1
|
Wu D, Wang F, Chen L, Mao Y, Li Y, Zhu W, Xu L, Zhang Y, Wang Y, Zeng J, Cheng Y, Sha L, Fan X, Zhang H, Zhou Y, Kang H. Characterization of the wheat-tetraploid Thinopyrum elongatum 7E(7D) substitution line with Fusarium head blight resistance. BMC PLANT BIOLOGY 2024; 24:1006. [PMID: 39455993 PMCID: PMC11515827 DOI: 10.1186/s12870-024-05703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Fusarium head blight (FHB), a devastating disease of wheat production, is predominantly elicited by Fusarium graminearum (Fg). The tetraploid Thinopyrum elongatum is a tertiary gene resource of common wheat that possesses high affinity and displays high resistance traits against multiple biotic and abiotic stress. We aim to employ and utilize the novel FHB resistance resources from the wild germplasm of common wheat for breeding. RESULTS Durum wheat-tetraploid Th. elongatum amphiploid 8801 was hybridized with common wheat cultivars SM482 and SM51, and the F5 generation was generated. We conducted cytogenetically in situ hybridization (ISH) technologies to select and confirm a genetically stable 7E(7D) substitution line K17-1069-5, which showed FHB expansion resistance in both field and greenhouse infection experiments and displayed no significant disadvantage in agronomic traits compared to their common wheat parents in the field. The F2 segregation populations (K17-1069-5 × SM830) showed that the 7E chromosome conferred dominant FHB resistance with dosage effect. We developed 19 SSR molecular markers specific to chromosome 7E, which could be conducted for genetic mapping and large breeding populations marker-assisted selection (MAS) during selection procedures in the future. We isolated a novel Fhb7 allele from the tetraploid Th. elongatum chromosome 7E (Chr7E) using homology-based cloning, which was designated as TTE7E-Fhb7. CONCLUSIONS In summary, our study developed a novel wheat-tetraploid Thinopyrum elongatum 7E(7D) K17-1069-5 substitution line which contains stable FHB resistance.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Fei Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Linfeng Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuanwen Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yinghui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Plotnikova LY, Knaub VV. Exploitation of the genetic potential of Thinopyrum and Agropyron genera to protect wheat from diseases and environmental stresses. Vavilovskii Zhurnal Genet Selektsii 2024; 28:536-553. [PMID: 39280845 PMCID: PMC11393651 DOI: 10.18699/vjgb-24-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 09/18/2024] Open
Abstract
Common wheat is one of the most important food crops in the world. Grain harvests can be increased by reducing losses from diseases and environmental stresses. The tertiary gene pool, including Thinopyrum spp., is a valuable resource for increasing genetic diversity and wheat resistance to fungal diseases and abiotic stresses. Distant hybridization between wheat and Thinopyrum spp. began in the 1920s in Russia, and later continued in different countries. The main results were obtained using the species Th. ponticum and Th. intermedium. Additionally, introgression material was created based on Th. elongatum, Th. bessarabicum, Th. junceiforme, Agropyron cristatum. The results of introgression for resistance to diseases (leaf, stem, and stripe rusts; powdery mildew; Fusarium head blight; and Septoria blotch) and abiotic stresses (drought, extreme temperatures, and salinity) to wheat was reviewed. Approaches to improving the agronomic properties of introgression breeding material (the use of irradiation, ph-mutants and compensating Robertsonian translocations) were described. The experience of long-term use in the world of a number of genes from the tertiary gene pool in protecting wheat from leaf and stem rust was observed. Th. ponticum is a nonhost for Puccinia triticina (Ptr) and P. graminis f. sp. tritici (Pgt) and suppresses the development of rust fungi on the plant surface. Wheat samples with the tall wheatgrass genes Lr19, Lr38, Sr24, Sr25 and Sr26 showed defence mechanisms similar to nonhosts resistance. Their influence led to disruption of the development of surface infection structures and fungal death when trying to penetrate the stomata (prehaustorial resistance or stomatal immunity). Obviously, a change in the chemical properties of fungal surface structures of races virulent to Lr19, Lr24, Sr24, Sr25, and Sr26 leads to a decrease in their adaptability to the environment. This possibly determined the durable resistance of cultivars to leaf and stem rusts in different regions. Alien genes with a similar effect are of interest for breeding cultivars with durable resistance to rust diseases and engineering crops with the help of molecular technologies.
Collapse
Affiliation(s)
- L Ya Plotnikova
- Omsk State Agrarian University named after P.A. Stolypin, Omsk, Russia
| | - V V Knaub
- Omsk State Agrarian University named after P.A. Stolypin, Omsk, Russia
| |
Collapse
|
3
|
Hou F, Jin Y, Hu J, Kong L, Liu X, Xing L, Cao A, Zhang R. Transferring an Adult-Plant Stripe-Rust Resistance Gene Yr7VS from Chromosome 7V of Dasypyrum villosum (L.) to Bread Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:1875. [PMID: 38999715 PMCID: PMC11244515 DOI: 10.3390/plants13131875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Stripe rust (Puccinia striiformis West. f.sp. tritici, Pst) is a destructive disease that seriously threatens wheat production globally. Exploring novel resistance genes for use in wheat breeding is an urgent need, as continuous Pst evolution frequently leads to a breakdown of host resistance. Here, we identified a set of wheat-Dasypyrum villosum 01I139 (V#6) disomic introgression lines for the purpose of determining their responses to a mixture of Pst isolates CYR32, CYR33 and CYR34 at both seedling and adult-plant stages. The results showed that all introgression lines exhibited high susceptibility at the seedling stage, with infection-type (IT) scores in the range of 6-8, whereas, for chromosomes 5V#6 and 7V#6, disomic addition lines NAU5V#6-1 and NAU7V#6-1 displayed high resistance at the adult-plant stage, indicating that adult-plant resistance (APR) genes were located on them. Further, in order to transfer the stripe-rust resistance on chromosome 7V#6, four new wheat-D. villosum introgression lines were identified, by the use of molecular cytogenetic approaches, from the self-pollinated seeds of 7D and 7V#6, in double monosomic line NAU7V#6-2. Among them, NAU7V#6-3 and NAU7V#6-4 were t7V#6L and t7V#6S monosomic addition lines, and NAU7V#6-5 and NAU7V#6-6 were homozygous T7DS·7V#6L and T7DL·7V#6S whole-arm translocation lines. Stripe-rust tests and genetic analyses of chromosome 7V#6 introgression lines revealed a dominant APR gene designated as Yr7VS on the chromosome arm 7V#6S. Comparison with the homozygous T7DL·7V#6S translocation line and the recurrent parent NAU0686 showed no significant differences in yield-related traits. Thus, T7DL·7V#6S whole-arm translocation with the APR gene Yr7VS provided a valuable germplasm for breeding for resistance.
Collapse
Affiliation(s)
- Fu Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application/JCIC-MCP, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Area in Jiangsu, Huaian 223001, China
| | - Yinyu Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application/JCIC-MCP, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application/JCIC-MCP, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingna Kong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application/JCIC-MCP, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxue Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application/JCIC-MCP, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Liping Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application/JCIC-MCP, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Aizhong Cao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application/JCIC-MCP, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Ruiqi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application/JCIC-MCP, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
4
|
Han B, Wang X, Sun Y, Kang X, Zhang M, Luo J, Han H, Zhou S, Lu Y, Liu W, Yang X, Li X, Zhang J, Li L. Pre-breeding of spontaneous Robertsonian translocations for density planting architecture by transferring Agropyron cristatum chromosome 1P into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:110. [PMID: 38656338 DOI: 10.1007/s00122-024-04614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
KEY MESSAGE We developed T1AL·1PS and T1AS·1PL Robertsonian translocations by breakage-fusion mechanism based on wheat-A. cristatum 1P(1A) substitution line with smaller leaf area, shorter plant height, and other excellent agronomic traits Agropyron cristatum, a wild relative of wheat, is a valuable germplasm resource for improving wheat genetic diversity and yield. Our previous study confirmed that the A. cristatum chromosome 1P carries alien genes that reduce plant height and leaf size in wheat. Here, we developed T1AL·1PS and T1AS·1PL Robertsonian translocations (RobTs) by breakage-fusion mechanism based on wheat-A. cristatum 1P (1A) substitution line II-3-1c. Combining molecular markers and cytological analysis, we identified 16 spontaneous RobTs from 911 F2 individuals derived from the cross of Jimai22 and II-3-1c. Fluorescence in situ hybridization (FISH) was applied to detect the fusion structures of the centromeres in wheat and A. cristatum chromosomes. Resequencing results indicated that the chromosomal junction point was located at the physical position of Triticum aestivum chromosome 1A (212.5 Mb) and A. cristatum chromosome 1P (230 Mb). Genomic in situ hybridization (GISH) in pollen mother cells showed that the produced translocation lines could form stable ring bivalent. Introducing chromosome 1PS translocation fragment into wheat significantly increased the number of fertile tillers, grain number per spike, and grain weight and reduced the flag leaf area. However, introducing chromosome 1PL translocation fragment into wheat significantly reduced flag leaf area and plant height with a negative effect on yield components. The pre-breeding of two spontaneous RobTs T1AL·1PS and T1AS·1PL was important for wheat architecture improvement.
