1
|
Duranti A, Beldarrain G, Álvarez A, Sbriscia M, Carloni S, Balduini W, Alonso-Alconada D. The Endocannabinoid System as a Target for Neuroprotection/Neuroregeneration in Perinatal Hypoxic-Ischemic Brain Injury. Biomedicines 2022; 11:biomedicines11010028. [PMID: 36672536 PMCID: PMC9855621 DOI: 10.3390/biomedicines11010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The endocannabinoid (EC) system is a complex cell-signaling system that participates in a vast number of biological processes since the prenatal period, including the development of the nervous system, brain plasticity, and circuit repair. This neuromodulatory system is also involved in the response to endogenous and environmental insults, being of special relevance in the prevention and/or treatment of vascular disorders, such as stroke and neuroprotection after neonatal brain injury. Perinatal hypoxia-ischemia leading to neonatal encephalopathy is a devastating condition with no therapeutic approach apart from moderate hypothermia, which is effective only in some cases. This overview, therefore, gives a current description of the main components of the EC system (including cannabinoid receptors, ligands, and related enzymes), to later analyze the EC system as a target for neonatal neuroprotection with a special focus on its neurogenic potential after hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (A.D.); (D.A.-A.); Tel.: +39-0722-303501 (A.D.); +34-946-013294 (D.A.-A.)
| | - Gorane Beldarrain
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonia Álvarez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Matilde Sbriscia
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: (A.D.); (D.A.-A.); Tel.: +39-0722-303501 (A.D.); +34-946-013294 (D.A.-A.)
| |
Collapse
|
2
|
Alonso-Alconada D, Gressens P, Golay X, Robertson NJ. Neurogenesis Is Reduced at 48 h in the Subventricular Zone Independent of Cell Death in a Piglet Model of Perinatal Hypoxia-Ischemia. Front Pediatr 2022; 10:793189. [PMID: 35573964 PMCID: PMC9106110 DOI: 10.3389/fped.2022.793189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular and tissue damage triggered after hypoxia-ischemia (HI) can be generalized and affect the neurogenic niches present in the central nervous system. As neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy, the goal of the present work was to investigate the neurogenic response to HI in the neurogenic niche of the subventricular zone (SVZ) in the neonatal piglet. A total of 13 large white male piglets aged <24 h were randomized into two groups: i) HI group (n = 7), animals submitted to transient cerebral HI and resuscitation; and ii) Control group (n = 6), non-HI animals. At 48 h, piglets were euthanized, and the SVZ and its surrounding regions, such as caudate and periventricular white matter, were analyzed for histology using hematoxylin-eosin staining and immunohistochemistry by evaluating the presence of cleaved caspase 3 and TUNEL positive cells, together with the cell proliferation/neurogenesis markers Ki67 (cell proliferation), GFAP (neural stem cells processes), Sox2 (neural stem/progenitor cells), and doublecortin (DCX, a marker of immature migrating neuroblasts). Hypoxic-ischemic piglets showed a decrease in cellularity in the SVZ independent of cell death, together with decreased length of neural stem cells processes, neuroblast chains area, DCX immunoreactivity, and lower number of Ki67 + and Ki67 + Sox2 + cells. These data suggest a reduction in both cell proliferation and neurogenesis in the SVZ of the neonatal piglet, which could in turn compromise the replacement of the lost neurons and the achievement of global repair.
Collapse
Affiliation(s)
- Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, United Kingdom
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London, United Kingdom
- Edinburgh Neuroscience, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Mikloska KV, Zrini ZA, Bernier NJ. Severe hypoxia exposure inhibits larval brain development but does not affect the capacity to mount a cortisol stress response in zebrafish. J Exp Biol 2021; 225:274120. [PMID: 34931659 DOI: 10.1242/jeb.243335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Fish nursery habitats are increasingly hypoxic and the brain is recognized as highly hypoxia-sensitive, yet there is a lack of information on the effects of hypoxia on the development and function of the larval fish brain. Here, we tested the hypothesis that by inhibiting brain development, larval exposure to severe hypoxia has persistent functional effects on the cortisol stress response in zebrafish (Danio rerio). Exposing 5 days post-fertilization (dpf) larvae to 10% dissolved O2 (DO) for 16 h only marginally reduced survival, but it decreased forebrain neural proliferation by 55%, and reduced the expression of neurod1, gfap, and mbpa, markers of determined neurons, glia, and oligodendrocytes, respectively. The 5 dpf hypoxic exposure also elicited transient increases in whole body cortisol and in crf, uts1, and hsd20b2 expression, key regulators of the endocrine stress response. Hypoxia exposure at 5 dpf also inhibited the cortisol stress response to hypoxia in 10 dpf larvae and increased hypoxia tolerance. However, 10% DO exposure at 5 dpf for 16h did not affect the cortisol stress response to a novel stressor in 10 dpf larvae or the cortisol stress response to hypoxia in adult fish. Therefore, while larval exposure to severe hypoxia can inhibit brain development, it also increases hypoxia tolerance. These effects may transiently reduce the impact of hypoxia on the cortisol stress response but not its functional capacity to respond to novel stressors. We conclude that the larval cortisol stress response in zebrafish has a high capacity to cope with severe hypoxia-induced neurogenic impairment.
Collapse
Affiliation(s)
- Kristina V Mikloska
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Zoe A Zrini
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
4
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Lengel D, Sevilla C, Romm ZL, Huh JW, Raghupathi R. Stem Cell Therapy for Pediatric Traumatic Brain Injury. Front Neurol 2020; 11:601286. [PMID: 33343501 PMCID: PMC7738475 DOI: 10.3389/fneur.2020.601286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
There has been a growing interest in the potential of stem cell transplantation as therapy for pediatric brain injuries. Studies in pre-clinical models of pediatric brain injury such as Traumatic Brain Injury (TBI) and neonatal hypoxia-ischemia (HI) have contributed to our understanding of the roles of endogenous stem cells in repair processes and functional recovery following brain injury, and the effects of exogenous stem cell transplantation on recovery from brain injury. Although only a handful of studies have evaluated these effects in models of pediatric TBI, many studies have evaluated stem cell transplantation therapy in models of neonatal HI which has a considerable overlap of injury pathology with pediatric TBI. In this review, we have summarized data on the effects of stem cell treatments on histopathological and functional outcomes in models of pediatric brain injury. Importantly, we have outlined evidence supporting the potential for stem cell transplantation to mitigate pathology of pediatric TBI including neuroinflammation and white matter injury, and challenges that will need to be addressed to incorporate these therapies to improve functional outcomes following pediatric TBI.
Collapse
Affiliation(s)
- Dana Lengel
- Graduate Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cruz Sevilla
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Zoe L Romm
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ramesh Raghupathi
- Graduate Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Li L, Zhang J, Gao H, Ma Y. Nestin is highly expressed in foetal spinal cord isolated from placenta previa patients and promotes inflammation by enhancing NF-κB activity. Biomarkers 2018; 23:597-602. [PMID: 29697001 DOI: 10.1080/1354750x.2018.1468824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ling Li
- Department of Obstetrics, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Department of Obstetrics, People’s Hospital of Rizhao City, Rizhao, Shandong, China
| | - Jing Zhang
- Department of Obstetrics, Hospital of Traditional Chinese Medicine of Rizhao City, Rizhao, Shandong, China
| | - Huahe Gao
- Department of Obstetrics, Hospital of Traditional Chinese Medicine of Rizhao City, Rizhao, Shandong, China
| | - Yuyan Ma
- Department of Obstetrics, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Lin R, Lang M, Heinsinger N, Stricsek G, Zhang J, Iozzo R, Rosenwasser R, Iacovitti L. Stepwise impairment of neural stem cell proliferation and neurogenesis concomitant with disruption of blood-brain barrier in recurrent ischemic stroke. Neurobiol Dis 2018; 115:49-58. [PMID: 29605425 DOI: 10.1016/j.nbd.2018.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 01/15/2023] Open
Abstract
Stroke patients are at increased risk for recurrent stroke and development of post-stroke dementia. In this study, we investigated the effects of recurrent stroke on adult brain neurogenesis using a novel rat model of recurrent middle cerebral artery occlusion (MCAO) developed in our laboratory. Using BrdU incorporation, activation and depletion of stem cells in the subgranular zone (SGZ) and subventricular zone (SVZ) were assessed in control rats and rats after one or two strokes. In vitro neurosphere assay was used to assess the effects of plasma from normal and stroke rats. Also, EM and permeability studies were used to evaluate changes in the blood-brain-barrier (BBB) of the SGZ after recurrent stroke. We found that proliferation and neurogenesis was activated 14 days after MCAO. This was correlated with increased permeability in the BBB to factors which increase proliferation in a neurosphere assay. However, with each stroke, there was a stepwise decrease of proliferating stem cells and impaired neurogenesis on the ipsilateral side. On the contralateral side, this process stabilized after a first stroke. These studies indicate that stem cells are activated after MCAO, possibly after increased access to systemic stroke-related factors through a leaky BBB. However, the recruitment of stem cells for neurogenesis after stroke results in a stepwise ipsilateral decline with each ischemic event, which could contribute to post-stroke dementia.
