1
|
Gericke N, Beqaj D, Kronenberger T, Kulik A, Gavriilidou A, Franz-Wachtel M, Schoppmeier U, Harbig T, Rapp J, Grin I, Ziemert N, Link H, Nieselt K, Macek B, Wohlleben W, Stegmann E, Wagner S. Unveiling the substrate specificity of the ABC transporter Tba and its role in glycopeptide biosynthesis. iScience 2025; 28:112135. [PMID: 40171492 PMCID: PMC11960670 DOI: 10.1016/j.isci.2025.112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/16/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
Glycopeptide antibiotics (GPA) such as vancomycin are essential last-resort antibiotics produced by actinomycetes. Their biosynthesis is encoded within biosynthetic gene clusters, also harboring genes for regulation, and transport. Diverse types of GPAs have been characterized that differ in peptide backbone composition and modification patterns. However, little is known about the ATP-binding cassette (ABC) transporters facilitating GPA export. Employing a multifaceted approach, we investigated the substrate specificity of GPA ABC-transporters toward the type-I GPA balhimycin. Phylogenetic analysis suggested and trans-complementation experiments confirmed that balhimycin is exported only by the related type I GPA transporters Tba and Tva (transporter of vancomycin). Molecular dynamics simulations and mutagenesis experiments showed that Tba exhibits specificity toward the peptide backbone rather than the modifications. Unexpectedly, deletion or functional inactivation of Tba halted balhimycin biosynthesis. Combined with proximity biotinylation experiments, this suggested that the interaction of the active transporter with the biosynthetic machinery is required for biosynthesis.
Collapse
Affiliation(s)
- Nicola Gericke
- Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Dardan Beqaj
- Microbial Active Compounds, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Thales Kronenberger
- Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- Partner-Site: DZIF Tübingen, Elfriede-Aulhorn-Str. 6/Auf der Morgenstelle 28, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonrinne 3, 70211 Kuopio, Finland
| | - Andreas Kulik
- Microbial Active Compounds, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Athina Gavriilidou
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Ulrich Schoppmeier
- Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, 72076 Tübingen, Germany
| | - Theresa Harbig
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Johanna Rapp
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, 72076 Tübingen, Germany
- Bacterial Metabolomics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Iwan Grin
- Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Nadine Ziemert
- Partner-Site: DZIF Tübingen, Elfriede-Aulhorn-Str. 6/Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany
| | - Hannes Link
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, 72076 Tübingen, Germany
- Bacterial Metabolomics, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Kay Nieselt
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Partner-Site: DZIF Tübingen, Elfriede-Aulhorn-Str. 6/Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, 72076 Tübingen, Germany
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Evi Stegmann
- Microbial Active Compounds, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Partner-Site: DZIF Tübingen, Elfriede-Aulhorn-Str. 6/Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, 72076 Tübingen, Germany
| | - Samuel Wagner
- Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- Partner-Site: DZIF Tübingen, Elfriede-Aulhorn-Str. 6/Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
3
|
Tian L, Shi S, Zhang X, Han F, Dong H. Newest perspectives of glycopeptide antibiotics: biosynthetic cascades, novel derivatives, and new appealing antimicrobial applications. World J Microbiol Biotechnol 2023; 39:67. [PMID: 36593427 PMCID: PMC9807434 DOI: 10.1007/s11274-022-03512-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Glycopeptide antibiotics (GPAs) are a family of non-ribosomal peptide natural products with polypeptide skeleton characteristics, which are considered the last resort for treating severe infections caused by multidrug-resistant Gram-positive pathogens. Over the past few years, an increasing prevalence of Gram-positive resistant strain "superbugs" has emerged. Therefore, more efforts are needed to study and modify the GPAs to overcome the challenge of superbugs. In this mini-review, we provide an overview of the complex biosynthetic gene clusters (BGCs), the ingenious crosslinking and tailoring modifications, the new GPA derivatives, the discoveries of new natural GPAs, and the new applications of GPAs in antivirus and anti-Gram-negative bacteria. With the development and interdisciplinary integration of synthetic biology, next-generation sequencing (NGS), and artificial intelligence (AI), more GPAs with new chemical structures and action mechanisms will constantly be emerging.
Collapse
Affiliation(s)
- Li Tian
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Shi Shi
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Xiangmei Zhang
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Fubo Han
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Huijun Dong
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| |
Collapse
|
4
|
Yushchuk O, Zhukrovska K, Berini F, Fedorenko V, Marinelli F. Genetics Behind the Glycosylation Patterns in the Biosynthesis of Dalbaheptides. Front Chem 2022; 10:858708. [PMID: 35402387 PMCID: PMC8987122 DOI: 10.3389/fchem.2022.858708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Glycopeptide antibiotics are valuable natural metabolites endowed with different pharmacological properties, among them are dalbaheptides used to treat different infections caused by multidrug-resistant Gram-positive pathogens. Dalbaheptides are produced by soil-dwelling high G-C Gram-positive actinobacteria. Their biosynthetic pathways are encoded within large biosynthetic gene clusters. A non-ribosomally synthesized heptapeptide aglycone is the common scaffold for all dalbaheptides. Different enzymatic tailoring steps, including glycosylation, are further involved in decorating it. Glycosylation of dalbaheptides is a crucial step, conferring them specific biological activities. It is achieved by a plethora of glycosyltransferases, encoded within the corresponding biosynthetic gene clusters, able to install different sugar residues. These sugars might originate from the primary metabolism, or, alternatively, their biosynthesis might be encoded within the biosynthetic gene clusters. Already installed monosaccharides might be further enzymatically modified or work as substrates for additional glycosylation. In the current minireview, we cover recent updates concerning the genetics and enzymology behind the glycosylation of dalbaheptides, building a detailed and consecutive picture of this process and of its biological evolution. A thorough understanding of how glycosyltransferases function in dalbaheptide biosynthesis might open new ways to use them in chemo-enzymatic synthesis and/or in combinatorial biosynthesis for building novel glycosylated antibiotics.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Kseniia Zhukrovska
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- *Correspondence: Flavia Marinelli,
| |
Collapse
|
5
|
Proteomic analysis reveals the metabolic versatility of Amycolatopsis sp. BX17: A strain native from milpa agroecosystem soil. J Proteomics 2021; 253:104461. [PMID: 34922014 DOI: 10.1016/j.jprot.2021.104461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022]
Abstract
Amycolatopsis sp. BX17 is an actinobacterium isolated from milpa soils, which antagonizes the phytopathogenic fungus Fusarium graminearum. Metabolites secreted by the actinobacterium cultured in glucose-free medium inhibited 100% of the mycelial growth of F. graminearum RH1, while the inhibition rate was 65% in medium supplemented with 20 g/L glucose. With the aim of studying how the metabolism of strain BX17 is modulated by glucose as the main carbon source, media with 0 and 20 g/L glucose were selected to analyze the intracellular proteins by quantitative label-free proteomic analysis. Data are available via ProteomeXchange with identifier PXD028644. Proteins identified in bacteria cultured in medium without glucose were involved in glutamate metabolism, the Krebs cycle and the shikimate pathway, suggesting that amino acids are metabolized to synthesize antifungal compounds. In glucose-containing medium, carbon flux was directed mainly toward the synthesis of energy and cell growth. This study shows the metabolic versatility of Amycolatopsis BX17, and strengthens its potential use in designing biotechnological strategies for phytopathogen control. SIGNIFICANCE: Amycolatopsis BX17 is a bacterium isolated from milpa agroecosystems that antagonizes the phytopathogenic fungus Fusarium graminearum. Currently, there is scarce information about the metabolism involved in the biosynthesis of antifungal agents by this genus. We used a label-free proteomic approach to identify the differences in metabolic routes for antifungal biosynthesis in Amycolatopsis BX17 grown in media with 0 and 20 g/L glucose. Taken together the results suggest that the BX17 strain could be synthesizing the antifungal metabolite(s) from the Shikimate pathway through the synthesis and degradation of the amino acid tyrosine, which is a known precursor of glycopeptides with antibiotic and antifungal activity. While the lower antifungal activity of the metabolites secreted by Amycolatopsis BX17 when grown in a medium with glucose as the main carbon source, may be correlated with a lower synthesis of antifungal compounds, due to the directing of carbon flux toward metabolic pathways involved with energy synthesis and cell growth. Likewise, it is possible that the bacteria synthesize other compounds with biological activity, such as glycopeptides with antibiotic activity. These findings are relevant because they represent the first stage to understand the metabolic regulation involved in the biosynthesis of antifungal metabolites by the genus Amycolatopsis. Finally, improving our understanding of the metabolic regulation involved in the biosynthesis of antifungal metabolites is essential to design of strategies in agricultural biotechnology for phytopathogen control.