Collapse
Affiliation(s)
- Bohui Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yangyang Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xilu Kang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiawen Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiming Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shenghui Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqing Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weihua Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinming Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuquan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China.
| | - Lihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China.
| |
Collapse
|
5
|
Tian X, Chen Q, Ma C, Men W, Liu Q, Zhao Y, Qian J, Fan Z, Miao J, He J, Sehgal SK, Li H, Liu W. Development and Characterization of Triticum aestivum- Aegilops longissima 6S l Recombinants Harboring a Novel Powdery Mildew Resistance Gene Pm6Sl. FRONTIERS IN PLANT SCIENCE 2022; 13:918508. [PMID: 35720614 PMCID: PMC9201914 DOI: 10.3389/fpls.2022.918508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Powdery mildew of wheat is a foliar disease that is spread worldwide. Cultivation of resistant varieties is the most effective, economical, and environmentally friendly strategy to curb this disease. Powdery mildew resistance genes (Pm) are the primary resources for resistance breeding, and new Pm genes are in constant demand. Previously, we identified Aegilops longissima chromosome 6Sl#3 as a carrier of powdery mildew resistance and designated the resistance gene as Pm6Sl. Here, we reported the design of 24 markers specific to 6Sl#3 on the basis of the full-length cDNA sequences of 6Sl#3 donor Ae. longissma accession TA1910, and the development of wheat-Ae. longissima 6Sl#3 introgression stocks by ph1b-induced homoeologous recombination. Further, 6Sl#3 introgression lines were identified and characterized by integration analysis of powdery mildew responses, in situ hybridization, and molecular markers and Pm6Sl was mapped to a distal interval of 42.80 Mb between markers Ael58410 and Ael57699 in the long arm of 6Sl#3. Two resistant recombinants, R43 (T6BS.6BL-6Sl#3L) and T27 (Ti6AS.6AL-6Sl#3L-6AL), contained segments harboring Pm6Sl with less than 8% of 6Sl#3 genomic length, and two markers were diagnostic for Pm6Sl. This study broadened powdery mildew resistance gene resources for wheat improvement and provided a fundamental basis for fine mapping and cloning of Pm6Sl to further understand its molecular mechanism of disease resistance.
Collapse
Affiliation(s)
- Xiubin Tian
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qifan Chen
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chao Ma
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqiang Men
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qianqian Liu
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yue Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiajun Qian
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Ziwei Fan
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jingnan Miao
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jinqiu He
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Huanhuan Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenxuan Liu
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Qi K, Han H, Zhang J, Zhou S, Li X, Yang X, Liu W, Lu Y, Li L. Development and characterization of novel Triticum aestivum- Agropyron cristatum 6P Robertsonian translocation lines. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:59. [PMID: 37309319 PMCID: PMC10236080 DOI: 10.1007/s11032-021-01251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 06/14/2023]
Abstract
Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP), one of the most important wild relatives of wheat, harbors many desirable genes for wheat genetic improvement. Development of wheat-A. cristatum translocation lines with superior agronomic traits facilitates wheat genetic improvement. In this study, 5106-DS was identified to be a wheat-A. cristatum 6P (6D) disomic substitution line using cytogenetic identification and molecular markers analysis, which displayed higher thousand-grain weight than its wheat parent Triticum aestivum cv. Fukuhokomugi (2n = 6x = 42, AABBDD). Analysis of its backcross populations indicated that there might be genes conferring increased grain weight and width on the chromosome 6P of 5106-DS. In the backcross population, we found three plants as Robertsonian translocation lines, created by chromosome centric breakage-fusion. Among them, there are one T6DS·6PL and two T6PS·6DL Robertsonian translocation lines. Additionally, the centromeres of these three translocation lines were determined to be fused centromeres of 6D and 6P using the probes pAcCR1 and pCCS1. The development of Robertsonian translocation lines would promote the utilization of A. cristatum chromosome 6P in wheat improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01251-y.
Collapse
Affiliation(s)
- Kai Qi
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shenghui Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yuqing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
7
|
Lima LV, Sousa SMDE, Almeida TE, Salino A. State of the art in cytogenetics, insights into chromosome number evolution, and new C-value reports for the fern family Gleicheniaceae. AN ACAD BRAS CIENC 2021; 93:e20201881. [PMID: 34550205 DOI: 10.1590/0001-3765202120201881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Studies concerning the cytogenetics of Gleicheniaceae have been scarce, especially those employing evolutionary approaches. Two chromosome number evolutionary models have been hypothesized for Gleicheniaceae. One proposes that ancestral haploid numbers were small and that the chromosome numbers of extant species evolved through polyploidy. The other model proposes that, at the genus level, fern chromosome evolution occurred from ancestors with essentially the same high chromosome numbers seen in living lineages. Neither of those hypotheses has been tested based on phylogenetic frameworks. We sought to (i) present the state of the art of Gleicheniaceae chromosome numbers; (ii) test the two evolutionary models of chromosome numbers within a phylogenetic framework; (iii) test correlations between DNA contents and chromosome numbers in the family. We report here DNA C-values for five species, which increases the number of investigated taxa nearly twofold and report two new genera records. Ancestral state chromosome reconstruction corroborates the hypothesis that ancestral chromosome numbers in Gleicheniaceae were as high as those of extant lineages. Our results demonstrate the possible role of dysploidy in the evolutionary chromosome history of Gleicheniaceae at the genus level and suggest that the relationship between chromosome number and DNA content does not appear to be linear.
Collapse
Affiliation(s)
- Lucas Vieira Lima
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Laboratório de Sistemática Vegetal, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Saulo Marçal DE Sousa
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Departamento de Biologia, Laboratório de Genética e Biotecnologia, Rua José Lourenço Kelmer, s/n, 36036-900 Juiz de Fora, MG, Brazil
| | - Thaís Elias Almeida
- Universidade Federal do Oeste do Pará, Herbário HSTM, Avenida Marechal Rondon, s/n, 68040-070 Santarém, PA, Brazil
| | - Alexandre Salino
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Laboratório de Sistemática Vegetal, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Zhao L, Xie D, Fan C, Zhang S, Huang L, Ning S, Jiang B, Zhang L, Yuan Z, Liu D, Hao M. Chromosome Stability of Synthetic-Natural Wheat Hybrids. FRONTIERS IN PLANT SCIENCE 2021; 12:654382. [PMID: 33815455 PMCID: PMC8010257 DOI: 10.3389/fpls.2021.654382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Primary allopolyploids are not only ideal materials to study species evolution, but also important bridges in incorporating genetic diversity of wild species into crops. Primary allopolyploids typically exhibit chromosome instability that a disadvantage trait in crop breeding. Newly synthesized hexaploid wheat has been widely used in wheat genetics and breeding studies. To better understand the cytological and genetic basis of chromosome instability, this study investigated the chromosomes of a large number of seeds derived from the synthetic wheat SHW-L1 and its hybrids with natural wheat. SHW-L1 exhibited persistent chromosome instability since we observed a high frequent chromosome variation de novo generated from euploid SHW-L1 plants at the 14th generation of selfing (F14). High frequent chromosome variations were also observed in the F2 hybrids and most of the analyzed recombinant inbred lines (RILs) at F14, derived from the cross of SHW-L1 with common wheat variety Chuanmai 32. Chromosome instability was associated with frequent univalency during meiotic metaphase I. The experiment on reciprocal crosses between SHW-L1 and Chuanmai 32 indicated that cytoplasm has not obvious effects on chromosome instability. An analysis on 48 F14 RILs revealed chromosome variation frequency was not associated with the Ph1 alleles from either SHW-L1 or Chuanmai 32, rejecting the hypothesis that chromosome instability was due to the Ph1 role of synthetic wheat. In the analyzed RILs, chromosome instability influences the phenotype uniformity, showing as obvious trait differences among plants within a RIL. However, the analyzed commercial varieties only containing ∼12.5% genomic components of synthetic wheat were chromosomally stable, indicating that chromosome instability caused by synthetic wheat can be effectively overcome by increasing the genetic background of common wheat.
Collapse
Affiliation(s)
- Laibin Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Wheat Center, Henan Institute of Science and Technology, Xinxiang, China
| | - Die Xie
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chaolan Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shujie Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Karimi-Ashtiyani R, Schubert V, Houben A. Only the Rye Derived Part of the 1BL/1RS Hybrid Centromere Incorporates CENH3 of Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:802222. [PMID: 34966406 PMCID: PMC8710534 DOI: 10.3389/fpls.2021.802222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 05/04/2023]
Abstract
The precise assembly of the kinetochore complex at the centromere is epigenetically determined by substituting histone H3 with the centromere-specific histone H3 variant CENH3 in centromeric nucleosomes. The wheat-rye 1BL/1RS translocation chromosome in the background of wheat resulted from a centric misdivision followed by the fusion of the broken arms of chromosomes 1B and 1R from wheat and rye, respectively. The resulting hybrid (dicentric)centromere is composed of both wheat and rye centromeric repeats. As CENH3 is a marker for centromere activity, we applied Immuno-FISH followed by ultrastructural super-resolution microscopy to address whether both or only parts of the hybrid centromere are active. Our study demonstrates that only the rye-derived centromere part incorporates CENH3 of wheat in the 1BL/1RS hybrid centromere. This finding supports the notion that one centromere part of a translocated chromosome undergoes inactivation, creating functional monocentric chromosomes to maintain chromosome stability.
Collapse
Affiliation(s)
- Raheleh Karimi-Ashtiyani
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- *Correspondence: Raheleh Karimi-Ashtiyani,
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Andreas Houben,
| |
Collapse
|
10
|
Zhang M, Zhang W, Zhu X, Sun Q, Yan C, Xu SS, Fiedler J, Cai X. Dissection and physical mapping of wheat chromosome 7B by inducing meiotic recombination with its homoeologues in Aegilops speltoides and Thinopyrum elongatum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3455-3467. [PMID: 32930833 DOI: 10.1007/s00122-020-03680-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
We constructed a homoeologous recombination-based bin map of wheat chromosome 7B, providing a unique physical framework for further study of chromosome 7B and its homoeologues in wheat and its relatives. Homoeologous recombination leads to the dissection and diversification of the wheat genome. Advances in genome sequencing and genotyping have dramatically improved the efficacy and throughput of homoeologous recombination-based genome studies and alien introgression in wheat and its relatives. In this study, we aimed to physically dissect and map wheat chromosome 7B by inducing meiotic recombination of chromosome 7B with its homoeologues 7E in Thinopyrum elongatum and 7S in Aegilops speltoides. The special genotypes, which were double monosomic for chromosomes 7B' + 7E' or 7B' + 7S' and homozygous for the ph1b mutant, were produced to enhance 7B - 7E and 7B - 7S recombination. Chromosome-specific DNA markers were developed and used to pre-screen the large recombination populations for 7B - 7E and 7B - 7S recombinants. The DNA marker-mediated preselections were verified by fluorescent genomic in situ hybridization (GISH). In total, 29 7B - 7E and 61 7B - 7S recombinants and multiple chromosome aberrations were recovered and delineated by GISH and the wheat 90 K SNP assay. Integrated GISH and SNP analysis of the recombinants physically mapped the recombination breakpoints and partitioned wheat chromosome 7B into 44 bins with 523 SNPs assigned within. A composite bin map was constructed for chromosome 7B, showing the bin size and physical distribution of SNPs. This provides a unique physical framework for further study of chromosome 7B and its homoeologues. In addition, the 7B - 7E and 7B - 7S recombinants extend the genetic variability of wheat chromosome 7B and represent useful germplasm for wheat breeding. Thereby, this genomics-enabled chromosome engineering approach facilitates wheat genome study and enriches the gene pool of wheat improvement.
