1
|
The telomere bouquet facilitates meiotic prophase progression and exit in fission yeast. Cell Discov 2017; 3:17041. [PMID: 29123917 PMCID: PMC5674143 DOI: 10.1038/celldisc.2017.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/28/2017] [Indexed: 12/03/2022] Open
Abstract
During meiotic prophase, chromosome arrangement and oscillation promote the pairing of homologous chromosomes for meiotic recombination. This dramatic movement involves clustering of telomeres at the nuclear membrane to form the so-called telomere bouquet. In fission yeast, the telomere bouquet is formed near the spindle pole body (SPB), which is the microtubule organising centre, functionally equivalent to the metazoan centrosome. Disruption of bouquet configuration impedes homologous chromosome pairing, meiotic recombination and spindle formation. Here, we demonstrate that the bouquet is maintained throughout meiotic prophase and promotes timely prophase exit in fission yeast. Persistent DNA damages, induced during meiotic recombination, activate the Rad3 and Chk1 DNA damage checkpoint kinases and extend the bouquet stage beyond the chromosome oscillation period. The auxin-inducible degron system demonstrated that premature termination of the bouquet stage leads to severe extension of prophase and consequently spindle formation defects. However, this delayed exit from meiotic prophase was not caused by residual DNA damage. Rather, loss of chromosome contact with the SPB caused delayed accumulation of CDK1-cyclin B at the SPB, which correlated with impaired SPB separation. In the absence of the bouquet, CDK1-cyclin B localised near the telomeres but not at the SPB at the later stage of meiotic prophase. Thus, bouquet configuration is maintained throughout meiotic prophase, by which this spatial organisation may facilitate local and timely activation of CDK1 near the SPB. Our findings illustrate that chromosome contact with the nuclear membrane synchronises meiotic progression of the nucleoplasmic chromosomes with that of the cytoplasmic SPB.
Collapse
|
2
|
Eloualid A, Rouba H, Rhaissi H, Barakat A, Louanjli N, Bashamboo A, McElreavey K. Prevalence of the Aurora kinase C c.144delC mutation in infertile Moroccan men. Fertil Steril 2014; 101:1086-90. [DOI: 10.1016/j.fertnstert.2013.12.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 12/27/2022]
|
3
|
Oocyte differentiation is genetically dissociable from meiosis in mice. Nat Genet 2013; 45:877-83. [PMID: 23770609 PMCID: PMC3747777 DOI: 10.1038/ng.2672] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/24/2013] [Indexed: 12/26/2022]
Abstract
Oogenesis is the process by which ovarian germ cells undertake meiosis and differentiate to become eggs. In mice, Stra8 is required for the chromosomal events of meiosis to occur, but its role in differentiation remains unknown. Here we report Stra8-deficient ovarian germ cells that grow and differentiate into oocyte-like cells that synthesize zonae pellucidae, organize surrounding somatic cells into follicles, are ovulated in response to hormonal stimulation, undergo asymmetric cell division to produce a polar body and cleave to form two-cell embryos upon fertilization. These events occur without premeiotic chromosomal replication, sister chromatid cohesion, synapsis or recombination. Thus, oocyte growth and differentiation are genetically dissociable from the chromosomal events of meiosis. These findings open to study the independent contributions of meiosis and oocyte differentiation to the making of a functional egg.
Collapse
|
4
|
Lamine C2 et spermatogenèse. Basic Clin Androl 2012. [DOI: 10.1007/s12610-012-0188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Résumé
Les lamines A/C sont des filaments intermédiaires présents dans les noyaux des cellules. Leurs rôles sont multiples et des mutations du gène LMNA sont à l’origine de nombreuses maladies appelées laminopathies. Dans les cellules germinales masculines, cette famille de protéines n’est représentée que par la lamine C2. Les données obtenues chez la souris démontrent l’importance de ces filaments dans le déroulement de la méiose masculine et présagent de l’existence d’un nouveau domaine d’infertilité d’origine masculine lié à des mutations de ce filament intermédiaire ou de ses protéines associées.