Collapse
|
6
|
Andreo-Vidal A, Binda E, Fedorenko V, Marinelli F, Yushchuk O. Genomic Insights into the Distribution and Phylogeny of Glycopeptide Resistance Determinants within the Actinobacteria Phylum. Antibiotics (Basel) 2021; 10:1533. [PMID: 34943745 PMCID: PMC8698665 DOI: 10.3390/antibiotics10121533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
The spread of antimicrobial resistance (AMR) creates a challenge for global health security, rendering many previously successful classes of antibiotics useless. Unfortunately, this also includes glycopeptide antibiotics (GPAs), such as vancomycin and teicoplanin, which are currently being considered last-resort drugs. Emerging resistance towards GPAs risks limiting the clinical use of this class of antibiotics-our ultimate line of defense against multidrug-resistant (MDR) Gram-positive pathogens. But where does this resistance come from? It is widely recognized that the GPA resistance determinants-van genes-might have originated from GPA producers, such as soil-dwelling Gram-positive actinobacteria, that use them for self-protection. In the current work, we present a comprehensive bioinformatics study on the distribution and phylogeny of GPA resistance determinants within the Actinobacteria phylum. Interestingly, van-like genes (vlgs) were found distributed in different arrangements not only among GPA-producing actinobacteria but also in the non-producers: more than 10% of the screened actinobacterial genomes contained one or multiple vlgs, while less than 1% encoded for a biosynthetic gene cluster (BGC). By phylogenetic reconstructions, our results highlight the co-evolution of the different vlgs, indicating that the most diffused are the ones coding for putative VanY carboxypeptidases, which can be found alone in the genomes or associated with a vanS/R regulatory pair.
Collapse
Affiliation(s)
- Andrés Andreo-Vidal
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
| | - Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| |
Collapse
|
7
|
Qian H, Wei W, Chen XA, Mo XT, Ge M, Zhao QW, Li YQ. Strategy for Producing the High-Quality Glycopeptide Antibiotic A82846B in Amycolatopsis orientalis Based on the CRISPR-Cas12a System. ACS Synth Biol 2021; 10:3009-3016. [PMID: 34628852 DOI: 10.1021/acssynbio.1c00317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oritavancin is a new-generation semisynthetic lipoglycopeptide antibiotic used to prevent the spread of vancomycin-resistant Gram-positive bacteria. The glycopeptide A82846B is the direct precursor of oritavancin. Considering the structural similarity between A82846B and vancomycin, the vancomycin producer Amycolatopsis orientalis was used as a chassis for the construction of a strain producing high-quality A82846B. To construct the A82846B synthetic pathway, we established a highly efficient CRISPR-Cas12a system by optimizing the conditions of conjugation and by screening the regulatory elements in the A. orientalis, which is difficult to be genetically manipulated. The efficiency of gene knockout was almost 100%. The glycosyltransferases module (gtfDE) and glycosyl synthesis module (vcaAEBD) in the vancomycin gene cluster were replaced with the corresponding glycosyltransferases module (gtfABC) and glycosyl synthesis module (evaAEBD) in the A82846B cluster, respectively. A82846B was successfully produced by the artificially constructed synthetic pathway. Moreover, the titer of A82846B was increased 80% by expressing the pathway-specific regulatory strR. This strategy has excellent potential for remodification of natural products to solve antibiotic resistance.
Collapse
Affiliation(s)
- Hui Qian
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Wei Wei
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai 200240, China
| | - Xin-Ai Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Xiao-Ting Mo
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai 200240, China
| | - Qing-Wei Zhao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| |
Collapse
|
8
|
Enhancing Ristomycin A Production by Overexpression of ParB-Like StrR Family Regulators Controlling the Biosynthesis Genes. Appl Environ Microbiol 2021; 87:e0106621. [PMID: 34505824 DOI: 10.1128/aem.01066-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Amycolatopsis sp. strain TNS106 harbors a ristomycin-biosynthetic gene cluster (asr) in its genome and produces ristomycin A. Deletion of the sole cluster-situated StrR family regulatory gene, asrR, abolished ristomycin A production and the transcription of the asr genes orf5 to orf39. The ristomycin A fermentation titer in Amycolatopsis sp. strain TNS106 was dramatically improved by overexpression of asrR and a heterologous StrR family regulatory gene, bbr, from the balhimycin-biosynthetic gene cluster (BGC) utilizing strong promoters and multiple gene copies. Ristomycin A production was improved by approximately 60-fold, resulting in a fermentation titer of 4.01 g/liter in flask culture, in one of the engineered strains. Overexpression of AsrR and Bbr upregulated transcription of tested asr biosynthetic genes, indicating that these asr genes were positively regulated by AsrR and Bbr. However, only the promoter region of the asrR operon and the intergenic region upstream of orf12 were bound by AsrR and Bbr in gel retardation assays, suggesting that AsrR and Bbr directly regulated the asrR operon and probably orf12 to orf14 but no other asr biosynthetic genes. Further assays with synthetic short probes showed that AsrR and Bbr specifically bound not only probes containing the canonical inverted repeats but also a probe with only one 7-bp element of the inverted repeats in its native context. AsrR and Bbr have an N-terminal ParB-like domain and a central winged helix-turn-helix DNA-binding domain. Site-directed mutations indicated that the N-terminal ParB-like domain was involved in activation of ristomycin A biosynthesis and did not affect the DNA-binding activity of AsrR and Bbr. IMPORTANCE This study showed that overexpression of either a native StrR family regulator (AsrR) or a heterologous StrR family regulator (Bbr) dramatically improved ristomycin A production by increasing the transcription of biosynthetic genes directly or indirectly. The conserved ParB-like domain of AsrR and Bbr was demonstrated to be involved in the regulation of asr BGC expression. These findings provide new insights into the mechanism of StrR family regulators in the regulation of glycopeptide antibiotic biosynthesis. Furthermore, the regulator overexpression plasmids constructed in this study could serve as valuable tools for strain improvement and genome mining for new glycopeptide antibiotics. In addition, ristomycin A is a type III glycopeptide antibiotic clinically used as a diagnostic reagent due to its side effects. The overproduction strains engineered in this study are ideal materials for industrial production of ristomycin A.
