1
|
Goyal MM, Shen SA, Lehar M, Martinez A, Hiel H, Wang C, Liu Y, Wang C, Sun DQ. A Benchtop Round Window Model for Studying Magnetic Nanoparticle Transport to the Inner Ear. Laryngoscope 2024; 134:3355-3362. [PMID: 38379206 PMCID: PMC11875551 DOI: 10.1002/lary.31345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION The round window membrane (RWM) presents a significant barrier to the local application of therapeutics to the inner ear. We demonstrate a benchtop preclinical RWM model and evaluate superparamagnetic iron oxide nanoparticles (SPIONs) as vehicles for magnetically assisted drug delivery. METHODS Guinea pig RWM explants were inset into a 3D-printed dual chamber benchtop device. Custom-synthesized 7-nm iron core nanoparticles were modified with different polyethylene glycol chains to yield two sizes of SPIONs (NP-PEG600 and NP-PEG3000) and applied to the benchtop model with and without a magnetic field. Histologic analysis of the RWM was performed using transmission electron microscopy (TEM) and confocal microscopy. RESULTS Over a 4-h period, 19.5 ± 1.9% of NP-PEG3000 and 14.6 ± 1.9% of NP-PEG600 were transported across the guinea pig RWM. The overall transport increased by 1.45× to 28.4 ± 5.8% and 21.0 ± 2.0%, respectively, when a magnetic field was applied. Paraformaldehyde fixation of the RWM decreased transport significantly (NP-PEG3000: 7.6 ± 1.5%; NP-PEG600: 7.0 ± 1.6%). Confocal and electron microscopy analysis demonstrated nanoparticle localization throughout all cellular layers and layer-specific transport characteristics within RWM. CONCLUSION The guinea pig RWM explant benchtop model allows for targeted and practical investigations of transmembrane transport in the development of nanoparticle drug delivery vehicles. The presence of a magnetic field increases SPION delivery by 45%-50% in a nanoparticle size- and cellular layer-dependent manner. LEVEL OF EVIDENCE NA Laryngoscope, 134:3355-3362, 2024.
Collapse
Affiliation(s)
- Mukund M Goyal
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarek A Shen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Lehar
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angela Martinez
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hakim Hiel
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Canhui Wang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yulin Liu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chao Wang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Q Sun
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Tavazzani E, Spaiardi P, Contini D, Sancini G, Russo G, Masetto S. Precision medicine: a new era for inner ear diseases. Front Pharmacol 2024; 15:1328460. [PMID: 38327988 PMCID: PMC10848152 DOI: 10.3389/fphar.2024.1328460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
The inner ear is the organ responsible for hearing and balance. Inner ear dysfunction can be the result of infection, trauma, ototoxic drugs, genetic mutation or predisposition. Often, like for Ménière disease, the cause is unknown. Due to the complex access to the inner ear as a fluid-filled cavity within the temporal bone of the skull, effective diagnosis of inner ear pathologies and targeted drug delivery pose significant challenges. Samples of inner ear fluids can only be collected during surgery because the available procedures damage the tiny and fragile structures of the inner ear. Concerning drug administration, the final dose, kinetics, and targets cannot be controlled. Overcoming these limitations is crucial for successful inner ear precision medicine. Recently, notable advancements in microneedle technologies offer the potential for safe sampling of inner ear fluids and local treatment. Ultrasharp microneedles can reach the inner ear fluids with minimal damage to the organ, collect μl amounts of perilymph, and deliver therapeutic agents in loco. This review highlights the potential of ultrasharp microneedles, combined with nano vectors and gene therapy, to effectively treat inner ear diseases of different etiology on an individual basis. Though further research is necessary to translate these innovative approaches into clinical practice, these technologies may represent a true breakthrough in the clinical approach to inner ear diseases, ushering in a new era of personalized medicine.
Collapse
Affiliation(s)
- Elisa Tavazzani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ICS-Maugeri IRCCS, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Donatella Contini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giancarlo Russo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Dash S, Zuo J, Steyger PS. Local Delivery of Therapeutics to the Cochlea Using Nanoparticles and Other Biomaterials. Pharmaceuticals (Basel) 2022; 15:1115. [PMID: 36145336 PMCID: PMC9504900 DOI: 10.3390/ph15091115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss negatively impacts the well-being of millions of people worldwide. Systemic delivery of ototherapeutics has limited efficacy due to severe systemic side effects and the presence of the blood-labyrinth barrier that selectively limits or enables transfer of molecules between plasma and inner ear tissues and fluids. Local drug delivery into the middle and inner ear would be preferable for many newly emerging classes of drugs. Although the cochlea is a challenging target for drug delivery, recent technologies could provide a safe and efficacious delivery of ototherapeutics. Local drug delivery routes include topical delivery via the external auditory meatus, retroauricular, transtympanic, and intracochlear delivery. Many new drug delivery systems specifically for the inner ear are under development or undergoing clinical studies. Future studies into these systems may provide a means for extended delivery of drugs to preserve or restore hearing in patients with hearing disorders. This review outlines the anatomy of the (inner) ear, describes the various local delivery systems and routes, and various quantification methodologies to determine the pharmacokinetics of the drugs in the inner ear.
Collapse
Affiliation(s)
| | | | - Peter S. Steyger
- Translational Hearing Center, Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
4
|
Goyal MM, Zhou NJ, Vincent PFY, Hoffman ES, Goel S, Wang C, Sun DQ. Rationally Designed Magnetic Nanoparticles for Cochlear Drug Delivery: Synthesis, Characterization, and In Vitro Biocompatibility in a Murine Model. OTOLOGY & NEUROTOLOGY OPEN 2022; 2:e013. [PMID: 38516629 PMCID: PMC10950169 DOI: 10.1097/ono.0000000000000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/03/2022] [Indexed: 03/23/2024]
Abstract
Hypothesis Magnetic nanoparticles (MNPs) for cochlear drug delivery can be precisely engineered for biocompatibility in the cochlea. Background MNPs are promising drug delivery vehicles that can enhance the penetration of both small and macromolecular therapeutics into the cochlea. However, concerns exist regarding the application of oxidative, metal-based nanomaterials to delicate sensory tissues of the inner ear. Translational development of MNPs for cochlear drug deliver requires specifically tuned nanoparticles that are not cytotoxic to inner ear tissues. We describe the synthesis and characterization of precisely tuned MNP vehicles, and their in vitro biocompatibility in murine organ of Corti organotypic cultures. Methods MNPs were synthesized via 2-phase ligand transfer process with precise control of nanoparticle size. Core and hydrodynamic sizes of nanoparticles were characterized using electron microscopy and dynamic light scattering, respectively. In vitro biocompatibility was assayed via mouse organ of Corti organotypic cultures with and without an external magnetic field gradient. Imaging was performed using immunohistochemical labeling and confocal microscopy. Outer hair cell, inner hair cell, and spiral ganglion neurites were individually quantified. Results Monocore PEG-MNPs of 45 and 148 nm (mean hydrodynamic diameter) were synthesized. Organ of Corti cultures demonstrated preserved outer hair cell, inner hair cell, and neurite counts across 2 MNP sizes and doses, and irrespective of external magnetic field gradient. Conclusion MNPs can be custom-synthesized with precise coating, size, and charge properties specific for cochlear drug delivery while also demonstrating biocompatibility in vitro.
Collapse
Affiliation(s)
- Mukund M. Goyal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Nancy J. Zhou
- School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Philippe F. Y. Vincent
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins University, Baltimore, MD
| | - Elina S. Hoffman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Shiv Goel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Daniel Q. Sun
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Nguyen TN, Park JS. Intratympanic drug delivery systems to treat inner ear impairments. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Mohammed Y, Holmes A, Kwok PCL, Kumeria T, Namjoshi S, Imran M, Matteucci L, Ali M, Tai W, Benson HA, Roberts MS. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 2022; 186:114293. [PMID: 35483435 DOI: 10.1016/j.addr.2022.114293] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Epithelial surfaces protect exposed tissues in the body against intrusion of foreign materials, including xenobiotics, pollen and microbiota. The relative permeability of the various epithelia reflects their extent of exposure to the external environment and is in the ranking: intestinal≈ nasal ≥ bronchial ≥ tracheal > vaginal ≥ rectal > blood-perilymph barrier (otic), corneal > buccal > skin. Each epithelium also varies in their morphology, biochemistry, physiology, immunology and external fluid in line with their function. Each epithelium is also used as drug delivery sites to treat local conditions and, in some cases, for systemic delivery. The associated delivery systems have had to evolve to enable the delivery of larger drugs and biologicals, such as peptides, proteins, antibodies and biologicals and now include a range of physical, chemical, electrical, light, sound and other enhancement technologies. In addition, the quality-by-design approach to product regulation and the growth of generic products have also fostered advancement in epithelial drug delivery systems.