Collapse
Affiliation(s)
- Ruihe Lin
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael Lang
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nicolette Heinsinger
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Geoffrey Stricsek
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Justine Zhang
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato Iozzo
- Department of Pathology, Anatomy, & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert Rosenwasser
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
8
|
Pediatric brain repair from endogenous neural stem cells of the subventricular zone. Pediatr Res 2018; 83:385-396. [PMID: 29028220 DOI: 10.1038/pr.2017.261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the germinal zones of the immature brain. Studies using animal models of pediatric brain injuries have provided a clearer understanding of the responses of these progenitors to injury. In this review, we have compared and contrasted the responses of the endogenous neural stem cells and progenitors of the subventricular zone in animal models of neonatal cerebral hypoxia-ischemia, neonatal stroke, congenital cardiac disease, and pediatric traumatic brain injury. We have reviewed the dynamic shifts that occur within this germinal zone with injury as well as changes in known signaling molecules that affect these progenitors. Importantly, we have summarized data on the extent to which cell replacement occurs in response to each of these injuries, opportunities available, and obstacles that will need to be overcome to improve neurological outcomes in survivors.
Collapse
|
9
|
Kim M, Yu JH, Seo JH, Shin YK, Wi S, Baek A, Song SY, Cho SR. Neurobehavioral Assessments in a Mouse Model of Neonatal Hypoxic-ischemic Brain Injury. J Vis Exp 2017. [PMID: 29286442 DOI: 10.3791/55838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We performed unilateral carotid artery occlusion on CD-1 mice to create a neonatal hypoxic-ischemic (HI) model and investigated the effects of neonatal HI brain injury by studying neurobehavioral functions in these mice compared to non-operated (i.e., normal) mice. During the study, Rice-Vannucci's method was used to induce neonatal HI brain damage in postnatal day 7-10 (P7-10) mice. The HI operation was performed on the pups by unilateral carotid artery ligation and exposure to hypoxia (8% O2 and 92% N2 for 90 min). One week after the operation, the damaged brains were evaluated with the naked eye through the semi-transparent skull and were categorized into subgroups based on the absence ("no cortical injury" group) or presence ("cortical injury" group) of cortical injury, such as a lesion in the right hemisphere. On week 6, the following neurobehavioral tests were performed to evaluate the cognitive and motor functions: passive avoidance task (PAT), ladder walking test, and grip strength test. These behavioral tests are helpful in determining the effects of neonatal HI brain injury and are used in other mouse models of neurodegenerative diseases. In this study, neonatal HI brain injury mice showed motor deficits that corresponded to right hemisphere damage. The behavioral test results are relevant to the deficits observed in human neonatal HI patients, such as cerebral palsy or neonatal stroke patients. In this study, a mouse model of neonatal HI brain injury was established and showed different degrees of motor deficits and cognitive impairment compared to non-operated mice. This work provides basic information on the HI mouse model. MRI images demonstrate the different phenotypes, separated according to the severity of brain damage by motor and cognitive tests.
Collapse
Affiliation(s)
- MinGi Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University
| | - Yoon-Kyum Shin
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University
| | - Soohyun Wi
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine
| | - Suk-Young Song
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Graduate Program of NanoScience and Technology, Yonsei University
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University; Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine; Graduate Program of NanoScience and Technology, Yonsei University;
| |
Collapse
|
10
|
Sabo JK, Heine V, Silbereis JC, Schirmer L, Levison SW, Rowitch DH. Olig1 is required for noggin-induced neonatal myelin repair. Ann Neurol 2017; 81:560-571. [PMID: 28253550 DOI: 10.1002/ana.24907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 02/06/2017] [Accepted: 02/26/2017] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neonatal white matter injury (NWMI) is a lesion found in preterm infants that can lead to cerebral palsy. Although antagonists of bone morphogenetic protein (BMP) signaling, such as Noggin, promote oligodendrocyte precursor cell (OPC) production after hypoxic-ischemic (HI) injury, the downstream functional targets are poorly understood. The basic helix-loop-helix protein, oligodendrocyte transcription factor 1 (Olig1), promotes oligodendrocyte (OL) development and is essential during remyelination in adult mice. Here, we investigated whether Olig1 function is required downstream of BMP antagonism for response to injury in the neonatal brain. METHODS We used wild-type and Olig1-null mice subjected to neonatal stroke and postnatal neural progenitor cultures, and we analyzed Olig1 expression in human postmortem samples from neonates that suffered HI encephalopathy (HIE). RESULTS Olig1-null neonatal mice showed significant hypomyelination after moderate neonatal stroke. Surprisingly, damaged white matter tracts in Olig1-null mice lacked Olig2+ OPCs, and instead proliferating neuronal precursors and GABAergic interneurons were present. We demonstrate that Noggin-induced OPC production requires Olig1 function. In postnatal neural progenitors, Noggin governs production of OLs versus interneurons through Olig1-mediated repression of Dlx1/2 transcription factors. Additionally, we observed that Olig1 and the BMP signaling effector, phosphorylated SMADs (Sma- and Mad-related proteins) 1, 5, and 8, were elevated in the subventricular zone of human infants with HIE compared to controls. INTERPRETATION These findings indicate that Olig1 has a critical function in regulation of postnatal neural progenitor cell production in response to Noggin. Ann Neurol 2017;81:560-571.
Collapse
Affiliation(s)
- Jennifer K Sabo
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
| | - Vivi Heine
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
| | - John C Silbereis
- Department of Neuroscience, University of California San Francisco, San Francisco, CA
| | - Lucas Schirmer
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steven W Levison
- Department of Neurology and Neuroscience, New Jersey Medical School, Rutgers University-New Jersey Medical School, Newark, NJ
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
- Department of Paediatrics, Wellcome Trust-MRC Stem Cell Institute, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
11
|
Affeldt BM, Obenaus A, Chan J, Pardo AC. Region specific oligodendrocyte transcription factor expression in a model of neonatal hypoxic injury. Int J Dev Neurosci 2017; 61:1-11. [DOI: 10.1016/j.ijdevneu.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022] Open
Affiliation(s)
- Bethann M. Affeldt
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
| | - Andre Obenaus
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
- Cell, Molecular and Developmental Biology ProgramUniversity of CaliforniaRiverside, 1140 Bachelor HallRiversideCA92521USA
| | - Jonathan Chan
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
| | - Andrea C. Pardo
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
| |
Collapse
|
12
|
Braccioli L, Heijnen CJ, Coffer PJ, Nijboer CH. Delayed administration of neural stem cells after hypoxia-ischemia reduces sensorimotor deficits, cerebral lesion size, and neuroinflammation in neonatal mice. Pediatr Res 2017; 81:127-135. [PMID: 27632779 DOI: 10.1038/pr.2016.172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hypoxic-ischemic (HI) encephalopathy causes mortality and severe morbidity in neonates. Treatments with a therapeutic window >6 h are currently not available. Here, we explored whether delayed transplantation of allogenic neural stem cells (NSCs) at 10 d after HI could be a tool to repair HI brain injury and improve behavioral impairments. METHODS HI was induced in 9-d-old mice. Animals received NSCs or vehicle intracranially in the hippocampus at 10 d post-HI. Sensorimotor performance was assessed by cylinder rearing test. Lesion size, synaptic integrity, and fate of injected NSCs were determined by immuno-stainings. Neuroinflammation was studied by immuno-stainings of brain sections, primary glial cultures, and TNFα ELISA. RESULTS NSC transplantation at 10 d post-insult induced long-term improvement of motor performance and synaptic integrity, and reduced lesion size compared to vehicle-treatment. HI-induced neuroinflammation was reduced after NSC treatment, at least partially by factors secreted by NSCs. Injected NSCs migrated toward and localized at the damaged hippocampus. Transplanted NSCs differentiated toward the neuronal lineage and formed a niche with endogenous precursors. CONCLUSION Our study provides evidence of the efficacy of NSC transplantation late after HI as a tool to reduce neonatal HI brain injury through regeneration of the lesion.