Collapse
Affiliation(s)
- Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qing Sun
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Jason Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
11
|
Guin K, Chen Y, Mishra R, Muzaki SRBM, Thimmappa BC, O'Brien CE, Butler G, Sanyal A, Sanyal K. Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres. eLife 2020; 9:e58556. [PMID: 32469306 PMCID: PMC7292649 DOI: 10.7554/elife.58556] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Centromeres of Candida albicans form on unique and different DNA sequences but a closely related species, Candida tropicalis, possesses homogenized inverted repeat (HIR)-associated centromeres. To investigate the mechanism of centromere type transition, we improved the fragmented genome assembly and constructed a chromosome-level genome assembly of C. tropicalis by employing PacBio sequencing, chromosome conformation capture sequencing (3C-seq), chromoblot, and genetic analysis of engineered aneuploid strains. Further, we analyzed the 3D genome organization using 3C-seq data, which revealed spatial proximity among the centromeres as well as telomeres of seven chromosomes in C. tropicalis. Intriguingly, we observed evidence of inter-centromeric translocations in the common ancestor of C. albicans and C. tropicalis. Identification of putative centromeres in closely related Candida sojae, Candida viswanathii and Candida parapsilosis indicates loss of ancestral HIR-associated centromeres and establishment of evolutionary new centromeres (ENCs) in C. albicans. We propose that spatial proximity of the homologous centromere DNA sequences facilitated karyotype rearrangements and centromere type transitions in human pathogenic yeasts of the CUG-Ser1 clade.
Collapse
Affiliation(s)
- Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Yao Chen
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Radha Mishra
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | | | - Bhagya C Thimmappa
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Caoimhe E O'Brien
- School Of Biomolecular & Biomed Science, Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland
| | - Geraldine Butler
- School Of Biomolecular & Biomed Science, Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| |
Collapse
|
12
|
Tepfer M, Hurel A, Tellier F, Jenczewski E. Evaluation of the progeny produced by interspecific hybridization between Camelina sativa and C. microcarpa. ANNALS OF BOTANY 2020; 125:993-1002. [PMID: 32055837 PMCID: PMC7218807 DOI: 10.1093/aob/mcaa026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/12/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Camelina (Camelina sativa, Brassicaceae) has attracted interest in recent years as a novel oilseed crop, and an increasing number of studies have sought to enhance camelina's yield potential or to modify the composition of its oil. The ability of camelina to cross-hybridize with its wild relative, C. microcarpa, is of interest as a potential source of genetic variability for the crop. METHODS Manual crosses were performed between the crop C. sativa and its wild relative C. microcarpa; F1 and F2 progenies were obtained. Cytology was used to study meiosis in the parents and F1s and to evaluate pollen viability. Flow cytometry was used to estimate nuclear DNA amounts and fatty acid methyl ester analysis was used to evaluate the lipid composition of F3 seeds. KEY RESULTS The F1 plants obtained by interspecific crossing presented severe abnormalities at meiosis and low pollen viability, and produced very few F2 seeds. The F2s presented diverse phenotypes and in some cases severe developmental abnormalities. Many F2s were aneuploid. The F2s produced highly variable numbers of F3 seeds, and certain F3 seeds presented atypical lipid profiles. CONCLUSIONS Considering the meiotic abnormalities observed and the probability of aneuploidy in the F2 plants, the C. microcarpa accessions used in this study would be difficult to use as sources of genetic variability for the crop.
Collapse
Affiliation(s)
- Mark Tepfer
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
13
|
Li H, Dong Z, Ma C, Xia Q, Tian X, Sehgal S, Koo DH, Friebe B, Ma P, Liu W. A spontaneous wheat-Aegilops longissima translocation carrying Pm66 confers resistance to powdery mildew. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1149-1159. [PMID: 31932954 DOI: 10.1007/s00122-020-03538-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/03/2020] [Indexed: 05/07/2023]
Abstract
A spontaneous Robertsonian T4SlS·4BL translocation chromosome carrying Pm66 for powdery mildew resistance was discovered and confirmed by RNA-seq, molecular marker, and in situ hybridization analyses. Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a severe disease of bread wheat worldwide. Discovery and utilization of resistance genes to powdery mildew from wild relatives of wheat have played important roles in wheat improvement. Aegilops longissima, one of the S-genome diploid wild relatives of wheat, is a valuable source of disease and pest resistance for wheat. Chromosome 4Sl from Ae. longissima confers moderate resistance to powdery mildew. In this study, we conducted RNA-seq on a putative Chinese Spring (CS)-Ae. longissima 4Sl(4B) disomic substitution line (TA3465) to develop 4Sl-specific markers to assist the transfer of a Bgt resistance gene from 4Sl by induced homoeologous recombination. A pairwise comparison of genes between CS and TA3465 demonstrated that a number of genes on chromosome 4BS in CS were not expressed in TA3465. Analysis of 4B- and 4Sl-specific molecular markers showed that 4BS and 4SlL were both missing in TA3465, whereas 4BL and 4SlS were present. Further characterization by genomic and fluorescent in situ hybridization confirmed that TA3465 carried a spontaneous Robertsonian T4SlS·4BL translocation. Powdery mildew tests showed that TA3465 was resistant to 10 of 16 Bgt isolates collected from different regions of China, whereas CS was susceptible to all those Bgt isolates. The powdery mildew resistance gene(s) in TA3465 was further mapped to the short arm of 4Sl and designated as Pm66.
Collapse
Affiliation(s)
- Huanhuan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Zhenjie Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Chao Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Qing Xia
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Xiubin Tian
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Sunish Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57006, USA
| | - Dal-Hoe Koo
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, 264005, People's Republic of China.
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
14
|
Luo J, Zhao L, Zheng J, Li Y, Zhang L, Liu D, Pu Z, Hao M. Karyotype mosaicism in early generation synthetic hexaploid wheats. Genome 2020; 63:329-336. [PMID: 32197055 DOI: 10.1139/gen-2019-0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that both the number and the structure of somatic chromosomes can vary in early generation hexaploid wheats. The phenomenon is generally assumed to arise as a result of the meiotic instability characteristic of freshly created allopolyploids. Here, an analysis of the somatic karyotype of a set of 33 early generation synthetic hexaploid wheats has revealed that variation, taking the form of sub-chromosomal fragments and inter-chromosomal translocations, can also arise in somatic tissue. A possible explanation for the observations was that karyotypic instability in early generation hexaploid wheat probably occurs not just during sporogenesis, but also in somatic tissue. However, other factors such as the use of nitrous oxide during the experiments could also cause the chromosome variations, and additional experimentation would be required to determine the most likely.
Collapse
Affiliation(s)
- Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, Sichuan 610066, P.R. China.,Key Laboratory of Biology and Genetic Breeding in Wheat (Southwest), Ministry of Agriculture, Chengdu, Sichuan 610066, P.R. China
| | - Laibin Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, P.R. China
| | - Jianmin Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, Sichuan 610066, P.R. China.,Key Laboratory of Biology and Genetic Breeding in Wheat (Southwest), Ministry of Agriculture, Chengdu, Sichuan 610066, P.R. China
| | - Yazhou Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, P.R. China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, P.R. China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, P.R. China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, P.R. China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, P.R. China
| | - Zongjun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, Sichuan 610066, P.R. China.,Key Laboratory of Biology and Genetic Breeding in Wheat (Southwest), Ministry of Agriculture, Chengdu, Sichuan 610066, P.R. China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, P.R. China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, P.R. China
| |
Collapse
|
15
|
Hao M, Zhang L, Ning S, Huang L, Yuan Z, Wu B, Yan Z, Dai S, Jiang B, Zheng Y, Liu D. The Resurgence of Introgression Breeding, as Exemplified in Wheat Improvement. FRONTIERS IN PLANT SCIENCE 2020; 11:252. [PMID: 32211007 PMCID: PMC7067975 DOI: 10.3389/fpls.2020.00252] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/18/2020] [Indexed: 05/21/2023]
Abstract
Breeding progress in most crops has relied heavily on the exploitation of variation within the species' primary gene pool, a process which is destined to fail once the supply of novel variants has been exhausted. Accessing a crop's secondary gene pool, as represented by its wild relatives, has the potential to greatly expand the supply of usable genetic variation. The crop in which this approach has been most strongly championed is bread wheat (Triticum aestivum), a species which is particularly tolerant of the introduction of chromosomal segments of exotic origin thanks to the genetic buffering afforded by its polyploid status. While the process of introgression can be in itself cumbersome, a larger problem is that linkage drag and/or imperfect complementation frequently impose a yield and/or quality penalty, which explains the reluctance of breeders to introduce such materials into their breeding populations. Thanks to the development of novel strategies to induce introgression and of genomic tools to facilitate the selection of desirable genotypes, introgression breeding is returning as a mainstream activity, at least in wheat. Accessing variation present in progenitor species has even been able to drive genetic advance in grain yield. The current resurgence of interest in introgression breeding can be expected to result in an increased deployment of exotic genes in commercial wheat cultivars.
