1
|
Hu C, Yang S, Li S, Liu X, Liu Y, Chen Z, Chen H, Li S, He N, Cui H, Deng Y. Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int J Biol Macromol 2024; 276:133935. [PMID: 39029851 DOI: 10.1016/j.ijbiomac.2024.133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Virus-induced infectious diseases have a detrimental effect on public health and exert significant influence on the global economy. Therefore, the rapid and accurate detection of viruses is crucial for effectively preventing and diagnosing infections. Aptamer-based detection technologies have attracted researchers' attention as promising solutions. Aptamers, small single-stranded DNA or RNA screened via systematic evolution of ligands by exponential enrichment (SELEX), possess a high affinity towards their target molecules. Numerous aptamers targeting viral marker proteins or virions have been developed and widely employed in aptamer-based biosensors (aptasensor) for virus detection. This review introduces SELEX schemes for screening aptamers and discusses distinctive SELEX strategies designed explicitly for viral targets. Furthermore, recent advances in aptamer-based biosensing methods for detecting common viruses using different virus-specific aptamers are summarized. Finally, limitations and prospects associated with developing of aptamer-based biosensors are discussed.
Collapse
Affiliation(s)
- Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yuan Liu
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Mammari N, Krier Y, Albert Q, Devocelle M, Varbanov M, on behalf of the OEMONOM. Plant-Derived Antimicrobial Peptides as Potential Antiviral Agents in Systemic Viral Infections. Pharmaceuticals (Basel) 2021; 14:ph14080774. [PMID: 34451871 PMCID: PMC8400714 DOI: 10.3390/ph14080774] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have led to a better understanding of the mechanisms of action of viruses in systemic infections for the development of prevention strategies and very promising antiviral therapies. Viruses still remain one of the main causes of human diseases, mainly because the development of new vaccines is usually challenging and drug resistance has become an increasing concern in recent decades. Therefore, the development of potential antiviral agents remains crucial and is an unmet clinical need. One abundant source of potential therapeutic molecules are plants: they biosynthesize a myriad of compounds, including peptides which can have antimicrobial activity. Our objective is to summarize the literature on peptides with antiviral properties derived from plants and to identify key features of these peptides and their application in systemic viral infections. This literature review highlights studies including clinical trials which demonstrated that plant cyclotides have the ability to inhibit the growth of viruses causing human diseases, defensin-like peptides possess anti-HIV-1 activity, and lipid transfer proteins and some lectins exhibit a varied antimicrobial profile. To conclude, plant peptides remain interesting to explore in the context of emerging and re-emerging infectious diseases.
Collapse
Affiliation(s)
- Nour Mammari
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France;
| | - Ysaline Krier
- Faculté de Pharmacie, 7 Avenue de la Foret de Haye, 54505 Vandoeuvre-Les-Nancy, France;
| | - Quentin Albert
- Fungal Biodiversity and Biotechnology, INRAE/Aix-Marseille University, UMR1163, 13009 Marseille, France;
- CIRM-CF, INRAE/Aix Marseille University, UMR1163, 13009 Marseille, France
| | - Marc Devocelle
- SSPC (SFI Research Centre for Pharmaceuticals), V94T9PX Limerick, Ireland;
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, 123, St. Stephen’s Green, D02 YN77 Dublin 2, Ireland
| | - Mihayl Varbanov
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France;
- Correspondence:
| | | |
Collapse
|
3
|
Oancea CN, Butaru AE, Streba CT, Pirici D, Rogoveanu I, Diculescu MM, Gheonea DI. Global hepatitis C elimination: history, evolution, revolutionary changes and barriers to overcome. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:643-653. [PMID: 33817705 PMCID: PMC8112794 DOI: 10.47162/rjme.61.3.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
The fundamental discovery of the hepatitis C virus (HCV) in 1989 has led to winning this year's Nobel Prize in Medicine. This achievement guided all the steps in identifying the elements of the virus, in order to develop the treatment and to increase the screening solutions, which have slowed the exposure to the virus. The management of infection started with interferon-alpha (IFN-α), which has later enhanced by adding Ribavirin. Nowadays, HCV treatment is based on direct-acting antiviral agents (DAAs). Currently, HCV infection benefits of curative treatment, with which most patients can be cured. When speaking about hepatitis C future, we can say it is looking bright, considering all the progress that has been made in recent years and all the options that we have for curing all genotypes of HCV infection. The aim of this review is to sum up the historical characteristics of HCV discovery, the evolution of treatment and screening actions, gaps, and stages for achieving the international elimination target of the World Health Organization.