Collapse
Affiliation(s)
- Luca Braccioli
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul J Coffer
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Vázquez-Borsetti P, Peña E, Rico C, Noto M, Miller N, Cohon D, Acosta JM, Ibarra M, Loidl FC. Perinatal Asphyxia Reduces the Number of Reelin Neurons in the Prelimbic Cortex and Deteriorates Social Interaction in Rats. Dev Neurosci 2016; 38:241-250. [DOI: 10.1159/000448244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
Obstetrical complications of perinatal asphyxia (PA) can often induce lesions that, in the long-term, manifest as schizophrenia. A deterioration of the medial prefrontal cortex (mPFC) and a reduction in the number of GABAergic neurons are commonly observed in the pathophysiology of schizophrenia. In this study, we investigated the link between PA, reelin and calbindin diminution and psychiatric diseases that involve social interaction deficits. This was achieved by observing the effect of 19 min of asphyxia on both subpopulations of GABAergic neurons. PA was produced by water immersion of fetus-containing uterus horns removed by cesarean section from ready-to-deliver rats. PA generated a significant and specific decrease in the number of reelin-secreting neurons in mPFC layer VI [F(2, 6) = 8.716, p = 0.016; PA vs. vaginal controls (VC), p = 0.03, and PA vs. cesarean controls (CC), p = 0.022]. This reduction reached approximately 60% on average. Changes in the percentage of reelin neurons including all the cortex layers did not achieve a significant outcome but a trend: CC % 10.61 ± 1.34; PA % 8.64 ± 1.71 [F(2, 6) = 1.299, p = 0.33]. In the case of calbindin, there was a significant decrease in cell density in the PA group [2-way repeated-measures ANOVA, F(1, 4) = 13.03, p = 0.0226]. The multiple-comparisons test showed significant differences in the superficial aspect of layer II (Sidak test for multiple comparisons CC vs. PA at 200 µm: p = 0.003). A small, but significant difference could be seen when the distance from the pia mater to the start of layer VI was analyzed (CC mean ± SEM = 768.9 ± 8.382; PA mean ± SEM = 669.3 ± 17.75; p = 0.036). Rats exposed to PA showed deterioration in social interactions, which manifested as a decrease in play soliciting. In this model, which involved severe/moderate asphyxia, we did not find significant changes in locomotive activity or anxiety indicators in the open field task. The loss of reelin neurons could be conducive to the shrinkage of the prelimbic cortex through the reduction in neuropil and the deterioration of the function of this structure.
Collapse
|
14
|
Kwak M, Lim S, Kang E, Furmanski O, Song H, Ryu YK, Mintz CD. Effects of Neonatal Hypoxic-Ischemic Injury and Hypothermic Neuroprotection on Neural Progenitor Cells in the Mouse Hippocampus. Dev Neurosci 2016; 37:428-39. [PMID: 26087836 DOI: 10.1159/000430862] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
Neonatal hypoxic-ischemic injury (HI) results in widespread cerebral encephalopathy and affects structures that are essential for neurocognitive function, such as the hippocampus. The dentate gyrus contains a reservoir of neural stem and progenitor cells (NSPCs) that are critical for postnatal development and normal adult function of the hippocampus, and may also facilitate the recovery of function after injury. Using a neonatal mouse model of mild-to-moderate HI and immunohistochemical analysis of NSPC development markers, we asked whether these cells are vulnerable to HI and how they respond to both injury and hypothermic therapy. We found that cleaved caspase-3 labeling in the subgranular zone, where NSPCs are located, is increased by more than 30-fold after HI. The population of cells positive for both proliferating cell nuclear antigen and nestin (PCNA+Nes+), which represent primarily actively proliferating NSPCs, are acutely decreased by 68% after HI. The NSPC population expressing NeuroD1, a marker for NSPCs transitioning to become fate-committed neural progenitors, was decreased by 47%. One week after HI, there was a decrease in neuroblasts and immature neurons in the dentate gyrus, as measured by doublecortin (DCX) immunolabeling, and at the same time PCNA+Nes+ cell density was increased by 71%. NSPCs expressing Tbr2, which identifies a highly proliferative intermediate neural progenitor population, increased by 107%. Hypothermia treatment after HI partially rescues both the acute decrease in PCNA+Nes+ cell density at 1 day after injury and the chronic loss of DCX immunoreactivity and reduction in NeuroD1 cell density measured at 1 week after injury. Thus, we conclude that HI causes an acute loss of dentate gyrus NSPCs, and that hypothermia partially protects NSPCs from HI.
Collapse
Affiliation(s)
- Minhye Kwak
- Department of Anesthesiology and Critical Care Medicinee, Johns Hopkins Medical Institutes, Baltimore, Md., USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Lin R, Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Res 2015; 1628:327-342. [DOI: 10.1016/j.brainres.2015.04.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
|
16
|
Abstract
Neonatal hypoxia-ischemia (H-I) is the leading cause of brain damage resulting from birth complications. Studies in neonatal rats have shown that H-I acutely expands the numbers of neural precursors (NPs) within the subventricular zone (SVZ). The aim of these studies was to establish which NPs expand after H-I and to determine how leukemia inhibitory factor (LIF) insufficiency affects their response. During recovery from H-I, the number of Ki67(+) cells in the medial SVZ of the injured hemisphere increased. Similarly, the number and size of primary neurospheres produced from the injured SVZ increased approximately twofold versus controls, and, upon differentiation, more than twice as many neurospheres from the damaged brain were tripotential, suggesting an increase in neural stem cells (NSCs). However, multimarker flow cytometry for CD133/LeX/NG2/CD140a combined with EdU incorporation revealed that NSC frequency diminished after H-I, whereas that of two multipotential progenitors and three unique glial-restricted precursors expanded, attributable to changes in their proliferation. By quantitative PCR, interleukin-6, LIF, and CNTF mRNA increased but with significantly different time courses, with LIF expression correlating best with NP expansion. Therefore, we evaluated the NP response to H-I in LIF-haplodeficient mice. Flow cytometry revealed that one subset of multipotential and bipotential intermediate progenitors did not increase after H-I, whereas another subset was amplified. Altogether, our studies demonstrate that neonatal H-I alters the composition of the SVZ and that LIF is a key regulator for a subset of intermediate progenitors that expand during acute recovery from neonatal H-I.
Collapse
|
17
|
Trollmann R, Richter M, Jung S, Walkinshaw G, Brackmann F. Pharmacologic stabilization of hypoxia-inducible transcription factors protects developing mouse brain from hypoxia-induced apoptotic cell death. Neuroscience 2014; 278:327-42. [PMID: 25162122 DOI: 10.1016/j.neuroscience.2014.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Accumulation of hypoxia-inducible transcription factors (HIFs) by prolyl-4-hydroxylase inhibitors (PHI) has been suggested to induce neuroprotection in the ischemic rodent brain. We aimed to investigate in vivo effects of a novel PHI on HIF-regulated neurotrophic and pro-apoptotic factors in the developing normoxic and hypoxic mouse brain. METHODS Neonatal mice (P7) were treated with PHI FG-4497 (30-100mg/kg, i.p.) followed by exposure to systemic hypoxia (8% O2, 6h) 4h later. Cerebral expression of HIFα-subunits, specific neurotrophic and vasoactive target genes (vascular endothelial growth factor (VEGF), adrenomedullin (ADM), erythropoietin (EPO), inducible nitric oxide synthase (iNOS)) as well as pro-apoptotic (BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 gene (BNIP3), immediate early response 3 (IER3)) and migratory factors (chemokine receptor 4 (CXCR4), stromal cell-derived factor 1 (SDF-1)) was determined (quantitative real-time (RT)., Western blot analysis) in comparison to controls. Apoptotic cell death was analyzed by terminal desoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and cleaved caspase 3 (CC3) staining. RESULTS Under normoxic conditions, FG-4497 treatment significantly induced the accumulation of both HIF-1α and HIF-2α isoforms in developing mouse brain. In addition, there was a significant up-regulation of HIF target genes (VEGF, ADM, EPO, CXCR4, p<0.01) with FG-4497 treatment compared to controls supporting functional activation of the HIF proteins. Under hypoxia, differential target gene activation was observed in the developing brain including additive effects of FG-4497 and hypoxia on mRNA expression of VEGF and ADM as well as a dose-dependent down-regulation of iNOS. BNIP3 but not IER3 mRNA levels significantly increased in hypoxic brains pre-treated with high-dose FG-4497 compared to controls. Of special interest, FG-4497 treatment significantly diminished apoptotic cell death, quantified by TUNEL and CC3-positive cells, in hypoxic developing brains compared to controls. CONCLUSIONS PHI treatment modulates neurotrophic factors known to be crucially involved in hypoxia-induced cerebral adaptive mechanisms as well as early brain maturation. Pre-treatment with FG-4497 seems to protect the developing brain from hypoxia-induced apoptosis. Present observations provide basic information for further evaluation of neuroprotective properties of PHI treatment in hypoxic injury of the developing brain. However, potential effects on maturational processes need special attention in experimental research targeting HIF-dependent neuroprotective interventions during the very early stage of brain development.