Collapse
|
9
|
Li X, Zhang C, Zhao Y, Lei X, Jiang Z, Zhang X, Zheng Z, Si S, Wang L, Hong B. Comparative genomics and transcriptomics analyses provide insights into the high yield and regulatory mechanism of Norvancomycin biosynthesis in Amycolatopsis orientalis NCPC 2-48. Microb Cell Fact 2021; 20:28. [PMID: 33531006 PMCID: PMC7852140 DOI: 10.1186/s12934-021-01521-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/19/2021] [Indexed: 11/29/2022] Open
Abstract
Background Norvancomycin has been widely used in clinic to treat against MRSA (Methicillin-resistant Staphylococcus aureus) and MRSE (Methicillin-resistant Staphylococcus epidermidis) infections in China. Amycolatopsis orientalis NCPC 2-48, a high yield strain derived from A. orientalis CPCC 200066, has been applied in industrial large-scale production of norvancomycin by North China Pharmaceutical Group. However, the potential high-yield and regulatory mechanism involved in norvancomycin biosynthetic pathway has not yet been addressed. Results Here we sequenced and compared the genomes and transcriptomes of A. orientalis CPCC 200066 and NCPC 2-48. These two genomes are extremely similar with an identity of more than 99.9%, and no duplication and structural variation was found in the norvancomycin biosynthetic gene cluster. Comparative transcriptomic analysis indicated that biosynthetic genes of norvancomycin, as well as some primary metabolite pathways for the biosynthetic precursors of norvancomycin were generally upregulated. AoStrR1 and AoLuxR1, two cluster-situated regulatory genes in norvancomycin cluster, were 23.3-fold and 5.8-fold upregulated in the high yield strain at 48 h, respectively. Over-expression of AoStrR1 and AoLuxR1 in CPCC 200066 resulted in an increase of norvancomycin production, indicating their positive roles in norvancomycin biosynthesis. Furthermore, AoStrR1 can regulate the production of norvancomycin by directly interacting with at least 8 promoters of norvancomycin biosynthetic genes or operons. Conclusion Our results suggested that the high yield of NCPC 2-48 can be ascribed to increased expression level of norvancomycin biosynthetic genes in its cluster as well as the genes responsible for the supply of its precursors. The norvancomycin biosynthetic genes are presumably regulated by AoStrR1 and AoLuxR1, of them AoStrR1 is possibly the ultimate pathway-specific regulator for the norvancomycin production. These results are helpful for further clarification of the holistic and pathway-specific regulatory mechanism of norvancomycin biosynthesis in the industrial production strain.
Collapse
Affiliation(s)
- Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing, China.,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, Beijing, 100050, China
| | - Cong Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing, China.,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, Beijing, 100050, China
| | - Ying Zhao
- New Drug Research and Development Co. Ltd., North China Pharmaceutical Group, Shijiazhuang, 050015, Hebei, China
| | - Xuan Lei
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing, China
| | - Zhibo Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing, China
| | - Xuexia Zhang
- New Drug Research and Development Co. Ltd., North China Pharmaceutical Group, Shijiazhuang, 050015, Hebei, China
| | - Zhihui Zheng
- New Drug Research and Development Co. Ltd., North China Pharmaceutical Group, Shijiazhuang, 050015, Hebei, China
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing, China
| | - Lifei Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing, China. .,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, Beijing, 100050, China.
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Beijing, China. .,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
10
|
Xu M, Wang W, Waglechner N, Culp EJ, Guitor AK, Wright GD. GPAHex-A synthetic biology platform for Type IV-V glycopeptide antibiotic production and discovery. Nat Commun 2020; 11:5232. [PMID: 33067466 PMCID: PMC7567792 DOI: 10.1038/s41467-020-19138-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 11/09/2022] Open
Abstract
Glycopeptide antibiotics (GPAs) are essential for the treatment of severe infectious diseases caused by Gram-positive bacteria. The emergence and spread of GPA resistance have propelled the search for more effective GPAs. Given their structural complexity, genetic intractability, and low titer, expansion of GPA chemical diversity using synthetic or medicinal chemistry remains challenging. Here we describe a synthetic biology platform, GPAHex (GPA Heterologous expression), which exploits the genes required for the specialized GPA building blocks, regulation, antibiotic transport, and resistance for the heterologous production of GPAs. Application of the GPAHex platform results in: (1) a 19-fold increase of corbomycin titer compared to the parental strain, (2) the discovery of a teicoplanin-class GPA from an Amycolatopsis isolate, and (3) the overproduction and characterization of a cryptic nonapeptide GPA. GPAHex provides a platform for GPA production and mining of uncharacterized GPAs and provides a blueprint for chassis design for other natural product classes. Expansion of the chemical diversity of glycopeptide antibiotics (GPAs) to deal with the emergence and spread of GPA resistance is challenging. Here, the authors report a GPA synthetic biology platform in Streptomyces coelicolor for Type IV–V glycopeptide antibiotic production and discovery.
Collapse
Affiliation(s)
- Min Xu
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Wenliang Wang
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Nicholas Waglechner
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Elizabeth J Culp
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Allison K Guitor
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Gerard D Wright
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Yushchuk O, Binda E, Marinelli F. Glycopeptide Antibiotic Resistance Genes: Distribution and Function in the Producer Actinomycetes. Front Microbiol 2020; 11:1173. [PMID: 32655512 PMCID: PMC7325946 DOI: 10.3389/fmicb.2020.01173] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Glycopeptide antibiotics (GPAs) are considered drugs of "last resort" for the treatment of life-threatening infections caused by relevant Gram-positive pathogens (enterococci, staphylococci, and clostridia). Driven by the issue of the never-stopping evolution of bacterial antibiotic resistance, research on GPA biosynthesis and resistance is developing fast in modern "post-genomic" era. It is today widely accepted that resistance mechanisms emerging in pathogens have been acquired from the soil-dwelling antibiotic-producing actinomycetes, which use them to avoid suicide during production, rather than being orchestrated de novo by pathogen bacteria upon continued treatment. Actually, more and more genomes of GPA producers are being unraveled, carrying a broad collection of differently arranged GPA resistance (named van) genes. In the producer actinomycetes, van genes are generally associated with the antibiotic biosynthetic gene clusters (BGCs) deputed to GPA biosynthesis, being probably transferred/arranged together, favoring a possible co-regulation between antibiotic production and self-resistance. GPA BGC-associated van genes have been also found mining public databases of bacterial genomic and metagenomic sequences. Interestingly, some BGCs for antibiotics, seemingly unrelated to GPAs (e.g., feglymycin), carry van gene homologues. Herein, we would like to cover the recent advances on the distribution of GPA resistance genes in genomic and metagenomics datasets related to GPA potential/proved producer microorganisms. A thorough understanding of GPA resistance in the producing microorganisms may prove useful in the future surveillance of emerging mechanisms of resistance to this clinically relevant antibiotic class.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
12
|