Collapse
Affiliation(s)
- Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Ya’an, China
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Ya’an, China
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Ya’an, China
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
16
|
Prasad P, Savadi S, Bhardwaj SC, Gupta PK. The progress of leaf rust research in wheat. Fungal Biol 2020; 124:537-550. [PMID: 32448445 DOI: 10.1016/j.funbio.2020.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023]
Abstract
Leaf rust (also called brown rust) in wheat, caused by fungal pathogen Puccinia triticina Erikss. (Pt) is one of the major constraints in wheat production worldwide. Pt is widespread with diverse population structure and undergoes rapid evolution to produce new virulent races against resistant cultivars that are regularly developed to provide resistance against the prevailing races of the pathogen. Occasionally, the disease may also take the shape of an epidemic in some wheat-growing areas causing major economic losses. In the recent past, substantial progress has been made in characterizing the sources of leaf rust resistance including non-host resistance (NHR). Progress has also been made in elucidating the population biology of Pt and the mechanisms of wheat-Pt interaction. So far, ∼80 leaf rust resistance genes (Lr genes) have been identified and characterized; some of them have also been used for the development of resistant wheat cultivars. It has also been shown that a gene-for-gene relationship exists between individual wheat Lr genes and the corresponding Pt Avr genes so that no Lr gene can provide resistance unless the prevailing race of the pathogen carries the corresponding Avr gene. Several Lr genes have also been cloned and their products characterized, although no Avr gene corresponding a specific Lr gene has so far been identified. However, several candidate effectors for Pt have been identified and functionally characterized using genome-wide analyses, transcriptomics, RNA sequencing, bimolecular fluorescence complementation (BiFC), virus-induced gene silencing (VIGS), transient expression and other approaches. This review summarizes available information on different aspects of the pathogen Pt, genetics/genomics of leaf rust resistance in wheat including cloning and characterization of Lr genes and epigenetic regulation of disease resistance.
Collapse
Affiliation(s)
- Pramod Prasad
- Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Siddanna Savadi
- ICAR-Directorate of Cashew Research, Puttur, Karnataka, 574202, India
| | - S C Bhardwaj
- Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
17
|
Prieto P, Naranjo T. Analytical Methodology of Meiosis in Autopolyploid and Allopolyploid Plants. Methods Mol Biol 2020; 2061:141-168. [PMID: 31583658 DOI: 10.1007/978-1-4939-9818-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiosis is the cellular process responsible for producing gametes with half the genetic content of the parent cells. Integral parts of the process in most diploid organisms include the recognition, pairing, synapsis, and recombination of homologous chromosomes, which are prerequisites for balanced segregation of half-bivalents during meiosis I. In polyploids, the presence of more than two sets of chromosomes adds to the basic meiotic program of their diploid progenitors the possibility of interactions between more than two chromosomes and the formation of multivalents, which has implications on chromosome segregations and fertility. The mode of how chromosomes behave in meiosis in competitive situations has been the aim of many studies in polyploid species, some of which are considered here. But polyploids are also of interest in the study of meiosis because some of them tolerate the loss of chromosome segments or complete chromosomes as well as the addition of chromosomes from related species. Deletions allow to assess the effect of specific chromosome segments on meiotic behavior. Introgression lines are excellent materials to monitor the behavior of a given chromosome in the genetic background of the recipient species. We focus on this approach here as based on studies carried out in bread wheat, which is commonly used as a model species for meiosis studies. In addition to highlighting the relevance of the use of materials derived from polyploids in the study of meiosis, cytogenetics tools such as fluorescence in situ hybridization and the immunolabeling of proteins interacting with DNA are also emphasized.
Collapse
Affiliation(s)
- Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
18
|
Ivanova YN, Solovey LA, Loginova DB, Miroshnikova EE, Dubovets NI, Silkova OG. The creation and characterization of the bread wheat line with a centric translocation T2DL.2RL. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of bread wheat introgressions with alien genetic material from cultural and wild Triticeae species is an effective method for expanding the wheat gene pool necessary for breeding. To date, numerous collections of introgressions as substitutions and chromosome modifications have been obtained; however, the creation and study of wheat with new valuable traits still remain an important line of research. Rye Secale cereale L., whose chromosomes carry genes that control valuable economic and biological characteristics and properties, is widely used to produce new wheat forms. In this study, a wheat-rye translocation obtained by backcrossing the wheat-rye disomic-substitution line 2R(2D)1 with the variety Novosibirskaya 67 was characterized. The chromosomal composition of karyotypes was studied using fluorescent in situ hybridization and C-banding. Two centric translocations, derived from two long arms of chromosomes 2D and 2R, T2DL.2RL, were identified, the remaining 40 wheat chromosomes did not undergo modifications. Meiosis in the lines was stable. Chromosomes T2DL.2RL formed bivalents in all meiocytes, which confirmed their homology. The morphological characteristics of the spike in the T2DL.2RL line and Novosibirskaya 67 did not differ. A comparative analysis of productivity between the T2DL.2RL translocation line and the parental forms, Novosibirskaya 67 and the 2R(2D)1 line, was carried out. The T2DL.2RL line is inferior to Novosibirskaya 67 in all characters with different confidence levels. The productivity characters of the 2R(2D)1 line exceeded or did not differ from those of T2DL.2RL, however, the mass of 1000 grains was significantly lower. The results showed the effect of the T2DL.2RL translocation on the trait “plant height”. This character was significantly lower than that of Novosibirskaya 67 in two vegetation periods. Consequently, the T2DL.2RL translocation reduces plant height and productivity.
Collapse
Affiliation(s)
| | | | | | | | | | - O. G. Silkova
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State Agrarian University
| |
Collapse
|
19
|
Mirzaghaderi G, Mason AS. Broadening the bread wheat D genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1295-1307. [PMID: 30739154 DOI: 10.1007/s00122-019-03299-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/02/2019] [Indexed: 05/21/2023]
Abstract
Although Ae. tauschii has been extensively utilised for wheat breeding, the D-genome-containing allopolyploids have largely remained unexploited. In this review, we discuss approaches that can be used to exploit the D genomes of the different Aegilops species for the improvement of bread wheat. The D genome of allohexaploid bread wheat (Triticum aestivum, 2n = AABBDD) is the least diverse of the three wheat genomes and is unarguably less diverse than that of diploid progenitor Aegilops tauschii (2n = DD). Useful genetic variation and phenotypic traits also exist within each of the wheat group species containing a copy of the D genome: allopolyploid Aegilops species Ae. cylindrica (2n = DcDcCcCc), Ae. crassa 4x (2n = D1D1XcrXcr), Ae. crassa 6x (2n = D1D1XcrXcrDcrDcr), Ae. ventricosa (2n = DvDvNvNv), Ae. vavilovii (2n = D1D1XcrXcrSvSv) and Ae. juvenalis (2n = D1D1XcrXcrUjUj). Although Ae. tauschii has been extensively utilised for wheat breeding, the D-genome-containing allopolyploids have largely remained unexploited. Some of these D genomes appear to be modified relative to the bread wheat and Ae. tauschii D genomes, and others present in the allopolyploids may also contain useful variation as a result of adaptation to an allopolyploid, multi-genome environment. We summarise the genetic relationships, karyotypic variation and phenotypic traits known to be present in each of the D genome species that could be of relevance for bread wheat improvement and discuss approaches that can be used to exploit the D genomes of the different Aegilops species for the improvement of bread wheat. Better understanding of factors controlling chromosome inheritance and recombination in wheat group interspecific hybrids, as well as effective utilisation of new and developing genetics and genomics technologies, have great potential to improve the agronomic potential of the bread wheat D genome.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| |
Collapse
|
20
|
Kopecky D, Lukaszewski AJ. Misdivision of Telocentrics and Isochromosomes in Wheat. Cytogenet Genome Res 2019; 157:179-188. [PMID: 30799400 DOI: 10.1159/000497301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 11/19/2022] Open
Abstract
For normal transition through meiosis, chromosomes rely on pairing with their homologues. Chromosomes which fail to pair, univalents, behave irregularly and may undergo various types of breakage across their centromeres. Here, we analyzed the meiotic behavior of misdivision products themselves: isochromosomes and telocentrics in wheat. Both types of chromosomes behaved in the same fashion as standard 2-armed chromosomes. The 2 most frequent scenarios were separation of sister chromatids in anaphase I or monopolar/bipolar attachment of the univalent to the spindle apparatus with unseparated chromatids. Misdivision was rare, and its frequency appeared directly related to the size of the centromere. The previously deduced relationship between misdivision frequency and chromosome size was likely erroneous and can be explained by a general relationship between chromosome length and the size of its centromere. Pairing of identical arms in isochromosomes did not protect them from misdivision. It is not chiasmate pairing that protects from misdivision but mechanistic issues that arise through that pairing.
Collapse
|
21
|
Hanlon SL, Miller DE, Eche S, Hawley RS. Origin, Composition, and Structure of the Supernumerary B Chromosome of Drosophila melanogaster. Genetics 2018; 210:1197-1212. [PMID: 30249684 PMCID: PMC6283169 DOI: 10.1534/genetics.118.301478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/23/2018] [Indexed: 01/18/2023] Open
Abstract
The number of chromosomes carried by an individual species is one of its defining characteristics. Some species, however, can also carry supernumerary chromosomes referred to as B chromosomes. B chromosomes were recently identified in a laboratory stock of Drosophila melanogaster-an established model organism with a wealth of genetic and genomic resources-enabling us to subject them to extensive molecular analysis. We isolated the B chromosomes by pulsed-field gel electrophoresis and determined their composition through next-generation sequencing. Although these B chromosomes carry no known euchromatic sequence, they are rich in transposable elements and long arrays of short nucleotide repeats, the most abundant being the uncharacterized AAGAT satellite repeat. Fluorescent in situ hybridization on metaphase chromosome spreads revealed this repeat is located on chromosome 4, strongly suggesting the origin of the B chromosomes is chromosome 4 Cytological and quantitative comparisons of signal intensity between chromosome 4 and the B chromosomes supports the hypothesis that the structure of the B chromosome is an isochromosome. We also report the identification of a new B chromosome variant in a related laboratory stock. This B chromosome has a similar repeat signature as the original but is smaller and much less prevalent. We examined additional stocks with similar genotypes and did not find B chromosomes, but did find these stocks lacked the AAGAT satellite repeat. Our molecular characterization of D. melanogaster B chromosomes is the first step toward understanding how supernumerary chromosomes arise from essential chromosomes and what may be necessary for their stable inheritance.