Collapse
|
5
|
Genetics of Meiosis and Recombination in Mice. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 298 2012; 298:179-227. [DOI: 10.1016/b978-0-12-394309-5.00005-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Bördlein A, Scherthan H, Nelkenbrecher C, Molter T, Bösl MR, Dippold C, Birke K, Kinkley S, Staege H, Will H, Winterpacht A. SPOC1 (PHF13) is required for spermatogonial stem cell differentiation and sustained spermatogenesis. J Cell Sci 2011; 124:3137-48. [PMID: 21852425 DOI: 10.1242/jcs.085936] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SPOC1 (PHF13) is a recently identified protein that has been shown to dynamically associate with somatic chromatin, to modulate chromatin compaction and to be important for proper cell division. Here, we report on the expression of SPOC1 in promyelocytic leukaemia zinc finger (PLZF)-positive undifferentiated spermatogonial stem cells (SSCs) of the mouse testis. To investigate further the biological function of SPOC1 in germ cells we generated Spoc1 mutant mice from a gene-trap embryonic stem cell clone. Postpubertal homozygous Spoc1(-/-) animals displayed a pronounced progressive loss of germ cells from an initially normal germ epithelium of the testis tubules leading to testis hypoplasia. This loss first affected non-SSC stages of germ cells and then, at a later time point, the undifferentiated spermatogonia. Remarkably, successive loss of all germ cells (at >20 weeks of age) was preceded by a transient increase in the number of undifferentiated A(aligned) (A(al)) spermatogonia in younger mice (at >10 weeks of age). The number of primary Spoc1(-/-) gonocytes, the proliferation of germ cells, and the initiation and progression of meiosis was normal, but we noted a significantly elevated level of apoptosis in the Spoc1(-/-) testis. Taken together, the data argue that SPOC1 is indispensable for stem cell differentiation in the testis and for sustained spermatogenesis.
Collapse
Affiliation(s)
- Annegret Bördlein
- University Hospital Erlangen, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The germ cell lineage is our lifelong reservoir of reproductive stem cells and our mechanism for transmitting genes to future generations. These highly specialised cells are specified early during development and then migrate to the embryonic gonads where sex differentiation occurs. Germ cell sex differentiation is directed by the somatic gonadal environment and is characterised by two distinct cell cycle states that are maintained until after birth. In the mouse, XY germ cells in a testis cease mitotic proliferation and enter G(1)/G(0) arrest from 12.5 dpc, while XX germ cells in an ovary enter prophase I of meiosis from 13.5 dpc. This chapter discusses the factors known to control proliferation and survival of germ cells during their journey of specification to sex differentiation during development.
Collapse
Affiliation(s)
- Cassy M Spiller
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
8
|
Safarinejad MR, Shafiei N, Safarinejad S. The role of endothelial nitric oxide synthase (eNOS) T-786C, G894T, and 4a/b gene polymorphisms in the risk of idiopathic male infertility. Mol Reprod Dev 2010; 77:720-7. [DOI: 10.1002/mrd.21210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Wallace DC, Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2009; 10:12-31. [PMID: 19796712 DOI: 10.1016/j.mito.2009.09.006] [Citation(s) in RCA: 361] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 12/15/2022]
Abstract
The epigenome has been hypothesized to provide the interface between the environment and the nuclear DNA (nDNA) genes. Key factors in the environment are the availability of calories and demands on the organism's energetic capacity. Energy is funneled through glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the cellular bioenergetic systems. Since there are thousands of bioenergetic genes dispersed across the chromosomes and mitochondrial DNA (mtDNA), both cis and trans regulation of the nDNA genes is required. The bioenergetic systems convert environmental calories into ATP, acetyl-Coenzyme A (acetyl-CoA), s-adenosyl-methionine (SAM), and reduced NAD(+). When calories are abundant, ATP and acetyl-CoA phosphorylate and acetylate chromatin, opening the nDNA for transcription and replication. When calories are limiting, chromatin phosphorylation and acetylation are lost and gene expression is suppressed. DNA methylation via SAM can also be modulated by mitochondrial function. Phosphorylation and acetylation are also pivotal to regulating cellular signal transduction pathways. Therefore, bioenergetics provides the interface between the environment and the epigenome. Consistent with this conclusion, the clinical phenotypes of bioenergetic diseases are strikingly similar to those observed in epigenetic diseases (Angelman, Rett, Fragile X Syndromes, the laminopathies, cancer, etc.), and an increasing number of epigenetic diseases are being associated with mitochondrial dysfunction. This bioenergetic-epigenomic hypothesis has broad implications for the etiology, pathophysiology, and treatment of a wide range of common diseases.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University of California, Irvine, CA 92697-3940, USA.