Collapse
Affiliation(s)
- Carmen Nicoleta Oancea
- Department of Scientific Research Methodology and Department of Pulmonology, University of Medicine and Pharmacy of Craiova, Romania;
| | | | | | | | | | | | | |
Collapse
|
4
|
Mignogna MD, Leuci S. Interface Between Oral and Systemic Disease. CONTEMPORARY ORAL MEDICINE 2019:67-136. [DOI: 10.1007/978-3-319-72303-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Prakash S, Shukla S, Ramakrishna V, Jain A. Distribution of hepatitis C genotypes in Uttar Pradesh, India; rare genotype 4 detected. J Med Virol 2018; 90:1875-1881. [PMID: 30085356 DOI: 10.1002/jmv.25277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/07/2018] [Indexed: 12/29/2022]
Abstract
AIM The worldwide prevalence of hepatitis C virus infection (HCV) is nearly 150 to 170 million cases. The prevalence of HCV infection in India is estimated to be around 1%. In India HCV genotype (GT)3 is the predominant GT followed by GT1. Our study aims to establish the prevalent GTs/subtypes of HCV circulating in Uttar Pradesh, North India, as reported from a tertiary care hospital. METHODS The study was a retrospective observational analysis of consecutive 404 HCV RNA positive cases referred to our hospital from September 2014 to April 2017, and was approved by an institutional ethics committee. Written informed consent was taken from each participant. Clinical and demographic details of these patients were recorded using predesigned questionnaires. All the laboratory testing was carried out on a stored serum sample of enrolled cases. Genotyping of all 404 strains was done by Sanger's sequencing of the core region. The phylogenetic analysis of 179 HCV strains with a high-quality sequencing data was performed. RESULTS The distributions of prevalent GTs/subtypes as noted in the current study were ( n [%]): GT1a, 101 (25%); GT1b, 12 (2.9%); GT1c, 1 (0.25%); GT3a, 275 (68.07%); GT3b, 9 (2.2%); GT3g, 2 (0.49%); GT3i, 3 (0.74%); and GT4a, 1 (0.24%). HCV GTs GT2, GT5, and GT6 were not detected from our region. Sequence analysis showed high genotypic variability in HCV GT3. Phylogenetic analysis showed that HCV GT3 and GT1 circulating in our region were related to Indian strains reported earlier. CONCLUSIONS HCV GTs 3a and 1a are the commonest circulating GTs in Uttar Pradesh, India.
Collapse
Affiliation(s)
- Shantanu Prakash
- Virology Research and Diagnostic Laboratory, Department of Microbiology, King George's Medical University, Lucknow, India
| | - Suruchi Shukla
- Virology Research and Diagnostic Laboratory, Department of Microbiology, King George's Medical University, Lucknow, India
| | - Vangala Ramakrishna
- Virology Research and Diagnostic Laboratory, Department of Microbiology, King George's Medical University, Lucknow, India
| | - Amita Jain
- Virology Research and Diagnostic Laboratory, Department of Microbiology, King George's Medical University, Lucknow, India
| |
Collapse
|
6
|
Suhail M, Sohrab SS, Qureshi A, Tarique M, Abdel-Hafiz H, Al-Ghamdi K, Qadri I. Association of HCV mutated proteins and host SNPs in the development of hepatocellular carcinoma. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 60:160-172. [PMID: 29501636 DOI: 10.1016/j.meegid.2018.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus plays a significant role in the development of hepatocellular carcinoma (HCC) globally. The pathogenic mechanisms of hepatocellular carcinoma with HCV infection are generally linked with inflammation, cytokines, fibrosis, cellular signaling pathways, and liver cell proliferation modulating pathways. HCV encoded proteins (Core, NS3, NS4, NS5A) interact with a broad range of hepatocytes derived factors to modulate an array of activities such as cell signaling, DNA repair, transcription and translational regulation, cell propagation, apoptosis, membrane topology. These four viral proteins are also implicated to show a strong conversion potential in tissue culture. Furthermore, Core and NS5A also trigger the accretion of the β-catenin pathway as a common target to contribute viral induced transformation. There is a strong association between HCV variants within Core, NS4, and NS5A and host single nucleotide polymorphisms (SNPs) with the HCC pathogenesis. Identification of such viral mutants and host SNPs is very critical to determine the risk of HCC and response to antiviral therapy. In this review, we highlight the association of key variants, mutated proteins, and host SNPs in development of HCV induced HCC. How such viral mutants may modulate the interaction with cellular host machinery is also discussed.
Collapse
Affiliation(s)
- Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, PO Box 80216, Jeddah 21589, Saudi Arabia
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, PO Box 80216, Jeddah 21589, Saudi Arabia
| | - Abid Qureshi
- Biomedical Informatics Centre, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Mohd Tarique
- Department of Surgery, Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Hany Abdel-Hafiz
- Dept of Medicine, University of Colorado Denver, Aurora, CO 80045, United States
| | - Khalid Al-Ghamdi
- Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
7
|
de Souza TLF, de Lima SMB, Braga VLDA, Peabody DS, Ferreira DF, Bianconi ML, Gomes AMDO, Silva JL, de Oliveira AC. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein. PeerJ 2016; 4:e2670. [PMID: 27867765 PMCID: PMC5111903 DOI: 10.7717/peerj.2670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. METHODS Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. RESULTS The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. DISCUSSION Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.
Collapse
Affiliation(s)
- Theo Luiz Ferraz de Souza
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vanessa L. de Azevedo Braga
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David S. Peabody
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, United States
| | - Davis Fernandes Ferreira
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. Lucia Bianconi
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Marco de Oliveira Gomes
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Cheble de Oliveira
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
de Almeida JPS, Liberatti LS, Barros FEN, Kallaur AP, Lozovoy MAB, Scavuzzi BM, Panis C, Reiche EMV, Dichi I, Simão ANC. Profile of oxidative stress markers is dependent on vitamin D levels in patients with chronic hepatitis C. Nutrition 2015; 32:362-7. [PMID: 26847403 DOI: 10.1016/j.nut.2015.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/09/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Although vitamin D deficiency can change liver injury progression in patients with hepatitis C virus (HCV), the main molecular mechanisms involved are largely unknown. The first aim of this study was to evaluate the association between oxidative stress and hypovitaminosis D in patients with HCV. The second aim was to verify whether oxidative stress is involved in the molecular mechanisms related to liver injury. METHODS The study included 147 participants: 89 controls and 58 patients with HCV (vitamin D < 30, n = 32; vitamin D > 30, n = 26). RESULTS Patients with HCV and hypovitaminosis D presented significantly higher aminotransferase-to-platelet ratio index (APRI; P = 0.0464) and viral load (P = 0.0426) levels than patients with HCV without hypovitaminosis D. Regarding oxidative stress, HCV patients with hypovitaminosis D had higher advanced oxidation protein products (P = 0.0409), nitric oxide metabolites (P = 0.0206) levels, and oxidative stress index (P = 0.0196), whereas total radical-trapping antioxidant parameter (P = 0.0446) levels were significantly lower than HCV patients without hypovitaminosis D. Vitamin D in patients with HCV showed inverse correlations with levels of iron (r = -0.407, P = 0.0285), ferritin (r = -0.383, P = 0.0444), APRI (r = -0.453, P = 0.0154) and plasma lipid hydroperoxides levels (r = -0.426, P = 0.0189). CONCLUSION Vitamin D insufficiency contributes to the inflammatory process and oxidative stress imbalance in patients with HCV. The profile of oxidative stress markers in these patients depends on vitamin D levels, which probably change intracellular signalling pathways and increase inflammation and liver injury.
