1
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Host gene expression is associated with viral shedding magnitude in blue-winged teals (Spatula discors) infected with low-path avian influenza virus. Comp Immunol Microbiol Infect Dis 2022; 90-91:101909. [PMID: 36410069 PMCID: PMC10500253 DOI: 10.1016/j.cimid.2022.101909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Intraspecific variation in host infectiousness affects disease transmission dynamics in human, domestic animal, and many wildlife host-pathogen systems including avian influenza virus (AIV); therefore, identifying host factors related to host infectiousness is important for understanding, controlling, and preventing future outbreaks. Toward this goal, we used RNA-seq data collected from low pathogenicity avian influenza virus (LPAIV)-infected blue-winged teal (Spatula discors) to determine the association between host gene expression and intraspecific variation in cloacal viral shedding magnitude, the transmissible fraction of virus. We found that host genes were differentially expressed between LPAIV-infected and uninfected birds early in the infection, host genes were differentially expressed between shed level groups at one-, three-, and five-days post-infection, host gene expression was associated with LPAIV infection patterns over time, and genes of the innate immune system had a positive linear relationship with cloacal viral shedding. This study provides important insights into host gene expression patterns associated with intraspecific LPAIV shedding variation and can serve as a foundation for future studies focused on the identification of host factors that drive or permit the emergence of high viral shedding individuals.
Collapse
Affiliation(s)
- Amanda C Dolinski
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Jared J Homola
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Mark D Jankowski
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA; US Environmental Protection Agency, Region 10, Seattle, WA 98101, USA
| | - John D Robinson
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Jennifer C Owen
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA; Michigan State University, Department of Large Animal Clinical Sciences, 736 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
2
|
|
3
|
Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus. J Virol 2017; 91:JVI.02511-16. [PMID: 28490583 PMCID: PMC5487541 DOI: 10.1128/jvi.02511-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023] Open
Abstract
A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I (Anpl-UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl-UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys95 and Cys112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl-UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl-UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl-UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl-UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (pAnpl-UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl-UAA*01 binding to IAV peptides. Anpl-UAA*01 has a much wider recognition spectrum of IAV epitope peptides than do chickens. The IAV peptides bound by Anpl-UAA*01 display distinctive conformations that can help induce an extensive cytotoxic T lymphocyte (CTL) response. In addition, the interface area between the duck MHC I and β2m is larger than in other species. These results indicate that HP-IAV resistance in ducks is due to extensive CTL responses induced by MHC I.
Collapse
|
4
|
Chan WF, Parks-Dely JA, Magor BG, Magor KE. The Minor MHC Class I Gene UDA of Ducks Is Regulated by Let-7 MicroRNA. THE JOURNAL OF IMMUNOLOGY 2016; 197:1212-20. [DOI: 10.4049/jimmunol.1600332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/08/2016] [Indexed: 01/10/2023]
|
5
|
Huang T, Wu K, Yuan X, Shao S, Wang W, Wei S, Cao G. Molecular analysis of the immunoglobulin genes in goose. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:160-166. [PMID: 26921669 DOI: 10.1016/j.dci.2016.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Immunoglobulins play an important role in adaptive immune system as defense molecules against pathogens. However, our knowledge on avian immunoglobulin genes has been limited to a few species. In this study, we analyzed goose (Anser cygnoides orientalis) immunoglobulin genes. Three IgH classes including IgM, IgA, IgY and λ light chain were identified. The IgM and IgA heavy chain constant regions are characteristically similar to their counterparts described in other vertebrates. In addition to the classic Ig isotypes, we also detected a transcript that encoded a truncated form of IgY (IgY(ΔFc)) in goose. Similar to duck, the IgY(ΔFc) in goose was generated by using different transcriptional termination signal of the same υ gene. Limited variability and only one leader peptide were observed in VH and VL domains, which suggested that gene conversion was the primary mechanism involved in goose antibody diversity. Our study provides more insights into the immunoglobulin genes in goose that had not been fully explored before.