Collapse
|
7
|
Chen A, Liu W, Xu L, Hou Z, Fan Z, Wang H, Wang M. Comparison of the Pathway to the Inner Ear Between Postauricular and Intramuscular Injection of Dexamethasone in Guinea Pigs. Front Neurol 2022; 13:811626. [PMID: 35309581 PMCID: PMC8930822 DOI: 10.3389/fneur.2022.811626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPostauricular injection as a local therapy has been confirmed to be effective for inner ear diseases. However, the mechanism for the drugs entering the inner ears remains unknown. This study aims to compare the distribution of dexamethasone by intramuscular injection with that by postauricular injection, and explore the pathway of the drugs entering the inner ears.MethodsAn in vivo optical imaging system was used to conduct a time course observation to compare the distribution of dexamethasone by intramuscular injection with that by postauricular injection in male guinea pigs. The drug availability in the tympanic mucosa, tympanum, endolymphatic sac, and cochlea was observed by a confocal laser scanning microscope.ResultsThe local fluorescent intensity by postauricular injection was significantly higher in the inner ears, and lower in partial peripheral organs, than that by the intramuscular injection. The drug metabolism by postauricular injection exhibited an obviously sustained release effect in the inner ears. Drugs by postauricular injection might enter the endolymphatic sac through the posterior auricular artery and occipital artery, as well as the connections of the mastoid emissary vein, sigmoid sinus and endolymphatic sac.ConclusionMore drugs concentrated in the inner ear for longer therapeutic time and less systemic delivery implied more effective and less risk of side effects through postauricular injection than intramuscular injection safer for the treatment of inner ear diseases.
Collapse
Affiliation(s)
- Aiping Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Liu
- Shandong Institute of Otolaryngology, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiqiang Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaomin Fan
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haibo Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Institute of Otolaryngology, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingming Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Mingming Wang
| |
Collapse
|
8
|
Mukherjee S, Kuroiwa M, Oakden W, Paul BT, Noman A, Chen J, Lin V, Dimitrijevic A, Stanisz G, Le TN. Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury. Mol Ther 2022; 30:519-533. [PMID: 34298130 PMCID: PMC8821893 DOI: 10.1016/j.ymthe.2021.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Moderate noise exposure may cause acute loss of cochlear synapses without affecting the cochlear hair cells and hearing threshold; thus, it remains "hidden" to standard clinical tests. This cochlear synaptopathy is one of the main pathologies of noise-induced hearing loss (NIHL). There is no effective treatment for NIHL, mainly because of the lack of a proper drug-delivery technique. We hypothesized that local magnetic delivery of gene therapy into the inner ear could be beneficial for NIHL. In this study, we used superparamagnetic iron oxide nanoparticles (SPIONs) and a recombinant adeno-associated virus (AAV) vector (AAV2(quad Y-F)) to deliver brain-derived neurotrophic factor (BDNF) gene therapy into the rat inner ear via minimally invasive magnetic targeting. We found that the magnetic targeting effectively accumulates and distributes the SPION-tagged AAV2(quad Y-F)-BDNF vector into the inner ear. We also found that AAV2(quad Y-F) efficiently transfects cochlear hair cells and enhances BDNF gene expression. Enhanced BDNF gene expression substantially recovers noise-induced BDNF gene downregulation, auditory brainstem response (ABR) wave I amplitude reduction, and synapse loss. These results suggest that magnetic targeting of AAV2(quad Y-F)-mediated BDNF gene therapy could reverse cochlear synaptopathy after NIHL.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Maya Kuroiwa
- Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Wendy Oakden
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Brandon T. Paul
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ayesha Noman
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Joseph Chen
- Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Vincent Lin
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada,Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Andrew Dimitrijevic
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada,Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Greg Stanisz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Trung N. Le
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada,Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada,Corresponding author: Trung N. Le, Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room M1 102, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
9
|
Verma R, Vyas P, Kaur J, Javed MN, Sarafroz M, Ahmad M, Gilani SJ, Taleuzzaman M. Approaches for Ear-targeted Delivery Systems in Neurosensory Disorders to avoid Chronic Hearing Loss Mediated Neurological Diseases. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:479-491. [PMID: 34477535 DOI: 10.2174/1871527320666210903102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Hearing loss is a common audio-vestibular-related neurosensory disability of inner ears, in which patients exhibit clinical symptoms of dizziness, gait unsteadiness, and oscillopsia, at an initial stage. While, if such disorders are untreated for a prolonged duration then the progression of disease into a chronic state significantly decreases GABA level as well as an alteration in the neurotransmission of CNS systems. Hence, to control the progression of disease into a chronic approaches for timely and targeted delivery of the drugs at the site of action in the ear is now attracting the interest of neurologists for effective and safe treatment of such disorders. Among delivery systems, owing to small dimension, better penetration, rate-controlled release, higher bioavailability; nanocarriers are preferred to overcome delivery barriers, improvement in residence time, and enhanced the performance of loaded drugs. Subsequently, these carriers also stabilize encapsulated drugs while also provide an opportunity to modify the surface of carriers to favor guided direction for site-specific targeting. Contrary to this; conventional routes of drug delivery such as oral, intravenous, and intramuscular are poorer in performance because of inadequate blood supply to the inner ear and limited penetration of blood-inner ear barrier. CONCLUSION This review summarized novel aspects of non-invasive and biocompatible nanoparticles- based approaches for targeted delivery of drugs into the cochlea of the ear to reduce the rate, and extent of the emergence of any hearing loss mediated neurological disorders.
Collapse
Affiliation(s)
- Rishabh Verma
- Department of Pharmacology, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Preeti Vyas
- Department of Pharmacology, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Jasmeet Kaur
- Department of Pharmacognosy, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Md Noushad Javed
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Makhmur Ahmad
- Department of Pharmaceutics, Buraydah College of Pharmacy and Dentistry, P.O Box- 31717, Buraydah- 51452, Al-Qassim, Saudi Arabia
| | - Sadaf Jamal Gilani
- College of Basic Health Science, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur,342802. Rajasthan, India
| |
Collapse
|
10
|
Parker E, Mitchell CS, Smith JP, Carr E, Akbari R, Izadian A, Hajrasouliha AR. Modeling of external self-excitation and force generation on magnetic nanoparticles inside vitreous cavity. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9381-9393. [PMID: 34814350 DOI: 10.3934/mbe.2021461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purpose of this manuscript was to design a better method for recovery from rhegmatogenous retinal detachment (RRD) surgery. We attempted to achieve this by designing a helmet that can manipulate intraocular magnetic nanoparticles (MNPs) and create a magnetic tamponade, eliminating the need for postoperative head positioning. A simulated analysis was developed to predict the pattern of magnetic force applied to the magnetic nanoparticles by external magnetic field. No participants were involved in this study. Instead, magnetic flux and force data for three different helmet designs were collected using virtual simulation tools. A prototype helmet was then constructed and magnetic flux and force data were recorded and compared to virtual data. For both virtual and physical scenarios, magnitude and direction of the resulting forces were compared to determine which design created the controlled direction and strongest forces into the back of the eye. Of the three virtual designs, both designs containing a visor had greater force magnitude than magnet alone. Between both designs with visors, the visor with bends resulted in forces more directed at the back of the eye. The physical prototype helmet shared similar measurements to virtual simulation with minimal percent error (Average = 5.47%, Standard deviation = 0.03). Of the three designs, the visor with bends generated stronger forces directed at the back of the eye, which is most appropriate for creating a tamponade on the retina. We believe that this design has shown promising capability for manipulating intraocular MNPs for the purpose of creating a tamponade for RRD.