Yushchuk O, Andreo-Vidal A, Marcone GL, Bibb M, Marinelli F, Binda E. New Molecular Tools for Regulation and Improvement of A40926 Glycopeptide Antibiotic Production in Nonomuraea gerenzanensis ATCC 39727. Front Microbiol 2020; 11:8. [PMID: 32038594 PMCID: PMC6985074 DOI: 10.3389/fmicb.2020.00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genome sequencing has revealed that Nonomuraea spp. represent a still largely unexplored source of specialized metabolites. Nonomuraea gerenzanensis ATCC 39727 is the most studied representative species since it produces the glycopeptide antibiotic (GPA) A40926 – the precursor of the clinically relevant antibiotic dalbavancin, approved by the FDA in 2014 for the treatment of acute skin infections caused by multi-drug resistant Gram-positive pathogens. The clinical relevance of dalbavancin has prompted increased attention on A40926 biosynthesis and its regulation. In this paper, we investigated how to enhance the genetic toolkit for members of the Nonomuraea genus, which have proved quite recalcitrant to genetic manipulation. By constructing promoter-probe vectors, we tested the activity of 11 promoters (heterologous and native) using the GusA reporter system in N. gerenzanensis and in Nonomuraea coxensis; this latter species is phylogenetically distant from N. gerenzanesis and also possesses the genetic potential to produce A40926 or a very similar GPA. Finally, the strongest constitutive promoter analyzed in this study, aac(3)IVp, was used to overexpress the cluster-situated regulatory genes controlling A40926 biosynthesis (dbv3 and dbv4 from N. gerenzanensis and nocRI from N. coxensis) in N. gerenzanensis, and the growth and productivity of the best performing strains were assessed at bioreactor scale using an industrial production medium. Overexpression of positive pathway-specific regulatory genes resulted in a significant increase in the level of A40926 production in N. gerenzanensis, providing a new knowledge-based approach to strain improvement for this valuable glycopeptide antibiotic.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andres Andreo-Vidal
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Mervyn Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
13
|
Zhao G, Yao S, Rothchild KW, Liu T, Liu Y, Lian J, He H, Ryan KS, Du Y. The Biosynthetic Gene Cluster of Pyrazomycin—A C‐Nucleoside Antibiotic with a Rare Pyrazole Moiety. Chembiochem 2019; 21:644-649. [DOI: 10.1002/cbic.201900449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Guiyun Zhao
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Shunyu Yao
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Kristina W. Rothchild
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Tengfei Liu
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Yu Liu
- College of Life SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Jiazhang Lian
- Institute of Biological Engineering, College of Chemical and Biological EngineeringZhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Hai‐Yan He
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Katherine S. Ryan
- Department of ChemistryThe University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Yi‐Ling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated HospitalZhejiang University School of Medicine 866 Yuhangtang Road Hangzhou 310058 P. R. China
| |
Collapse
|
14
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
15
|
Regulation of teicoplanin biosynthesis: refining the roles of tei cluster-situated regulatory genes. Appl Microbiol Biotechnol 2019; 103:4089-4102. [PMID: 30937499 DOI: 10.1007/s00253-019-09789-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
Teicoplanin is a frontline glycopeptide antibiotic produced by Actinoplanes teichomyceticus. It is used to treat complicated cases of infection, including pediatric ones, caused by Gram-positive pathogens. There is a steady interest in elucidating the genetic mechanisms determining teicoplanin production, as they would help overproduce known teicoplanins and discover novel glycopeptides. Herein, we investigate the transcriptional organization of the tei biosynthetic gene cluster and the roles of the cluster-situated regulatory genes in controlling teicoplanin production and self-resistance in A. teichomyceticus. We demonstrate that the tei cluster is organized into nine polygenic and nine monogenic transcriptional units. Most of tei biosynthetic genes are subjected to StrR-like Tei15* control, which, in turn, appears to be regulated by LuxR-type Tei16*. Expression of the genes conferring teicoplanin self-resistance in A. teichomyceticus is not co-regulated with antibiotic production. The gene tei31*, coding for a putative DNA binding protein, is not expressed under teicoplanin producing conditions and is dispensable for antibiotic production. Finally, phylogenesis reconstruction of the glycopeptide cluster-encoded regulators reveals two main clades of StrR-like regulators. Tei15* and close orthologues form one of these clades; the second clade is composed by orthologues of Bbr and Dbv4, governing the biosynthesis of balhimycin and teicoplanin-like A40926, respectively. In addition, the LuxR-type Tei16* appears unrelated to the LuxR-like Dbv3, which is controlling A40926 biosynthesis. Our results shed new light on teicoplanin biosynthesis regulation and on the evolution of novel and old glycopeptide biosynthetic gene clusters.
Collapse
|
16
|
Complex Regulatory Networks Governing Production of the Glycopeptide A40926. Antibiotics (Basel) 2018; 7:antibiotics7020030. [PMID: 29621136 PMCID: PMC6022936 DOI: 10.3390/antibiotics7020030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/11/2023] Open
Abstract
Glycopeptides (GPAs) are an important class of antibiotics, with vancomycin and teicoplanin being used in the last 40 years as drugs of last resort to treat infections caused by Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus. A few new GPAs have since reached the market. One of them is dalbavancin, a derivative of A40926 produced by the actinomycete Nonomuraea sp. ATCC 39727, recently classified as N. gerenzanensis. This review summarizes what we currently know on the multilevel regulatory processes governing production of the glycopeptide A40926 and the different approaches used to increase antibiotic yields. Some nutrients, e.g., valine, l-glutamine and maltodextrin, and some endogenous proteins, e.g., Dbv3, Dbv4 and RpoBR, have a positive role on A40926 biosynthesis, while other factors, e.g., phosphate, ammonium and Dbv23, have a negative effect. Overall, the results available so far point to a complex regulatory network controlling A40926 in the native producing strain.
Collapse
|
17
|
Old and new glycopeptide antibiotics: From product to gene and back in the post-genomic era. Biotechnol Adv 2018; 36:534-554. [PMID: 29454983 DOI: 10.1016/j.biotechadv.2018.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/22/2018] [Accepted: 02/14/2018] [Indexed: 02/05/2023]
Abstract
Glycopeptide antibiotics are drugs of last resort for treating severe infections caused by multi-drug resistant Gram-positive pathogens. First-generation glycopeptides (vancomycin and teicoplanin) are produced by soil-dwelling actinomycetes. Second-generation glycopeptides (dalbavancin, oritavancin, and telavancin) are semi-synthetic derivatives of the progenitor natural products. Herein, we cover past and present biotechnological approaches for searching for and producing old and new glycopeptide antibiotics. We review the strategies adopted to increase microbial production (from classical strain improvement to rational genetic engineering), and the recent progress in genome mining, chemoenzymatic derivatization, and combinatorial biosynthesis for expanding glycopeptide chemical diversity and tackling the never-ceasing evolution of antibiotic resistance.
Collapse
|
18
|
Cloning, expression, purification and biophysical analysis of two putative halogenases from the glycopeptide A47,934 gene cluster of Streptomyces toyocaensis. Protein Expr Purif 2017; 132:9-18. [DOI: 10.1016/j.pep.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
19
|
Lei X, Zhang C, Jiang Z, Li X, Shi Y, Liu M, Xie Y, Wang L, Hong B. Complete genome sequence of Amycolatopsis orientalis CPCC200066, the producer of norvancomycin. J Biotechnol 2017; 247:6-10. [PMID: 28216102 DOI: 10.1016/j.jbiotec.2017.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Amycolatopsis orientalis CPCC200066 is an actinomycete exploited commercially in China for the production of norvancomycin, an important glycopeptide antibiotic structurally close to the well-known vancomycin. The availability of the complete genome sequence of CPCC200066 would greatly strengthen our understanding of the regulation pattern of norvancomycin biosynthesis and ultimately improve its production, as well as potentiate discoveries of novel bioactive compounds. Here we report the complete genome sequence of A. orientalis CPCC200066, a circular chromosome consisting of 9,490,992bp. Forty putative secondary metabolite biosynthetic gene clusters, including norvancomycin, were predicted, covering 20.3% of the whole genome. To facilitate genetic manipulation of this strain, an efficient transformation system was established by constructing a novel integrative vector pIMBT1, which could be transferred into CPCC200066 by electroporation with high efficiency. ΦBT1 attB sites were also identified in other known Amycolatopsis genomes, indicating pIMBT1's prospect to be a novel vector for genus Amycolatopsis.