Collapse
Affiliation(s)
- Tian Huang
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - Kun Wu
- Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - Xiaoli Yuan
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - Shuai Shao
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - WenYuan Wang
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - Si Wei
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China
| | - Gengsheng Cao
- School of Life Science, Henan University, Kaifeng 475004, PR China; Institute of Bioengineering, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
6
|
Yao Q, Fischer KP, Tyrrell DL, Gutfreund KS. The Pekin duck programmed death-ligand 1: cDNA cloning, genomic structure, molecular characterization and mRNA expression analysis. Int J Immunogenet 2014; 42:111-20. [PMID: 25556810 DOI: 10.1111/iji.12175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022]
Abstract
Programmed death ligand-1 (PD-L1) plays an important role in the attenuation of adaptive immune responses in higher vertebrates. Here, we describe the identification of the Pekin duck PD-L1 orthologue (duPD-L1) and its gene structure. The duPD-L1 cDNA encodes a 311-amino acid protein that has an amino acid identity of 78% and 42% with chicken and human PD-L1, respectively. Mapping of the duPD-L1 cDNA with duck genomic sequences revealed an exonic structure of its coding sequence similar to those of other vertebrates but lacked a noncoding exon 1. Homology modelling of the duPD-L1 extracellular domain was compatible with the tandem IgV-like and IgC-like IgSF domain structure of human PD-L1 (PDB ID: 3BIS). Residues known to be important for receptor binding of human PD-L1 were mostly conserved in duPD-L1 within the N-terminus and the G sheet, and partially conserved within the F sheet but not within sheets C and C'. DuPD-L1 mRNA was constitutively expressed in all tissues examined with highest expression levels in lung and spleen and very low levels of expression in muscle, kidney and brain. Mitogen stimulation of duck peripheral blood mononuclear cells transiently increased duPD-L1 mRNA expression. Our observations demonstrate evolutionary conservation of the exonic structure of its coding sequence, the extracellular domain structure and residues implicated in receptor binding, but the role of the longer cytoplasmic tail in avian PD-L1 proteins remains to be determined.
Collapse
Affiliation(s)
- Q Yao
- Department of Medicine, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
7
|
Yao Q, Fischer KP, Arnesen K, Tyrrell DL, Gutfreund KS. Molecular cloning, expression and characterization of Pekin duck interferon-λ. Gene 2014; 548:29-38. [PMID: 24992029 DOI: 10.1016/j.gene.2014.06.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/24/2014] [Accepted: 06/28/2014] [Indexed: 12/16/2022]
Abstract
Interferons (IFNs) are the first line of defense against viral infections in vertebrates. Type III interferon (IFN-λ) is recognized for its key role in innate immunity of tissues of epithelial origin. Here we describe the identification of the Pekin duck IFN-λ ortholog (duIFN-λ). The predicted duIFN-λ protein has an amino acid identity of 63%, 38%, 37% and 33% with chicken IFN-λ and human IFN-λ3, IFN-λ2 and IFN-λ1, respectively. The duck genome contains a single IFN-λ gene that is comprised of five exons and four introns. Recombinant duIFN-λ up-regulated OASL and Mx-1 mRNA in primary duck hepatocytes. Our observations suggest evolutionary conservation of genomic organization and structural features implicated in receptor binding and antiviral activity. The identification and expression of duIFN-λ will facilitate further study of the role of type III IFN in antiviral defense and inflammatory responses of the Pekin duck, a non-mammalian vertebrate and pathogen host with relevance for human and animal health.
Collapse
Affiliation(s)
- Qingxia Yao
- Department of Medicine, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Karl P Fischer
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Karina Arnesen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - D Lorne Tyrrell
- Department of Medicine, University of Alberta, Edmonton, AB, Canada; Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Klaus S Gutfreund
- Department of Medicine, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Magor KE, Miranzo Navarro D, Barber MRW, Petkau K, Fleming-Canepa X, Blyth GAD, Blaine AH. Defense genes missing from the flight division. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:377-88. [PMID: 23624185 PMCID: PMC7172724 DOI: 10.1016/j.dci.2013.04.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/16/2013] [Indexed: 05/12/2023]
Abstract
Birds have a smaller repertoire of immune genes than mammals. In our efforts to study antiviral responses to influenza in avian hosts, we have noted key genes that appear to be missing. As a result, we speculate that birds have impaired detection of viruses and intracellular pathogens. Birds are missing TLR8, a detector for single-stranded RNA. Chickens also lack RIG-I, the intracellular detector for single-stranded viral RNA. Riplet, an activator for RIG-I, is also missing in chickens. IRF3, the nuclear activator of interferon-beta in the RIG-I pathway is missing in birds. Downstream of interferon (IFN) signaling, some of the antiviral effectors are missing, including ISG15, and ISG54 and ISG56 (IFITs). Birds have only three antibody isotypes and IgD is missing. Ducks, but not chickens, make an unusual truncated IgY antibody that is missing the Fc fragment. Chickens have an expanded family of LILR leukocyte receptor genes, called CHIR genes, with hundreds of members, including several that encode IgY Fc receptors. Intriguingly, LILR homologues appear to be missing in ducks, including these IgY Fc receptors. The truncated IgY in ducks, and the duplicated IgY receptor genes in chickens may both have resulted from selective pressure by a pathogen on IgY FcR interactions. Birds have a minimal MHC, and the TAP transport and presentation of peptides on MHC class I is constrained, limiting function. Perhaps removing some constraint, ducks appear to lack tapasin, a chaperone involved in loading peptides on MHC class I. Finally, the absence of lymphotoxin-alpha and beta may account for the observed lack of lymph nodes in birds. As illustrated by these examples, the picture that emerges is some impairment of immune response to viruses in birds, either a cause or consequence of the host-pathogen arms race and long evolutionary relationship of birds and RNA viruses.