| | | |
Collapse
|
11
|
Lin Y, Gill ME, Koubova J, Page DC. Germ Cell-Intrinsic and -Extrinsic Factors Govern Meiotic Initiation in Mouse Embryos. Science 2008; 322:1685-7. [DOI: 10.1126/science.1166340] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Deng Y, Zhang W, Su D, Yang Y, Ma Y, Zhang H, Zhang S. Some Single Nucleotide Polymorphisms of MSY2 Gene Might Contribute to Susceptibility to Spermatogenic Impairment in Idiopathic Infertile Men. Urology 2008; 71:878-82. [DOI: 10.1016/j.urology.2007.12.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 11/25/2022]
|
13
|
Abstract
Meiosis is a specialized type of cell division that halves the diploid number of chromosomes, yielding four haploid nuclei. Dramatic changes in chromosomal organization occur within the nucleus at the beginning of meiosis which are followed by the separation of homologous chromosomes at the first meiotic division. This is the case for telomeres that display a meiotic-specific behavior with gathering in a limited sector of the nuclear periphery. This leads to a characteristic polarized chromosomal configuration, called the "bouquet" arrangement. The widespread phenomenon of bouquet formation among eukaryotes has led to the hypothesis that it is functionally linked to the process of interactions between homologous chromosomes that are a unique feature of meiosis and are essential for proper chromosome segregation. Various studies in different model organisms have questioned the role of the telomere bouquet in chromosome pairing and recombination, and very recently in meiotic spindle formation, and have provided some clues about the molecular mechanisms that carry out this specific clustering of telomeres.
Collapse
|
14
|
Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell 2007; 12:863-72. [PMID: 17543860 DOI: 10.1016/j.devcel.2007.03.018] [Citation(s) in RCA: 326] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/22/2007] [Accepted: 03/23/2007] [Indexed: 11/17/2022]
Abstract
Prior to the pairing and recombination between homologous chromosomes during meiosis, telomeres attach to the nuclear envelope and form a transient cluster. However, the protein factors mediating meiotic telomere attachment to the nuclear envelope and the requirement of this attachment for homolog pairing and synapsis have not been determined in animals. Here we show that the inner nuclear membrane protein SUN1 specifically associates with telomeres between the leptotene and diplotene stages during meiotic prophase I. Disruption of Sun1 in mice prevents telomere attachment to the nuclear envelope, efficient homolog pairing, and synapsis formation in meiosis. Massive apoptotic events are induced in the mutant gonads, leading to the abolishment of both spermatogenesis and oogenesis. This study provides genetic evidence that SUN1-telomere interaction is essential for telomere dynamic movement and is required for efficient homologous chromosome pairing/synapsis during mammalian gametogenesis.