Collapse
Affiliation(s)
- R Trollmann
- Department of Pediatrics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| | - M Richter
- Department of Pediatrics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - S Jung
- Department of Pediatrics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - F Brackmann
- Department of Pediatrics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
18
|
dong W, Yuwen Z, Xiaohui G. The enhanced ability of peripheral mononuclear cells differentiating into neural cells in term infants with good improvement suffering from severe hypoxic ischemic encephalopathy. IRANIAN JOURNAL OF PEDIATRICS 2014; 24:435-40. [PMID: 25755867 PMCID: PMC4339569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/31/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE It has been found that asphyxia influences proliferation and differentiation of brain neural stem cells in newborn animal models, and that peripheral blood stem cells play an important role in repairing brain damage. But it has not been reported yet whether asphyxia influences peripheral blood stem cells differentiating into neural cells, and whether with the progress of the disease there is a change of peripheral blood stem cells differentiating into neural cells in newborns with hypoxic ischemic encephalopathy (HIE). METHODS Fifty term HIE infants were enrolled in research from March, 2007 to March, 2010. There were 10 cases of the severe HIE patients with good improvement, the severe HIE patients with poor improvement, the moderate HIE patients, the mild HIE patients and the controls, respectively. The peripheral mononuclear cells collected within 24 hours and on 7th day after birth were cultured in vitro for 10 days to differentiate into neural cells. The induced nestin positive cells were identified with Immunohistochemistry and counted. Findings : Within 24 hours after birth, there were no difference of induced nestin positive cells among the severe HIE patients with good improvement (68.99±7.85), the severe HIE patients with poor improvement (71.43±6.88), the moderate HIE patients (73.34±6.46), the mild HIE patients (70.46±6.66) and the controls (71.13±7.19, F=0.51, P=0.7). In the severe HIE patients with obvious improvement, the induced nestin positive cells from 7th day peripheral blood mononuclear cells (94.50±15.57) increased markedly compared with that within 24 hours (68.99±7.85, t=4.66, P<0.001), and were higher than the induced nestin positive cells from 7(th) day peripheral blood mononuclear cells in the severe HIE patients with no obvious improvement (94.50±15.57 vs 69.48±5.32, t=4.62, P<0.001). CONCLUSION The ability of peripheral mononuclear cells differentiating into neural cells in term infants with good improvement suffering from severe HIE was enhanced, which may suggest possible relationship between the brain repair and the peripheral stem cells.
Collapse
Affiliation(s)
- Wei dong
- Department of pediatrics, Tongji University
| | | | - Gong Xiaohui
- Department of Neonatology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China,Corresponding Author: Address: Department of Neonatology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Døhlen G, Antal EA, Castellheim A, Thaulow E, Kielland A, Saugstad OD. Hyperoxic resuscitation after hypoxia-ischemia induces cerebral inflammation that is attenuated by tempol in a reporter mouse model with very young mice. J Perinat Med 2013; 41:251-7. [PMID: 23241583 DOI: 10.1515/jpm-2012-0135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/16/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oxygen supplementation is still part of international resuscitation protocols for premature children. Mechanisms for tissue damage by hypoxia/ischemia in the extreme premature involve inflammation. AIM AND METHOD To study cerebral inflammation after hypoxia/ischemia and oxygen treatment in the premature, we measured NF-κB activity in 5-day-old transgenic reporter mice in response to experimental hypoxia/ischemia. results were correlated to cerebral histological evaluation and plasma cytokine levels. A treatment strategy with the antioxidant tempol was tested. RESULTS One day after hypoxia/ischemia NF-κB activation was increased compared to controls [mean difference: 10.6±4.6% (P=0.03)]. Exposure to 100% oxygen after hypoxia/ischemia further increased NF-κB activation compared to hypoxia/ischemia alone [mean difference: 15.0±5.5% (P=0.01)]. Histological changes in the brain were positively correlated with NF-κB activity (P<0.001), but we found no significant difference in tissue damage between resuscitation with air and resuscitation with pure oxygen. Administration of tempol reduced NF-κB activation [mean difference: 14.6±5.0% (P=0.01)] and the plasma level of cytokines; however, the histological damage score was not affected. CONCLUSION Cerebral inflammatory response after hypoxia/ischemia in a mouse model with immature brain development corresponding to human prematurity prior to 32 weeks' gestation was influenced by administration of oxygen. Tempol treatment attenuated inflammation but did not reduce the extent of histological cerebral damage.
Collapse
Affiliation(s)
- Gaute Døhlen
- Department of Paediatric Research, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
20
|
Lei XH, Zhao D, Li YL, Li XF, Sun X, Du WZ, Sun Y, Hao ZF, Xin SY, Liu C, Zhang ZR, Jiang CL. Pifithrin-α enhances the survival of transplanted neural stem cells in stroke rats by inhibiting p53 nuclear translocation. CNS Neurosci Ther 2012; 19:109-16. [PMID: 23253187 DOI: 10.1111/cns.12045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/05/2012] [Accepted: 11/09/2012] [Indexed: 12/16/2022] Open
Abstract
AIMS To examine a novel strategy to enhance the survival of grafted neural stem cells (NSCs) in stroke model. METHODS Using a cell counting kit-8 (CCK-8) and TUNEL assay to test the protective effects of p53 inhibitor, pifithrin-α (PFT-α), on oxygen glucose deprivation (OGD) in NSCs. We compared the effects of vehicle + NSCs and FFT-α + NSCs on the efficacy of transplantation in stroke rat model using behavioral analysis, immunohistochemistry, etc. RESULTS Pifithrin-α increased viability and decreased apoptosis in NSCs after OGD in vitro. By in vivo studies, we showed that the best recovery of neurological function in the stroke rats and the maximum survival of grafted NSCs were found in the PFT-α + NSCs group. Twelve hours after cell transplantation, p53 was localized to the nuclei of grafted NSCs in the vehicle + NSCs group but was primarily localized to the cytoplasm in the PFT-α + NSCs group. The p53-upregulated modulator of apoptosis (PUMA) was highly expressed among the grafted cells in the vehicle + NSCs group compared with that in the PFT-α + NSCs group. CONCLUSION Our results indicate that PFT-α enhances the survival of grafted NSCs through the inhibition of p53 translocation into the nucleus.
Collapse
Affiliation(s)
- Xu-Hui Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Müller MM, Middelanis J, Meier C, Surbek D, Berger R. 17β-estradiol protects 7-day old rats from acute brain injury and reduces the number of apoptotic cells. Reprod Sci 2012; 20:253-61. [PMID: 22875845 DOI: 10.1177/1933719112452471] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To test a possible neuroprotective activity of 17β-estradiol in the neonatal rat brain exposed to hypoxic-ischemia (controlled hypoxia after unilateral carotid artery ligation). METHODS Seven-day-old Wistar rats underwent ligation of the left common carotid artery followed by 80 minutes hypoxia in 8% oxygen inducing an ipsilateral brain damage. Seven days later (d14), brains were analyzed quantitatively using a macroscopic and microscopic score for structural damage, hemisphere volumes were calculated, and immunohistochemistry for cleaved-caspase-3 (marker for apoptotic cells) was performed. Animals from the study group (n = 19) received 17β-estradiol (0.05 µg/g body weight intraperitoneally) before (-64, -40, and -16 hours) and after (+3 hours) the hypoxia (hour 0: start of the hypoxia) and the control group (n = 21) received mock treatment. RESULTS Of the 21 pups, 13 in the NaCl group had macroscopically a severe brain damage and 7 of 19 animals in the study group encountered only discrete to mild lesions. Microscopic brain damage in the study group was significantly lower (score 1.5 ± 0.7 vs 2.8 ± 0.8, P < .05). The determined volumes of the affected hemisphere were significantly lower in the NaCl group than in the treatment group. The numbers of apoptotic cells in both hemispheres was equal in the estradiol group, but in the control group, there were significantly more apoptotic cells in the affected hemisphere (control group: ipsilateral: 1435 ± 653 vs contralateral: 143 ± 57 cells, P < .05). DISCUSSION 17β-Estradiol protects newborn rat brains from hypoxic-ischemic injury, in terms of both microscopic cell injury and apoptosis.