Collapse
Affiliation(s)
- Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | |
Collapse
|
9
|
Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol 2013; 21:544-55. [PMID: 23770275 PMCID: PMC7126491 DOI: 10.1016/j.tim.2013.05.005] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 12/22/2022]
Abstract
As exemplified by coronaviruses and influenza viruses, bats and birds are natural reservoirs for providing viral genes during evolution of new virus species and viruses for interspecies transmission. These warm-blooded vertebrates display high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system, which are favorable characteristics for asymptomatic shedding, dissemination, and mixing of different viruses for the generation of novel mutant, recombinant, or reassortant RNA viruses. The increased intrusion of humans into wildlife habitats and overcrowding of different wildlife species in wet markets and farms have also facilitated the interspecies transmission between different animal species.
Collapse
|
10
|
The Turkey Ig-like receptor family: identification, expression and function. PLoS One 2013; 8:e59577. [PMID: 23527222 PMCID: PMC3601082 DOI: 10.1371/journal.pone.0059577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/15/2013] [Indexed: 11/29/2022] Open
Abstract
The chicken leukocyte receptor complex located on microchromosome 31 encodes the chicken Ig-like receptors (CHIR), a vastly expanded gene family which can be further divided into three subgroups: activating CHIR-A, bifunctional CHIR-AB and inhibitory CHIR-B. Here, we investigated the presence of CHIR homologues in other bird species. The available genome databases of turkey, duck and zebra finch were screened with different strategies including BLAST searches employing various CHIR sequences, and keyword searches. We could not identify CHIR homologues in the distantly related zebra finch and duck, however, several partial and complete sequences of CHIR homologues were identified on chromosome 3 of the turkey genome. They were designated as turkey Ig-like receptors (TILR). Using cDNA derived from turkey blood and spleen RNA, six full length TILR could be amplified and further divided according to the typical sequence features into one activating TILR-A, one inhibitory TILR-B and four bifunctional TILR-AB. Since the TILR-AB sequences all displayed the critical residues shown to be involved in binding to IgY, we next confirmed the IgY binding using a soluble TILR-AB1-huIg fusion protein. This fusion protein reacted with IgY derived from various gallinaceous birds, but not with IgY from other bird species. Finally, we tested various mab directed against CHIR for their crossreactivity with either turkey or duck leukocytes. Whereas no staining was detectable with duck cells, the CHIR-AB1 specific mab 8D12 and the CHIR-A2 specific mab 13E2 both reacted with a leukocyte subpopulation that was further identified as thrombocytes by double immunofluorescence employing B-cell, T-cell and thrombocyte specific reagents. In summary, although the turkey harbors similar LRC genes as the chicken, their distribution seems to be distinct with predominance on thrombocytes rather than lymphocytes.
Collapse
|
11
|
Magor KE. Immunoglobulin genetics and antibody responses to influenza in ducks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1008-16. [PMID: 21377488 DOI: 10.1016/j.dci.2011.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 05/24/2023]
Abstract
The role of the duck as the natural host and reservoir of influenza and efforts to vaccinate ducks during recent outbreaks of avian influenza has renewed interest in the duck antibody response. Ducks have unique antibody structures and expression, with consequences for their function. Aspects of immunoglobulin genetics, gene expression, and antibody function will be reviewed in the context of the duck immune response to influenza. Ducks have three immunoglobulin isotypes, IgM, IgA and IgY in translocon arrangement. The order of heavy chain genes in the locus is unusual, IGHM, IGHA and IGHY, with IGHA in inverse transcriptional orientation. IgH and IgL gene rearrangement in ducks involves limited V, (D) and J element recombination and diversity is generated by gene conversion from pseudogenes. IgY, the functional equivalent of IgG, is produced in two secreted forms, a full-length form and one lacking the third and fourth C region domains, which predominates later in the immune response and lacks the biological effector functions of IgG. The unusual features of duck antibodies may contribute to weak antibody responses and the perpetuation of the virus in this animal reservoir.