Collapse
Affiliation(s)
- Jorge P Sales de Almeida
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, University of Londrina, Paraná, Brazil
| | - Lucas Silva Liberatti
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, University of Londrina, Paraná, Brazil
| | | | - Ana Paula Kallaur
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, University of Londrina, Paraná, Brazil
| | - Marcell A Batisti Lozovoy
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, University of Londrina, Paraná, Brazil
| | | | - Carolina Panis
- Department of Internal Medicine, Health Sciences Center, University of Londrina, Paraná, Brazil
| | - Edna Maria V Reiche
- Department of Internal Medicine, Health Sciences Center, University of Londrina, Paraná, Brazil
| | - Isaias Dichi
- Department of Internal Medicine, Health Sciences Center, University of Londrina, Paraná, Brazil
| | - Andréa Name Colado Simão
- Department of Pathology, Clinical Analysis and Toxicology, University of Londrina, Paraná, Brazil.
| |
Collapse
|
9
|
Alcohol induced hepatic degeneration in a hepatitis C virus core protein transgenic mouse model. Int J Mol Sci 2014; 15:4126-41. [PMID: 24608925 PMCID: PMC3975388 DOI: 10.3390/ijms15034126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/08/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) has become a major public health issue. It is prevalent in most countries. HCV infection frequently begins without clinical symptoms, before progressing to persistent viremia, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) in the majority of patients (70% to 80%). Alcohol is an independent cofactor that accelerates the development of HCC in chronic hepatitis C patients. The purpose of the current study was to evaluate ethanol-induced hepatic changes in HCV core-Tg mice and mutant core Tg mice. Wild type (NTG), core wild-Tg mice (TG-K), mutant core 116-Tg mice (TG-116) and mutant core 99-Tg mice (TG-99) were used in this investigation. All groups were given drinking water with 10% ethanol and 5% sucrose for 13 weeks. To observe liver morphological changes, we performed histopathological and immunohistochemical examinations. Histopathologically, NTG, TG-K and TG-116 mice showed moderate centrilobular necrosis, while severe centrilobular necrosis and hepatocyte dissociation were observed in TG-99 mice with increasing lymphocyte infiltration and piecemeal necrosis. In all groups, a small amount of collagen fiber was found, principally in portal areas. None of the mice were found to have myofibroblasts based on immunohistochemical staining specific for α-SMA. CYP2E1-positive cells were clearly detected in the centrilobular area in all groups. In the TG-99 mice, we also observed cells positive for CK8/18, TGF-β1 and phosphorylated (p)-Smad2/3 and p21 around the necrotic hepatocytes in the centrilobular area (p < 0.01). Based on our data, alcohol intake induced piecemeal necrosis and hepatocyte dissociation in the TG-99 mice. These phenomena involved activation of the TGF-β1/p-Smad2/3/p21 signaling pathway in hepatocytes. Data from this study will be useful for elucidating the association between alcohol intake and HCV infection.
Collapse
|
10
|
Fernandez-Ponce C, Dominguez-Villar M, Aguado E, Garcia-Cozar F. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells. PLoS One 2014; 9:e85191. [PMID: 24465502 PMCID: PMC3896374 DOI: 10.1371/journal.pone.0085191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/30/2013] [Indexed: 12/11/2022] Open
Abstract
Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(low)PD-1(high)TIM-3(high) regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.
Collapse
Affiliation(s)
- Cecilia Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Margarita Dominguez-Villar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Francisco Garcia-Cozar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| |
Collapse
|
11
|
Iosub-Amir A, Friedler A. Protein–protein interactions of ASPP2: an emerging therapeutic target. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00147h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ASPP2 induces apoptosis and is downregulated in many types of cancer, making it a promising target for anti-cancer drugs.
