethacin-resistant relaxations to methacholine and arachidonic acid and indomethacin-resistant and L-nitroarginine-resistant relaxations to bradykinin. It did not alter relaxation responses to sodium nitroprusside, iloprost, or the K(+) channel activators (NS1619 and bimakalim). Additionally, in small bovine coronary arteries pretreated with indomethacin and L-nitroarginine and preconstricted with U46619, 14,15-EEZE (3 micromol/L) inhibited bradykinin (10 nmol/L)-induced smooth muscle hyperpolarizations and relaxations. In rat renal microsomes, 14,15-EEZE (10 micromol/L) did not decrease EET synthesis and did not alter 20-hydroxyeicosatetraenoic acid synthesis. This analogue acts as an EET antagonist by inhibiting the following: (1) EET-induced relaxations, (2) the EDHF component of methacholine-induced, bradykinin-induced, and arachidonic acid-induced relaxations, and (3) the smooth muscle hyperpolarization response to bradykinin. Thus, a distinct molecular structure is required for EET activity, and alteration of this structure modifies agonist and antagonist activity. These findings support a role of EETs as EDHFs.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Arachidonic Acid/metabolism
- Benzimidazoles/pharmacology
- Benzopyrans/pharmacology
- Bradykinin/pharmacology
- Cattle
- Coronary Vessels/drug effects
- Coronary Vessels/physiology
- Dihydropyridines/pharmacology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/physiology
- Iloprost/pharmacology
- In Vitro Techniques
- Kidney Cortex/drug effects
- Kidney Cortex/metabolism
- Male
- Microsomes/drug effects
- Microsomes/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Nitroprusside/pharmacology
- Rats
- Rats, Sprague-Dawley
- Structure-Activity Relationship
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Kathryn M Gauthier
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Hyperglycaemia appears to be a critical factor in the aetiology of diabetic retinopathy and initiates downstream events including: basement membrane thickening, pericyte drop out and retinal capillary non-perfusion. More recently, focus has been directed to the molecular basis of the disease process in diabetic retinopathy. Of particular importance in the development and progression of diabetic retinopathy is the role of growth factors (eg vascular endothelial growth factor, placenta growth factor and pigment epithelium-derived factor) together with specific receptors and obligate components of the signal transduction pathway needed to support them. Despite these advances there are still a number of important questions that remain to be answered before we can confidently target pathological signals. How does hyperglycaemia regulate retinal vessels? Which growth factors are most important and at what stage of retinopathy do they operate? What is the preferred point in the growth factor signalling cascade for therapeutic intervention? Answers to these questions will provide the basis for new therapeutic interventions in a debilitating ocular condition.
Collapse
Affiliation(s)
- J Cai
- Department of Optometry and Vision Sciences, Cardiff University, UK
| | | |
Collapse
|