Collapse
Affiliation(s)
- Stacey L Hanlon
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Danny E Miller
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington 98105
| | - Salam Eche
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
22
|
Türkösi E, Darko E, Rakszegi M, Molnár I, Molnár-Láng M, Cseh A. Development of a new 7BS.7HL winter wheat-winter barley Robertsonian translocation line conferring increased salt tolerance and (1,3;1,4)-β-D-glucan content. PLoS One 2018; 13:e0206248. [PMID: 30395616 PMCID: PMC6218033 DOI: 10.1371/journal.pone.0206248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Interspecific hybridization between bread wheat (Triticum aestivum, 2n = 42) and related species allows the transfer of agronomic and quality traits, whereby subsequent generations comprise an improved genetic background and can be directly applied in wheat breeding programmes. While wild relatives are frequently used as sources of agronomically favourable traits, cultivated species can also improve wheat quality and stress resistance. A salt-tolerant 'Asakaze'/'Manas' 7H disomic addition line (2n = 44) with elevated β-glucan content, but with low fertility and an unstable genetic background was developed in an earlier wheat-barley prebreeding programme. The aim of the present study was to take this hybridization programme further and transfer the favourable barley traits into a more stable genetic background. Taking advantage of the breakage-fusion mechanism of univalent chromosomes, the 'Rannaya' winter wheat 7B monosomic line was used as female partner to the 7H addition line male, leading to the development of a compensating wheat/barley Robertsonian translocation line (7BS.7HL centric fusion, 2n = 42) exhibiting higher salt tolerance and elevated grain β-glucan content. Throughout the crossing programme, comprising the F1-F4 generations, genomic in situ hybridization, fluorescence in situ hybridization and chromosome-specific molecular markers were used to trace and identify the wheat and barley chromatin. Investigations on salt tolerance during germination and on the (1,3;1,4)-β-D-glucan (mixed-linkage glucan [MLG]) content of the seeds confirmed the salt tolerance and elevated grain MLG content of the translocation line, which can be directly applied in current wheat breeding programmes.
Collapse
Affiliation(s)
- Edina Türkösi
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Eva Darko
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Marianna Rakszegi
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - István Molnár
- Maize Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Márta Molnár-Láng
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - András Cseh
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
23
|
Zhang W, Zhu X, Zhang M, Chao S, Xu S, Cai X. Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2381-2395. [PMID: 30109393 DOI: 10.1007/s00122-018-3160-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/03/2018] [Indexed: 05/09/2023]
Abstract
We physically dissected and mapped wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum based on meiotic homoeologous recombination, providing a unique physical framework for genome studies. Common wheat has a large and complex genome with narrow genetic diversity and various degrees of recombination between the A, B, and D subgenomes. This has limited the homologous recombination-based genome studies in wheat. Here, we exploited meiotic homoeologous recombination for molecular mapping of wheat chromosome 2B and its homoeologue 2S from Aegilops speltoides and 2E from Thinopyrum elongatum. The 2B-2S and 2B-2E recombination was induced by the ph1b mutant, and recovered using molecular markers and fluorescent genomic in situ hybridization (FGISH). A total of 112 2B-2S and 87 2B-2E recombinants involving different chromosome regions were developed and physically delineated by FGISH. The 2B-2S and 2B-2E recombination hotspots mapped to the subterminal regions on both arms. Recombination hotspots with the highest recombination rates mapped to the short arms. Eighty-three 2B-2S and 67 2B-2E recombinants were genotyped using the wheat 90 K SNP arrays. Based on the genotyping results and FGISH patterns of the recombinants, chromosomes 2B, 2S, and 2E were partitioned into 93, 66, and 46 bins, respectively. In total, 1037 SNPs physically mapped onto distinct bins of these three homoeologous chromosomes. A homoeologous recombination-based bin map was constructed for chromosome 2B, providing a unique physical framework for genome studies in wheat and its relatives. Meiotic homoeologous recombination also facilitates gene introgression to diversify the wheat genome for germplasm development. Therefore, homoeologous recombination-based studies enhance understanding of the wheat genome and its homoeologous counterparts from wild grasses, and expand the genetic variability of the wheat genome.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Shiaoman Chao
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND, 58102, USA
| | - Steven Xu
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND, 58102, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
24
|
Higgins EE, Clarke WE, Howell EC, Armstrong SJ, Parkin IAP. Detecting de Novo Homoeologous Recombination Events in Cultivated Brassica napus Using a Genome-Wide SNP Array. G3 (BETHESDA, MD.) 2018; 8:2673-2683. [PMID: 29907649 PMCID: PMC6071606 DOI: 10.1534/g3.118.200118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022]
Abstract
The heavy selection pressure due to intensive breeding of Brassica napus has created a narrow gene pool, limiting the ability to produce improved varieties through crosses between B. napus cultivars. One mechanism that has contributed to the adaptation of important agronomic traits in the allotetraploid B. napus has been chromosomal rearrangements resulting from homoeologous recombination between the constituent A and C diploid genomes. Determining the rate and distribution of such events in natural B. napus will assist efforts to understand and potentially manipulate this phenomenon. The Brassica high-density 60K SNP array, which provides genome-wide coverage for assessment of recombination events, was used to assay 254 individuals derived from 11 diverse cultivated spring type B. napus These analyses identified reciprocal allele gain and loss between the A and C genomes and allowed visualization of de novo homoeologous recombination events across the B. napus genome. The events ranged from loss/gain of 0.09 Mb to entire chromosomes, with almost 5% aneuploidy observed across all gametes. There was a bias toward sub-telomeric exchanges leading to genome homogenization at chromosome termini. The A genome replaced the C genome in 66% of events, and also featured more dominantly in gain of whole chromosomes. These analyses indicate de novo homoeologous recombination is a continuous source of variation in established Brassica napus and the rate of observed events appears to vary with genetic background. The Brassica 60K SNP array will be a useful tool in further study and manipulation of this phenomenon.
Collapse
Affiliation(s)
- Erin E Higgins
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Wayne E Clarke
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Elaine C Howell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
25
|
Pilkington SM, Crowhurst R, Hilario E, Nardozza S, Fraser L, Peng Y, Gunaseelan K, Simpson R, Tahir J, Deroles SC, Templeton K, Luo Z, Davy M, Cheng C, McNeilage M, Scaglione D, Liu Y, Zhang Q, Datson P, De Silva N, Gardiner SE, Bassett H, Chagné D, McCallum J, Dzierzon H, Deng C, Wang YY, Barron L, Manako K, Bowen J, Foster TM, Erridge ZA, Tiffin H, Waite CN, Davies KM, Grierson EP, Laing WA, Kirk R, Chen X, Wood M, Montefiori M, Brummell DA, Schwinn KE, Catanach A, Fullerton C, Li D, Meiyalaghan S, Nieuwenhuizen N, Read N, Prakash R, Hunter D, Zhang H, McKenzie M, Knäbel M, Harris A, Allan AC, Gleave A, Chen A, Janssen BJ, Plunkett B, Ampomah-Dwamena C, Voogd C, Leif D, Lafferty D, Souleyre EJF, Varkonyi-Gasic E, Gambi F, Hanley J, Yao JL, Cheung J, David KM, Warren B, Marsh K, Snowden KC, Lin-Wang K, Brian L, Martinez-Sanchez M, Wang M, Ileperuma N, Macnee N, Campin R, McAtee P, Drummond RSM, Espley RV, Ireland HS, Wu R, Atkinson RG, Karunairetnam S, Bulley S, Chunkath S, Hanley Z, Storey R, Thrimawithana AH, Thomson S, David C, Testolin R, Huang H, Hellens RP, Schaffer RJ. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics 2018; 19:257. [PMID: 29661190 PMCID: PMC5902842 DOI: 10.1186/s12864-018-4656-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 04/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) ‘Hongyang’ draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. Results A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within ‘Hongyang’ The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned ‘Hort16A’ cDNAs and comparing with the predicted protein models for Red5 and both the original ‘Hongyang’ assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised ‘Hongyang’ annotation, respectively, compared with 90.9% to the Red5 models. Conclusions Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4656-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah M Pilkington
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Simona Nardozza
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Lena Fraser
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Yongyan Peng
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Kularajathevan Gunaseelan
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Robert Simpson
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Jibran Tahir
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | - Kerry Templeton
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Marcus Davy
- PFR, 412 No 1 Road, Te Puke, Bay of Plenty, 3182, New Zealand
| | - Canhong Cheng
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mark McNeilage
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Davide Scaglione
- IGA Technology Services, Parco Scientifico e Tecnologico, Udine, Italy
| | - Yifei Liu
- South China Botanic Gardens, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Qiong Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Wuhan, China
| | - Paul Datson
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nihal De Silva
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | | | | | - David Chagné
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - John McCallum
- PFR, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Helge Dzierzon
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Yen-Yi Wang
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Lorna Barron
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kelvina Manako
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Judith Bowen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Toshi M Foster
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Zoe A Erridge
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Heather Tiffin
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Chethi N Waite
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Kevin M Davies
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | | | - Rebecca Kirk
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Marion Wood
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mirco Montefiori
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | | | | | | | - Christina Fullerton
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Wuhan, China
| | | | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nicola Read
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Roneel Prakash
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Don Hunter
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Huaibi Zhang
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | | | - Mareike Knäbel
- PFR, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Alastair Harris
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew Gleave
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Angela Chen
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Bart J Janssen
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Davin Leif
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Declan Lafferty
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Edwige J F Souleyre
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Francesco Gambi
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Jenny Hanley
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Joey Cheung
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Karine M David
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ben Warren
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ken Marsh
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Lara Brian
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Marcela Martinez-Sanchez
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mindy Wang
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nadeesha Ileperuma
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Nikolai Macnee
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Robert Campin
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Peter McAtee