Collapse
Affiliation(s)
- Anat Iosub-Amir
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| | - Assaf Friedler
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| |
Collapse
|
12
|
Benzoubir N, Lejamtel C, Battaglia S, Testoni B, Benassi B, Gondeau C, Perrin-Cocon L, Desterke C, Thiers V, Samuel D, Levrero M, Bréchot C, Bourgeade MF. HCV core-mediated activation of latent TGF-β via thrombospondin drives the crosstalk between hepatocytes and stromal environment. J Hepatol 2013; 59:1160-8. [PMID: 23928402 DOI: 10.1016/j.jhep.2013.07.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The mechanisms by which fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) develop during chronic hepatitis C virus (HCV) infection are not fully understood. We previously observed that HCV core protein induced a TGF-β-dependent epithelial mesenchymal transition, a process contributing to the promotion of cell invasion and metastasis by impacting TGF-β1 signalling. Here we investigated HCV core capacity to drive increased expression of the active form of TGF-β1n transgenic mice and hepatoma cell lines. METHODS We used an in vivo model of HCV core expressing transgenic mice. RESULTS We observed that about 50% of genes deregulated by core protein expression were TGF-β1 target genes. Active TGF-β levels were increased in HCV core transgenic mouse livers. Overexpression of core protein in hepatoma cells increased active TGF-β levels in culture supernatants and induced Smad2/3 phosphorylation, thus reflecting activation of the TGF-β signaling pathway. Moreover, our data showed the implication of thrombospondin-1 in core-dependent TGF-β activation. Finally, hepatoma cells expressing HCV core could activate stellate cells in co-culture and this activation was TGF-β dependent. CONCLUSIONS Collectively, these data delineate a novel paradigm where HCV may be related to liver pathogenesis through its ability to induce a local, intrahepatic TGF-β activation. They argue for a dual impact of HCV core on liver fibrosis and liver carcinogenesis: HCV core could act both as autocrine and paracrine factor modulating TGF-β responses within hepatocytes and in stromal environment through TGF-β activation.
Collapse
Affiliation(s)
- Nassima Benzoubir
- INSERM U785, Villejuif F-94800, France; Univ Paris-Sud, UMR-S 785, Villejuif F-94800, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Irshad M, Mankotia DS, Irshad K. An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J Gastroenterol 2013; 19:7896-7909. [PMID: 24307784 PMCID: PMC3848138 DOI: 10.3748/wjg.v19.i44.7896] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/11/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023] Open
Abstract
This review focuses on research findings in the area of diagnosis and pathogenesis of hepatitis C virus (HCV) infection over the last few decades. The information based on published literature provides an update on these two aspects of HCV. HCV infection, previously called blood transmitted non-A, non-B infection, is prevalent globally and poses a serious public health problem worldwide. The diagnosis of HCV infection has evolved from serodetection of non-specific and low avidity anti-HCV antibodies to detection of viral nucleic acid in serum using the polymerase chain reaction (PCR) technique. Current PCR assays detect viral nucleic acid with high accuracy and the exact copy number of viral particles. Moreover, multiplex assays using real-time PCR are available for identification of HCV-genotypes and their isotypes. In contrast to previous methods, the newly developed assays are not only fast and economic, but also resolve the problem of the window period as well as differentiate present from past infection. HCV is a non-cytopathic virus, thus, its pathogenesis is regulated by host immunity and metabolic changes including oxidative stress, insulin resistance and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV pathogenesis. Cytotoxic lymphocytes demonstrate crucial activity during viral eradication or viral persistence and are influenced by viral proteins, HCV-quasispecies and several metabolic factors regulating liver metabolism. HCV pathogenesis is a very complex phenomenon and requires further study to determine the other factors involved.
Collapse
|
14
|
Baltzinger M, Sharma KK, Mély Y, Altschuh D. Dissecting the oligonucleotide binding properties of a disordered chaperone protein using surface plasmon resonance. Nucleic Acids Res 2013; 41:10414-25. [PMID: 24030713 PMCID: PMC3905882 DOI: 10.1093/nar/gkt792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have used surface plasmon resonance to investigate the nucleic acid binding properties of the core protein of hepatitis C virus, a disordered protein believed to chaperone the genomic RNA. It was previously shown that a peptide (peptide E) corresponding to the association of two basic clusters of core enhances the annealing and the dimerization of nucleic acid fragments derived from a stem loop (SL2) in the 3′ untranslated region of the hepatitis C virus genome. However, strong aggregation of nucleic acids by core or peptide E in the excess of the latter precluded the characterization of their binding parameters up to now. By careful design of surface plasmon resonance experiments, we obtained accurate binding parameters for the interaction of peptide E with SL2-derived oligonucleotides of different lengths and sequences, in form of stem-loop, duplex or strand. Peptide E was found to bind in a salt dependent manner to all oligonucleotides assayed. Affinity data identify at least two binding modes, of which one is independent of sequence/structure, and the other is specific to the SL2 stem-loop fold. Stoichiometry data support a multi-motif binding model allowing formation of higher-order complexes. We propose that the modular binding mode demonstrated for structured RNA-binding proteins also applies to this disordered chaperone and is relevant to its activity.
Collapse
Affiliation(s)
- Mireille Baltzinger
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, BP10413, 67412 Illkirch, France and Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401, Illkirch, France
| | | | | | | |
Collapse
|
15
|
Liu D, Ni B, Wang L, Zhang M, Liu W, Wu Y. Hepatitis B virus core protein interacts with CD59 to promote complement-mediated liver inflammation during chronic hepatitis B virus infection. FEBS Lett 2013; 587:3314-20. [PMID: 24036449 DOI: 10.1016/j.febslet.2013.08.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/13/2013] [Accepted: 08/27/2013] [Indexed: 01/12/2023]
Abstract
The inflammatory response mediated by the immune system is the major cause of hepatitis B virus (HBV)-associated liver injury. Here, we identified CD59, as a novel HBc-interacting protein in hepatocytes by tandem affinity purification (TAP) screening. The expression of CD59 was markedly down-regulated in HBc-transfected HepG2 or HepG2.215 cells, which resulted in an upshift of hepatocyte sensitivity to membrane attack complex (MAC)-induced cell lysis. These results were consistent with the accumulation of MACs in the liver of HBV-infected patients. Additional analyses using laser confocal microscopy, quantitative PCR and flow cytometry revealed that CD59 was specifically translocated to the nucleus upon binding to HBc, which induced the down-regulation of CD59 on both the mRNA and protein levels.