Collapse
Affiliation(s)
- Martin M Müller
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Zhang Y, Liu J, Yao S, Li F, Xin L, Lai M, Bracchi-Ricard V, Xu H, Yen W, Meng W, Liu S, Yang L, Karmally S, Liu J, Zhu H, Gordon J, Khalili K, Srinivasan S, Bethea JR, Mo X, Hu W. Nuclear factor kappa B signaling initiates early differentiation of neural stem cells. Stem Cells 2012; 30:510-24. [PMID: 22134901 DOI: 10.1002/stem.1006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inflammatory mediators, many of which activate the signaling of nuclear factor kappa B (NFκB), have received increasing attention in the field of neurogenesis. NFκB signaling regulates neurite outgrowth and neural plasticity as well as the proliferation/apoptosis and terminal differentiation of neural stem cells (NSCs). Early neurogenesis from NSCs produces identical progeny through symmetric division and committed daughter cells through asymmetric division. Here, we show that NFκB signaling is required for NSC initial differentiation. The canonical IKKβ/IκBα/p65 pathway is activated during the initial stages of neural differentiation induced by treatment with TNFα or withdrawal of epidermal growth factor/basic fibroblast growth factor. NSC-specific inhibition of NFκB in transgenic mice causes an accumulation of Nestin(+) /Sox2(+) /glial fibrillary acidic protein(+) NSCs. Inhibition of NFκB signaling in vitro blocks differentiation and asymmetric division and maintains NSCs in an undifferentiated state. The induction of initial differentiation and asymmetry by NFκB signaling occurs through the inhibition of C/EBPβ expression. Our data reveal a novel function of NFκB signaling in early neurogenesis and provide insight into the molecular mechanisms underlying neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yonggang Zhang
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Combined effect of hypothermia and caspase-2 gene deficiency on neonatal hypoxic-ischemic brain injury. Pediatr Res 2012; 71:566-72. [PMID: 22322383 DOI: 10.1038/pr.2012.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION [corrected] Hypoxia-ischemia (HI) injury in term infants develops with a delay during the recovery phase, opening up a therapeutic window after the insult. Hypothermia is currently an established neuroprotective treatment in newborns with neonatal encephalopathy (NE), saving one in nine infants from developing neurological deficits. Caspase-2 is an initiator caspase, a key enzyme in the route to destruction and, therefore, theoretically a potential target for a pharmaceutical strategy to prevent HI brain damage. METHODS The aim of this study was to explore the neuroprotective efficacy of hypothermia in combination with caspase-2 gene deficiency using the neonatal Rice-Vannucci model of HI injury in mice. RESULTS HI brain injury was moderately reduced in caspase-2(-/-) mice as compared with wild-type (WT) mice. Five hours of hypothermia (33 °C ) vs. normothermia (36 °C) directly after HI provided additive protection overall (temperature P = 0.0004, caspase-2 genotype P = 0.0029), in the hippocampus and thalamus, but not in other gray matter regions or white matter. Delayed hypothermia initiated 2 h after HI in combination with caspase-2 gene deficiency reduced injury in the hippocampus, but not in other brain areas. DISCUSSION In conclusion, caspase-2 gene deficiency combined with hypothermia provided enhanced neuroprotection as compared with hypothermia alone.
Collapse
|
24
|
Savignon T, Costa E, Tenorio F, Manhães AC, Barradas PC. Prenatal hypoxic-ischemic insult changes the distribution and number of NADPH-diaphorase cells in the cerebellum. PLoS One 2012; 7:e35786. [PMID: 22540005 PMCID: PMC3335161 DOI: 10.1371/journal.pone.0035786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/22/2012] [Indexed: 12/03/2022] Open
Abstract
Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18th gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model.
Collapse
Affiliation(s)
- Tiago Savignon
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Everton Costa
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Tenorio
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
25
|
Young SZ, Taylor MM, Bordey A. Neurotransmitters couple brain activity to subventricular zone neurogenesis. Eur J Neurosci 2011; 33:1123-32. [PMID: 21395856 DOI: 10.1111/j.1460-9568.2011.07611.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Adult neurogenesis occurs in two privileged microenvironments, the hippocampal subgranular zone of the dentate gyrus and the subventricular zone (SVZ) along the lateral ventricle. This review focuses on accumulating evidence suggesting that the activity of specific brain regions or bodily states influences SVZ cell proliferation and neurogenesis. Neuromodulators such as dopamine and serotonin have been shown to have long-range effects through neuronal projections into the SVZ. Local γ-aminobutyric acid and glutamate signaling have demonstrated effects on SVZ proliferation and neurogenesis, but an extra-niche source of these neurotransmitters remains to be explored and options will be discussed. There is also accumulating evidence that diseases and bodily states such as Alzheimer's disease, seizures, sleep and pregnancy influence SVZ cell proliferation. With such complex behavior and environmentally-driven factors that control subregion-specific activity, it will become necessary to account for overlapping roles of multiple neurotransmitter systems on neurogenesis when developing cell therapies or drug treatments.
Collapse
Affiliation(s)
- Stephanie Z Young
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, FMB 422, New Haven, CT 06520-8082, USA
| | | | | |
Collapse
|
26
|
Okabayashi S, Uchida K, Nakayama H, Ohno C, Hanari K, Goto I, Yasutomi Y. Periventricular leucomalacia (PVL)-like lesions in two neonatal cynomolgus monkeys (Macaca fascicularis). J Comp Pathol 2010; 144:204-11. [PMID: 20705303 DOI: 10.1016/j.jcpa.2010.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 04/28/2010] [Accepted: 06/27/2010] [Indexed: 11/16/2022]
Abstract
Periventricular leucomalacia (PVL) is a lesion of immature cerebral white matter that occurs in the perinatal period. In man, PVL is the predominant form of brain injury and a cause of cerebral palsy and cognitive deficits in premature infants. PVL affects fetuses and newborns, particularly those who have undergone oxygen deprivation as may occur in premature birth. Many clinical and pathological studies of PVL have been performed in man, but there is no clear definition of PVL in animals. A few spontaneous PVL-like cases in puppies or experimental cases in other animal species have been reported. The present study reports the histopathological and immunohistochemical features of PVL-like lesions in two neonatal cynomolgus monkeys. In both cases, there was cerebral white matter necrosis with marked infiltration of lipid-laden phagocytes and a reduction of neurons in the cerebral cortex. In case 1 there was extensive cavitation of the cerebral white matter. In case 2 there was reactive astrocytosis associated with a decrease in oligodendroglial cells and a decrease in cerebral white matter myelin. To our knowledge, this is the first report of PVL-like leucoencephalomalacia in non-human primates.
Collapse
Affiliation(s)
- S Okabayashi
- Corporation for Production and Research of Laboratory Primates, Hachimandai 1-1, Tsukuba-shi, Ibaraki 305-0843, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Pimentel-Coelho PM, Magalhães ES, Lopes LM, deAzevedo LC, Santiago MF, Mendez-Otero R. Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 2010; 19:351-8. [PMID: 19296724 DOI: 10.1089/scd.2009.0049] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human umbilical cord blood mononuclear cells (HUCB) have been shown to have a therapeutic role in different models of central nervous system (CNS) damage, including stroke. We evaluated the possible therapeutic potential of HUCB in P7 rats submitted to the Rice-Vannucci model of neonatal hypoxic-ischemic (HI) brain damage. Our results demonstrated that intraperitoneal transplantation of HUCB, 3 h after the HI insult, resulted in better performance in two developmental sensorimotor reflexes, in the first week after the injury. We also showed a neuroprotective effect in the striatum, and a decrease in the number of activated microglial cells in the cerebral cortex of treated animals. We suggest that HUCB transplantation might rescue striatal neurons from cell death after a neonatal HI injury resulting in better functional recovery.
Collapse
Affiliation(s)
- Pedro M Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Instituto de Ciências Biomédicas and Programa de Terapia Celular, UFRJ, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Dizon M, Szele F, Kessler JA. Hypoxia-ischemia induces an endogenous reparative response by local neural progenitors in the postnatal mouse telencephalon. Dev Neurosci 2010; 32:173-83. [PMID: 20616554 DOI: 10.1159/000313468] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 04/12/2010] [Indexed: 11/19/2022] Open
Abstract
Perinatal hypoxia-ischemia in the preterm neonate commonly results in white matter injury for which there is no specific therapy. The subventricular zone (SVZ) of the brain harbors neural stem cells and more committed progenitors including oligodendroglial progenitor cells that might serve as replacement cells for treating white matter injury. Data from rodent models suggest limited replacement of mature oligodendroglia by endogenous cells. Rare newly born mature oligodendrocytes have been reported within the striatum, corpus callosum and infarcted cortex 1 month following hypoxia-ischemia. Whether these oligodendrocytes arise in situ or emigrate from the SVZ is unknown. We used a postnatal day 9 mouse model of hypoxia-ischemia, BrdU labeling of mitotic cells, immunofluorescence and time-lapse multiphoton microscopy to determine whether hypoxia-ischemia increases production of oligodendroglial progenitors within the SVZ with emigration toward injured areas. Although cells of the oligodendroglial lineage increased in the brain ipsilateral to hypoxic-ischemic injury, they did not originate from the SVZ but rather arose within the striatum and cortex. Furthermore, they resulted from proliferation within the striatum but not within the cortex. Thus, an endogenous regenerative oligodendroglial response to postnatal hypoxia-ischemia occurs locally, with minimal long-distance contribution by cells of the SVZ.