Collapse
Affiliation(s)
- Evan Parker
- School of Engineering and Technology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Chandler S Mitchell
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joshua P Smith
- School of Engineering and Technology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Evan Carr
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rasul Akbari
- School of Engineering and Technology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Afshin Izadian
- School of Engineering and Technology, Indiana University Purdue University, Indianapolis, IN 46202, USA
| | - Amir R Hajrasouliha
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev 2021; 50:8102-8146. [PMID: 34047311 DOI: 10.1039/d0cs00260g] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique because of its signal linearly propotional to the tracer mass, ability to generate positive contrast, low tissue background, unlimited tissue penetration depth, and lack of ionizing radiation. The sensitivity and resolution of MPI are highly dependent on the properties of magnetic nanoparticles (MNPs), and extensive research efforts have been focused on the design and synthesis of tracers. This review examines parameters that dictate the performance of MNPs, including size, shape, composition, surface property, crystallinity, the surrounding environment, and aggregation state to provide guidance for engineering MPI tracers with better performance. Finally, we discuss applications of MPI imaging and its challenges and perspectives in clinical translation.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Joanna Wang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| | - Jiacheng Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| |
Collapse
|
12
|
Nanocarriers for drug delivery to the inner ear: Physicochemical key parameters, biodistribution, safety and efficacy. Int J Pharm 2020; 592:120038. [PMID: 33159985 DOI: 10.1016/j.ijpharm.2020.120038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Despite the high incidence of inner ear disorders, there are still no dedicated medications on the market. Drugs are currently administered by the intratympanic route, the safest way to maximize drug concentration in the inner ear. Nevertheless, therapeutic doses are ensured for only a few minutes/hours using drug solutions or suspensions. The passage through the middle ear barrier strongly depends on drug physicochemical characteristics. For the past 15 years, drug encapsulation into nanocarriers has been developed to overcome this drawback. Nanocarriers are well known to sustain drug release and protect it from degradation. In this review, in vivo studies are detailed concerning nanocarrier biodistribution, their pathway mechanisms in the inner ear and the resulting drug pharmacokinetics. Key parameters influencing nanocarrier biodistribution are identified and discussed: nanocarrier size, concentration, surface composition and shape. Recent advanced strategies that combine nanocarriers with hydrogels, specific tissue targeting or modification of the round window permeability (cell-penetrating peptide, magnetic delivery) are explored. Most of the nanocarriers appear to be safe for the inner ear and provide a significant efficacy over classic formulations in animal models. However, many challenges remain to be overcome for future clinical applications.
Collapse
|
13
|
Shibata SB, West MB, Du X, Iwasa Y, Raphael Y, Kopke RD. Gene therapy for hair cell regeneration: Review and new data. Hear Res 2020; 394:107981. [DOI: 10.1016/j.heares.2020.107981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
|
14
|
An X, Zha D. Development of nanoparticle drug-delivery systems for the inner ear. Nanomedicine (Lond) 2020; 15:1981-1993. [PMID: 32605499 DOI: 10.2217/nnm-2020-0198] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hearing loss has become the most common sensory nerve disorder worldwide, with no effective treatment strategy. Low-permeability and limited blood supply to the blood-labyrinth barrier limit the effective delivery and efficacy of therapeutic drugs in the inner ear. Nanoparticle (NP)-based drugs have shown benefits of stable controlled release and functional surface modification, and NP-based delivery systems have become a research hotspot. In this review, we discuss the development of new targeted drug-delivery systems based on the biocompatibility and safety of different NPs in the cochlea, as well as the advantages and disadvantages of their prescription methods and approaches. We believe that targeted NP-based drug-delivery systems will be effective treatments for hearing loss.
Collapse
Affiliation(s)
- Xiaogang An
- Department of Otolaryngology - Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Dingjun Zha
- Department of Otolaryngology - Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| |
Collapse
|
15
|
Yilmaz S, Ichedef C, Karatay KB, Teksöz S. Polymer Coated Iron Nanoparticles: Radiolabeling & In vitro Studies. Curr Radiopharm 2020; 14:37-45. [PMID: 32351192 DOI: 10.2174/1874471013666200430094113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used for targeted drug delivery systems due to their unique magnetic properties. OBJECTIVE In this study, it has been aimed to develop a novel targeted 99mTc radiolabeled polymeric drug delivery system for Gemcitabine (GEM). METHODS Gemcitabine, an anticancer agent, was encapsulated into polymer nanoparticles (PLGA) together with iron oxide nanoparticles via double emulsion technique and then labeled with 99mTc. SPIONs were synthesized by reduction-coprecipitation method and encapsulated with oleic acid for surface modification. Size distribution and the morphology of the synthesized nanoparticles were characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM), respectively. The radiolabeling yield of SPION-PLGAGEM nanoparticles was determined via Thin Layer Radio Chromatography (TLRC). Cytotoxicity of GEM loaded SPION-PLGA was investigated on MDA-MB-231 and MCF7 breast cancer cells in vitro. RESULTS SEM images displayed that the average size of the drug-free nanoparticles was 40 nm and the size of the drug-loaded nanoparticles was 50 nm. The diameter of nanoparticles was determined as 366.6 nm by DLS, while zeta potential was found as 29 mV. SPION was successfully coated with PLGA, which was confirmed by FTIR. GEM encapsulation efficiency of SPION-PLGA was calculated as 4±0.16% by means of HPLC. Radiolabeling yield of SPION-PLGA-GEM nanoparticles was determined as 97.8±1.75% via TLRC. Cytotoxicity of GEM loaded SPION-PLGA was investigated on MDA-MB-231 and MCF7 breast cancer cells. SPION-PLGA-GEM showed high uptake on MCF-7, while the incorporation rate was increased for both cell lines with external magnetic field application. CONCLUSION 99mTc labeled SPION-PLGA nanoparticles loaded with GEM may overcome some of the obstacles in anti-cancer drug delivery because of their appropriate size, non-toxic, and superparamagnetic characteristics.
Collapse
Affiliation(s)
- Selin Yilmaz
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir, Turkey
| | - Cigdem Ichedef
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir, Turkey
| | - Kadriye Buşra Karatay
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir, Turkey
| | - Serap Teksöz
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, Izmir, Turkey
| |
Collapse
|
16
|
Szeto B, Chiang H, Valentini C, Yu M, Kysar JW, Lalwani AK. Inner ear delivery: Challenges and opportunities. Laryngoscope Investig Otolaryngol 2020; 5:122-131. [PMID: 32128438 PMCID: PMC7042639 DOI: 10.1002/lio2.336] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The treatment of inner ear disorders remains challenging due to anatomic barriers intrinsic to the bony labyrinth. The purpose of this review is to highlight recent advances and strategies for overcoming these barriers and to discuss promising future avenues for investigation. DATA SOURCES The databases used were PubMed, EMBASE, and Web of Science. RESULTS Although some studies aimed to improve systemic delivery using nanoparticle systems, the majority enhanced local delivery using hydrogels, nanoparticles, and microneedles. Developments in direct intracochlear delivery include intracochlear injection and intracochlear implants. CONCLUSIONS In the absence of a systemic drug that targets only the inner ear, the best alternative is local delivery that harnesses a combination of new strategies to overcome anatomic barriers. The combination of microneedle technology with hydrogel and nanoparticle delivery is a promising area for future investigation. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Harry Chiang
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Chris Valentini
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Michelle Yu
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Jeffrey W. Kysar
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
- Department of Mechanical Engineering, School of EngineeringColumbia UniversityNew YorkNew York
| | - Anil K. Lalwani
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
- Department of Mechanical Engineering, School of EngineeringColumbia UniversityNew YorkNew York
| |
Collapse
|
17
|
Simoni E, Valente F, Boge L, Eriksson M, Gentilin E, Candito M, Cazzador D, Astolfi L. Biocompatibility of glycerol monooleate nanoparticles as tested on inner ear cells. Int J Pharm 2019; 572:118788. [DOI: 10.1016/j.ijpharm.2019.118788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
|
18
|
Leso V, Fontana L, Ercolano ML, Romano R, Iavicoli I. Opportunities and challenging issues of nanomaterials in otological fields: an occupational health perspective. Nanomedicine (Lond) 2019; 14:2613-2629. [PMID: 31609676 DOI: 10.2217/nnm-2019-0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nanotechnology may offer innovative solutions to overcome the physiological and anatomical barriers that make the diagnosis and treatment of ear diseases an extremely challenging issue. However, despite the solutions provided by nano-applications, the still little-known toxicological behavior of nanomaterials raised scientific concerns regarding their biosafety for treated patients and exposed workers. Therefore, this review provides an overview on recent developments and upcoming opportunities in nanoscale otological applications, and critically assesses possible adverse effects of nanosized compounds on ear structures and hearing functionality. Although such preliminary data do not allow to draw definite strategies for the evaluation of nanomaterial ototoxicity, they can still be useful to improve scientific community and workforce awareness regarding possible nanomaterial adverse effects on ear.