Collapse
Affiliation(s)
- Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Viertlboeck BC, Göbel TW. The chicken leukocyte receptor cluster. Vet Immunol Immunopathol 2011; 144:1-10. [PMID: 21794927 DOI: 10.1016/j.vetimm.2011.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
Abstract
Receptors of the immunoglobulin-like superfamily are critically involved in virtually every aspect of immune responses. One large chromosomal area encoding such immunoregulatory receptors is the leukocyte receptor cluster. Here we review various aspects of the chicken Ig-like receptor (CHIR) family, located on microchromosome 31, an orthologous position to the mammalian leukocyte receptor cluster. The CHIR family has been massively expanded with over hundred CHIR genes that are further distinguished into activating, inhibitory and bifunctional receptors. Comparisons of various features such as amino acid motifs, genomic structure, expression and associated adaptor molecules reveal the homology of CHIR to both the killer Ig-like and the leukocyte Ig-like receptor families, with most pronounced correlation of certain CHIR to the NK cell receptor KIR2DL4. To date the CHIR ligands remain largely obscure with the exception of CHIR-AB1 that binds to chicken IgY. Detailed analyses of CHIR-AB1, its crystal structure, the interaction to IgY and functional capabilities allow us to draw conclusions regarding Fc receptor phylogeny and function.
Collapse
Affiliation(s)
- Birgit C Viertlboeck
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU München, Veterinärstr. 13, 80539 München, Germany
| | | |
Collapse
|
13
|
Crowley TM, Haring VR, Burggraaf S, Moore RJ. Application of chicken microarrays for gene expression analysis in other avian species. BMC Genomics 2009; 10 Suppl 2:S3. [PMID: 19607654 PMCID: PMC2713436 DOI: 10.1186/1471-2164-10-s2-s3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND With the threat of emerging infectious diseases such as avian influenza, whose natural hosts are thought to be a variety of wild water birds including duck, we are armed with very few genomic resources to investigate large scale immunological gene expression studies in avian species. Multiple options exist for conducting large gene expression studies in chickens and in this study we explore the feasibility of using one of these tools to investigate gene expression in other avian species. RESULTS In this study we utilised a whole genome long oligonucleotide chicken microarray to assess the utility of cross species hybridisation (CSH). We successfully hybridised a number of different avian species to this array, obtaining reliable signals. We were able to distinguish ducks that were infected with avian influenza from uninfected ducks using this microarray platform. In addition, we were able to detect known chicken immunological genes in all of the hybridised avian species. CONCLUSION Cross species hybridisation using long oligonucleotide microarrays is a powerful tool to study the immune response in avian species with little available genomic information. The present study validated the use of the whole genome long oligonucleotide chicken microarray to investigate gene expression in a range of avian species.
Collapse
Affiliation(s)
- Tamsyn M Crowley
- Australian Animal Health Laboratory, CSIRO, Geelong, Victoria, Australia.
| | | | | | | |
Collapse
|
14
|
Guo X, Branton WG, Moon DA, Xia J, Macdonald MRW, Magor KE. Dendritic cell inhibitory and activating immunoreceptors (DCIR and DCAR) in duck: Genomic organization and expression. Mol Immunol 2008; 45:3942-6. [PMID: 18657864 DOI: 10.1016/j.molimm.2008.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 06/16/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
C-type lectin immunoreceptor genes encoding DC inhibitory and activating receptors (DCIR and DCAR) were identified in a spleen EST library of duck (Anas platyrhynchos). These receptors are of interest for their potential as regulators of antigen presenting cells. A genomic clone was isolated and fully sequenced, containing one DCIR gene and two DCAR genes arranged in tandem order. Duck DCIR encodes an inhibitory receptor that features an immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic domain. DCAR1 is a pseudogene. DCAR2 encodes an activating receptor with a positively charged residue in the transmembrane region. Full-length and alternatively spliced forms of both DCIR and DCAR2 are apparent. Duck DCIR and DCAR transcripts are preferentially expressed in immune and mucosal tissues including spleen, bursa of Fabricius, intestine and lung. Targeting these receptors on dendritic cells holds potential for breaking tolerance or for enhancing immune responses, relevant to the duck model for hepatitis B and vaccination against avian influenza.
Collapse
Affiliation(s)
- Xiaoxin Guo
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alta., Canada T6G 2E9
| | | | | | | | | | | |
Collapse
|