1
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
2
|
Chavez E, Rodriguez J, Drexler Y, Fornoni A. Novel Therapies for Alport Syndrome. Front Med (Lausanne) 2022; 9:848389. [PMID: 35547199 PMCID: PMC9081811 DOI: 10.3389/fmed.2022.848389] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease associated with proteinuria, hematuria and progressive kidney failure. It is characterized by a defective glomerular basement membrane caused by mutations in type IV collagen genes COL4A3/A4/A5 which result in defective type IV collagen α3, α4, or α5 chains, respectively. Alport syndrome has three different patterns of inheritance: X-linked, autosomal and digenic. In a study of CKD of unknown etiology type IV collagen gene mutations accounted for the majority of the cases of hereditary glomerulopathies which suggests that AS is often underrecognized. The natural history and prognosis in patients with AS is variable and is determined by genetics and environmental factors. At present, no preventive or curative therapies exist for AS. Current treatment includes the use of renin-angiotensin-aldosterone system inhibitors which slow progression of kidney disease and prolong life expectancy. Ramipril was found in retrospective studies to delay the onset of ESKD and was recently demonstrated to be safe and effective in children and adolescents, supporting that early initiation of Renin Angiotensin Aldosterone System (RAAS) blockade is very important. Mineralocorticoid receptor blockers might be favorable for patients who develop "aldosterone breakthrough." While the DAPA-CKD trial suggests a beneficial effect of SGLT2 inhibitors in CKD of non-metabolic origin, only a handful of patients had Alport in this cohort, and therefore conclusions can't be extrapolated for the treatment of AS with SGLT2 inhibitors. Advances in our understanding on the pathogenesis of Alport syndrome has culminated in the development of innovative therapeutic approaches that are currently under investigation. We will provide a brief overview of novel therapeutic targets to prevent progression of kidney disease in AS. Our review will include bardoxolone methyl, an oral NRf2 activator; lademirsen, an anti-miRNA-21 molecule; sparsentan, dual endothelin type A receptor (ETAR) and angiotensin 1 receptor inhibitor; atrasentan, oral selective ETAR inhibitor; lipid-modifying agents, including cholesterol efflux transporter ATP-binding cassette A1 (ABCA1) inducers, discoidin domain receptor 1 (DDR1) inhibitors and osteopontin blocking agents; the antimalarial drug hydroxychloroquine; the antiglycemic drug metformin and the active vitamin D analog paricalcitol. Future genomic therapeutic strategies such as chaperone therapy, genome editing and stem cell therapy will also be discussed.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juanly Rodriguez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
3
|
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021; 9:696542. [PMID: 34327204 PMCID: PMC8314387 DOI: 10.3389/fcell.2021.696542] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus (DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis is a crucial metabolic change in the late stage of DKD, which is always considered to be complex and irreversible. In this review, we discuss the pathological mechanisms of diabetic renal fibrosis and discussed some signaling pathways that are closely related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch pathways. The cross-talks among these pathways were then discussed to elucidate the complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the new drugs with potential therapeutic effects on renal fibrosis and listed related clinical trials. The purpose of this review is to elucidate the mechanisms and related pathways of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical research to delay the progression of renal fibrosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Endocrinology Department, Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rongrong Zhou
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Verdoia M, Nardin M, Rolla R, Negro F, Gioscia R, Saghir Afifeh AM, Viglione F, Suryapranata H, Marcolongo M, De Luca G. Cholecalciferol levels, inflammation and leukocytes parameters: Results from a large single-centre cohort of patients. Clin Nutr 2021; 40:2228-2236. [DOI: 10.1016/j.clnu.2020.09.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
|
5
|