Collapse
Affiliation(s)
- Veruscka Leso
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luca Fontana
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Italian Workers' Compensation Authority (INAIL), Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy
| | - Maria Luigia Ercolano
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Rosaria Romano
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
19
|
Leterme G, Guigou C, Oudot A, Collin B, Boudon J, Millot N, Geissler A, Belharet K, Bozorg Grayeli A. Superparamagnetic Nanoparticle Delivery to the Cochlea Through Round Window by External Magnetic Field: Feasibility and Toxicity. Surg Innov 2019; 26:646-655. [PMID: 31478462 DOI: 10.1177/1553350619867217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Introduction. The objective of this study was to evaluate the feasibility and toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) administered into the cochlea through the round window (RW) by an external magnetic field. Materials and Methods. In 5 Wistar rats, the left RW was punctured. SPIONs suspended in hyaluronic gel (5 mg/mL) were applied in the RW niche and covered by a muscle graft. The nanoparticles were mobilized using a rare earth magnet (0.54 T) held in 4 consecutive positions around the head. The right ear served as control. Hearing function was monitored by auditory brainstem responses (4-32 kHz tone bursts). Results. The auditory thresholds remained unchanged 1 month after the administration. The histological study of the cochleae showed that SPIONs were driven into the scala tympani in the basal turn, the second turn, and the apex. Conclusion. Superparamagnetic nanoparticles can be driven inside the cochlea toward the apex with a preserved hearing up to 1 month in rats.
Collapse
Affiliation(s)
- Gaëlle Leterme
- Otolaryngology Department, Dijon University Hospital, Dijon, France.,Laboratoire Imvia, Université Bourgogne-Franche-Comté, Dijon, France
| | - Caroline Guigou
- Otolaryngology Department, Dijon University Hospital, Dijon, France.,Laboratoire Imvia, Université Bourgogne-Franche-Comté, Dijon, France
| | | | - Bertrand Collin
- Centre Georges François Leclerc, Dijon, France.,ICMUB, UMR 6302 CNRS/Université Bourgogne Franche-Comté, Dijon, France
| | - Julien Boudon
- Laboratoire ICB, UMR 6303 CNRS/Université Bourgogne Franche-Comté, Dijon, France
| | - Nadine Millot
- Laboratoire ICB, UMR 6303 CNRS/Université Bourgogne Franche-Comté, Dijon, France
| | - Audrey Geissler
- Plateforme d'imagerie cellulaire CellImaP, Université Bourgogne-Franche-Comté, Dijon, France
| | - Karim Belharet
- Laboratoire PRISME, HEI Campus Centre, Châteauroux, France
| | - Alexis Bozorg Grayeli
- Otolaryngology Department, Dijon University Hospital, Dijon, France.,Laboratoire Imvia, Université Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
20
|
Jiang Z, Shan K, Song J, Liu J, Rajendran S, Pugazhendhi A, Jacob JA, Chen B. Toxic effects of magnetic nanoparticles on normal cells and organs. Life Sci 2019; 220:156-161. [DOI: 10.1016/j.lfs.2019.01.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
21
|
Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun X, Wang X, Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018; 8:3284-3307. [PMID: 29930730 PMCID: PMC6010979 DOI: 10.7150/thno.25220] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/29/2018] [Indexed: 12/23/2022] Open
Abstract
In the past decade, iron oxide nanoparticles (IONPs) have attracted more and more attention for their excellent physicochemical properties and promising biomedical applications. In this review, we summarize and highlight recent progress in the design, synthesis, biocompatibility evaluation and magnetic theranostic applications of IONPs, with a special focus on cancer treatment. Firstly, we provide an overview of the controlling synthesis strategies for fabricating zero-, one- and three-dimensional IONPs with different shapes, sizes and structures. Then, the in vitro and in vivo biocompatibility evaluation and biotranslocation of IONPs are discussed in relation to their chemo-physical properties including particle size, surface properties, shape and structure. Finally, we also highlight significant achievements in magnetic theranostic applications including magnetic resonance imaging (MRI), magnetic hyperthermia and targeted drug delivery. This review provides a background on the controlled synthesis, biocompatibility evaluation and applications of IONPs as cancer theranostic agents and an overview of the most up-to-date developments in this area.
Collapse
Affiliation(s)
- Wensheng Xie
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenhu Guo
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 10083, China
| | - Fei Gao
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi 710069, China
| | - Qin Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Bor-shuang Liaw
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiang Cai
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
Huang PC, Chaney EJ, Shelton RL, Boppart SA. Magnetomotive Displacement of the Tympanic Membrane Using Magnetic Nanoparticles: Toward Enhancement of Sound Perception. IEEE Trans Biomed Eng 2018; 65:2837-2846. [PMID: 29993404 DOI: 10.1109/tbme.2018.2819649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A novel hearing-aid scheme using magnetomotive nanoparticles (MNPs) as transducers in the tympanic membrane (TM) is proposed, aiming to noninvasively and directly induce a modulated vibration on the TM. METHODS In this feasibility study, iron oxide (Fe3O4) nanoparticles were applied on ex vivo rat TM tissues and allowed to diffuse over ∼2 h. Subsequently, magnetic force was exerted on the MNP-laden TM via a programmable electromagnetic solenoid to induce the magnetomotion. Optical coherence tomography (OCT), along with its phase-sensitive measurement capabilities, was utilized to visualize and quantify the nanometer-scale vibrations generated on the TM tissues. RESULTS The magnetomotive displacements induced on the TM were significantly greater than the baseline vibration of the TM without MNPs. In addition to a pure frequency tone, a chirped excitation and the corresponding spectroscopic response were also successfully generated and obtained. Finally, visualization of volumetric TM dynamics was achieved. CONCLUSION This study demonstrates the effectiveness of magnetically inducing vibrations on TMs containing iron oxide nanoparticles, manipulating the amplitude and the frequency of the induced TM motions, and the capability of assessing the magnetomotive dynamics via OCT. SIGNIFICANCE The results demonstrated here suggest the potential use of this noninvasive magnetomotive approach in future hearing aid applications. OCT can be utilized to investigate the magnetomotive dynamics of the TM, which may either enhance sound perception or magnetically induce the perception of sound without the need for acoustic speech signals.
Collapse
|
23
|
Bodmer D. An update on drug design strategies to prevent acquired sensorineural hearing loss. Expert Opin Drug Discov 2017; 12:1161-1167. [PMID: 28838250 DOI: 10.1080/17460441.2017.1372744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute sensorineural hearing loss is a dramatic event for the patient. Different pathologies might result in acute sensorineural hearing loss, such as sudden hearing loss, exposure to medications/drugs or loud sound. Current therapeutic approaches include steroids and hyperbaric oxygen in addition to other methods. Research activities of the past have shed light on the molecular mechanisms involved in damage to hair cells, the synapses at the hair cell spiral ganglion junction and the stria vascularis. Molecular events and signaling pathways which underlie damage to these structures have been discovered. Areas covered: This paper summarizes current research efforts involved in investigating the molecular mechanisms involved in acute sensorineural hearing loss. Expert opinion: While progress has been made in unraveling basic mechanisms involved in acute sensorineural hearing loss, it is difficult to translate basic concepts to the clinic. There are often conflicting data in animal and human studies on the effect of a given intervention. There is also a lack of high quality clinical trials (double blind, placebo controlled and high powered). However, this author is confident that research efforts will pay out and that some of these efforts will translate into new therapeutic options for patients with acute hearing loss.
Collapse
Affiliation(s)
- Daniel Bodmer
- a Department of Biomedicine, Head and Neck Surgery , University of Basel Hospital , Basel , Switzerland.,b Department of Otolaryngology, Head and Neck Surgery , University of Basel Hospital , Basel , Switzerland
| |
Collapse
|
24
|
Valente F, Astolfi L, Simoni E, Danti S, Franceschini V, Chicca M, Martini A. Nanoparticle drug delivery systems for inner ear therapy: An overview. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Li L, Chao T, Brant J, O'Malley B, Tsourkas A, Li D. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv Drug Deliv Rev 2017; 108:2-12. [PMID: 26796230 DOI: 10.1016/j.addr.2016.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/31/2023]
Abstract
Sensorineural hearing loss (SNHL) is one of the most common diseases, accounting for about 90% of all hearing loss. Leading causes of SNHL include advanced age, ototoxic medications, noise exposure, inherited and autoimmune disorders. Most of SNHL is irreversible and managed with hearing aids or cochlear implants. Although there is increased understanding of the molecular pathophysiology of SNHL, biologic treatment options are limited due to lack of noninvasive targeted delivery systems. Obstacles of targeted inner ear delivery include anatomic inaccessibility, biotherapeutic instability, and nonspecific delivery. Advances in nanotechnology may provide a solution to these barriers. Nanoparticles can stabilize and carry biomaterials across the round window membrane into the inner ear, and ligand bioconjugation onto nanoparticle surfaces allows for specific targeting. A newer technology, nanohydrogel, may offer noninvasive and sustained biotherapeutic delivery into specific inner ear cells. Nanohydrogel may be used for inner ear dialysis, a potential treatment for ototoxicity-induced SNHL.