Collapse
Affiliation(s)
- Maria Dizon
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, Ill., USA. m-dizon @ northwestern.edu
| | | | | |
Collapse
|
29
|
Bain JM, Ziegler A, Yang Z, Levison SW, Sen E. TGFbeta1 stimulates the over-production of white matter astrocytes from precursors of the "brain marrow" in a rodent model of neonatal encephalopathy. PLoS One 2010; 5:e9567. [PMID: 20221422 PMCID: PMC2832687 DOI: 10.1371/journal.pone.0009567] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 02/10/2010] [Indexed: 12/02/2022] Open
Abstract
Background In children born prematurely and those surviving cerebral ischemia there are white matter abnormalities that correlate with neurological dysfunction. Since this injury occurs in the immature brain, when the majority of subventricular zone (SVZ) cells generate white matter oligodendrocytes, we sought to study the effect this injury has on gliogenesis from the SVZ. We hypothesized that there is aberrant glial cell generation from the SVZ after neonatal hypoxia ischemia (H/I) that contributes to an increased astrogliogenesis with concomitant oligodendroglial insufficiency. Mechanistically we hypothesized that an increase in specific locally produced cytokines during recovery from injury were modifying the differentiation of glial progenitors towards astrocytes at the expense of the more developmentally-appropriate oligodendrocytes. Methodology/Principal Finding For these studies we used the Vannucci H/I rat model where P6 rats are subjected to unilateral common carotid ligation followed by 75 min of systemic hypoxia. Retroviral lineage tracing studies combined with morphological and immunohistochemical analyses revealed the preferential generation of SVZ-derived white matter astrocytes instead of oligodendrocytes post hypoxia/ischemia. Microarray and QRT-PCR analyses of the damaged SVZ showed increased expression of several cytokines and receptors that are known to promote astrocyte differentiation, such as EGF, LIF and TGFß signaling components. Using gliospheres to model the neonatal SVZ, we evaluated the effects of these cytokines on signal transduction pathways regulating astrocyte generation, proliferation and differentiation. These studies demonstrated that combinations of EGF, LIF and TGFß1 reconstituted the increased astrogliogenesis. TGFß1-induced Smad 2/3 phosphorylation and the combination of EGF, LIF and TGFß1 synergistically increased STAT3 phosphorylation over single or double cytokine combinations. Pharmacologically inhibiting ALK5 signaling in vitro antagonized the TGFß1-induced increase in astrocyte generation and antagonizing ALK5 signaling in vivo similarly inhibited astrogliogenesis within the SVZ during recovery from H/I. Conclusion/Significance Altogether, these data indicate that there is aberrant specification of glial precursors within the neonatal SVZ during recovery from neonatal H/I that is a consequence of altered cytokine signaling. Our studies further suggest that antagonizing the ALK5 receptor will restore the normal pattern of cell differentiation after injury to the immature brain.
Collapse
Affiliation(s)
- Jennifer M. Bain
- Department of Neurology and Neurosciences, UH Cancer Center and the Graduate School of Biomedical Sciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Amber Ziegler
- Department of Neurology and Neurosciences, UH Cancer Center and the Graduate School of Biomedical Sciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Zhengang Yang
- Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Steven W. Levison
- Department of Neurology and Neurosciences, UH Cancer Center and the Graduate School of Biomedical Sciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
- * E-mail: (SWL); (ES)
| | - Ellora Sen
- National Brain Research Center, Manesar, Haryana, India
- * E-mail: (SWL); (ES)
| |
Collapse
|
30
|
Christophidis LJ, Gorba T, Gustavsson M, Williams CE, Werther GA, Russo VC, Scheepens A. Growth hormone receptor immunoreactivity is increased in the subventricular zone of juvenile rat brain after focal ischemia: a potential role for growth hormone in injury-induced neurogenesis. Growth Horm IGF Res 2009; 19:497-506. [PMID: 19524466 DOI: 10.1016/j.ghir.2009.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 04/30/2009] [Accepted: 05/14/2009] [Indexed: 02/05/2023]
Abstract
BACKGROUND During recovery from an ischemic brain injury, a cerebral growth hormone (GH) axis is activated. Whilst GH has been demonstrated to be neuroprotective both in vitro and in vivo, a role for GH in neuro-restorative processes after brain injury has yet to be studied. OBJECTIVE To explore a role for GH in injury-induced neurogenesis by examining GH receptor (GH-R) immunoreactivity within the subventricular zone (SVZ) of juvenile rats after brain injury and by testing the proliferative capacity of GH on embryonic mouse neural stem cells. DESIGN Twenty-one day old rats were subjected to unilateral hypoxic-ischemia of the brain and sacrificed 1-15days later. Coronal brain sections from these animals and age-matched naïve controls were immunostained for GH-R and cell markers of neurogenesis. The level of GH-R immunoreactivity in the ipsilateral and contralateral SVZ of each animal was semi-quantified both by independent blinded scoring by two examiners and blinded image analysis. To examine the effect of GH on proliferation of embryonic mouse neural stem cells, cells were treated with increasing concentrations of rat pituitary GH for 48h in the presence of 5'-bromo-2'-deoxyuridine. RESULTS The level of GH-R immunoreactivity in the ipsilateral SVZ was significantly increased 5days after injury vs. the contralateral SVZ, coinciding both spatially and temporally with injury-induced neurogenesis. The population of GH-R immunopositive cells in the ipsilateral SVZ at this time was found to include proliferating cells (Ki67 immunopositive), neural progenitor cells (nestin immunopositive) and post-proliferative migratory neuroblasts (doublecortin immunopositive). Stimulation of embryonic mouse NSCs with physiological concentrations of rat pituitary GH elicited a dose-dependent proliferative response. CONCLUSION These results indicate a novel role for GH and its receptor in injury-induced neurogenesis, and suggest that GH treatment may potentiate endogenous neuro-restorative processes after brain injury.
Collapse
|
31
|
Geng Y, Walls KC, Ghosh AP, Akhtar RS, Klocke BJ, Roth KA. Cytoplasmic p53 and activated Bax regulate p53-dependent, transcription-independent neural precursor cell apoptosis. J Histochem Cytochem 2009; 58:265-75. [PMID: 19901272 DOI: 10.1369/jhc.2009.954024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prodeath effects of p53 are typically mediated via its transcriptional upregulation of proapoptotic Bcl-2 family members, including PUMA, Noxa, and/or Bax. We previously reported that staurosporine (STS), a broad-spectrum kinase inhibitor and prototypical apoptosis-inducing agent, produced p53-dependent, Bax-dependent, neural precursor cell (NPC) apoptosis, but that this effect occurred independently of new gene transcription and PUMA expression. To further characterize the mechanism by which p53 regulates NPC death, we used primary cerebellar NPCs derived from wild-type, p53-deficient, and Bax-deficient neonatal mice and the mouse cerebellar neural stem cell line, C17.2. We found that STS rapidly increased p53 cytoplasmic immunoreactivity in neuritic-like processes in C17.2 cells, which preceded Bax activation and caspase-3 cleavage. Confocal microscopy analysis of STS-treated cells revealed partial colocalization of p53 with the mitochondrial marker pyruvate dehydrogenase as well as with conformationally altered "activated" Bax, suggesting an interaction between these proapoptotic molecules in triggering apoptotic death. Nucleophosmin (NPM), a CRM1-dependent nuclear chaperone, also exhibited partial colocalization with both activated Bax and p53 following STS treatment. These observations suggest that cytoplasmic p53 can trigger transcription-independent NPC apoptosis through its potential interaction with NPM and activated Bax.