Collapse
Affiliation(s)
- Dong Liu
- Institute of Immunology, PLA, The Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
16
|
Wu CF, Lin YL, Huang YT. Hepatitis C virus core protein stimulates fibrogenesis in hepatic stellate cells involving the obese receptor. J Cell Biochem 2013; 114:541-50. [PMID: 22961938 DOI: 10.1002/jcb.24392] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 08/30/2012] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus core protein (HCVcp), which is secreted by infected cells, is reported as an immunomodulator in immune cells. However, the effects of HCVcp on hepatic stellate cells (HSCs), the key cells in liver fibrosis, still remain unclear. In this study, we investigated the effects of HCVcp on obese receptor (ObR) related downstream signaling pathways and fibrogenic gene expression in HSCs. LX-2, a human HSC line, was incubated with HCVcp. Inhibitors and short interfering RNAs were used to interrogate the mechanisms of HCVcp action on HSCs. HCVcp (20-100 ng/ml) concentration-dependently stimulated α-smooth muscle actin (α-SMA) protein expression and mRNA expression of α-SMA, procollagen α2(I) and TGF-β1 genes, with a plateau of 220% of controls at 100 ng/ml. HCVcp induced mRNA and protein expression of ObR. Blocking of Ob-Rb with a neutralizing antibody inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and AMPKα stimulated by HCVcp. Furthermore, knockdown of Ob-Rb down-regulated HCVcp-induced STAT3, AKT, and AMPKα phosphorylation, and reversed HCVcp-suppressed mRNA expression of matrix metalloproteinase (MMP)-1, peroxisome proliferator-activated receptor (PPAR)γ and sterol regulatory element binding protein-1c (SREBP-1c) genes. AMPKα signaling blockade reversed HCVcp-suppressed SREBP-1c mRNA expression. HCVcp stimulated reactive oxygen species formation and gp91(phox) (a component of NADPH oxidase) protein expression, together with AKT phosphorylation, leading to suppression of PPARγ and SREBP-1c genes. Our results provide a new finding that HCVcp induced ObR-dependent Janus Kinase (JAK) 2-STAT3, AMPKα, and AKT signaling pathways and modulated downstream fibrogenetic gene expression in HSCs.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
17
|
The role and clinical implications of microRNAs in hepatocellular carcinoma. SCIENCE CHINA-LIFE SCIENCES 2012; 55:906-19. [PMID: 23108868 DOI: 10.1007/s11427-012-4384-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is common and one of the most aggressive of all human cancers. Recent studies have indicated that miRNAs, a class of small noncoding RNAs that regulate gene expression post-transcriptionally, directly contribute to HCC by targeting many critical regulatory genes. Several miRNAs are involved in hepatitis B or hepatitis C virus replication and virus-induced changes, whereas others participate in multiple intracellular signaling pathways that modulate apoptosis, cell cycle checkpoints, and growth-factor-stimulated responses. When disturbed, these pathways appear to result in malignant transformation and ultimately HCC development. Recently, miRNAs circulating in the blood have acted as possible early diagnostic markers for HCC. These miRNA also could serve as indicators with respect to drug efficacy and be prognostic in HCC patients. Such biomarkers would assist stratification of HCC patients and help direct personalized therapy. Here, we summarize recent advances regarding the role of miRNAs in HCC development and progression. Our expectation is that these and ongoing studies will contribute to the understanding of the multiple roles of these small noncoding RNAs in liver tumorigenesis.
Collapse
|
18
|
Ansari MA, Lingaiah R, Irshad M. HCV-Core Region: Its Significance in HCV-Genotyping and Type Dependent Genomic Expression. MACEDONIAN JOURNAL OF MEDICAL SCIENCES 2012; 5:30-39. [DOI: 10.3889/mjms.1857-5773.2011.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
19
|
Darling JM, Lemon SM, Fried MW. Hepatitis C. SCHIFF'S DISEASES OF THE LIVER 2011:582-652. [DOI: 10.1002/9781119950509.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Synonymous mutations in the core gene are linked to unusual serological profile in hepatitis C virus infection. PLoS One 2011; 6:e15871. [PMID: 21283512 PMCID: PMC3017048 DOI: 10.1371/journal.pone.0015871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/25/2010] [Indexed: 01/18/2023] Open
Abstract
The biological role of the protein encoded by the alternative open reading frame (core+1/ARF) of the Hepatitis C virus (HCV) genome remains elusive, as does the significance of the production of corresponding antibodies in HCV infection. We investigated the prevalence of anti-core and anti-core+1/ARFP antibodies in HCV-positive blood donors from Cambodia, using peptide and recombinant protein-based ELISAs. We detected unusual serological profiles in 3 out of 58 HCV positive plasma of genotype 1a. These patients were negative for anti-core antibodies by commercial and peptide-based assays using C-terminal fragments of core but reacted by Western Blot with full-length core protein. All three patients had high levels of anti-core+1/ARFP antibodies. Cloning of the cDNA that corresponds to the core-coding region from these sera resulted in the expression of both core and core+1/ARFP in mammalian cells. The core protein exhibited high amino-acid homology with a consensus HCV1a sequence. However, 10 identical synonymous mutations were found, and 7 were located in the aa(99–124) region of core. All mutations concerned the third base of a codon, and 5/10 represented a T>C mutation. Prediction analyses of the RNA secondary structure revealed conformational changes within the stem-loop region that contains the core+1/ARFP internal AUG initiator at position 85/87. Using the luciferase tagging approach, we showed that core+1/ARFP expression is more efficient from such a sequence than from the prototype HCV1a RNA. We provide additional evidence of the existence of core+1/ARFP in vivo and new data concerning expression of HCV core protein. We show that HCV patients who do not produce normal anti-core antibodies have unusually high levels of antit-core+1/ARFP and harbour several identical synonymous mutations in the core and core+1/ARFP coding region that result in major changes in predicted RNA structure. Such HCV variants may favour core+1/ARFP production during HCV infection.