Collapse
Affiliation(s)
- Lilun Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; New York University School of Medicine, New York, NY 10016, USA
| | - Tiffany Chao
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jason Brant
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Bert O'Malley
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Nguyen K, Kempfle JS, Jung DH, McKenna CE. Recent advances in therapeutics and drug delivery for the treatment of inner ear diseases: a patent review (2011-2015). Expert Opin Ther Pat 2016; 27:191-202. [PMID: 27855527 DOI: 10.1080/13543776.2017.1252751] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kim Nguyen
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Judith S. Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - David H. Jung
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Nguyen Y, Celerier C, Pszczolinski R, Claver J, Blank U, Ferrary E, Sterkers O. Superparamagnetic nanoparticles as vectors for inner ear treatments: driving and toxicity evaluation. Acta Otolaryngol 2016; 136:402-8. [PMID: 26982172 DOI: 10.3109/00016489.2015.1129069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Conclusion Super paramagnetic nanoparticles (MNP) are a promising vector to achieve controlled drug delivery into the cochlea. Objective The goal of the study was to evaluate the toxicological risk of MNP upon the inner ear. Methods Fe3O4-MNP displacement was studied in various catheter materials, shape, and solvent with a local magnetic field. EC5V cells (derived from the inner ear) were cultured with MNP (100 and 500 nm) at various concentrations or without MNP. Cell survival was assessed with a flow cytometry analysis. Localization of MNP within the cells was studied with confocal microscopy. In vivo, a single intra-cochlear administration of 200 nm MNP (3 × 10(10)MNP/mL, n = 8; 1.5 × 10(12) MNP/mL, n = 6) or saline (n = 14) was performed in guinea pigs. Hearing thresholds were assessed with auditory brainstem responses at Day 7. Results MNP could be concentrated at different locations of the catheter with sequential activation of solenoids. MNP were internalized in the cytoplasm, but not in the nuclei nor in endosomes at 48 h. After 48 h of incubation, no difference for cell survival between the groups was observed, whatever the MNP concentration. A size effect was observed with less survival in the 100 nm group. In guinea pigs at day 7, hearing threshold shift was not different in the three groups.
Collapse
Affiliation(s)
- Yann Nguyen
- a Inserm, 'Minimally Invasive Robot-based Hearing Rehabilitation', UMR-S 1159 , Paris , France
- b Sorbonne University, University Pierre et Marie Curie, UPMC Univ Paris 06 , Paris , France
- c Otolaryngology Department , Unit of Otology, Auditory Implants and Skull Base Surgery, Hospital Pitié Salpêtrière, 47-83 boulevard de l'Hôpital, Cedex 13, , Paris , France
| | - Charlotte Celerier
- a Inserm, 'Minimally Invasive Robot-based Hearing Rehabilitation', UMR-S 1159 , Paris , France
- b Sorbonne University, University Pierre et Marie Curie, UPMC Univ Paris 06 , Paris , France
- c Otolaryngology Department , Unit of Otology, Auditory Implants and Skull Base Surgery, Hospital Pitié Salpêtrière, 47-83 boulevard de l'Hôpital, Cedex 13, , Paris , France
| | - Romain Pszczolinski
- a Inserm, 'Minimally Invasive Robot-based Hearing Rehabilitation', UMR-S 1159 , Paris , France
- b Sorbonne University, University Pierre et Marie Curie, UPMC Univ Paris 06 , Paris , France
- c Otolaryngology Department , Unit of Otology, Auditory Implants and Skull Base Surgery, Hospital Pitié Salpêtrière, 47-83 boulevard de l'Hôpital, Cedex 13, , Paris , France
| | - Julien Claver
- d Inserm 'Kidney Immunopathology, Receptors and Inflammation", UMR-S 1149 , Paris , France
| | - Ulrick Blank
- d Inserm 'Kidney Immunopathology, Receptors and Inflammation", UMR-S 1149 , Paris , France
| | - Evelyne Ferrary
- a Inserm, 'Minimally Invasive Robot-based Hearing Rehabilitation', UMR-S 1159 , Paris , France
- b Sorbonne University, University Pierre et Marie Curie, UPMC Univ Paris 06 , Paris , France
- c Otolaryngology Department , Unit of Otology, Auditory Implants and Skull Base Surgery, Hospital Pitié Salpêtrière, 47-83 boulevard de l'Hôpital, Cedex 13, , Paris , France
| | - Olivier Sterkers
- a Inserm, 'Minimally Invasive Robot-based Hearing Rehabilitation', UMR-S 1159 , Paris , France
- b Sorbonne University, University Pierre et Marie Curie, UPMC Univ Paris 06 , Paris , France
- c Otolaryngology Department , Unit of Otology, Auditory Implants and Skull Base Surgery, Hospital Pitié Salpêtrière, 47-83 boulevard de l'Hôpital, Cedex 13, , Paris , France
| |
Collapse
|
28
|
Pyykkö I, Zou J, Schrott-Fischer A, Glueckert R, Kinnunen P. An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. Methods Mol Biol 2016; 1427:363-415. [PMID: 27259938 DOI: 10.1007/978-1-4939-3615-1_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles offer new possibilities for inner ear treatment as they can carry a variety of drugs, protein, and nucleic acids to inner ear. Nanoparticles are equipped with several functions such as targetability, immuno-transparency, biochemical stability, and ability to be visualized in vivo and in vitro. A group of novel peptides can be attached to the surface of nanoparticles that will enhance the cell entry, endosomal escape, and nuclear targeting. Eight different types of nanoparticles with different payload carrying strategies are available now. The transtympanic delivery of nanoparticles indicates that, depending on the type of nanoparticle, different migration pathways into the inner ear can be employed, and that optimal carriers can be designed according to the intended cargo. The use of nanoparticles as drug/gene carriers is especially attractive in conjunction with cochlear implantation or even as an inclusion in the implant as a drug/gene reservoir.
Collapse
Affiliation(s)
- Ilmari Pyykkö
- Department of Otolaryngology, University of Tampere and University Hospital of Tampere, Tampere, 33014, Finland. .,Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, Tampere, 33520, Finland.
| | - Jing Zou
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, 02150, Espoo, Finland
| | - Annelies Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Paavo Kinnunen
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, Finland
| |
Collapse
|
29
|
Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:329-55. [PMID: 25882768 DOI: 10.1002/cmmi.1638] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 12/16/2022]
Abstract
In the last decade, the biomedical applications of nanoparticles (NPs) (e.g. cell tracking, biosensing, magnetic resonance imaging (MRI), targeted drug delivery, and tissue engineering) have been increasingly developed. Among the various NP types, superparamagnetic iron oxide NPs (SPIONs) have attracted considerable attention for early detection of diseases due to their specific physicochemical properties and their molecular imaging capabilities. A comprehensive review is presented on the recent advances in the development of in vitro and in vivo SPION applications for molecular imaging, along with opportunities and challenges.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Biomaterials Science and Technology, University of Twente, The Netherlands
| | - Hajar Seyednejad
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Sophie Laurent
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000, Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041, Gosselies, Belgium
| | - Fatemeh Atyabi
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ata Saei
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Morteza Mahmoudi
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Ayoob AM, Borenstein JT. The role of intracochlear drug delivery devices in the management of inner ear disease. Expert Opin Drug Deliv 2014; 12:465-79. [PMID: 25347140 DOI: 10.1517/17425247.2015.974548] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Diseases of the inner ear include those of the auditory and vestibular systems, and frequently result in disabling hearing loss or vertigo. Despite a rapidly expanding pipeline of potential cochlear therapeutics, the inner ear remains a challenging organ for targeted drug delivery, and new technologies are required to deliver these therapies in a safe and efficacious manner. In addition to traditional approaches for direct inner ear drug delivery, novel microfluidics-based systems are under development, promising improved control over pharmacokinetics over longer periods of delivery, ultimately with application towards hair cell regeneration in humans. AREAS COVERED Advances in the development of intracochlear drug delivery systems are reviewed, including passive systems, active microfluidic technologies and cochlear prosthesis-mediated delivery. This article provides a description of novel delivery systems and their potential future clinical applications in treating inner ear disease. EXPERT OPINION Recent progresses in microfluidics and miniaturization technologies are enabling the development of wearable and ultimately implantable drug delivery microsystems. Progress in this field is being spurred by the convergence of advances in molecular biology, microfluidic flow control systems and models for drug transport in the inner ear. These advances will herald a new generation of devices, with near-term applications in preclinical models, and ultimately with human clinical use for a range of diseases of the inner ear.