Saghir Afifeh AM, Verdoia M, Nardin M, Negro F, Viglione F, Rolla R, De Luca G. Determinants of vitamin D activation in patients with acute coronary syndromes and its correlation with inflammatory markers. Nutr Metab Cardiovasc Dis 2021; 31:36-43. [PMID: 33308994 PMCID: PMC7513910 DOI: 10.1016/j.numecd.2020.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIM Vitamin D deficiency is a pandemic disorder affecting over 1 billion of subjects worldwide. Calcitriol (1,25(OH)2D) represents the perpetrator of the several systemic effects of vitamin D, including the anti-inflammatory, antithrombotic and anti-atherosclerotic actions, potentially preventing acute cardiovascular ischemic events. Variability in the transformation of vitamin D into 1,25(OH)2D has been suggested to modulate its cardioprotective benefits, however, the determinants of the levels of calcitriol and their impact on the cardiovascular risk have been seldom addressed and were, therefore, the aim of the present study. METHODS AND RESULTS A consecutive cohort of patients undergoing coronary angiography for acute coronary syndrome (ACS) were included. The levels of 25 and 1,25(OH)2 D were assessed at admission by chemiluminescence immunoassay kit LIAISON® Vitamin D assay (Diasorin Inc) and LIAISON® XL. Hypovitaminosis D was defined as 25(OH)D < 10 ng/ml, whereas calcitriol deficiency as 1,25(OH)2D < 19.9 pg/ml. We included in our study 228 patients, divided according to median values of 1,25(OH)2D (<or ≥ 41.5 pg/ml). Lower calcitriol was associated with age (p = 0.005), diabetes (p = 0.013), renal failure (p < 0.0001), use of diuretics (p = 0.007), platelets (p = 0.019), WBC (p = 0.032), 25(0H)D (p = 0,046), higher creatinine (p = 0.011), and worse glycaemic and lipid profile. A total of 53 patients (23.2%) had hypovitaminosis D, whereas 19 (9.1%) displayed calcitriol deficiency (15.1% among patients with hypovitaminosis D and 7.1% among patients with normal Vitamin D levels, p = 0.09). The independent predictors of 1,25(OH)2D above the median were renal failure (OR[95%CI] = 0.242[0.095-0.617], p = 0.003) and level of vitamin D (OR[95%CI] = 1.057[1.018-1.098], p = 0.004). Calcitriol levels, in fact, directly related with the levels of vitamin D (r = 0.175, p = 0.035), whereas an inverse linear relationship was observed with major inflammatory and metabolic markers of cardiovascular risk (C-reactive protein: r = -0.14, p = 0.076; uric acid: r = -0.18, p = 0.014; homocysteine: r = -0.19, p = 0.007; fibrinogen: r = -0.138, p = 0.05) and Lp-PLA2 (r = -0.167, p = 0.037), but not for leukocytes. CONCLUSION The present study shows that among ACS patients, calcitriol deficiency is frequent and can occur even among patients with adequate vitamin D levels. We identified renal failure and vitamin D levels as independent predictors of 1,25(OH)2D deficiency. Furthermore, we found a significant inverse relationship of calcitriol with inflammatory and metabolic biomarkers, suggesting a potential more relevant and accurate role of calcitriol, as compared to cholecalciferol, in the prediction of cardiovascular risk. Future trials should certainly investigate the potential role of calcitriol administration in the setting of acute coronary syndromes as much as in other inflammatory disorders, such as the SARS-CoV2 infection.
Collapse
Affiliation(s)
- Arraa M Saghir Afifeh
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Monica Verdoia
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy; Division of Cardiology, ASL Biella, Biella, Italy
| | - Matteo Nardin
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federica Negro
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Filippo Viglione
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Roberta Rolla
- Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe De Luca
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy; Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
6
|
Torra R, Furlano M. New therapeutic options for Alport syndrome. Nephrol Dial Transplant 2020; 34:1272-1279. [PMID: 31190059 DOI: 10.1093/ndt/gfz131] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Alport syndrome (AS) is the most frequent inherited kidney disease after autosomal dominant polycystic kidney disease. It has three different patterns of inheritance-autosomal dominant, autosomal recessive and X-linked-which in part explains the wide spectrum of disease, ranging from isolated microhaematuria to end-stage renal disease early in life. The search for a treatment for AS is being pursued vigorously, not only because of the obvious unmet need but also because AS is a rare disease and any drug approved will have an orphan drug designation with its various benefits. Moreover, AS patients are quite young with very few comorbidities, which facilitates clinical trials. This review identifies the particularities of each pattern of inheritance but focuses mainly on new drugs or therapeutic targets for the disease. Most treatment-related investigations are directed not at the main abnormality in AS, namely collagen IV composition, but rather at the associated inflammation and fibrosis. Thus, AS may serve as a proof of concept for numerous drugs of potential value in many diseases that cause chronic kidney disease.