Collapse
|
21
|
Hou W, Tian Q, Zheng J, Bonkovsky HL. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology 2010; 51:1494-504. [PMID: 20127796 PMCID: PMC2862129 DOI: 10.1002/hep.23401] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) directly induces oxidative stress and liver injury. Bach1, a basic leucine zipper mammalian transcriptional repressor, negatively regulates heme oxygenase 1 (HMOX1), a key cytoprotective enzyme that has antioxidant and anti-inflammatory activities. microRNAs (miRNAs) are small noncoding RNAs ( approximately 22 nt) that are important regulators of gene expression. Whether and how miRNAs regulate Bach1 or HCV are largely unknown. The aims of this study were to determine whether miR-196 regulates Bach1, HMOX1, and/or HCV gene expression. HCV replicon cell lines (Con1 and 9-13) of the Con1 isolate and J6/JFH1-based HCV cell culture system were used in this study. The effects of miR-196 mimic on Bach1, HMOX1, and HCV RNA, and protein levels were measured by way of quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. The Dual Glo Luciferase Assay System was used to determine reporter activities. miR-196 mimic significantly down-regulated Bach1 and up-regulated HMOX1 gene expression and inhibited HCV expression. Dual luciferase reporter assays demonstrated that transfection of miR-196 mimic resulted in a significant decrease in Bach1 3'-untranslated region (UTR)-dependent luciferase activity but not in mutant Bach1 3'-UTR-dependent luciferase activity. Moreover, there was no detectable effect of mutant miR-196 on Bach1 3'-UTR-dependent luciferase activity. CONCLUSION miR-196 directly acts on the 3'-UTR of Bach1 messenger RNA and translationally represses the expression of this protein, and up-regulates HMOX1. miR-196 also inhibits HCV expression in HCV replicon cell lines (genotype 1b) and in J6/JFH1 (genotype 2a) HCV cell culture system. Thus, miR-196 plays a role in both HMOX1/Bach1 expression and the regulation of HCV expression in human hepatocytes. Overexpression of miR-196 holds promise as a potential novel strategy to prevent or ameliorate hepatitis C infection, and to protect against liver injury in chronic HCV infection.
Collapse
Affiliation(s)
- Weihong Hou
- Liver-Biliary-Pancreatic Center and the Liver, Digestive Diseases, and Metabolism Laboratory, Carolinas Medical Center, Charlotte, NC 28232-2861, USA.
| | - Qing Tian
- The Liver-Biliary-Pancreatic Center and the Liver, Digestive Diseases and Metabolism Laboratory, Carolinas Medical Center, Charlotte, North Carolina
| | - Jianyu Zheng
- The Liver-Biliary-Pancreatic Center and the Liver, Digestive Diseases and Metabolism Laboratory, Carolinas Medical Center, Charlotte, North Carolina, Department of Biology, the University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Herbert L. Bonkovsky
- The Liver-Biliary-Pancreatic Center and the Liver, Digestive Diseases and Metabolism Laboratory, Carolinas Medical Center, Charlotte, North Carolina, Department of Biology, the University of North Carolina at Charlotte, Charlotte, North Carolina, Department of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Departments of Medicine and Molecular, Microbial & Structural Biology, the University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
22
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Despite recent advances in the diagnosis and treatment of HCC, its prognosis remains dismal. Infection with hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major risk factors for HCC. Although both are hepatotropic viral infections, there are important differences between the oncogenic mechanisms of these two viruses. In addition to the oncogenic potential of its viral proteins, HBV, as a DNA virus, can integrate into host DNA and directly transform hepatocytes. In contrast, HCV, an RNA virus, is unable to integrate into the host genome, and viral protein expression has a more critical function in hepatocarcinogenesis. Both HBV and HCV proteins have been implicated in disrupting cellular signal transduction pathways that lead to unchecked cell growth. Most HCC develops in the cirrhotic liver, but the linkage between cirrhosis and HCC is likely multifactorial. In this review, we summarize current knowledge regarding the pathogenetic mechanisms of viral HCC.
Collapse
Affiliation(s)
- W-L Tsai
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - RT Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Interaction of hepatitis B virus core protein with human GIPC1. Arch Virol 2009; 155:247-50. [PMID: 20091192 DOI: 10.1007/s00705-009-0561-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 10/29/2009] [Indexed: 12/29/2022]
Abstract
Up to now, little is known about hepatitis B virus core protein (HBc) interactions with host-cell proteins, although such interactions might be essential for virus propagation and pathogenicity. In this work, a human liver cDNA library was screened for proteins interacting with HBc. Among several HBc-interacting partners selected, it interacted most strongly with the human protein GIPC1. A common protein interaction domain, PDZ, was identified as the region that is sufficient for the interaction with HBc. The core protein has a putative C-terminal PDZ-interacting motif, and this sequence proved to be important for the interaction with GIPC1.