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Revel S M Drummond
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Sakuntala Karunairetnam
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Sean Bulley
- PFR, 412 No 1 Road, Te Puke, Bay of Plenty, 3182, New Zealand
| | - Shayhan Chunkath
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Zac Hanley
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Roy Storey
- PFR, 412 No 1 Road, Te Puke, Bay of Plenty, 3182, New Zealand
| | - Amali H Thrimawithana
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Susan Thomson
- PFR, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Charles David
- PFR, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Raffaele Testolin
- IGA Technology Services, Parco Scientifico e Tecnologico, Udine, Italy.,Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Hongwen Huang
- South China Botanic Gardens, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China.,Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Wuhan, China
| | - Roger P Hellens
- Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, 4001, Australia
| | - Robert J Schaffer
- The New Zealand Institute for Plant & Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand. .,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
26
|
Li F, Li Y, Cao L, Liu P, Geng M, Zhang Q, Qiu L, Sun Q, Xie C. Simultaneous Transfer of Leaf Rust and Powdery Mildew Resistance Genes from Hexaploid Triticale Cultivar Sorento into Bread Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:85. [PMID: 29459877 PMCID: PMC5807375 DOI: 10.3389/fpls.2018.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/15/2018] [Indexed: 05/12/2023]
Abstract
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL) chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL) confers resistance only to powdery mildew at both stages. The chromosomal composition of BC2F3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization). Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, State Key Laboratory of Agro-Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Grewal S, Yang C, Edwards SH, Scholefield D, Ashling S, Burridge AJ, King IP, King J. Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:389-406. [PMID: 29101420 PMCID: PMC5787220 DOI: 10.1007/s00122-017-3009-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 05/07/2023]
Abstract
Genome-wide introgressions of Thinopyrum bessarabicum into wheat resulted in 12 recombinant lines. Cytological and molecular techniques allowed mapping of 1150 SNP markers across all seven chromosomes of the J genome. Thinopyrum bessarabicum (2n = 2x = 14, JJ) is an important source for new genetic variation for wheat improvement due to its salinity tolerance and disease resistance. Its practical utilisation in wheat improvement can be facilitated through development of genome-wide introgressions leading to a variety of different wheat-Th . bessarabicum translocation lines. In this study, we report the generation of 12 such wheat-Th . bessarabicum recombinant lines, through two different crossing strategies, which were characterized using sequential single colour and multi-colour genomic in situ hybridization (sc-GISH and mc-GISH), multi-colour fluorescent in situ hybridization (mc-FISH) and single nucleotide polymorphic (SNP) DNA markers. We also detected 13 lines containing different Th. bessarabicum chromosome aberrations through sc-GISH. Through a combination of molecular and cytological analysis of all the 25 lines containing Th. bessarabicum recombinants and chromosome aberrations we were able to physically map 1150 SNP markers onto seven Th. bessarabicum J chromosomes which were divided into 36 segmental blocks. Comparative analysis of the physical map of Th. bessarabicum and the wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed that Th. bessarabicum contains the 4/5 translocation also present in the A genome of wheat. These wheat-Th . bessarabicum recombinant lines and SNP markers provide a useful genetic resource for wheat improvement with the latter having a wider impact as a tool for detection of introgressions from other Thinopyrum species containing the J or a closely-related genome such as Thinopyrum intermedium (JrJrJvsJvsStSt) and Thinopyrum elongatum (EeEe), respectively.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Caiyun Yang
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stella Hubbart Edwards
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Duncan Scholefield
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephen Ashling
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | | - Ian P King
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Julie King
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
28
|
Hao M, Liu M, Luo J, Fan C, Yi Y, Zhang L, Yuan Z, Ning S, Zheng Y, Liu D. Introgression of Powdery Mildew Resistance Gene Pm56 on Rye Chromosome Arm 6RS Into Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1040. [PMID: 30065746 PMCID: PMC6056671 DOI: 10.3389/fpls.2018.01040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/26/2018] [Indexed: 05/18/2023]
Abstract
Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, represents a yield constraint in many parts of the world. Here, the introduction of a resistance gene carried by the cereal rye cv. Qinling chromosome 6R was transferred into wheat in the form of spontaneous balanced translocation induced in plants doubly monosomic for chromosomes 6R and 6A. The translocation, along with other structural variants, was detected using in situ hybridization and genetic markers. The differential disease response of plants harboring various fragments of 6R indicated that a powdery mildew resistance gene(s) was present on both arms of rye chromosome 6R. Based on karyotyping, the short arm gene, designated Pm56, was mapped to the subtelomere region of the arm. The Robertsonian translocation 6AL⋅6RS can be exploited by wheat breeders as a novel resistance resource.
Collapse
Affiliation(s)
- Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Meng Liu
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, China
| | - Chaolan Fan
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Yingjin Yi
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
- *Correspondence: Dengcai Liu,
| |
Collapse
|
29
|
Calderón MC, Rey MD, Martín A, Prieto P. Homoeologous Chromosomes From Two Hordeum Species Can Recognize and Associate During Meiosis in Wheat in the Presence of the Ph1 Locus. FRONTIERS IN PLANT SCIENCE 2018; 9:585. [PMID: 29765389 PMCID: PMC5938817 DOI: 10.3389/fpls.2018.00585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/13/2018] [Indexed: 05/20/2023]
Abstract
Understanding the system of a basic eukaryotic cellular mechanism like meiosis is of fundamental importance in plant biology. Moreover, it is also of great strategic interest in plant breeding since unzipping the mechanism of chromosome specificity/pairing during meiosis will allow its manipulation to introduce genetic variability from related species into a crop. The success of meiosis in a polyploid like wheat strongly depends on regular pairing of homologous (identical) chromosomes and recombination, processes mainly controlled by the Ph1 locus. This means that pairing and recombination of related chromosomes rarely occur in the presence of this locus, making difficult wheat breeding trough the incorporation of genetic variability from related species. In this work, we show that wild and cultivated barley chromosomes associate in the wheat background even in the presence of the Ph1 locus. We have developed double monosomic wheat lines carrying two chromosomes from two barley species for the same and different homoeology chromosome group, respectively. Genetic in situ hybridization revealed that homoeologous Hordeum chromosomes recognize each other and pair during early meiosis in wheat. However, crossing over does not occur at any time and they remained always as univalents during meiosis metaphase I. Our results suggest that the Ph1 locus does not prevent chromosome recognition and pairing but crossing over between homoeologous. The role of subtelomeres in chromosome recognition is also discussed.
Collapse
Affiliation(s)
- María C. Calderón
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Antonio Martín
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto
| |
Collapse
|
30
|
Danilova TV, Akhunova AR, Akhunov ED, Friebe B, Gill BS. Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:317-330. [PMID: 28776783 DOI: 10.1111/tpj.13657] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 05/19/2023]
Abstract
During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross-species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next-generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross-genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter- and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Alina R Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bernd Friebe
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
31
|
Wang J, Liu Y, Su H, Guo X, Han F. Centromere structure and function analysis in wheat-rye translocation lines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:199-207. [PMID: 28370580 DOI: 10.1111/tpj.13554] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 05/12/2023]
Abstract
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno-FISH, chromatin immunoprecipitation (ChIP)-qPCR and RT-PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat-derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere-specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group-1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
32
|
Liu W, Koo DH, Friebe B, Gill BS. A set of Triticum aestivum-Aegilops speltoides Robertsonian translocation lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2359-2368. [PMID: 27558595 DOI: 10.1007/s00122-016-2774-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Here we report the production of a set of wheat - Aegilops speltoides Robertsonian translocations covering all Ae. speltoides chromosome arms except the long arm of the homoeologous group 4 chromosome. Aegilops speltoides of the Poaceae family is the most probable donor of the B and G genomes of polyploid Triticum species and also an important source of resistance to diseases and pests of wheat. Previously, we reported the production of a complete set of T aestivum-Ae. speltoides chromosome addition lines and a set of disomic S(B/A)-genome chromosome substitution lines. The isolation of compensating Robertsonian translocations (RobTs) composed of alien chromosome arms translocated to homoeologous wheat chromosome arms is the important next step to exploit the genetic variation of a wild relative of wheat. Here, we report the development of molecular markers specific for the S-genome chromosomes and their use in the isolation of a set of 13 compensating wheat-Ae. speltoides RobTs covering the S genome of Ae. speltoides except for the long arm of chromosome 4S. Most of the RobTs were fully fertile and will facilitate mapping of genes to specific chromosome arms and also will accelerate the introgression of agronomically useful traits from Ae. speltoides into wheat by homologous recombination.
Collapse
Affiliation(s)
- Wenxuan Liu
- Laboratory of Cell and Chromosome Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, People's Republic of China
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| |
Collapse
|
33
|
Rahmatov M, Rouse MN, Nirmala J, Danilova T, Friebe B, Steffenson BJ, Johansson E. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1383-1392. [PMID: 27025509 DOI: 10.1007/s00122-016-2710-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/17/2016] [Indexed: 05/28/2023]
Abstract
A new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat as a 2DS·2RL Robertsonian translocation. Emerging new races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici), from Africa threaten global wheat (Triticum aestivum L.) production. To broaden the resistance spectrum of wheat to these widely virulent African races, additional resistance genes must be identified from all possible gene pools. From the screening of a collection of wheat-rye (Secale cereale L.) chromosome substitution lines developed at the Swedish University of Agricultural Sciences, we described the line 'SLU238' 2R (2D) as possessing resistance to many races of P. graminis f. sp. tritici, including the widely virulent race TTKSK (isolate synonym Ug99) from Africa. The breakage-fusion mechanism of univalent chromosomes was used to produce a new Robertsonian translocation: T2DS·2RL. Molecular marker analysis and stem rust seedling assays at multiple generations confirmed that the stem rust resistance from 'SLU238' is present on the rye chromosome arm 2RL. Line TA5094 (#101) was derived from 'SLU238' and was found to be homozygous for the T2DS·2RL translocation. The stem rust resistance gene on chromosome 2RL arm was designated as Sr59. Although introgressions of rye chromosome arms into wheat have most often been facilitated by irradiation, this study highlights the utility of the breakage-fusion mechanism for rye chromatin introgression. Sr59 provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.