Collapse
Affiliation(s)
- Ying Geng
- Department of Pathology, University of Alabama at Birmingham, USA
| | | | | | | | | | | |
Collapse
|
32
|
Li Q, Liu J, Michaud M, Schwartz ML, Madri JA. Strain differences in behavioral and cellular responses to perinatal hypoxia and relationships to neural stem cell survival and self-renewal: Modeling the neurovascular niche. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2133-46. [PMID: 19815710 DOI: 10.2353/ajpath.2009.090354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Premature infants have chronic hypoxia, resulting in cognitive and motor neurodevelopmental handicaps caused by suboptimal neural stem cell (NSC) repair/recovery in neurogenic zones (including the subventricular and the subgranular zones). Understanding the variable central nervous system repair response is crucial to identifying "at risk" infants and to increasing survival and clinical improvement of affected infants. Using mouse strains found to span the range of responsiveness to chronic hypoxia, we correlated differential NSC survival and self-renewal with differences in behavior. We found that C57BL/6 (C57) pups displayed increased hyperactivity after hypoxic insult; CD-1 NSCs exhibited increased hypoxia-induced factor 1alpha (HIF-1alpha) mRNA and protein, increased HIF-1alpha, and decreased prolyl hydroxylase domain 2 in nuclear fractions, which denotes increased transcription/translation and decreased degradation of HIF-1alpha. C57 NSCs exhibited blunted stromal-derived factor 1-induced migratory responsiveness, decreased matrix metalloproteinase-9 activity, and increased neuronal differentiation. Adult C57 mice exposed to hypoxia from P3 to P11 exhibited learning impairment and increased anxiety. These findings support the concept that behavioral differences between C57 and CD-1 mice are a consequence of differential responsiveness to hypoxic insult, leading to differences in HIF-1alpha signaling and resulting in lower NSC proliferative/migratory and higher apoptosis rates in C57 mice. Information gained from these studies will aid in design and effective use of preventive therapies in the very low birth weight infant population.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | | | | | | | |
Collapse
|
33
|
Yang J, Liu J, Niu G, Chan KC, Wang R, Liu Y, Wu EX. In vivo MRI of endogenous stem/progenitor cell migration from subventricular zone in normal and injured developing brains. Neuroimage 2009; 48:319-28. [PMID: 19591946 DOI: 10.1016/j.neuroimage.2009.06.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 06/04/2009] [Accepted: 06/29/2009] [Indexed: 11/16/2022] Open
Abstract
Understanding the alterations of migratory activities of the endogenous neural stem/progenitor cells (NSPs) in injured developing brains is becoming increasingly imperative for curative reasons. In this study, 10-day-old neonatal rats with and without hypoxic-ischemic (HI) insult at postnatal day 7 were injected intraventricularly with micron-sized iron oxide particles (MPIOs), followed by serial high-resolution MRI at 7 T for 2 weeks. MRI findings were correlated to the histological analysis using iron staining and several immunohistochemical double staining. The results indicated that in normal and HI-injured brains the NSPs from the subventricular zone (SVZ) were labeled by MPIOs, and migrated as newly created cells (iron+/BrdU+), neuroblasts (iron+/nestin+), astrocytes or astrocytes-like progenitor cells (iron+/GFAP+), and mature neurons (iron+/NeuN+). In normal brains, the endogenous NSPs mainly exhibited a tangential pattern in both rostral and caudal directions. The NSP radial migratory pattern could be observed in some rats. In the HI-injured brains during the same developmental period, the NSPs mainly migrated towards the HI lesion sites. The tangential, rostrocaudal migrations could be observed but impaired. These findings suggest that the NSP migratory pathways in SVZ change in response to the HI insult, likely due to the self-repairing efforts known in the neonatal brains. The MRI approach demonstrated here is potentially applicable to the in vivo and longitudinal study of NSP cell activities in developing brains under normal and pathological conditions and in therapeutic interventions.
Collapse
Affiliation(s)
- Jian Yang
- Medical Imaging Center of the First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, Xi'an, Shannxi Province, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Brain injury expands the numbers of neural stem cells and progenitors in the SVZ by enhancing their responsiveness to EGF. ASN Neuro 2009; 1:AN20090002. [PMID: 19570028 PMCID: PMC2695583 DOI: 10.1042/an20090002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is an increase in the numbers of neural precursors in the SVZ (subventricular zone) after moderate ischaemic injuries, but the extent of stem cell expansion and the resultant cell regeneration is modest. Therefore our studies have focused on understanding the signals that regulate these processes towards achieving a more robust amplification of the stem/progenitor cell pool. The goal of the present study was to evaluate the role of the EGFR [EGF (epidermal growth factor) receptor] in the regenerative response of the neonatal SVZ to hypoxic/ischaemic injury. We show that injury recruits quiescent cells in the SVZ to proliferate, that they divide more rapidly and that there is increased EGFR expression on both putative stem cells and progenitors. With the amplification of the precursors in the SVZ after injury there is enhanced sensitivity to EGF, but not to FGF (fibroblast growth factor)-2. EGF-dependent SVZ precursor expansion, as measured using the neurosphere assay, is lost when the EGFR is pharmacologically inhibited, and forced expression of a constitutively active EGFR is sufficient to recapitulate the exaggerated proliferation of the neural stem/progenitors that is induced by hypoxic/ischaemic brain injury. Cumulatively, our results reveal that increased EGFR signalling precedes that increase in the abundance of the putative neural stem cells and our studies implicate the EGFR as a key regulator of the expansion of SVZ precursors in response to brain injury. Thus modulating EGFR signalling represents a potential target for therapies to enhance brain repair from endogenous neural precursors following hypoxic/ischaemic and other brain injuries.
Collapse
|
35
|
Basic fibroblast growth factor stimulates the proliferation and differentiation of neural stem cells in neonatal rats after ischemic brain injury. Brain Dev 2009; 31:331-40. [PMID: 18657919 DOI: 10.1016/j.braindev.2008.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 03/03/2008] [Accepted: 06/11/2008] [Indexed: 11/22/2022]
Abstract
A little is known about the proliferation and fate of neural stem cells in the subventricular zone (SVZ) after cerebral ischemia. However, how endogenous neural stem cells are activated in the premature brain is not clear, although basic fibroblast growth factor (bFGF) is important in neurogenesis. To investigate the effect of bFGF on the proliferation and differentiation of neural stem cells after brain ischemia, we observed cellular changes in the subventricular zone (SVZ) of 3-day-old rats (approximately equivalent to premature infants) using immunofluorescence assays, Western blot analysis, and real-time quantitative PCR methods. The bilateral common carotid artery (BCCA) was occluded in 108 animals, then half received bFGF 10ng/g. Besides, 54 rats without ischemia as normal control. Proliferating cells were labeled by bromodeoxyuridine (BrdU) through intraperitoneal injection in a pulsed or a cumulative protocol. Rats were killed at 4, 7, and 14 days after ischemic injury. The number of proliferating cells in the SVZ in bFGF-treated rats was higher than that in untreated rats; bFGF also promoted neural stem cell differentiation into neurons, astrocytes, and oligodendrocytes. Western blot analysis and real-time quantitative PCR assays confirmed these results. We suggest that bFGF promotes the repair of ischemia brain injury through increasing the proliferation of neural stem cells and their differentiation into neurons, astrocytes, and oligodendrocytes.
Collapse
|
36
|
Nuñez J, Yang Z, Jiang Y, Grandys T, Mark I, Levison SW. 17beta-estradiol protects the neonatal brain from hypoxia-ischemia. Exp Neurol 2007; 208:269-76. [PMID: 17950281 DOI: 10.1016/j.expneurol.2007.08.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/20/2007] [Accepted: 08/23/2007] [Indexed: 02/02/2023]
Abstract
Hypoxia-ischemia is relatively common in human infants. Hypoxia-ischemia can occur as a result of complications associated with prematurity or birth, frequently leading to altered brain development and cognitive and behavioral deficits that persist throughout life. Despite the relative frequency of neonatal hypoxic-ischemic encephalopathy, the immature brain sustains relatively less damage than an adult who experiences a similar crisis of oxygen and nutrient deprivation. Therefore, factors may be present that protect the developing brain. During late gestation, the infant brain encounters high levels of the steroid hormone 17beta-estradiol. This observation, combined with evidence supporting 17beta-estradiol as a neuroprotective agent, led us to hypothesize that increasing the basal level of 17beta-estradiol would reduce the amount of hypoxia-ischemia induced injury to the neonatal brain. To test that hypothesis we administered 17beta-estradiol using either a repeated dosing paradigm or a single dose paradigm to immature male and female rats. Here we show that the repeated dosing paradigm (three doses of 17beta-estradiol) provided approximately 70% protection of the hippocampus, basal ganglia, and amygdala. By contrast, a single administration of 17beta-estradiol 24 h prior to hypoxia-ischemia conferred little protection. The only exception was the pyramidal layer of the female hippocampus, which was modestly protected (16% reduction in damage). The protection afforded by the multiple administrations of 17beta-estradiol was similar for females and males, with the only exception being the male amygdala, which displayed less damage than the female amgydala. We conclude that 17beta-estradiol acts as a potent neuroprotective agent against hypoxia-ischemia induced damage to the developing brain, and that pretreating infants at risk for hypoxic-ischemic injury may be advisable.
Collapse
Affiliation(s)
- Joseph Nuñez
- Department of Psychology, Michigan State University, 138 Giltner Hall, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Chan CY, Lam WP, Wai MSM, Wang M, Foster EL, Yew DTW. Perinatal hypoxia induces anterior chamber changes in the eyes of offspring fish. J Reprod Dev 2007; 53:1159-67. [PMID: 17693701 DOI: 10.1262/jrd.19018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia is a consistent challenge for aquatic animals. It is a pressing environmental problem; hypoxia can cause cranial edema and ovarium dysfunction in fish. Although several studies have reported the effect of hypoxic insult to the visual system, the hypoxic effect on perinatal animals and in particular their offspring has yet to be elucidated. In this study, activated caspase-3 activity was investigated using immunohistochemistry in order to examine the perinatal hypoxic damage in offspring fish. Offspring were divided into groups based on different time points of sacrifice. This allowed assessment of ocular development for different age groups. The results indicated that perinatal hypoxia induced ocular developmental defects in the offspring. The defects took the form of trabecular cell death and fibre degeneration, corneal thinning and lens fibre derangement. A concomitant change in intraocular pressure was recorded by tonometer in the experimental animals compared with the controls. Further investigation should be initiated to develop strategies to prevent developmental disability due to perinatal hypoxia and to increase survivability of the offspring.