Collapse
Affiliation(s)
- Xuan Lei
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cong Zhang
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhibo Jiang
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xingxing Li
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuanyuan Shi
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Liu
- Immunology Program Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yunying Xie
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lifei Wang
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Bin Hong
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
20
|
Kilian R, Frasch HJ, Kulik A, Wohlleben W, Stegmann E. The VanRS Homologous Two-Component System VnlRSAb of the Glycopeptide Producer Amycolatopsis balhimycina Activates Transcription of the vanHAXSc Genes in Streptomyces coelicolor, but not in A. balhimycina. Microb Drug Resist 2016; 22:499-509. [PMID: 27420548 PMCID: PMC5036315 DOI: 10.1089/mdr.2016.0128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In enterococci and in Streptomyces coelicolor, a glycopeptide nonproducer, the glycopeptide resistance genes vanHAX are colocalized with vanRS. The two-component system (TCS) VanRS activates vanHAX transcription upon sensing the presence of glycopeptides. Amycolatopsis balhimycina, the producer of the vancomycin-like glycopeptide balhimycin, also possesses vanHAXAb genes. The genes for the VanRS-like TCS VnlRSAb, together with the carboxypeptidase gene vanYAb, are part of the balhimycin biosynthetic gene cluster, which is located 2 Mb separate from the vanHAXAb. The deletion of vnlRSAb did not affect glycopeptide resistance or balhimycin production. In the A. balhimycina vnlRAb deletion mutant, the vanHAXAb genes were expressed at the same level as in the wild type, and peptidoglycan (PG) analyses proved the synthesis of resistant PG precursors. Whereas vanHAXAb expression in A. balhimycina does not depend on VnlRAb, a VnlRAb-depending regulation of vanYAb was demonstrated by reverse transcriptase polymerase chain reaction (RT-PCR) and RNA-seq analyses. Although VnlRAb does not regulate the vanHAXAb genes in A. balhimycina, its heterologous expression in the glycopeptide-sensitive S. coelicolor ΔvanRSSc deletion mutant restored glycopeptide resistance. VnlRAb activates the vanHAXSc genes even in the absence of VanS. In addition, expression of vnlRAb increases actinorhodin production and influences morphological differentiation in S. coelicolor.
Collapse
Affiliation(s)
- Regina Kilian
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Hans-Joerg Frasch
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| |
Collapse
|
21
|
In Vivo Characterization of the Activation and Interaction of the VanR-VanS Two-Component Regulatory System Controlling Glycopeptide Antibiotic Resistance in Two Related Streptomyces Species. Antimicrob Agents Chemother 2015; 60:1627-37. [PMID: 26711760 DOI: 10.1128/aac.01367-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/15/2015] [Indexed: 11/20/2022] Open
Abstract
The VanR-VanS two-component system is responsible for inducing resistance to glycopeptide antibiotics in various bacteria. We have performed a comparative study of the VanR-VanS systems from two streptomyces strains, Streptomyces coelicolor and Streptomyces toyocaensis, to characterize how the two proteins cooperate to signal the presence of antibiotics and to define the functional nature of each protein in each strain background. The results indicate that the glycopeptide antibiotic inducer specificity is determined solely by the differences between the amino acid sequences of the VanR-VanS two-component systems present in each strain rather than by any inherent differences in general cell properties, including cell wall structure and biosynthesis. VanR of S. coelicolor (VanRsc) functioned with either sensor kinase partner, while VanR of S. toyocaensis (VanRst) functioned only with its cognate partner, S. toyocaensis VanS (VanSst). In contrast to VanRsc, which is known to be capable of phosphorylation by acetylphosphate, VanRst could not be activated in vivo independently of a VanS sensor kinase. A series of amino acid sequence modifications changing residues in the N-terminal receiver (REC) domain of VanRst to the corresponding residues present in VanRsc failed to create a protein capable of being activated by VanS of S. coelicolor (VanSsc), which suggests that interaction of the response regulator with its cognate sensor kinase may require a region more extended than the REC domain. A T69S amino acid substitution in the REC domain of VanRst produced a strain exhibiting weak constitutive resistance, indicating that this particular amino acid may play a key role for VanS-independent phosphorylation in the response regulator protein.
Collapse
|
22
|
Chen S, Wu Q, Shen Q, Wang H. Progress in Understanding the Genetic Information and Biosynthetic Pathways behind Amycolatopsis Antibiotics, with Implications for the Continued Discovery of Novel Drugs. Chembiochem 2015; 17:119-28. [PMID: 26503579 DOI: 10.1002/cbic.201500542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/22/2022]
Abstract
Species of Amycolatopsis, well recognized as producers of both vancomycin and rifamycin, are also known for producing other secondary metabolites, with wide usage in medicine and agriculture. The molecular genetics of natural antibiotics produced by this genus have been well studied. Since the rise of antibiotic resistance, finding new drugs to fight infection has become an urgent priority. Progress in understanding the biosynthesis of metabolites greatly helps the rational manipulation of biosynthetic pathways, and thus to achieve the goal of generating novel natural antibiotics. The efforts made in exploiting Amycolatopsis genome sequences for the discovery of novel natural products and biosynthetic pathways are summarized.
Collapse
Affiliation(s)
- Su Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Chaowang Road No.18, Xiacheng District, Hangzhou, 310014, Zhejiang, China
| | - Qihao Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Chaowang Road No.18, Xiacheng District, Hangzhou, 310014, Zhejiang, China
| | - Qingqing Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Chaowang Road No.18, Xiacheng District, Hangzhou, 310014, Zhejiang, China
| | - Hong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Chaowang Road No.18, Xiacheng District, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
23
|
Frasch HJ, Kalan L, Kilian R, Martin T, Wright GD, Stegmann E. Alternative Pathway to a Glycopeptide-Resistant Cell Wall in the Balhimycin Producer Amycolatopsis balhimycina. ACS Infect Dis 2015; 1:243-52. [PMID: 27622740 DOI: 10.1021/acsinfecdis.5b00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Balhimycin, a vancomycin-type glycopeptide, is a lipid II targeting antibiotic produced by Amycolatopsis balhimycina. A. balhimycina has developed a self-resistance mechanism based on the synergistic action of different enzymes resulting in modified peptidoglycan. The canonical resistance mechanism against glycopeptides is the synthesis of peptidoglycan precursors ending with acyl-d-alanyl-d-lactate (d-Ala-d-Lac) rather than acyl-d-alanyl-d-alanine (d-Ala-d-Ala). This reprogramming is the result of the enzymes VanH, VanA, and VanX. VanH and VanA are required to produce d-Ala-d-Lac; VanX cleaves cytosolic pools of d-Ala-d-Ala, thereby ensuring that peptidoglycan is enriched in d-Ala-d-Lac. In A. balhimycina, the ΔvanHAXAb mutant showed a reduced glycopeptide resistance in comparison to the wild type. Nevertheless, ΔvanHAXAb was paradoxically still able to produce d-Ala-d-Lac containing resistant cell wall precursors suggesting the presence of a novel alternative glycopeptide resistance mechanism. In silico analysis, inactivation studies, and biochemical assays led to the characterization of an enzyme, Ddl1Ab, as a paraloguous chromosomal d-Ala-d-Lac ligase able to complement the function of VanAAb in the ΔvanHAXAb mutant. Furthermore, A. balhimycina harbors a vanYAb gene encoding a d,d-carboxypeptidase. Transcriptional analysis revealed an upregulated expression of vanYAb in the ΔvanHAXAb mutant. VanYAb cleaves the endstanding d-Ala from the pentapeptide precursors, reducing the quantity of sensitive cell wall precursors in the absence of VanXAb. These findings represent an unprecedented coordinated layer of resistance mechanisms in a glycopeptide antibiotic producing bacterium.