Collapse
Affiliation(s)
- Xu Ding
- Institute of Developmental Biology and Molecular Medicine and School of Life Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
15
|
Susiarjo M, Hassold TJ, Freeman E, Hunt PA. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet 2007; 3:e5. [PMID: 17222059 PMCID: PMC1781485 DOI: 10.1371/journal.pgen.0030005] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 11/09/2006] [Indexed: 01/01/2023] Open
Abstract
Estrogen plays an essential role in the growth and maturation of the mammalian oocyte, and recent studies suggest that it also influences follicle formation in the neonatal ovary. In the course of studies designed to assess the effect of the estrogenic chemical bisphenol A (BPA) on mammalian oogenesis, we uncovered an estrogenic effect at an even earlier stage of oocyte development—at the onset of meiosis in the fetal ovary. Pregnant mice were treated with low, environmentally relevant doses of BPA during mid-gestation to assess the effect of BPA on the developing ovary. Oocytes from exposed female fetuses displayed gross aberrations in meiotic prophase, including synaptic defects and increased levels of recombination. In the mature female, these aberrations were translated into an increase in aneuploid eggs and embryos. Surprisingly, we observed the same constellation of meiotic defects in fetal ovaries of mice homozygous for a targeted disruption of ERβ, one of the two known estrogen receptors. This, coupled with the finding that BPA exposure elicited no additional effects in ERβ null females, suggests that BPA exerts its effect on the early oocyte by interfering with the actions of ERβ. Together, our results show that BPA can influence early meiotic events and, importantly, indicate that the oocyte itself may be directly responsive to estrogen during early oogenesis. This raises concern that brief exposures during fetal development to substances that mimic or antagonize the effects of estrogen may adversely influence oocyte development in the exposed female fetus. The potential effects on reproduction of chemicals with hormone-like activity is a growing concern. One estrogenic chemical, bisphenol A (BPA), has received considerable attention because low-dose exposures have been reported to induce a variety of reproductive effects in rodents. In the course of studies to assess the effects of BPA on the mouse oocyte, we have uncovered a novel “grandmaternal” effect: exposure to BPA during pregnancy disturbs oocyte development in unborn female fetuses. When these fetuses reach adulthood, the perturbations are translated into an increase in chromosomally abnormal eggs and embryos. Thus, low-dose BPA exposure during pregnancy has multigenerational consequences; it increases the likelihood of chromosomally abnormal grandchildren. Our studies also provide mechanistic insight, and, surprisingly, suggest that BPA acts in the fetal ovary not by mimicking the actions of estrogen but by interfering with the function of one of the known estrogen receptors. Thus, our data suggest that estrogen plays a far earlier role in oocyte development than previously suspected and, importantly, raise the possibility that a variety of substances—both synthetic and naturally occurring—that mimic the actions of estrogen or act as estrogen antagonists may affect early oocyte development.
Collapse
Affiliation(s)
- Martha Susiarjo
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Terry J Hassold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Edward Freeman
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Biology, St. John Fisher College, Rochester, New York, United States of America
| | - Patricia A Hunt
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Robles P, Roig I, Garcia R, Ortega A, Egozcue J, Cabero LL, Garcia M. Pairing and synapsis in oocytes from female fetuses with euploid and aneuploid chromosome complements. Reproduction 2007; 133:899-907. [PMID: 17616720 DOI: 10.1530/rep-06-0243] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Only little is known about the meiotic prophase events in human oocytes, although some of them are involved in the origin of aneuploidies. Here, a broad study of the pairing and synaptic processes in 3263 human euploid and 2613 aneuploid oocytes (47,XX, +21 and 47,XX, +13), using different techniques and methods, is presented in order to elucidate the characteristics of this essential meiotic process. Our results reaffirm the existence of a common high efficiency in the pairing process leading to the obtainment of a bivalent for all chromosomes studied in euploid and aneuploid cases. Nevertheless, this high efficiency was insufficient to consistently produce trivalents in aneuploid oocytes. Trivalent 21 was only observed in 48.8% of the 47,XX, +21 pachytene-stage oocytes studied, and trivalent 13 was found in 68.7% of the 47,XX, +13 pachytene-stage oocytes analyzed. Our data confirm the hypothesis which suggests that in human oocytes the presence of an extra chromosome could interfere in bouquet dynamics. In addition, the pairing process of the X chromosome is altered in trisomic 21 oocytes, providing evidence of the influence that an extra chromosome 21 may cause meiotic progression.