Collapse
|
24
|
Campbell RV, Yang Y, Wang T, Rachamallu A, Li Y, Watowich SJ, Weinman SA. Chapter 20 Effects of hepatitis C core protein on mitochondrial electron transport and production of reactive oxygen species. Methods Enzymol 2009; 456:363-80. [PMID: 19348899 DOI: 10.1016/s0076-6879(08)04420-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viral infections frequently alter mitochondrial function with suppression or induction of apoptosis and enhanced generation of reactive oxygen species. The mechanisms of these effects are varied, and mitochondria are affected by both direct interactions with viral proteins and by secondary effects of viral-activated signaling cascades. This chapter describes methods used in our laboratory to assess the effects of the hepatitis C virus core protein on mitochondrial ROS production, electron transport, and Ca(2+) uptake. These include measurements of the effects of in vitro incubation of liver mitochondria with purified core protein and assessment of the function of mitochondria in cells and tissues expressing core and other viral proteins. These methods are generally applicable to the study of viral-mitochondrial interactions.
Collapse
Affiliation(s)
- Roosevelt V Campbell
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Meier V, Ramadori G. Hepatitis C virus virology and new treatment targets. Expert Rev Anti Infect Ther 2009; 7:329-50. [PMID: 19344246 DOI: 10.1586/eri.09.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatitis C virus (HCV) infection is the leading cause of chronic liver disease. An estimated 130 million people worldwide are persistently infected with HCV. Almost half of patients who have chronic HCV infection cannot be cured with the standard treatment consisting of pegylated IFN-alpha and ribavirin. For those patients who do not respond to this standard antiviral therapy, there is currently no approved treatment option available. Recent progress in structure determination of HCV proteins and development of a subgenomic replicon system enables the development of a specifically targeted antiviral therapy for hepatitis C. Many HCV-specific compounds are now under investigation in preclinical and clinical trials.
Collapse
Affiliation(s)
- Volker Meier
- Universitätsmedizin Göttingen, Abteilung für Gastroenterologie und Endokrinologie, Göttingen, Germany
| | | |
Collapse
|
26
|
Kang SM, Choi JK, Kim SJ, Kim JH, Ahn DG, Oh JW. Regulation of hepatitis C virus replication by the core protein through its interaction with viral RNA polymerase. Biochem Biophys Res Commun 2009; 386:55-9. [PMID: 19501052 PMCID: PMC7092928 DOI: 10.1016/j.bbrc.2009.05.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 05/29/2009] [Indexed: 01/12/2023]
Abstract
The hepatitis C virus (HCV) core protein is a structural component of the nucleocapsid and has been shown to modulate cellular signaling pathways by interaction with various cellular proteins. In the present study, we investigated the role of HCV core protein in viral RNA replication. Immunoprecipitation experiments demonstrated that the core protein binds to the amino-terminal region of RNA-dependent RNA polymerase (RdRp), which encompasses the finger and palm domains. Direct interaction between HCV RdRp and core protein led to inhibition of RdRp RNA synthesis activity of in vitro. Furthermore, over-expression of core protein, but not its derivatives lacking the RdRp-interacting domain, suppressed HCV replication in a hepatoma cell line harboring an HCV subgenomic replicon RNA. Collectively, our results suggest that the core protein, through binding to RdRp and inhibiting its RNA synthesis activity, is a viral regulator of HCV RNA replication.
Collapse
Affiliation(s)
- Su-Min Kang
- Department of Biotechnology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | | | | | | | | | | |
Collapse
|
27
|
Pérez-Berná AJ, Pabst G, Laggner P, Villalaín J. Screening a peptide library by DSC and SAXD: comparison with the biological function of the parent proteins. PLoS One 2009; 4:e4356. [PMID: 19194494 PMCID: PMC2632743 DOI: 10.1371/journal.pone.0004356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 12/09/2008] [Indexed: 01/04/2023] Open
Abstract
We have recently identified the membranotropic regions of the hepatitis C virus proteins E1, E2, core and p7 proteins by observing the effect of protein-derived peptide libraries on model membrane integrity. We have studied in this work the ability of selected sequences of these proteins to modulate the Lβ-Lα and Lα-HII phospholipid phase transitions as well as check the viability of using both DSC and SAXD to screen a protein-derived peptide library. We demonstrate that it is feasible to screen a library of peptides corresponding to one or several proteins by both SAXD and DSC. This methodological combination should allow the identification of essential regions of membrane-interacting proteins which might be implicated in the molecular mechanism of membrane fusion and/or budding.
Collapse
Affiliation(s)
- Ana J. Pérez-Berná
- Instituto de Biología Molecular y Celular, Universidad “Miguel Hernández”, Alicante, Spain
| | - George Pabst
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria
| | - Peter Laggner
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria
| | - José Villalaín
- Instituto de Biología Molecular y Celular, Universidad “Miguel Hernández”, Alicante, Spain
- * E-mail:
| |
Collapse
|
28
|
Michalek RD, Pellom ST, Holbrook BC, Grayson JM. The requirement of reactive oxygen intermediates for lymphocytic choriomeningitis virus binding and growth. Virology 2008; 379:205-12. [PMID: 18691729 PMCID: PMC2615401 DOI: 10.1016/j.virol.2008.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 04/07/2008] [Accepted: 07/08/2008] [Indexed: 02/08/2023]
Abstract
Multiple viruses induce reactive oxygen intermediate (ROI) generation during infection that plays an important role in growth. We have examined the importance of ROI during lymphocytic choriomeningitis virus (LCMV) infection of immortalized BHK-21 cells and murine peritoneal macrophages. Within 15 min of virus addition, intracellular ROI levels increased. To examine the contribution of ROI to LCMV infection, cells were pretreated with antioxidant prior to virus addition. Antioxidant treatment inhibited low and high MOI growth of virus. The requirement for ROI was greatest during the initial phase of infection, as antioxidant treatment after 6 h post infection had a weaker inhibitory effect. Furthermore, antioxidant treatment of cells inhibited virus binding, while treatment of virus stocks with N-ethyl malemide, which blocks free thiols, eliminated infectious virus. This illustrates that ROI are critical to the regulation of virus binding and growth and has important implications for understanding the infectivity of related viruses.