Collapse
Affiliation(s)
- Hans-Joerg Frasch
- Interfaculty Institute of Microbiology
and Infection Medicine Tuebingen (IMIT), Microbiology/Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Lindsay Kalan
- Michael G. Degroote Institute for Infectious Disease
Research, Biochemistry and Biomedical Sciences, McMaster University, MDCL-2301, 1280 Main Street West, Hamilton, Ontario L8S4L8, Canada
| | - Regina Kilian
- Interfaculty Institute of Microbiology
and Infection Medicine Tuebingen (IMIT), Microbiology/Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Tobias Martin
- Interfaculty Institute of Microbiology
and Infection Medicine Tuebingen (IMIT), Microbiology/Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Gerard D. Wright
- Michael G. Degroote Institute for Infectious Disease
Research, Biochemistry and Biomedical Sciences, McMaster University, MDCL-2301, 1280 Main Street West, Hamilton, Ontario L8S4L8, Canada
| | - Evi Stegmann
- Interfaculty Institute of Microbiology
and Infection Medicine Tuebingen (IMIT), Microbiology/Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
24
|
Two Master Switch Regulators Trigger A40926 Biosynthesis in Nonomuraea sp. Strain ATCC 39727. J Bacteriol 2015; 197:2536-44. [PMID: 25986904 DOI: 10.1128/jb.00262-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/13/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED The actinomycete Nonomuraea sp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of dalbavancin. Biosynthesis of A40926 is encoded by the dbv gene cluster, which contains 37 protein-coding sequences that participate in antibiotic biosynthesis, regulation, immunity, and export. In addition to the positive regulatory protein Dbv4, the A40926-biosynthetic gene cluster encodes two additional putative regulators, Dbv3 and Dbv6. Independent mutations in these genes, combined with bioassays and liquid chromatography-mass spectrometry (LC-MS) analyses, demonstrated that Dbv3 and Dbv4 are both required for antibiotic production, while inactivation of dbv6 had no effect. In addition, overexpression of dbv3 led to higher levels of A40926 production. Transcriptional and quantitative reverse transcription (RT)-PCR analyses showed that Dbv4 is essential for the transcription of two operons, dbv14-dbv8 and dbv30-dbv35, while Dbv3 positively controls the expression of four monocistronic transcription units (dbv4, dbv29, dbv36, and dbv37) and of six operons (dbv2-dbv1, dbv14-dbv8, dbv17-dbv15, dbv21-dbv20, dbv24-dbv28, and dbv30-dbv35). We propose a complex and coordinated model of regulation in which Dbv3 directly or indirectly activates transcription of dbv4 and controls biosynthesis of 4-hydroxyphenylglycine and the heptapeptide backbone, A40926 export, and some tailoring reactions (mannosylation and hexose oxidation), while Dbv4 directly regulates biosynthesis of 3,5-dihydroxyphenylglycine and other tailoring reactions, including the four cross-links, halogenation, glycosylation, and acylation. IMPORTANCE This report expands knowledge of the regulatory mechanisms used to control the biosynthesis of the glycopeptide antibiotic A40926 in the actinomycete Nonomuraea sp. strain ATCC 39727. A40926 is the precursor of dalbavancin, approved for treatment of skin infections by Gram-positive bacteria. Therefore, understanding the regulation of its biosynthesis is also of industrial importance. So far, the regulatory mechanisms used to control two other similar glycopeptides (balhimycin and teicoplanin) have been elucidated, and beyond a common step, different clusters seem to have devised different strategies to control glycopeptide production. Thus, our work provides one more example of the pitfalls of deducing regulatory roles from bioinformatic analyses only, even when analyzing gene clusters directing the synthesis of structurally related compounds.
Collapse
|
25
|
Overproduction of Ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17. Antimicrob Agents Chemother 2014; 58:6185-96. [PMID: 25114137 DOI: 10.1128/aac.03512-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new antibacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary metabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize medically important products is Amycolatopsis. However, Amycolatopsis japonicum does not produce an antibiotic under standard laboratory conditions. In contrast to most Amycolatopsis strains, A. japonicum is genetically tractable with different methods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of balhimycin biosynthesis, the bbr gene from Amycolatopsis balhimycina (bbrAba), into A. japonicum. This resulted in the production of an antibiotically active compound. Following whole-genome sequencing of A. japonicum, 29 cryptic gene clusters were identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR) spectroscopy confirmed the in silico prediction that the recombinant A. japonicum/pRM4-bbrAba synthesizes ristomycin A.
Collapse
|
26
|
Horbal L, Kobylyanskyy A, Truman AW, Zaburranyi N, Ostash B, Luzhetskyy A, Marinelli F, Fedorenko V. The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 2014; 98:9295-309. [PMID: 25104028 DOI: 10.1007/s00253-014-5969-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 12/01/2022]
Abstract
Pathogenic antibiotic-resistant bacteria are an unprecedented threat to health care worldwide. The range of antibiotics active against these bacteria is narrow; it includes teicoplanin, a "last resort" drug, which is produced by the filamentous actinomycete Actinoplanes teichomyceticus. In this report, we determine the functions of tei15* and tei16*, pathway-specific regulatory genes that code for StrR- and LuxR-type transcriptional factors, respectively. The products of these genes are master switches of teicoplanin biosynthesis, since their inactivation completely abolished antibiotic production. We show that Tei15* positively regulates the transcription of at least 17 genes in the cluster, whereas the targets of Tei16* still remain unknown. Integration of tei15* or tei16* under the control of the aminoglycoside resistance gene aac(3)IV promoter into attBϕC31 site of the A. teichomyceticus chromosome increased teicoplanin productivity to nearly 1 g/L in TM1 industrial medium. The expression of these genes from the moderate copy number episomal vector pKC1139 led to 3-4 g/L teicoplanin, while under the same conditions, wild type produced approximately 100 mg/L. This shows that a significant increase in teicoplanin production can be achieved by a single step of genetic manipulation of the wild-type strain by increasing the expression of the tei regulatory genes. This confirms that natural product yields can be increased using rational engineering once suitable genetic tools have been developed. We propose that this new technology for teicoplanin overproduction might now be transferred to industrial mutants of A. teichomyceticus.