Collapse
Affiliation(s)
- Roser Torra
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mónica Furlano
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Abstract
Cardiovascular disease has earned its place as one of the leading noncommunicable diseases that has become a modern-day global epidemic. The increasing incidence and prevalence of chronic kidney disease (CKD) has added to this enormous burden, given that CKD is now recognized as an established risk factor for accelerated cardiovascular disease. In fact, cardiovascular disease remains the leading cause of death in the CKD population, with significant prognostic implications. Alterations in vitamin D levels as renal function declines has been linked invariably to the development of cardiovascular disease beyond a mere epiphenomenon, and has become an important focus in recent years in our search for new therapies. Another compound, cinacalcet, which belongs to the calcimimetic class of agents, also has taken center stage over the past few years as a potential cardiovasculoprotective agent. However, given limited well-designed randomized trials to inform us, our clinical practice for the management of cardiovascular disease in CKD has not been adequately refined. This article considers the biological mechanisms, regulation, and current experimental, clinical, and trial data available to help guide the therapeutic use of vitamin D and calcimimetics in the setting of CKD and cardiovascular disease.
Collapse
Affiliation(s)
- Kenneth Lim
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| | - Takayuki Hamano
- Department of Comprehensive Kidney Disease Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ravi Thadhani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
8
|
|
9
|
Bulut G, Basbugan Y, Ari E, Erten R, Bektas H, Alp HH, Bayram I. Paricalcitol may improve oxidative DNA damage on experimental amikacin-induced nephrotoxicity model. Ren Fail 2016; 38:751-8. [DOI: 10.3109/0886022x.2016.1158071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
10
|
Chapter 4.1: Treatment of CKD-MBD targeted at lowering high serum phosphorus and maintaining serum calcium. Kidney Int 2016; 76113:S50-99. [PMID: 26746397 DOI: 10.1038/ki.2009.192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Santoro D, Caccamo D, Lucisano S, Buemi M, Sebekova K, Teta D, De Nicola L. Interplay of vitamin D, erythropoiesis, and the renin-angiotensin system. BIOMED RESEARCH INTERNATIONAL 2015; 2015:145828. [PMID: 26000281 PMCID: PMC4427087 DOI: 10.1155/2015/145828] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
Abstract
For many years deficiency of vitamin D was merely identified and assimilated to the presence of bone rickets. It is now clear that suboptimal vitamin D status may be correlated with several disorders and that the expression of 1-α-hydroxylase in tissues other than the kidney is widespread and of clinical relevance. Recently, evidence has been collected to suggest that, beyond the traditional involvement in mineral metabolism, vitamin D may interact with other kidney hormones such as renin and erythropoietin. This interaction would be responsible for some of the systemic and renal effects evoked for the therapy with vitamin D. The administration of analogues of vitamin D has been associated with an improvement of anaemia and reduction in ESA requirements. Moreover, vitamin D deficiency could contribute to an inappropriately activated or unsuppressed RAS, as a mechanism for progression of CKD and/or cardiovascular disease. Experimental data on the anti-RAS and anti-inflammatory effects treatment with active vitamin D analogues suggest a therapeutic option particularly in proteinuric CKD patients. This option should be considered for those subjects that are intolerant to anti-RAS agents or, as add-on therapy, in those already treated with anti-RAS but not reaching the safe threshold level of proteinuria.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Clinical and Experimental Medicine, University of Messina, Via Faranda, 2-98123 Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Italy
| | - Silvia Lucisano
- Department of Clinical and Experimental Medicine, University of Messina, Via Faranda, 2-98123 Messina, Italy
| | - Michele Buemi