Collapse
MESH Headings
- Aneuploidy
- Case-Control Studies
- Chromosome Pairing
- Chromosomes, Human
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 21
- Chromosomes, Human, X
- Female
- Fetus/ultrastructure
- Fluorescent Antibody Technique
- Humans
- Image Interpretation, Computer-Assisted
- In Situ Hybridization, Fluorescence
- Microscopy, Fluorescence
- Oocytes/ultrastructure
- Oogenesis/physiology
- Pachytene Stage
- Synaptonemal Complex/ultrastructure
- Trisomy
Collapse
Affiliation(s)
- P Robles
- Unitat de Biologia, Facultat de Medicina, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhang W, Zhang S, Xiao C, Yang Y, Zhoucun A. Mutation screening of the FKBP6 gene and its association study with spermatogenic impairment in idiopathic infertile men. Reproduction 2007; 133:511-6. [PMID: 17307919 DOI: 10.1530/rep-06-0125] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fkbp6 has been proved to be a new component of synaptonemal complexes and be involved in homologous chromosomes pairing and male infertility in mice. To explore the possible association between variations in the FKBP6 gene and impaired spermatogenesis in human, mutation screening of all the eight exons and the intron/exon boundaries of the gene was performed in 323 patients with azoospermia or severe oligozoospermia and 205 fertile controls by denatured HPLC and DNA sequencing. As a result, four novel and one known single nucleotide transitions were identified, including c.58-2A>G, c.111C>T, c.156G>T, c.594G>A, and c.216C>A (rs3750075). The frequencies of genotype CA, allele A of c.216C>A and haplotype ‘GAG’ consisting of c.156G>T, c.216C>A, and c.594G>A were significantly lower in infertile patients than those in controls. These findings suggest that the FKBP6 gene may play a role in modifying the susceptibility to idiopathic spermatogenic impairment in human and propose that the allele A of c.216C>A seems to be a protective factor for the development of male infertility.
Collapse
Affiliation(s)
- Wei Zhang
- Divison of Human Morbid Genomics, State Key Laboratory of Biotherapy, Department of Medical Genetics, West China Hospital, Sichuan University, Renmin Nanlu, Section 3 #17, Chengdu 610041, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Liebe B, Petukhova G, Barchi M, Bellani M, Braselmann H, Nakano T, Pandita TK, Jasin M, Fornace A, Meistrich ML, Baarends WM, Schimenti J, de Lange T, Keeney S, Camerini-Otero RD, Scherthan H. Mutations that affect meiosis in male mice influence the dynamics of the mid-preleptotene and bouquet stages. Exp Cell Res 2006; 312:3768-81. [PMID: 17010969 DOI: 10.1016/j.yexcr.2006.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/20/2006] [Accepted: 07/22/2006] [Indexed: 01/15/2023]
Abstract
Meiosis pairs and segregates homologous chromosomes and thereby forms haploid germ cells to compensate the genome doubling at fertilization. Homologue pairing in many eukaryotic species depends on formation of DNA double strand breaks (DSBs) during early prophase I when telomeres begin to cluster at the nuclear periphery (bouquet stage). By fluorescence in situ hybridization criteria, we observe that mid-preleptotene and bouquet stage frequencies are altered in male mice deficient for proteins required for recombination, ubiquitin conjugation and telomere length control. The generally low frequencies of mid-preleptotene spermatocytes were significantly increased in male mice lacking recombination proteins SPO11, MEI1, MLH1, KU80, ubiquitin conjugating enzyme HR6B, and in mice with only one copy of the telomere length regulator Terf1. The bouquet stage was significantly enriched in Atm(-/-), Spo11(-/-), Mei1(m1Jcs/m1Jcs), Mlh1(-/-), Terf1(+/-) and Hr6b(-/-) spermatogenesis, but not in mice lacking recombination proteins DMC1 and HOP2, the non-homologous end-joining DNA repair factor KU80 and the ATM downstream effector GADD45a. Mice defective in spermiogenesis (Tnp1(-/-), Gmcl1(-/-), Asm(-/-)) showed wild-type mid-preleptotene and bouquet frequencies. A low frequency of bouquet spermatocytes in Spo11(-/-)Atm(-/-) spermatogenesis suggests that DSBs contribute to the Atm(-/-)-correlated bouquet stage exit defect. Insignificant changes of bouquet frequencies in mice with defects in early stages of DSB repair (Dmc1(-/-), Hop2(-/-)) suggest that there is an ATM-specific influence on bouquet stage duration. Altogether, it appears that several pathways influence telomere dynamics in mammalian meiosis.