Collapse
Affiliation(s)
- Liliya Horbal
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Antibiotic resistance mechanisms inform discovery: identification and characterization of a novel amycolatopsis strain producing ristocetin. Antimicrob Agents Chemother 2014; 58:5687-95. [PMID: 25022591 DOI: 10.1128/aac.03349-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discovering new antibiotics is a major scientific challenge, made increasingly urgent by the continued development of resistance in bacterial pathogens. A fundamental understanding of the mechanisms of bacterial antibiotic resistance will be vital for the future discovery or design of new, more effective antibiotics. We have exploited our intimate knowledge of the molecular mechanism of glycopeptide antibiotic resistance in the harmless bacterium Streptomyces coelicolor to develop a new two-step cell wall bioactivity screen, which efficiently identified a new actinomycete strain containing a previously uncharacterized glycopeptide biosynthetic gene cluster. The screen first identifies natural product extracts capable of triggering a generalized cell wall stress response and then specifically selects for glycopeptide antibacterials by assaying for the induction of glycopeptide resistance genes. In this study, we established a diverse natural product extract library from actinomycete strains isolated from locations with widely varying climates and ecologies, and we screened them using the novel two-step bioassay system. The bioassay ultimately identified a single strain harboring the previously unidentified biosynthetic gene cluster for the glycopeptide ristocetin, providing a proof of principle for the effectiveness of the screen. This is the first report of the ristocetin biosynthetic gene cluster, which is predicted to include some interesting and previously uncharacterized enzymes. By focusing on screening libraries of microbial extracts, this strategy provides the certainty that identified producer strains are competent for growth and biosynthesis of the detected glycopeptide under laboratory conditions.
Collapse
|
28
|
Synthetic Biology of secondary metabolite biosynthesis in actinomycetes: Engineering precursor supply as a way to optimize antibiotic production. FEBS Lett 2012; 586:2171-6. [DOI: 10.1016/j.febslet.2012.04.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/12/2023]
|
29
|
Self-resistance and cell wall composition in the glycopeptide producer Amycolatopsis balhimycina. Antimicrob Agents Chemother 2011; 55:4283-9. [PMID: 21690280 DOI: 10.1128/aac.01372-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevailing resistance mechanism against glycopeptides in Gram-positive pathogens involves reprogramming the biosynthesis of peptidoglycan precursors, resulting in d-alanyl-d-lactate depsipeptide termini. Amycolatopsis balhimycina produces the vancomycin-like glycopeptide balhimycin and therefore has to protect itself from the action of the glycopeptide. We studied the roles of the accessory resistance gene orthologs vanY(b), vnlR(b), and vnlS(b), which are part of the balhimycin biosynthetic gene cluster (represented by the subscript "b"). The VanY(b) carboxypeptidase cleaved the terminal d-Ala from peptidoglycan precursors, and its heterologous expression enhanced glycopeptide resistance in Streptomyces coelicolor. The VanRS-like two component system VnlRS(b) was not involved in glycopeptide resistance or in the expression of the vanHAX glycopeptide resistance genes. Mature A. balhimycina peptidoglycan contained mainly tri- and tetrapeptides, with only traces of the d-Ala-d-Ala-ending pentapeptides that are binding sites for the antibiotic produced. The structure of the peptidoglycan precursor is consistent with the presence of vanHAX genes, which were identified outside the balhimycin synthesis cluster. Both wild-type and non-antibiotic-producing mutant strains synthesized peptidoglycan precursors ending mainly with d-Lac, indicating constitutive synthesis of a resistant cell wall. A. balhimycina could provide a model for an ancestral glycopeptide producer with constitutively expressed resistance genes.
Collapse
|
30
|
Gallo G, Alduina R, Renzone G, Thykaer J, Bianco L, Eliasson-Lantz A, Scaloni A, Puglia AM. Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations. Microb Cell Fact 2010; 9:95. [PMID: 21110849 PMCID: PMC3004843 DOI: 10.1186/1475-2859-9-95] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/26/2010] [Indexed: 11/25/2022] Open
Abstract
Background Proteomics was recently used to reveal enzymes whose expression is associated with the production of the glycopeptide antibiotic balhimycin in Amycolatopsis balhimycina batch cultivations. Combining chemostat fermentation technology, where cells proliferate with constant parameters in a highly reproducible steady-state, and differential proteomics, the relationships between physiological status and metabolic pathways during antibiotic producing and non-producing conditions could be highlighted. Results Two minimal defined media, one with low Pi (0.6 mM; LP) and proficient glucose (12 g/l) concentrations and the other one with high Pi (1.8 mM) and limiting (6 g/l; LG) glucose concentrations, were developed to promote and repress antibiotic production, respectively, in A. balhimycina chemostat cultivations. Applying the same dilution rate (0.03 h-1), both LG and LP chemostat cultivations showed a stable steady-state where biomass production yield coefficients, calculated on glucose consumption, were 0.38 ± 0.02 and 0.33 ± 0.02 g/g (biomass dry weight/glucose), respectively. Notably, balhimycin was detected only in LP, where quantitative RT-PCR revealed upregulation of selected bal genes, devoted to balhimycin biosynthesis, and of phoP, phoR, pstS and phoD, known to be associated to Pi limitation stress response. 2D-Differential Gel Electrophoresis (DIGE) and protein identification, performed by mass spectrometry and computer-assisted 2 D reference-map http://www.unipa.it/ampuglia/Abal-proteome-maps matching, demonstrated a differential expression for proteins involved in many metabolic pathways or cellular processes, including central carbon and phosphate metabolism. Interestingly, proteins playing a key role in generation of primary metabolism intermediates and cofactors required for balhimycin biosynthesis were upregulated in LP. Finally, a bioinformatic approach showed PHO box-like regulatory elements in the upstream regions of nine differentially expressed genes, among which two were tested by electrophoresis mobility shift assays (EMSA). Conclusion In the two chemostat conditions, used to generate biomass for proteomic analysis, mycelia grew with the same rate and with similar glucose-biomass conversion efficiencies. Global gene expression analysis revealed a differential metabolic adaptation, highlighting strategies for energetic supply and biosynthesis of metabolic intermediates required for biomass production and, in LP, for balhimycin biosynthesis. These data, confirming a relationship between primary metabolism and antibiotic production, could be used to increase antibiotic yield both by rational genetic engineering and fermentation processes improvement.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Università di Palermo, Dipartimento di Biologia Cellulare e dello Sviluppo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Glycopeptide biosynthesis in the context of basic cellular functions. Curr Opin Microbiol 2010; 13:595-602. [DOI: 10.1016/j.mib.2010.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 12/17/2022]
|
32
|
Thykaer J, Nielsen J, Wohlleben W, Weber T, Gutknecht M, Lantz AE, Stegmann E. Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. Metab Eng 2010; 12:455-61. [DOI: 10.1016/j.ymben.2010.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/29/2010] [Accepted: 05/10/2010] [Indexed: 11/26/2022]
|
33
|
Gallo G, Renzone G, Alduina R, Stegmann E, Weber T, Lantz AE, Thykaer J, Sangiorgi F, Scaloni A, Puglia AM. Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina. Proteomics 2010; 10:1336-58. [DOI: 10.1002/pmic.200900175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Dangel V, Härle J, Goerke C, Wolz C, Gust B, Pernodet JL, Heide L. Transcriptional regulation of the novobiocin biosynthetic gene cluster. MICROBIOLOGY-SGM 2009; 155:4025-4035. [PMID: 19762445 DOI: 10.1099/mic.0.032649-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aminocoumarin antibiotic novobiocin is a gyrase inhibitor formed by a Streptomyces strain. The biosynthetic gene cluster of novobiocin spans 23.4 kb and contains 20 coding sequences, among them the two regulatory genes novE and novG. We investigated the location of transcriptional promoters within this cluster by insertion of transcriptional terminator cassettes and RT-PCR analysis of the resulting mutants. The cluster was found to contain eight DNA regions with promoter activity. The regulatory protein NovG binds to a previously identified binding site within the promoter region located upstream of novH, but apparently not to any of the other seven promoters. Quantitative real-time PCR was used to compare the number of transcripts in a strain carrying an intact novobiocin cluster with strains carrying mutated clusters. Both in-frame deletion of the regulatory gene novG and insertion of a terminator cassette into the biosynthetic gene novH led to a strong reduction of the number of transcripts of the genes located between novH and novW. This suggested that these 16 biosynthetic genes form a single operon. Three internal promoters are located within this operon but appear to be of minor importance, if any, under our experimental conditions. Transcription of novG was found to depend on the presence of NovE, suggesting that the two regulatory genes, novE and novG, act in a cascade-like mechanism. The resistance gene gyrB(R), encoding an aminocoumarin-resistant gyrase B subunit, may initially be co-transcribed with the genes from novH to novW. However, when the gyrase inhibitor novobiocin accumulates in the cultures, gyrB(R) is transcribed from its own promoter. Previous work has suggested that this promoter is controlled by the superhelical density of chromosomal DNA.