Collapse
Affiliation(s)
- Ryan D. Michalek
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - S. Troy Pellom
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Beth C. Holbrook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Jason M. Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
29
|
Kronenberger B, Welsch C, Forestier N, Zeuzem S. Novel hepatitis C drugs in current trials. Clin Liver Dis 2008; 12:529-55, viii. [PMID: 18625427 DOI: 10.1016/j.cld.2008.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Almost half of the patients who have chronic hepatitis C cannot be cured with the current standard treatment. Recent progress in structure determination of HCV proteins and development of a subgenomic replicon system and a cell culture infectious HCV clone enabled the development of a specifically targeted antiviral therapy for hepatitis C (STAT-C). Many HCV-specific compounds are under investigation in preclinical and clinical trials. The development of agents in different classes may allow construction of antiviral combinations that enhance the effectiveness of antiviral treatment, reduce the duration of treatment, and, eventually, may even avoid the use of interferon-alfa.
Collapse
Affiliation(s)
- Bernd Kronenberger
- Zentrum der Inneren Medizin, Medizinische Klinik 1, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | | | | | | |
Collapse
|
30
|
Pérez‐Berná AJ, Veiga AS, Castanho MARB, Villalaín J. Hepatitis C virus core protein binding to lipid membranes: the role of domains 1 and 2. J Viral Hepat 2008; 15:346-56. [PMID: 18179451 PMCID: PMC7166730 DOI: 10.1111/j.1365-2893.2007.00948.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have analysed and identified different membrane-active regions of the Hepatitis C virus (HCV) core protein by observing the effect of 18-mer core-derived peptide libraries from two HCV strains on the integrity of different membrane model systems. In addition, we have studied the secondary structure of specific membrane-interacting peptides from the HCV core protein, both in aqueous solution and in the presence of model membrane systems. Our results show that the HCV core protein region comprising the C-terminus of domain 1 and the N-terminus of domain 2 seems to be the most active in membrane interaction, although a role in protein-protein interaction cannot be excluded. Significantly, the secondary structure of nearly all the assayed peptides changes in the presence of model membranes. These sequences most probably play a relevant part in the biological action of HCV in lipid interaction. Furthermore, these membranotropic regions could be envisaged as new possible targets, as inhibition of its interaction with the membrane could potentially lead to new vaccine strategies.
Collapse
Affiliation(s)
- A. J. Pérez‐Berná
- Instituto de Biología Molecular y Celular, Universidad “Miguel Hernández”, Elche‐Alicante, Spain
| | - A. S. Veiga
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - M. A. R. B. Castanho
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - J. Villalaín
- Instituto de Biología Molecular y Celular, Universidad “Miguel Hernández”, Elche‐Alicante, Spain
| |
Collapse
|
31
|
Galao RP, Scheller N, Alves-Rodrigues I, Breinig T, Meyerhans A, Díez J. Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microb Cell Fact 2007; 6:32. [PMID: 17927824 PMCID: PMC2148055 DOI: 10.1186/1475-2859-6-32] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/10/2007] [Indexed: 02/07/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a well-established model system for understanding fundamental cellular processes relevant to higher eukaryotic organisms. Less known is its value for virus research, an area in which Saccharomyces cerevisiae has proven to be very fruitful as well. The present review will discuss the main achievements of yeast-based studies in basic and applied virus research. These include the analysis of the function of individual proteins from important pathogenic viruses, the elucidation of key processes in viral replication through the development of systems that allow the replication of higher eukayotic viruses in yeast, and the use of yeast in antiviral drug development and vaccine production.
Collapse
Affiliation(s)
- Rui P Galao
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Seronello S, Sheikh MY, Choi J. Redox regulation of hepatitis C in nonalcoholic and alcoholic liver. Free Radic Biol Med 2007; 43:869-82. [PMID: 17697932 DOI: 10.1016/j.freeradbiomed.2007.05.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/26/2007] [Accepted: 05/30/2007] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is an RNA virus of the Flaviviridae family that is estimated to have infected 170 million people worldwide. HCV can cause serious liver disease in humans, such as cirrhosis, steatosis, and hepatocellular carcinoma. HCV induces a state of oxidative/nitrosative stress in patients through multiple mechanisms, and this redox perturbation has been recognized as a key player in HCV-induced pathogenesis. Studies have shown that alcohol synergizes with HCV in the pathogenesis of liver disease, and part of these effects may be mediated by reactive species that are generated during hepatic metabolism of alcohol. Furthermore, reactive species and alcohol may influence HCV replication and the outcome of interferon therapy. Alcohol consumption has also been associated with increased sequence heterogeneity of the HCV RNA sequences, suggesting multiple modes of interaction between alcohol and HCV. This review summarizes the current understanding of oxidative and nitrosative stress during HCV infection and possible combined effects of HCV, alcohol, and reactive species in the pathogenesis of liver disease.
Collapse
Affiliation(s)
- Scott Seronello
- School of Natural Sciences, University of California at Merced, Merced, CA 95344, USA
| | | | | |
Collapse
|