Collapse
Affiliation(s)
- B Liebe
- Max-Planck-Inst. for Molecular Genetics, Ihnestr. 73, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Iwai T, Yoshii A, Yokota T, Sakai C, Hori H, Kanamori A, Yamashita M. Structural components of the synaptonemal complex, SYCP1 and SYCP3, in the medaka fish Oryzias latipes. Exp Cell Res 2006; 312:2528-37. [PMID: 16764855 DOI: 10.1016/j.yexcr.2006.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 04/19/2006] [Accepted: 04/23/2006] [Indexed: 11/23/2022]
Abstract
The synaptonemal complex (SC) is a meiosis-specific structure essential for synapsis of homologous chromosomes. For the first time in any non-mammalian vertebrates, we have isolated cDNA clones encoding two structural components of the SC, SYCP1 and SYCP3, in the medaka, and investigated their protein expression during gametogenesis. As in the case of mammals, medaka SYCP1 and SYCP3 are expressed solely in meiotically dividing cells. In the diplotene stage, SYCP1 is diminished at desynaptic regions of chromosomes and completely lost on the chromosomes at later stages. SYCP3 is localized along the arm and centromeric regions of chromosomes at metaphase I, and its existence on the whole chromosomes persists up to anaphase I, a situation different from that reported in the mouse, in which SYCP3 is confined to the centromeric regions but lost on the arm regions at metaphase I. Thus, the expression patterns of SC components are different in mammals and fish despite the resemblance in morphological structure of the SC, suggesting divergence in the function of the SC in regulation of meiosis-specific chromosomal behavior. Since the antibody against medaka SYCP3 is cross-reactive to other fishes, it should be generally useful for a meiosis-specific marker in fish germ cells.
Collapse
Affiliation(s)
- Toshiharu Iwai
- Laboratory of Molecular and Cellular Interactions, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Vallente RU, Cheng EY, Hassold TJ. The synaptonemal complex and meiotic recombination in humans: new approaches to old questions. Chromosoma 2006; 115:241-9. [PMID: 16547726 DOI: 10.1007/s00412-006-0058-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/07/2006] [Accepted: 02/08/2006] [Indexed: 11/25/2022]
Abstract
Meiotic prophase serves as an arena for the interplay of two important cellular activities, meiotic recombination and synapsis of homologous chromosomes. Synapsis is mediated by the synaptonemal complex (SC), originally characterized as a structure linked to pairing of meiotic chromosomes (Moses (1958) J Biophys Biochem Cytol 4:633-638). In 1975, the first electron micrographs of human pachytene stage SCs were presented (Moses et al. (1975) Science 187:363-365) and over the next 15 years the importance of the SC to normal meiotic progression in human males and females was established (Jhanwar and Chaganti (1980) Hum Genet 54:405-408; Pathak and Elder (1980) Hum Genet 54:171-175; Solari (1980) Chromosoma 81:315-337; Speed (1984) Hum Genet 66:176-180; Wallace and Hulten (1985) Ann Hum Genet 49(Pt 3):215-226). Further, these studies made it clear that abnormalities in the assembly or maintenance of the SC were an important contributor to human infertility (Chaganti et al. (1980) Am J Hum Genet 32:833-848; Vidal et al. (1982) Hum Genet 60:301-304; Bojko (1983) Carlsberg Res Commun 48:285-305; Bojko (1985) Carlsberg Res Commun 50:43-72; Templado et al. (1984) Hum Genet 67:162-165; Navarro et al. (1986) Hum Reprod 1:523-527; Garcia et al. (1989) Hum Genet 2:147-53). However, the utility of these early studies was limited by lack of information on the structural composition of the SC and the identity of other SC-associated proteins. Fortunately, studies of the past 15 years have gone a long way toward remedying this problem. In this minireview, we highlight the most important of these advances as they pertain to human meiosis, focusing on temporal aspects of SC assembly, the relationship between the SC and meiotic recombination, and the contribution of SC abnormalities to human infertility.