Collapse
|
31
|
Shapiro B, Kulkarni S, Nacev A, Sarwar A, Preciado D, Depireux D. Shaping Magnetic Fields to Direct Therapy to Ears and Eyes. Annu Rev Biomed Eng 2014; 16:455-81. [DOI: 10.1146/annurev-bioeng-071813-105206] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- B. Shapiro
- Fischell Department of Bioengineering,
- The Institute for Systems Research (ISR), University of Maryland, College Park, Maryland 20742;
| | | | - A. Nacev
- Fischell Department of Bioengineering,
| | - A. Sarwar
- Fischell Department of Bioengineering,
| | - D. Preciado
- Otolaryngology, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC 20010
| | - D.A. Depireux
- The Institute for Systems Research (ISR), University of Maryland, College Park, Maryland 20742;
| |
Collapse
|
32
|
Yu Z, Yu M, Zhang Z, Hong G, Xiong Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. NANOSCALE RESEARCH LETTERS 2014; 9:343. [PMID: 25114637 PMCID: PMC4106659 DOI: 10.1186/1556-276x-9-343] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/26/2014] [Indexed: 05/23/2023]
Abstract
Nanoparticles have attracted increasing attention for local drug delivery to the inner ear recently. Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method followed by glutaraldehyde fixation or heat denaturation. The nanoparticles were spherical in shape with an average diameter of 492 nm. The heat-denatured nanoparticles had good cytocompatibility. The nanoparticles could adhere on and penetrate through the round window membrane of guinea pigs. The nanoparticles were analyzed as drug carriers to investigate the loading capacity and release behaviors. Rhodamine B was used as a model drug in this paper. Rhodamine B-loaded nanoparticles showed a controlled release profile and could be deposited on the osseous spiral lamina. We considered that the bovine serum albumin nanoparticles may have potential applications in the field of local drug delivery in the treatment of inner ear disorders.
Collapse
Affiliation(s)
- Zhan Yu
- Department of ENT, The Second Artillery General Hospital of Chinese People's Liberation Army, 16 Xinjiekou Outer Avenue, Beijing 100088, People's Republic of China
| | - Min Yu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, College of Basic Medicine, China Medical University, 92 Beier Road, Shenyang 110001, People's Republic of China
| | - Zhibao Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, The Key Laboratory of Biomedical Material of Tianjin, Tianjin 300192, People's Republic of China
| | - Ge Hong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, The Key Laboratory of Biomedical Material of Tianjin, Tianjin 300192, People's Republic of China
| | - Qingqing Xiong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, The Key Laboratory of Biomedical Material of Tianjin, Tianjin 300192, People's Republic of China
| |
Collapse
|
33
|
Pritz CO, Dudás J, Rask-Andersen H, Schrott-Fischer A, Glueckert R. Nanomedicine strategies for drug delivery to the ear. Nanomedicine (Lond) 2014; 8:1155-72. [PMID: 23837855 DOI: 10.2217/nnm.13.104] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The highly compartmentalized anatomy of the ear aggravates drug delivery, which is used to combat hearing-related diseases. Novel nanosized drug vehicles are thought to overcome the limitations of classic approaches. In this article, we summarize the nanotechnology-based efforts involving nano-objects, such as liposomes, polymersomes, lipidic nanocapsules and poly(lactic-co-glycolic acid) nanoparticles, as well as nanocoatings of implants to provide an efficient means for drug transfer in the ear. Modern strategies do not only enhance drug delivery efficiency, in the inner ear these vector systems also aim for specific uptake into hair cells and spiral ganglion neurons. These novel peptide-mediated strategies for specific delivery are reviewed in this article. Finally, the biosafety of these vector systems is still an outstanding issue, since long-term application to the ear has not yet been assessed.
Collapse
Affiliation(s)
- Christian Oliver Pritz
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Anichstraße 35, Austria
| | | | | | | | | |
Collapse
|
34
|
Pyykkö I, Zou J, Zhang Y, Zhang W, Feng H, Kinnunen P. Nanoparticle based inner ear therapy. World J Otorhinolaryngol 2013; 3:114-133. [DOI: 10.5319/wjo.v3.i4.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/22/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Synthetic nanoparticles can be used to carry drugs, genes, small interfering RNA (siRNA) and growth factors into the inner ear, to repair, restore and induce cellular regeneration. Nanoparticles (NPs) have been developed which are targetable to selected tissue, traceable in vivo, and equipped with controlled drug/gene release. The NPs are coated with a ‘stealth’ layer, and decorated with targeting ligands, markers, transfection agents and endosomal escape peptides. As payloads, genes such as the BDNF-gene, Math1-gene and Prestin-gene have been constructed and delivered in vitro. Short-hairpin RNA has been used in vitro to silence the negative regulator of Math1, the inhibitors of differentiation and DNA binding. In order to facilitate the passage of cargo from the middle ear to the inner ear, the oval window transports gadolinium chelate more efficiently than the round window and is the key element in introducing therapeutic agents into the vestibule and cochlea. Depending upon the type of NPs, different migration and cellular internalization pathways are employed, and optimal carriers should be designed depending on the cargo. The use of NPs as drug/gene/siRNA carriers is fascinating and can also be used as an intraoperative adjunct to cochlear implantation to attract the peripheral processes of the cochlear nerve.
Collapse
|
35
|
Du X, Li W, Gao X, West MB, Saltzman WM, Cheng CJ, Stewart C, Zheng J, Cheng W, Kopke RD. Regeneration of mammalian cochlear and vestibular hair cells through Hes1/Hes5 modulation with siRNA. Hear Res 2013; 304:91-110. [PMID: 23850665 DOI: 10.1016/j.heares.2013.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/16/2013] [Accepted: 06/27/2013] [Indexed: 12/31/2022]
Abstract
The Notch pathway is a cell signaling pathway determining initial specification and subsequent cell fate in the inner ear. Previous studies have suggested that new hair cells (HCs) can be regenerated in the inner ear by manipulating the Notch pathway. In the present study, delivery of siRNA to Hes1 and Hes5 using a transfection reagent or siRNA to Hes1 encapsulated within poly(lactide-co-glycolide acid) (PLGA) nanoparticles increased HC numbers in non-toxin treated organotypic cultures of cochleae and maculae of postnatal day 3 mouse pups. An increase in HCs was also observed in cultured cochleae and maculae of mouse pups pre-conditioned with a HC toxin (4-hydroxy-2-nonenal or neomycin) and then treated with the various siRNA formulations. Treating cochleae with siRNA to Hes1 associated with a transfection reagent or siRNA to Hes1 delivered by PLGA nanoparticles decreased Hes1 mRNA and up-regulated Atoh1 mRNA expression allowing supporting cells (SCs) to acquire a HC fate. Experiments using cochleae and maculae of p27(kip1)/-GFP transgenic mouse pups demonstrated that newly generated HCs trans-differentiated from SCs. Furthermore, PLGA nanoparticles are non-toxic to inner ear tissue, readily taken up by cells within the tissue of interest, and present a synthetic delivery system that is a safe alternative to viral vectors. These results indicate that when delivered using a suitable vehicle, Hes siRNAs are potential therapeutic molecules that may have the capacity to regenerate new HCs in the inner ear and possibly restore human hearing and balance function.
Collapse
Affiliation(s)
- Xiaoping Du
- Hough Ear Institute, P.O. Box 23206, Oklahoma City, OK 73112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs. Otol Neurotol 2013. [PMID: 23187928 DOI: 10.1097/mao.0b013e318277a40e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Magnetically susceptible PLGA nanoparticles will effectively target the round window membrane (RWM) for delivery of dexamethasone-acetate (Dex-Ac) to the scala tympani. BACKGROUND Targeted delivery of therapeutics to specific tissues can be accomplished using different targeting mechanisms. One technology includes iron oxide nanoparticles, susceptible to external magnetic fields. If a nanocomposite composed of biocompatible polymer (PLGA), magnetite, and Dex-Ac can be pulled into and across the mammalian RWM, drug delivery can be enhanced. METHOD In vitro targeting and release kinetics of PLGA-magnetite-Dex-Ac nanoparticles first were measured using a RWM model. Next, these optimized nanocomposites were targeted to the RWM by filling the niche in anesthetized guinea pigs. A permanent magnet was placed opposite the RWM for 1 hour. Cochlear soft tissues, perilymph, and RWM were harvested after euthanasia and steroid levels were measured using HPLC. RESULTS Membrane transport, in vitro, proved optimal targeting using a lower particle magnetite concentration (1 versus 5 or 10 mg/ml). In vivo targeted PLGA-magnetite-Dex-Ac particles had an average size of 482.8 ± 158 nm (DLS) and an average zeta potential -19.9 ± 3.3 mV. In 1 hour, there was significantly increased cochlear targeted delivery of Dex or Dex-Ac, compared with diffusion alone. CONCLUSION Superparamagnetic PLGA-magnetite-Dex-Ac nanoparticles under an external magnetic field (0.26 mT) for 1 hour significantly increased Dex-Ac delivery to the inner ear. The RWM was not completely permeated and also became loaded with nanocomposites, indicating that delivery to the cochlea would continue for weeks by PLGA degradation and passive diffusion.