Collapse
Affiliation(s)
- Chu Yan Chan
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Barrett RD, Bennet L, Davidson J, Dean JM, George S, Emerald BS, Gunn AJ. Destruction and reconstruction: Hypoxia and the developing brain. ACTA ACUST UNITED AC 2007; 81:163-76. [DOI: 10.1002/bdrc.20095] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Alvarez-Díaz A, Hilario E, de Cerio FG, Valls-i-Soler A, Alvarez-Díaz FJ. Hypoxic-ischemic injury in the immature brain--key vascular and cellular players. Neonatology 2007; 92:227-35. [PMID: 17556841 DOI: 10.1159/000103741] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over the past decade, much has been learned about the cellular and molecular mechanisms underlying hypoxic-ischemic (H-I) injury in the preterm human brain. The pathogenesis of H-I brain injury is now understood to be multifactorial and quite complex, depending on (i) the severity, intensity and timing of asphyxia, (ii) selective ischemic vulnerability, (iii) the degree of maturity of the brain, and (iv) the characteristics of the ensuing reoxygenation/reperfusion phase. Each of these factors has differential effects on the distinct cell populations in the brain, with certain specific cell types being particularly vulnerable in the developing brain. In this review, we discuss the role of the blood vessels and the distinct cell populations, which are the mayor constitutive elements of the immature brain, in the pathophysiology of H-I lesion. The presence of fragile and poorly anastomosed blood vessels and the existence of disturbances in the blood-brain barrier alter blood flow, vascular tone and nutrient delivery. Brain cells are sensitive to the overstimulation of neurotransmitter receptors, particularly glutamate receptors, which can provoke excitotoxicity leading to the death of neurons and other cells such as astrocytes and oligodendrocyte progenitors. Microglial activation by means of excitatory amino acids and by leukocyte migration initiates the inflammatory response giving rise to an increase in regional cerebral blood flow and promoting astrocyte and oligodendrocyte injuries. A better understanding of these aspects of H-I injury will contribute to more efficient strategies for the management of the associated damage.
Collapse
Affiliation(s)
- A Alvarez-Díaz
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| | | | | | | | | |
Collapse
|
40
|
Goings GE, Kozlowski DA, Szele FG. Differential activation of microglia in neurogenic versus non-neurogenic regions of the forebrain. Glia 2006; 54:329-42. [PMID: 16862532 DOI: 10.1002/glia.20381] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proliferation decreases in the neurogenic subventricular zone (SVZ) of mice after aspiration lesions of the cerebral cortex. We hypothesized that microglial activation may contribute to this given microglial activation attenuates neurogenesis in the hippocampus. Using CD45, CD11b, IB4, and IL-6 immunohistochemistry (IHC), BrdU IHC, and fluorescent bead tracking of peripheral monocytes into the brain, we compared microglial activation in the SVZ to non-neurogenic forebrain regions. SVZ microglia exhibited greater constitutive activation and proliferation than did microglia in non-neurogenic regions. In contrast to the SVZ, the dentate gyrus (DG) contained relatively few CD45(+) cells. After aspiration cerebral cortex lesions, microglia became activated in the cerebral cortex, corpus callosum, and striatum. SVZ microglial activation did not increase, and similarly, microglia in the DG were less activated after injury than in adjacent non-neurogenic regions. We next showed that SVZ microglia are not categorically refractory to activation, since deep cortical contusion injuries increased SVZ microglial activation. Macrophages migrate into the brain during development, but it is unclear if this is recapitulated after injury. Infiltration of microbead-labeled macrophages into the brain did not change after injury, but resident SVZ microglia were induced to migrate toward the injury. Our data show that both constitutive and postlesion levels of microglial activation differ between neurogenic and non-neurogenic regions.
Collapse
Affiliation(s)
- Gwendolyn E Goings
- Children's Memorial Research Center, Neurobiology Program, Children's Memorial Hospital, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
41
|
Fennell M, Chan H, Wood A. Multiparameter Measurement of Caspase 3 Activation and Apoptotic Cell Death in NT2 Neuronal Precursor Cells Using High-Content Analysis. ACTA ACUST UNITED AC 2006; 11:296-302. [PMID: 16699130 DOI: 10.1177/1087057105284618] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Caspase activation is a component of a number of neurodegenerative disorders, including stroke. In this study, the authors describe a multiplexed assay for caspase 3 activation, nuclear condensation, and cell viability in a neuronal precursor cell line Ntera-2, injuredwith staurosporine and etoposide. Using a high-content screening approach, cells were identified by staining with the nuclear stain Hoechst 33342; cell viability wasmeasured by staining cells with YoPro-1, which is taken up by damaged cells but excluded from healthy cells; and caspase 3/7 activation was detected using the cell-permeable probe PhiPhi-Lux, which becomes fluorescentwhen cleaved by active caspase 3 or 7. These 3 dyeswere detected simultaneously using a 4-band pass filter set on a Cellomics Arrayscan. The authors used peptide-fmk inhibitors selective for a variety of caspases, demonstrating that the injury is mediated primarily through caspase 3 or 7, although other caspases or related proteases may play aminor role. The general caspase inhibitor zVAD-fmkwas able to block cell death and caspase activationwith the highest potency. The caspase 3 selective inhibitor DEVD-fmkwas almost as potent as zVAD-fmk; other peptide caspase inhibitors displayed onlymodest inhibition of cell death. This assay was also used as a high-content screening tool for the evaluation of novel caspase 3 inhibitors for the potential treatment of degenerative disorders.
Collapse
|
42
|
Abstract
The recent identification of endogenous neural stem cells and persistent neuronal production in the adult brain suggests a previously unrecognized capacity for self-repair after brain injury. Neurogenesis not only continues in discrete regions of the adult mammalian brain, but new evidence also suggests that neural progenitors form new neurons that integrate into existing circuitry after certain forms of brain injury in the adult. Experimental stroke in adult rodents and primates increases neurogenesis in the persistent forebrain subventricular and hippocampal dentate gyrus germinative zones. Of greater relevance for regenerative potential, ischemic insults stimulate endogenous neural progenitors to migrate to areas of damage and form neurons in otherwise dormant forebrain regions, such as the neostriatum and hippocampal pyramidal cell layer, of the mature brain. This review summarizes the current understanding of adult neurogenesis and its regulation in vivo, and describes evidence for stroke-induced neurogenesis and neuronal replacement in the adult. Current strategies used to modify endogenous neurogenesis after ischemic brain injury also will be discussed, as well as future research directions with potential for achieving regeneration after stroke and other brain insults.
Collapse
Affiliation(s)
- Robin J Lichtenwalner
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0585, USA
| | | |
Collapse
|
43
|
Miles DK, Kernie SG. Activation of neural stem and progenitor cells after brain injury. PROGRESS IN BRAIN RESEARCH 2006; 157:187-197. [PMID: 17167908 DOI: 10.1016/s0079-6123(06)57012-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neural stem and progenitor cells in the mammalian brain persist and are functional well into adulthood. Reservoirs for these cells are found in both the subventricular zone and the dentate gyrus of the hippocampus. It is still unclear what role these cells may play in humans during normal brain maturation. In addition, there is currently tremendous speculation regarding the potential role of these cells in providing a substrate for recovery and repair after injury. This review provides an overview of the existing data regarding how neural stem and progenitor cells respond to various types of brain injury. In particular, we focus upon their role in the dentate gyrus since this brain area provides a compelling and tractable model of how the brain may use its ability for endogenous regeneration to recover from a variety of injuries.
Collapse
Affiliation(s)
- Darry K Miles
- Department of Pediatrics and Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
44
|
Pleasure D, Soulika A, Singh SK, Gallo V, Bannerman P. Inflammation in white matter: Clinical and pathophysiological aspects. ACTA ACUST UNITED AC 2006; 12:141-6. [PMID: 16807906 DOI: 10.1002/mrdd.20100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
While the central nervous system (CNS) is generally thought of as an immunopriviledged site, immune-mediated CNS white matter damage can occur in both the perinatal period and in adults, and can result in severe and persistent neurological deficits. Periventricular leukomalacia (PVL) is an inflammatory white matter disease of premature infants that frequently results in cerebral palsy (CP). Clinical and experimental studies show that both hypoxic/ischemic and innate immune mechanisms contribute to the destruction of immature oligodendroglia and of axons in the deep cerebral white matter in PVL. No data are yet available as to whether there is any genetic predisposition to PVL or to its neurological sequelae. Multiple sclerosis (MS) is an inflammatory white matter disease that often begins in young adulthood, causes multifocal destruction of mature oligodendroglia and of axons, and eventually leads to substantial cumulative neurological disability. Certain genetic polymorphisms contribute to susceptibility to MS, and adaptive immune responses to myelin-associated self antigens, or to exogenous antigens that mimic these self antigens, play a central role in the pathophysiology of this disease.
Collapse
Affiliation(s)
- David Pleasure
- Deparment of Neurology, UC Davis School of Medicine, and Shriners Hospitals for Children Northern California, Sacramento, California 95817, USA.
| | | | | | | | | |
Collapse
|