Collapse
Affiliation(s)
- Rhea U Vallente
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
21
|
Li A, Eirín-López JM, Ausió J. H2AX: tailoring histone H2A for chromatin-dependent genomic integrity. Biochem Cell Biol 2005; 83:505-15. [PMID: 16094454 DOI: 10.1139/o05-114] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During the last decade, chromatin research has been focusing on the role of histone variability as a modulator of chromatin structure and function. Histone variability can be the result of either post-translational modifications or intrinsic variation at the primary structure level: histone variants. In this review, we center our attention on one of the most extensively characterized of such histone variants in recent years, histone H2AX. The molecular phylogeny of this variant seems to have run in parallel with that of the major canonical somatic H2A1 in eukaryotes. Functionally, H2AX appears to be mainly associated with maintaining the genome integrity by participating in the repair of the double-stranded DNA breaks exogenously introduced by environmental damage (ionizing radiation, chemicals) or in the process of homologous recombination during meiosis. At the structural level, these processes involve the phosphorylation of serine at the SQE motif, which is present at the very end of the C-terminal domain of H2AX, and possibly other PTMs, some of which have recently started to be defined. We discuss a model to account for how these H2AX PTMs in conjunction with chromatin remodeling complexes (such as INO80 and SWRI) can modify chromatin structure (remodeling) to support the DNA unraveling ultimately required for DNA repair.Key words: H2AX, DNA repair, double-stranded DNA breaks, phosphorylation.
Collapse
Affiliation(s)
- Andra Li
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada
| | | | | |
Collapse
|
22
|
Trelles-Sticken E, Adelfalk C, Loidl J, Scherthan H. Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 2005; 170:213-23. [PMID: 16027219 PMCID: PMC2171397 DOI: 10.1083/jcb.200501042] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 06/15/2005] [Indexed: 11/25/2022] Open
Abstract
In diploid organisms, meiosis reduces the chromosome number by half during the formation of haploid gametes. During meiotic prophase, telomeres transiently cluster at a limited sector of the nuclear envelope (bouquet stage) near the spindle pole body (SPB). Cohesin is a multisubunit complex that contributes to chromosome segregation in meiosis I and II divisions. In yeast meiosis, deficiency for Rec8 cohesin subunit induces telomere clustering to persist, whereas telomere cluster-SPB colocalization is defective. These defects are rescued by expressing the mitotic cohesin Scc1 in rec8delta meiosis, whereas bouquet-stage exit is independent of Cdc5 pololike kinase. An analysis of living Saccharomyces cerevisiae meiocytes revealed highly mobile telomeres from leptotene up to pachytene, with telomeres experiencing an actin- but not microtubule-dependent constraint of mobility during the bouquet stage. Our results suggest that cohesin is required for exit from actin polymerization-dependent telomere clustering and for linking the SPB to the telomere cluster in synaptic meiosis.