Collapse
|
37
|
Sivakumar B, Aswathy RG, Nagaoka Y, Suzuki M, Fukuda T, Yoshida Y, Maekawa T, Sakthikumar DN. Multifunctional carboxymethyl cellulose-based magnetic nanovector as a theragnostic system for folate receptor targeted chemotherapy, imaging, and hyperthermia against cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3453-66. [PMID: 23409925 DOI: 10.1021/la305048m] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A multifunctional biocompatible nanovector based on magnetic nanoparticle and carboxymethyl cellulose (CMC) was developed. The nanoparticles have been characterized using TEM, SEM, DLS, FT-IR spectra, VSM, and TGA studies. We found that the synthesized carboxymethyl cellulose magnetic nanoparticles (CMC MNPs) were spherical in shape with an average size of 150 nm having low aggregation and superparamagnetic properties. We found that the folate-tagged CMC MNPs were delivered to cancer cells by a folate-receptor-mediated endocytosis mechanism. 5-FU was encapsulated as a model drug for delivering cytotoxicity, and we could demonstrate the sustained release of 5-FU. It was also observed that the FITC-labeled CMC MNPs could effectively enter cells, and the fate of nanoparticles was tracked with Lysotracker. The CMC MNPs could induce significant cell death when an alternating magnetic field was applied. These results indicate that the multifunctional CMC MNPs possess a high drug loading efficiency and high biocompatibility and with low cell cytotoxicity and can be considered to be promising candidates for CMC-based targeted drug delivery, cellular imaging, and magnetic hyperthermia (MHT).
Collapse
Affiliation(s)
- Balasubramanian Sivakumar
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012; 112:5818-78. [PMID: 23043508 DOI: 10.1021/cr300068p] [Citation(s) in RCA: 1161] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- L Harivardhan Reddy
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Université Paris-Sud XI, UMR CNRS, Faculté de Pharmacie, IFR, Châtenay-Malabry, France
| | | | | | | |
Collapse
|
39
|
Nanoparticle-based delivery for the treatment of inner ear disorders. Curr Opin Otolaryngol Head Neck Surg 2012; 19:388-96. [PMID: 21897248 DOI: 10.1097/moo.0b013e32834aa3a8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The delivery of targetable synthetic vectors that can carry a variety of drugs, proteins, and nucleic acids, such as DNA and small interfering RNA (siRNA), to mammalian cells is important as a potential therapeutic system that avoids the problems that are associated with viruses. RECENT FINDINGS The so-called multifunctional nanocarriers that are equipped with several functions, such as targetability, shelter from the immune system, and opsonization, and are capable of delivering payload across the nuclear envelope, have been synthesized. To improve transfection efficiency, a group of novel peptides have been attached to the surface of the carrier that will enhance endosomal escape and promote nuclear entry. The targeting of tropomyocin receptor kinase B (TrkB) with ligands enhances uptake in spiral ganglion cell culture. Treatment cargos have included growth factors such as the Math-1 gene, short hairpin RNA, and steroids. The problems with current synthetic nanocarriers are poorer selectivity, internalization, and transfection rate compared with viral vectors. SUMMARY Within a few years, when the synthetic vectors have been optimized, the first human drugs/proteins/gene product-based therapies will become available in a phase I study.
Collapse
|
40
|
Sarwar A, Nemirovski A, Shapiro B. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2012; 324:742-754. [PMID: 23335834 PMCID: PMC3547684 DOI: 10.1016/j.jmmm.2011.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm(3) volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm(3)), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths.
Collapse
Affiliation(s)
- A. Sarwar
- Fischell Department of Bioengineering, College Park
- University of Maryland, College Park
- Corresponding author:
| | - A. Nemirovski
- H. Milton Stewart School of Industrial and Systems Engineering (ISyE), Georgia Institute of Technology
| | - B. Shapiro
- Fischell Department of Bioengineering, College Park
- Institute for Systems Research, College Park
- University of Maryland, College Park
| |
Collapse
|
41
|
Roy S, Glueckert R, Johnston AH, Perrier T, Bitsche M, Newman TA, Saulnier P, Schrott-Fischer A. Strategies for drug delivery to the human inner ear by multifunctional nanoparticles. Nanomedicine (Lond) 2011; 7:55-63. [PMID: 22106854 DOI: 10.2217/nnm.11.84] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Hearing loss is a very significant health problem. The methods currently available for inner ear drug delivery are limited and a noninvasive cell-specific drug delivery strategy needs to be found. AIM In this study we investigated the ability of polymersomes, lipid core nanocapsules and hyperbranched poly-L-lysine to cross the round window membrane. MATERIALS & METHODS Nanoparticles (NPs) used in this study have different size and chemical compositions. Freshly frozen human temporal bones were used for this investigation. Intact human round window membrane within the freshly frozen human temporal bone served as an excellent model to test the membrane permeation and distribution within the tissues. RESULTS In this investigation we were able to visualize the NPs across the round window membrane. The NPs were subsequently found to be distributed in the sensory hair cells, nerve fibers and to other cells of the cochlea. CONCLUSION This finding raises hope in terms of future multifunctional NP-based drug delivery strategy to the human inner ear.
Collapse
Affiliation(s)
- Soumen Roy
- Department of Otolaryngology, Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The lack of an effective method of drug delivery has been a considerable obstacle in the development of novel therapeutics for inner ear diseases. However, several strategies have been investigated to achieve drug delivery to the inner ear, particularly for local application. Here, we review recent advances in the development of inner ear drug-delivery systems, focusing on biodegradable materials. Both synthetic and natural biodegradable materials have shown efficacy for inner ear drug delivery, resulting in an attenuation of hearing loss in animal models. We expect the further development of such drug-delivery systems to help translate the findings of experimental studies to clinical applications.
Collapse
|
43
|
Sun H, Huang A, Cao S. Current status and prospects of gene therapy for the inner ear. Hum Gene Ther 2011; 22:1311-22. [PMID: 21338273 DOI: 10.1089/hum.2010.246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inner ear diseases are common and often result in hearing disability. Sensorineural hearing loss is the main cause of hearing disability. So far, no effective treatment is available although some patients may benefit from a hearing aid equipped with a hearing amplifier or from cochlear implantation. Inner ear gene therapy has become an emerging field of study for the treatment of hearing disability. Numerous new discoveries and tremendous advances have been made in inner ear gene therapy including gene vectors, routes of administration, and therapeutic genes and targets. Gene therapy may become a treatment option for inner ear diseases in the near future. In this review, we summarize the current state of inner ear gene therapy including gene vectors, delivery routes, and therapeutic genes and targets by examining and analyzing publications on inner ear gene therapy from the literature and patent documents, and identify promising patents, novel techniques, and vital research projects. We also discuss the progress and prospects of inner ear gene therapy, the advances and shortcomings, with possible solutions in this field of research.
Collapse
Affiliation(s)
- Hong Sun
- Department of Otolaryngology, Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | | |
Collapse
|
44
|
Nacev A, Beni C, Bruno O, Shapiro B. The Behaviors of Ferro-Magnetic Nano-Particles In and Around Blood Vessels under Applied Magnetic Fields. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 2011; 323:651-668. [PMID: 21278859 PMCID: PMC3029028 DOI: 10.1016/j.jmmm.2010.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In magnetic drug delivery, therapeutic magnetizable particles are typically injected into the blood stream and magnets are then used to concentrate them to disease locations. The behavior of such particles in-vivo is complex and is governed by blood convection, diffusion (in blood and in tissue), extravasation, and the applied magnetic fields. Using physical first-principles and a sophisticated vessel-membrane-tissue (VMT) numerical solver, we comprehensively analyze in detail the behavior of magnetic particles in blood vessels and surrounding tissue. For any blood vessel (of any size, depth, and blood velocity) and tissue properties, particle size and applied magnetic fields, we consider a Krogh tissue cylinder geometry and solve for the resulting spatial distribution of particles. We find that there are three prototypical behaviors (blood velocity dominated, magnetic force dominated, and boundary-layer formation) and that the type of behavior observed is uniquely determined by three non-dimensional numbers (the magnetic-Richardson number, mass Péclet number, and Renkin reduced diffusion coefficient). Plots and equations are provided to easily read out which behavior is found under which circumstances (Figures 5, 6, 7, and 8). We compare our results to previously published in-vitro and in-vivo magnetic drug delivery experiments. Not only do we find excellent agreement between our predictions and prior experimental observations, but we are also able to qualitatively and quantitatively explain behavior that was previously not understood.