Collapse
Affiliation(s)
- Mahbubjon Rahmatov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, PO Box 101, 23053, Alnarp, Sweden.
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
- Tajik Agrarian University, 146, Rudaki Ave., Dushanbe, 734017, Tajikistan.
| | - Matthew N Rouse
- United States Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jayaveeramuthu Nirmala
- United States Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA
| | - Tatiana Danilova
- Department of Plant Pathology, Wheat Genetic Resources Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetic Resources Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, PO Box 101, 23053, Alnarp, Sweden
| |
Collapse
|
34
|
Ghazali S, Mirzaghaderi G, Majdi M. Production of a novel Robertsonian translocation from Thinopyrum bessarabicum into bread wheat. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715060031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Mandáková T, Schranz ME, Sharbel TF, de Jong H, Lysak MA. Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:785-93. [PMID: 25864414 DOI: 10.1111/tpj.12849] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 05/19/2023]
Abstract
Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascending dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chromosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual B. stricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1-BS3 and BS5. The reduction of the chromosome number (from x = 8 to x = 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5. In apomictic 2n = 14 plants, CCP identifies the largely heterochromatic chromosome (Het) being one of the BS1 homologues with the expansion of pericentromeric heterochromatin. In apomictic B. polyantha (2n = 15), the Het has undergone a centric fission resulting in two smaller chromosomes - the submetacentric Het' and telocentric Del. Here we show that new chromosomes can be formed by a centric fission and can be fixed in populations due to the apomictic mode of reproduction.
Collapse
Affiliation(s)
- Terezie Mandáková
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - M Eric Schranz
- Plant Systematics Group, Wageningen University (WU), Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Timothy F Sharbel
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466, Germany
| | - Hans de Jong
- Laboratory of Genetics, Wageningen UR PSG, P.O. Box 16, Wageningen, 6700 AA, The Netherlands
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| |
Collapse
|
36
|
Türkösi E, Farkas A, Aranyi NR, Hoffmann B, Tóth V, Molnár-Láng M. Improvement of the agronomic traits of a wheat-barley centric fusion by introgressing the 3HS.3BL translocation into a modern wheat cultivar. Genome 2015; 57:601-7. [PMID: 25806585 DOI: 10.1139/gen-2014-0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 3HS.3BL spontaneous Robertsonian translocation obtained from the progenies of wheat-barley (Chinese Spring × Betzes) hybrids backcrossed with wheat line Mv9kr1 was transferred into the modern Martonvásár wheat cultivar Mv Bodri. The translocation was identified with molecular cytogenetic methods. The inheritance of the translocation was traced using genomic in situ hybridization. Fluorescence in situ hybridization using barley subtelomeric (HvT01) and centromere-specific [(AGGGAG)4] repetitive DNA probes confirmed that the complete barley chromosome arm was involved in the Robertsonian translocation. The wheat-specific repetitive DNA probes identified the presence of the whole wheat genome, except the short arm of the 3B chromosome. Genotypes homozygous for the centric fusion were selected, after which morphological analysis was performed on the plants and the yield components were measured in the field during two consecutive vegetative seasons. The introgression of the 3HS.3BL translocation into the modern wheat cultivar Mv Bodri significantly reduced the plant height due to the incorporation of the dwarfing allele RhtD1b. The presence of the 3HS.3BL translocation in the Mv9kr1 and Mv Bodri wheat background improved tillering and seeds per plant productivity in field experiments carried out in Martonvásár and Keszthely, Hungary.
Collapse
Affiliation(s)
- Edina Türkösi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | | | | | | | | | | |
Collapse
|
37
|
Silkova OG, Loginova DB. Structural and functional organization of centromeres in plant chromosomes. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414120114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Chumanova EV, Efremova TT, Trubacheeva NV, Arbuzova VS, Rosseeva LP. Chromosome composition of wheat-rye lines and the influence of rye chromosomes on disease resistance and agronomic traits. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414110039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Loginova DB, Silkova OG. Mitotic behavior of centromeres in meiosis as the fertility restoration mechanism in wheat-rye amphihaploids. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414070114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov E, Kalia B, Sabir J, Gill BS. SNP Discovery for mapping alien introgressions in wheat. BMC Genomics 2014; 15:273. [PMID: 24716476 PMCID: PMC4051138 DOI: 10.1186/1471-2164-15-273] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
Background Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). Results The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. Conclusion This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and monitoring of alien segments in crop breeding programs and further enable mapping and cloning novel genes from the wild relatives of crop plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
41
|
Silkova OG, Kabanenko YN, Loginova DV. The effect of wheat-rye substitution on chromosome elimination: An analysis of univalents’ behavior in wheat meiosis with dimonosomy and tetramonosomy. RUSS J GENET+ 2014. [DOI: 10.1134/s102279541402015x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Farkas A, Molnár I, Dulai S, Rapi S, Oldal V, Cseh A, Kruppa K, Molnár-Láng M. Increased micronutrient content (Zn, Mn) in the 3M(b)(4B) wheat - Aegilops biuncialis substitution and 3M(b).4BS translocation identified by GISH and FISH. Genome 2014; 57:61-7. [PMID: 24702063 DOI: 10.1139/gen-2013-0204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3M(b) Triticum aestivum L. (Mv9kr1) - Aegilops biuncialis Vis. (MvGB642) addition lines were crossed with the Chinese Spring ph1b mutant genotype (CSph1b) to produce 3M(b)-wheat chromosome rearrangements. In the F3 generation, 3M(b)(4B) substitution lines and 3M(b).4BS centric fusions were identified with in situ hybridization using repetitive and genomic DNA probes, and with SSR markers. Grain micronutrient analysis showed that the investigated Ae. biuncialis accession MvGB382 and the parental line MvGB642 are suitable gene sources for improving the grain micronutrient content of wheat, as they have higher K, Zn, Fe, and Mn contents. The results suggested that the Ae. biuncialis chromosome 3M(b) carries genes determining the grain micronutrient content, as the 3M(b).4BS centric fusion had significantly higher Zn and Mn contents compared with the recipient wheat cultivar. As yield-related traits, such as the number of tillers, the length of main spike, and spikelets per main spike, were similar in the 3M(b).4BS centric fusion and the parental wheat genotype, it can be concluded that this line could be used in pre-breeding programs aimed at enriching elite wheat cultivars with essential micronutrients.
Collapse
Affiliation(s)
- András Farkas
- a Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462 Martonvásár, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Förster S, Schumann E, Baumann M, Weber WE, Pillen K. Copy number variation of chromosome 5A and its association with Q gene expression, morphological aberrations, and agronomic performance of winter wheat cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:3049-3063. [PMID: 24078011 DOI: 10.1007/s00122-013-2192-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE Our investigations combine chromosome 5A copy number variation associated with relative 5A Q gene expression and morphological and agronomic data to characterize the occurrence of speltoid plants in winter wheat cultivars. The occurrence of speltoid aberrants in wheat breeding is a serious problem that may result in rejection of a candidate cultivar during licensing. The spear-shaped, hard threshing spike is caused by copy number reduction of the domestication gene Q, located on the long arm of wheat chromosome 5A. As a member of the APETALA2-like transcription factor family, the 5AQ gene is involved in flower development and pleiotropically controls other agronomic traits. In this report, a characterization of instability of chromosome 5A is given and effects due to the loss of the Q gene and other genes are discussed. Based on pyrosequencing, we correctly predicted the 5AQ copy number for 392 of 402 tested offspring plants (97.5 %) originating from single speltoid plants of eleven wheat cultivars. The findings indicate that the resulting speltoid plants were either reduced in chromosome 5A copy number or possessed a partial deletion of the distal end of chromosome arm 5AL. 5AQ specific real-time PCR analysis revealed varying transcription levels among cultivars. During early spike development, the relative transcription of the 5AQ gene was always lower in speltoids than in normal square headed wheat plants, most likely leading to the occurrence of the characteristic speltoid spike phenotype. The parallel analysis of 18 agronomic traits revealed pleiotropic effects governed by genes located on 5A. Our results demonstrate that through pyrosequencing one can identify aneuploidy or deletions within chromosome 5A to select against the occurrence of speltoid plants in wheat seedlings.
Collapse
Affiliation(s)
- Sebastian Förster
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany,
| | | | | | | | | |
Collapse
|
44
|
Liu W, Danilova TV, Rouse MN, Bowden RL, Friebe B, Gill BS, Pumphrey MO. Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1167-77. [PMID: 23358862 DOI: 10.1007/s00122-013-2044-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/09/2013] [Indexed: 05/23/2023]
Abstract
The emergence of the highly virulent Ug99 race complex of the stem rust fungus (Puccinia graminis Pers. f. sp. tritici Eriks. and Henn.) threatens wheat (Triticum aestivum L.) production worldwide. One of the effective genes against the Ug99 race complex is Sr44, which was derived from Thinopyrum intermedium (Host) Barkworth and D.R. Dewey and mapped to the short arm of 7J (designated 7J#1S) present in the noncompensating T7DS-7J#1L∙7J#1S translocation. Noncompensating wheat-alien translocations are known to cause genomic duplications and deficiencies leading to poor agronomic performance, precluding their direct use in wheat improvement. The present study was initiated to produce compensating wheat-Th. intermedium Robertsonian translocations with Sr44 resistance. One compensating RobT was identified consisting of the wheat 7DL arm translocated to the Th. intermedium 7J#1S arm resulting in T7DL∙7J#1S. The T7DL∙7J#1S stock was designated as TA5657. The 7DL∙7J#1S stock carries Sr44 and has resistance to the Ug99 race complex. This compensating RobT with Sr44 resistance may be useful in wheat improvement. In addition, we identified an unnamed stem rust resistance gene located on the 7J#1L arm that confers resistance not only to Ug99, but also to race TRTTF, which is virulent to Sr44. However, the action of the second gene can be modified by the presence of suppressors in the recipient wheat cultivars.