Collapse
|
23
|
Solov'eva L, Svetlova M, Bodinski D, Zalensky AO. Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosome Res 2005; 12:817-823. [PMID: 15702420 PMCID: PMC1405914 DOI: 10.1007/s10577-005-5513-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 09/30/2004] [Indexed: 01/17/2023]
Abstract
Specific and well-organized chromosome architecture in human sperm cells is supported by the prominent interactions between centromeres and between telomeres. The telomere-telomere interactions result in telomere dimers that are positioned at the nuclear periphery. It is unknown whether composition of sperm telomere dimers is random or specific. We now report that telomere dimers result from specific interactions between the two ends of each chromosome. FISH using pairs of subtelomeric DNA probes that correspond to the small and long arms of seven human chromosomes demonstrates that subtelomeres of one chromosome are brought together. Statistical analysis confirmed that telomere associations could not result from the random proximity of DNA sequences. Therefore, chromosomes in human sperm nuclei adopt a looped conformation. This higher-order chromosome structure is most likely required for chromosome withdrawal/decondensation during the early fertilization events leading to zygote formation.
Collapse
Affiliation(s)
- Lyudmila Solov'eva
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Maria Svetlova
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Dawn Bodinski
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
| | - Andrei O Zalensky
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
| |
Collapse
|
24
|
Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR, Abmayr SM, Washburn MP, Workman JL. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 2004; 306:2084-7. [PMID: 15528408 DOI: 10.1126/science.1103455] [Citation(s) in RCA: 521] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phosphorylation of the human histone variant H2A.X and H2Av, its homolog in Drosophila melanogaster, occurs rapidly at sites of DNA double-strand breaks. Little is known about the function of this phosphorylation or its removal during DNA repair. Here, we demonstrate that the Drosophila Tip60 (dTip60) chromatin-remodeling complex acetylates nucleosomal phospho-H2Av and exchanges it with an unmodified H2Av. Both the histone acetyltransferase dTip60 as well as the adenosine triphosphatase Domino/p400 catalyze the exchange of phospho-H2Av. Thus, these data reveal a previously unknown mechanism for selective histone exchange that uses the concerted action of two distinct chromatin-remodeling enzymes within the same multiprotein complex.
Collapse
Affiliation(s)
- Thomas Kusch
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Roig I, Liebe B, Egozcue J, Cabero L, Garcia M, Scherthan H. Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma 2004; 113:22-33. [PMID: 15235794 DOI: 10.1007/s00412-004-0290-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/06/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
Chromosome segregation errors are a significant cause of aneuploidy among human neonates and often result from errors in female meiosis that occur during fetal life. For the latter reason, little is known about chromosome dynamics during female prophase I. Here, we analyzed chromosome reorganization, and centromere and telomere dynamics in meiosis in the human female by immunofluorescent staining of the SYCP3 and SYCP1 synaptonemal complex proteins and the course of recombinational DNA repair by IF of phospho-histone H2A.X (gamma-H2AX), RPA and MLH1 recombination proteins. We found that SYCP3, but not SYCP1, aggregates appear in the preleptotene nucleus and some persist up to pachytene. Telomere clustering (bouquet stage) in oocytes lasted from late-leptotene to early pachytene-significantly longer than in the male. Leptotene and zygotene oocytes and spermatocytes showed strong gamma-H2AX labeling, while gamma-H2AX patches, which colocalized with RPA, were present on SYCP1-tagged pachytene SCs. This was rarely seen in the male and may suggest that synapsis installs faster with respect to progression of recombinational double-strand break repair or that the latter is slower in the female. It is speculated that the presence of gamma-H2AX into pachytene highlights female-specific peculiarities of recombination, chromosome behavior and checkpoint control that may contribute to female susceptibility for aneuploidy.
Collapse
Affiliation(s)
- I Roig
- Dept. de Biol. Cellular, Fisiologia i Immunologia, Univ. Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|