Collapse
Affiliation(s)
- Volker Dangel
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Johannes Härle
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Christiane Goerke
- Institute for Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany
| | - Christiane Wolz
- Institute for Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany
| | - Bertolt Gust
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jean-Luc Pernodet
- Univ. Paris-Sud 11, CNRS, UMR 8621, Institut de Génétique et Microbiologie, 91405 Orsay Cedex, France
| | - Lutz Heide
- Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
35
|
The kirromycin gene cluster of Streptomyces collinus Tü 365 codes for an aspartate-α-decarboxylase, KirD, which is involved in the biosynthesis of the precursor β-alanine. J Antibiot (Tokyo) 2009; 62:465-8. [DOI: 10.1038/ja.2009.67] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Wohlleben W, Stegmann E, Süssmuth RD. Chapter 18. Molecular genetic approaches to analyze glycopeptide biosynthesis. Methods Enzymol 2009; 458:459-86. [PMID: 19374994 DOI: 10.1016/s0076-6879(09)04818-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The glycopeptide antibiotics vancomycin and teicoplanin are used in the hospital as drugs of last resort to combat resistant Gram-positive pathogens, in particular methicillin-resistant Staphylococcus aureus. All glycopeptides consist of a heptapeptide backbone in which the aromatic residues are connected to form a rigid cup-shaped structure required to stably interact with the D-Ala-D-Ala terminus of bacterial cell wall precursors. Structural diversity is generated by variations in the composition of the backbone, preferably at amino acid positions 1 and 3, and by different glycosylation, methylation, and chlorination patterns. The identification of several glycopeptide biosynthesis gene clusters, the development of genetic techniques to manipulate at least some of the producing actinomycetes, and subsequent molecular analysis enabled the elucidation of their biosynthetic pathways. This led to biochemical methods being combined with molecular genetic techniques and analytical chemistry. Knowledge of the biosynthesis made it possible to apply different approaches for the generation of novel glycopeptide derivatives by mutasynthesis, precursor-directed biosynthesis, and genetic engineering.
Collapse
Affiliation(s)
- Wolfgang Wohlleben
- Institut für Mikrobiologie, Mikrobiologie/Biotechnologie, Universität Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
37
|
|
38
|
Dangel V, Eustáquio AS, Gust B, Heide L. novE and novG act as positive regulators of novobiocin biosynthesis. Arch Microbiol 2008; 190:509-19. [DOI: 10.1007/s00203-008-0396-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/30/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
|
39
|
Alduina R, Lo Piccolo L, D'Alia D, Ferraro C, Gunnarsson N, Donadio S, Puglia AM. Phosphate-controlled regulator for the biosynthesis of the dalbavancin precursor A40926. J Bacteriol 2007; 189:8120-9. [PMID: 17873036 PMCID: PMC2168674 DOI: 10.1128/jb.01247-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The actinomycete Nonomuraea sp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of the novel antibiotic dalbavancin. Previous studies have shown that phosphate limitation results in enhanced A40926 production. The A40926 biosynthetic gene (dbv) cluster, which consists of 37 genes, encodes two putative regulators, Dbv3 and Dbv4, as well as the response regulator (Dbv6) and the sensor-kinase (Dbv22) of a putative two-component system. Reverse transcription-PCR (RT-PCR) and real-time RT-PCR analysis revealed that the dbv14-dbv8 and the dbv30-dbv35 operons, as well as dbv4, were negatively influenced by phosphate. Dbv4 shows a putative helix-turn-helix DNA-binding motif and shares sequence similarity with StrR, the transcriptional activator of streptomycin biosynthesis in Streptomyces griseus. Dbv4 was expressed in Escherichia coli as an N-terminal His(6)-tagged protein. The purified protein bound the dbv14 and dbv30 upstream regions but not the region preceding dbv4. Bbr, a Dbv4 ortholog from the gene cluster for the synthesis of the glycopeptide balhimycin, also bound to the dbv14 and dbv30 upstream regions, while Dbv4 bound appropriate regions from the balhimycin cluster. Our results provide new insights into the regulation of glycopeptide antibiotics, indicating that the phosphate-controlled regulator Dbv4 governs two key steps in A40926 biosynthesis: the biosynthesis of the nonproteinogenic amino acid 3,5-dihydroxyphenylglycine and critical tailoring reactions on the heptapeptide backbone.
Collapse
Affiliation(s)
- Rosa Alduina
- University of Palermo, Dipartimento di Biologia Cellulare e dello Sviluppo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Menges R, Muth G, Wohlleben W, Stegmann E. The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin. Appl Microbiol Biotechnol 2007; 77:125-34. [PMID: 17823795 DOI: 10.1007/s00253-007-1139-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/23/2007] [Accepted: 07/29/2007] [Indexed: 11/30/2022]
Abstract
All known gene clusters for glycopeptide antibiotic biosynthesis contain a conserved gene supposed to encode an ABC-transporter. In the balhimycin-producer Amycolatopsis balhimycina this gene (tba) is localised between the prephenate dehydrogenase gene pdh and the peptide synthetase gene bpsA. Inactivation of tba in A. balhimycina by gene replacement did not interfere with growth and did not affect balhimycin resistance. However, in the supernatant of the tba mutant RM43 less balhimycin was accumulated compared to the wild type; and the intra-cellular balhimycin concentration was ten times higher in the tba mutant RM43 than in the wild type. These data suggest that the ABC transporter encoded in the balhimycin biosynthesis gene cluster is not involved in resistance but is required for the efficient export of the antibiotic. To elucidate the activity of Tba it was heterologously expressed in Escherichia coli with an N-terminal His-tag and purified by nickel chromatography. A photometric assay revealed that His(6)-Tba solubilised in dodecylmaltoside possesses ATPase activity, characteristic for ABC-transporters.
Collapse
Affiliation(s)
- R Menges
- Lehrstuhl für Mikrobiologie/Biotechnologie, Mikrobiologisches Institut, Universität Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|