Collapse
Affiliation(s)
- Wenxuan Liu
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Homoeology of Thinopyrum junceum and Elymus rectisetus chromosomes to wheat and disease resistance conferred by the Thinopyrum and Elymus chromosomes in wheat. Chromosome Res 2012; 20:699-715. [DOI: 10.1007/s10577-012-9307-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 01/22/2023]
|
46
|
Liu C, Qi L, Liu W, Zhao W, Wilson J, Friebe B, Gill BS. Development of a set of compensating Triticum aestivum-Dasypyrum villosum Robertsonian translocation lines. Genome 2011; 54:836-44. [PMID: 21961939 DOI: 10.1139/g11-051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dasypyrum villosum (L.) Candargy, a wild relative of bread wheat ( Triticum aestivum L.), is the source of many agronomically important genes for wheat improvement. Production of compensating Robertsonian translocations (cRobTs), consisting of D. villosum chromosome arms translocated to homoeologous wheat chromosome arms, is one of the initial steps in exploiting this variation. The cRobTs for D. villosum chromosomes 1V, 4V, and 6V have been reported previously. Here we report attempted cRobTs for wheat - D. villosum chromosome combinations 2D/2V, 3D/3V, 5D/5V, and 7D/7V. The cRobTs for all D. villosum chromosomes were recovered except for the 2VS and 5VL arms. As was the case with the 6D/6V combination, no cRobTs involving 2D/2V chromosomes were recovered; instead, cRobT T2BS·2VL involving a nontargeted chromosome was recovered. All cRobTs are fertile, although the level of spike fertility and hundred kernel weight (HKW) varied among the lines. The set of cRobTs involving 12 of the 14 D. villosum chromosomes will be useful in wheat improvement programs. In fact, among the already reported cRobTs, T6AL·6VS carrying the Pm21 gene is deployed in agriculture and many useful genes have been reported on other cRobTs including resistance to stem rust race UG99 on T6AS·6VL.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, 66506-5502, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:159-67. [PMID: 21437597 DOI: 10.1007/s00122-011-1574-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/11/2011] [Indexed: 05/21/2023]
Abstract
Stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn.) (the causal agent of wheat stem rust) race Ug99 (also designated TTKSK) and its derivatives have defeated several important stem rust resistance genes widely used in wheat (Triticum aestivum L.) production, rendering much of the worldwide wheat acreage susceptible. In order to identify new resistance sources, a large collection of wheat relatives and genetic stocks maintained at the Wheat Genetic and Genomic Resources Center was screened. The results revealed that most accessions of the diploid relative Dasypyrum villosum (L.) Candargy were highly resistant. The screening of a set of wheat-D. villosum chromosome addition lines revealed that the wheat-D. villosum disomic addition line DA6V#3 was moderately resistant to race Ug99. The objective of the present study was to produce and characterize compensating wheat-D. villosum whole arm Robertsonian translocations (RobTs) involving chromosomes 6D of wheat and 6V#3 of D. villosum through the mechanism of centric breakage-fusion. Seven 6V#3-specific EST-STS markers were developed for screening F(2) progeny derived from plants double-monosomic for chromosomes 6D and 6V#3. Surprisingly, although 6D was the target chromosome, all recovered RobTs involved chromosome 6A implying a novel mechanism for the origin of RobTs. Homozygous translocations (T6AS·6V#3L and T6AL·6V#3S) with good plant vigor and full fertility were selected from F(3) families. A stem rust resistance gene was mapped to the long arm 6V#3L in T6AS·6V#3L and was designated as Sr52. Sr52 is temperature-sensitive and is most effective at 16°C, partially effective at 24°C, and ineffective at 28°C. The T6AS·6V#3L stock is a new source of resistance to Ug99, is cytogenetically stable, and may be useful in wheat improvement.
Collapse
Affiliation(s)
- L L Qi
- USDA-ARS, Northern Crop Science Lab, Fargo, ND 58102-2765, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu W, Jin Y, Rouse M, Friebe B, Gill B, Pumphrey MO. Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1537-45. [PMID: 21347655 DOI: 10.1007/s00122-011-1553-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/05/2011] [Indexed: 05/23/2023]
Abstract
The emergence of a new highly virulent race of stem rust (Puccinia graminis tritici), Ug99, rapid evolution of new Ug99 derivative races overcoming resistance of widely deployed genes, and spread towards important wheat growing areas now potentially threaten world food security. Exploiting novel genes effective against Ug99 from wild relatives of wheat is one of the most promising strategies for the protection of the wheat crop. A new source of resistance to Ug99 was identified in the short arm of the Aegilops searsii chromosome 3S(s) by screening wheat- Ae. searsii introgression libraries available as individual chromosome and chromosome arm additions to the wheat genome. For transferring this resistance gene into common wheat, we produced three double-monosomic chromosome populations (3A/3S(s), 3B/3S(s) and 3D/3S(s)) and then applied integrated stem rust screening, molecular maker analysis, and cytogenetic analysis to identify resistant wheat-Ae. searsii Robertsonian translocation. Three Robertsonian translocations (T3AL·3S(s)S, T3BL·3S(s)S and T3DL·3S(s)S) and one recombinant (T3DS-3S(s)S·3S(s)L) with stem rust resistance were identified and confirmed to be genetically compensating on the basis of genomic in situ hybridization, analysis of 3A, 3B, 3D and 3S(s)S-specific SSR/STS-PCR markers, and C-banding. In addition, nine SSR/STS-PCR markers of 3S(s)S-specific were developed for marker-assisted selection of the resistant gene. Efforts to reduce potential linkage drag associated with 3S(s)S of Ae. searsii are currently under way.
Collapse
Affiliation(s)
- Wenxuan Liu
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA
| | | | | | | | | | | |
Collapse
|
49
|
Molnár I, Benavente E, Molnár-Láng M. Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum--Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 2009; 52:156-65. [PMID: 19234564 DOI: 10.1139/g08-114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The frequency and pattern of irradiation-induced intergenomic chromosome rearrangements were analysed in the mutagenized (M0) and the first selfed (M1) generations of Triticum aestivum L. - Aegilops biuncialis Vis. amphiploids (2n = 70, AABBDDUbUbMbMb) by multicolour genomic in situ hybridization (mcGISH). mcGISH allowed the simultaneous discrimination of individual Ae. biuncialis genomes and wheat chromosomes. Dicentric chromosomes, fragments, and terminal translocations were most frequently induced by gamma-irradiation, but centric fusions and internal exchanges were also more abundant in the treated plants than in control amphiploids. Rearrangements involving the Ub genome (Ub-type aberrations) were more frequent than those involving the Mb genome (Mb-type aberrations). This irradiation sensitivity of the Ub chromosomes was attributed to their centromeric or near-centromeric regions, since Ub-type centric fusions were significantly more abundant than Mb-type centric fusions at all irradiation doses. Dicentrics completely disappeared, but centric fusions and translocations were well transmitted from M0 to M1. Identification of specific chromosomes involved in some rearrangements was attempted by sequential fluorescence in situ hybridization with a mix of repeated DNA probes and GISH on the same slide. The irradiated amphiploids formed fewer seeds than untreated plants, but normal levels of fertility were recovered in their offspring. The irradiation-induced wheat - Ae. biuncialis intergenomic translocations will facilitate the successful introgression of drought tolerance and other alien traits into bread wheat.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvasar, POB 19, Hungary.
| | | | | |
Collapse
|
50
|
Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1155-66. [PMID: 18712343 DOI: 10.1007/s00122-008-0853-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 07/16/2008] [Indexed: 05/24/2023]
Abstract
Fusarium head blight (FHB) resistance was identified in the alien species Leymus racemosus, and wheat-Leymus introgression lines with FHB resistance were reported previously. Detailed molecular cytogenetic analysis of alien introgressions T01, T09, and T14 and the mapping of Fhb3, a new gene for FHB resistance, are reported here. The introgression line T09 had an unknown wheat-Leymus translocation chromosome. A total of 36 RFLP markers selected from the seven homoeologous groups of wheat were used to characterize T09 and determine the homoeologous relationship of the introgressed Leymus chromosome with wheat. Only short arm markers for group 7 detected Leymus-specific fragments in T09, whereas 7AS-specific RFLP fragments were missing. C-banding and genomic in situ hybridization results indicated that T09 has a compensating Robertsonian translocation T7AL.7Lr#1S involving the long arm of wheat chromosome 7A and the short arm of Leymus chromosome 7Lr#1 substituting for chromosome arm 7AS of wheat. Introgression lines T01 (2n = 44) and T14 (2n = 44) each had two pairs of independent translocation chromosomes. T01 had T4BS.4BL-7Lr#1S + T4BL-7Lr#1S.5Lr#1S. T14 had T6BS.6BL-7Lr#1S + T6BL.5Lr#1S. These translocations were recovered in the progeny of the irradiated line Lr#1 (T5Lr#1S.7Lr#1S). The three translocation lines, T01, T09, and T14, and the disomic addition 7Lr#1 were consistently resistant to FHB in greenhouse point-inoculation experiments, whereas the disomic addition 5Lr#1 was susceptible. The data indicated that at least one novel FHB resistance gene from Leymus, designated Fhb3, resides in the distal region of the short arm of chromosome 7Lr#1, because the resistant translocation lines share a common distal segment of 7Lr#1S. Three PCR-based markers, BE586744-STS, BE404728-STS, and BE586111-STS, specific for 7Lr#1S were developed to expedite marker-assisted selection in breeding programs.
Collapse
Affiliation(s)
- L L Qi
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, USA
| | | | | | | | | |
Collapse
|