Collapse
Affiliation(s)
- A. Nacev
- Fischell Department of Bioengineering
- University of Maryland at College Park
| | - C. Beni
- Applied and Computational Mathematics, California Institute of Technology
| | - O. Bruno
- Applied and Computational Mathematics, California Institute of Technology
| | - B. Shapiro
- Fischell Department of Bioengineering
- Institute for Systems Research
- University of Maryland at College Park
| |
Collapse
|
45
|
Wang Y, Gao X, Kuriyavar S, Bourne D, Grady B, Chen K, Dormer K, Kopke RD. Incorporation, Release, and Effectiveness of Dexamethasone in Poly(Lactic-Co-Glycolic Acid) Nanoparticles for Inner Ear Drug Delivery. J Nanotechnol Eng Med 2011. [DOI: 10.1115/1.4002928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poly (D,L-lactide-co-glycolide) (PLGA) particles have been widely used as drug delivery carriers for a variety of payloads. Three forms of dexamethasone (DEX), namely, acetate, base, and phosphate, were incorporated into a PLGA matrix. First, we compared the drug loading efficiency and release kinetics of drug-loaded PLGA particles. Dexamethasone acetate (DEX-Ac) loaded particles exhibited a higher loading efficiency and a more linear release profile of drug as compared with the other forms of DEX particles. Also, we coincorporated oleic acid-coated superparamagnetic iron oxide nanoparticles (SPION) with DEX-Ac into PLGA submicron particles. No differences in size, zeta potential, drug loading, or release kinetics were found between particles prepared with and without SPION. Additionally, particles were applied to an in vitro cochlear, organotypic culture. DEX-Ac PLGA nanoparticles showed a protective effect against 4-hydroxynonenal induced hair cell damage. These results suggest a promising method for inner ear magnetic targeted treatment.
Collapse
Affiliation(s)
- Youdan Wang
- Hough Ear Institute, 3400 Northwest 56th Street, Oklahoma City, OK 73112
| | - Xinsheng Gao
- Hough Ear Institute, 3400 Northwest 56th Street, Oklahoma City, OK 73112
| | - Satish Kuriyavar
- Hough Ear Institute, 3400 Northwest 56th Street, Oklahoma City, OK 73112
| | - David Bourne
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 North Stonewall, Oklahoma City, OK 73117
| | - Brian Grady
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 East Boyd, Norman, OK 73069
| | - Kejian Chen
- Hough Ear Institute, 3400 Northwest 56th Street, Oklahoma City, OK 73112
| | - Kenneth Dormer
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104
| | - Richard D. Kopke
- Hough Ear Institute, 3400 Northwest 56th Street, Oklahoma City, OK 73112
| |
Collapse
|
46
|
Poe DS, Pyykkö I. Nanotechnology and the treatment of inner ear diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:212-221. [DOI: 10.1002/wnan.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Thaler M, Roy S, Fornara A, Bitsche M, Qin J, Muhammed M, Salvenmoser W, Rieger G, Fischer AS, Glueckert R. Visualization and analysis of superparamagnetic iron oxide nanoparticles in the inner ear by light microscopy and energy filtered TEM. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 7:360-9. [PMID: 21146633 DOI: 10.1016/j.nano.2010.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/25/2010] [Accepted: 11/22/2010] [Indexed: 12/16/2022]
Abstract
UNLABELLED Nanoparticles as potential carriers for local drug transfer are an alternative to systemic drug delivery into the inner ear. We report on the first in vitro tests of a new ferrogel consisting of superparamagnetic iron oxide nanoparticles (SPIONs) and a Pluronic(®) F127 (PF127) copolymer. Pluronic copolymers possess a unique viscosity-adjustable property that makes PF127 gels easy to handle compared to conventional cross-linked hydrogels. This ferrogel was successfully tested in cadaver human temporal bones as well as in organotypic explant cultures of mouse inner ears. SPIONs were identified by light microscopy and localized with different imaging modes in energy-filtered transmission electron microscopy. Our approach shows a promising possibility to use iron oxide nanoparticles, which are suitable for visualization and characterization at both the light- and electron-microscopic levels. FROM THE CLINICAL EDITOR The authors report the first in vitro tests of a new ferrogel consisting of superparamagnetic iron oxide nanoparticles (SPIONs) and a Pluronic® F127 (PF127) copolymer for drug delivery in the inner ear, demonstrasting a promising possibility to use iron oxide nanoparticles, which are suitable for visualization and characterization at both the light- and electron-microscopic levels.
Collapse
|
48
|
Tran LD, Hoang NMT, Mai TT, Tran HV, Nguyen NT, Tran TD, Do MH, Nguyen QT, Pham DG, Ha TP, Le HV, Nguyen PX. Nanosized magnetofluorescent Fe3O4–curcumin conjugate for multimodal monitoring and drug targeting. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Gao X, Wang Y, Chen K, Grady BP, Dormer KJ, Kopke RD. Magnetic Assisted Transport of PLGA Nanoparticles Through a Human Round Window Membrane Model. J Nanotechnol Eng Med 2010. [DOI: 10.1115/1.4002043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The lack of an effective method for inner ear drug delivery is a clinical problem for the prevention and treatment of hearing loss. With technology advances in nanomedicine and the use of hydrogels, more drug delivery options are becoming available. This study tested the feasibility of using a tripartite layer round window membrane (RWM) model to evaluate the effectiveness of a magnetic assisted transport of poly(lactic-co-glycolic acid) (PLGA)/superparamagnetic iron oxide nanoparticles (SPIONs). A RWM model was constructed as a three-cell-layer model with epithelial cells cultured on both sides of a small intestinal submucosal (SIS) matrix with fibroblasts seeded within the matrix. PLGA encapsulated coumarin-6/SPION nanoparticles 100 nm in diameter were formulated by an oil-in-water emulsion/solvent evaporation method and pulled through the RWM model using permanent magnets with a flux density 0.410 T at the pole face. Independent variables such as external magnetic force and exposure time, composition of hyaluronic acid (HA) hydrogel suspending media, and particle characteristics including magnetic susceptibility were studied. Magnetic assisted transport of coumarin-6 labeled magnetic nanoparticles through the RWM inserts increased 2.1-fold in 1 h compared with the controls. HA hydrogel did prevent particle accumulation on the surface of RWM in a magnetic field but also impaired the mobility of these particles. Greater particle susceptibility or stronger external magnetic fields did not significantly improve the transmembrane transport. A RWM model was designed consisting of a SIS membrane and three co-cultured layers of cells, which was structurally and physically similar to the human. PLGA particles (100 nm) with encapsulated ∼15 nm SPIONs were transported through this model with the assistance of an external magnet, allowing quantitative evaluation of prospective targeted drug delivery through the RWM via the assistance of a magnetic field.
Collapse
Affiliation(s)
- Xinsheng Gao
- Hough Ear Institute, INTEGRIS Health, 3400 Northwest 56th Street, Oklahoma City, OK 73112
| | - Youdan Wang
- Hough Ear Institute, INTEGRIS Health, 3400 Northwest 56th Street, Oklahoma City, OK 73112
| | - Kejian Chen
- Hough Ear Institute, INTEGRIS Health, 3400 Northwest 56th Street, Oklahoma City, OK 73112
| | - Brian P. Grady
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 East Boyd, Norman, OK 73019
| | - Kenneth J. Dormer
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104
| | - Richard D. Kopke
- Hough Ear Institute, INTEGRIS Health, 3400 Northwest 56th Street, Oklahoma City, OK 73112
| |
Collapse
|
50
|
Abstract
Delivery of medications to the inner ear has been an area of considerable growth in both the research and clinical realms during the past several decades. Systemic delivery of medication destined for treatment of the inner ear is the foundation on which newer delivery techniques have been developed. Because of systemic side effects, investigators and clinicians have begun developing and using techniques to deliver therapeutic agents locally. Alongside the now commonplace use of intratympanic gentamicin for Meniere's disease and the emerging use of intratympanic steroids for sudden sensorineural hearing loss, novel technologies, such as hydrogels and nanoparticles, are being explored. At the horizon of inner ear drug-delivery techniques, intracochlear devices that leverage recent advances in microsystems technology are being developed to apply medications directly into the inner ear. Potential uses for such devices include neurotrophic factor and steroid delivery with cochlear implantation, RNA interference technologies, and stem-cell therapy. The historical, current, and future delivery techniques and uses of drug delivery for treatment of inner ear disease serve as the basis for this review.
Collapse
|