- Department of Clinical and Experimental Medicine, University of Messina, Via Faranda, 2-98123 Messina, Italy
| | | | - Daniel Teta
- University Hospital (CHUV), Lausanne, Switzerland
| | | |
Collapse
|
12
|
Yao T, Ying X, Zhao Y, Yuan A, He Q, Tong H, Ding S, Liu J, Peng X, Gao E, Pu J, He B. Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy. Antioxid Redox Signal 2015; 22:633-50. [PMID: 25365634 PMCID: PMC4346660 DOI: 10.1089/ars.2014.5887] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS To determine the roles of vitamin D receptor (VDR) in ischemia/reperfusion-induced myocardial injury and to investigate the underlying mechanisms involved. RESULTS The endogenous VDR expression was detected in the mouse heart, and myocardial ischemia/reperfusion (MI/R) upregulated VDR expression. Activation of VDR by natural and synthetic agonists reduced myocardial infarct size and improved cardiac function. Mechanistically, VDR activation inhibited endoplasmic reticulum (ER) stress (determined by the reduction of CCAAT/enhancer-binding protein homologous protein expression and caspase-12 activation), attenuated mitochondrial impairment (determined by the decrease of mitochondrial cytochrome c release and caspase-9 activation), and reduced cardiomyocyte apoptosis. Furthermore, VDR activation significantly inhibited MI/R-induced autophagy dysfunction (determined by the inhibition of Beclin 1 over-activation, the reduction of autophagosomes, the LC3-II/LC3-I ratio, p62 protein abundance, and the restoration of autophagy flux). Moreover, VDR activation inhibited MI/R-induced oxidative stress through a metallothionein-dependent mechanism. The cardioprotective effects of VDR agonists mentioned earlier were impaired in the setting of cardiac-specific VDR silencing. In contrast, adenovirus-mediated cardiac VDR overexpression decreased myocardial infarct size and improved cardiac function through attenuating oxidative stress, and inhibiting apoptosis and autophagy dysfunction. INNOVATION AND CONCLUSION Our data demonstrate that VDR is a novel endogenous self-defensive and cardioprotective receptor against MI/R injury, via mechanisms (at least in part) reducing oxidative stress, and inhibiting apoptosis and autophagy dysfunction-mediated cell death.
Collapse
Affiliation(s)
- Tianbao Yao
- 1 Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Freundlich M, Li YC, Quiroz Y, Bravo Y, Seeherunvong W, Faul C, Weisinger JR, Rodriguez-Iturbe B. Paricalcitol downregulates myocardial renin-angiotensin and fibroblast growth factor expression and attenuates cardiac hypertrophy in uremic rats. Am J Hypertens 2014; 27:720-6. [PMID: 24072555 DOI: 10.1093/ajh/hpt177] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vitamin D attenuates uremic cardiac hypertrophy, possibly by suppressing the myocardial renin-angiotensin system (RAS) and fibroblast growth factors (FGFs). We compared the suppression of cardiac hypertrophy and myocardial expression of RAS and FGF receptor genes offered by the vitamin D analog paricalcitol (Pc) or the angiotensin-converting enzyme inhibitor enalapril (E) in experimental uremia. METHODS Rats with 5/6 nephrectomy received Pc or E for 8 weeks. Renal function, systolic blood pressure, and cardiac hypertrophy were evaluated. Myocardial expression of RAS genes, brain natriuretic peptide (BNP), and FGF receptor-1 (FGFR-1) were determined using quantitative reverse-transcription (pRT)-PCR. RESULTS Blood pressure, proteinuria, and serum creatinine were significantly higher in untreated uremic animals. Hypertension was significantly reduced by E but only modestly by Pc; however, cardiac hypertrophy in the untreated group was similarly attenuated by Pc or E. Upregulation of myocardial expressions of renin, angiotensinogen, FGFR-1, and BNP in untreated uremic animals was reduced similarly by Pc and E, while the angiotensin II type 1 receptor was downregulated only by E. CONCLUSIONS Uremic cardiac hypertrophy is associated with activation of the myocardial RAS and the FGFR-1. Downregulation of these genes induced by Pc and E results in similar amelioration of left ventricular hypertrophy despite the different antihypertensive effects of these drugs.
Collapse
Affiliation(s)
- Michael Freundlich
- Department of Pediatrics, Division of Pediatric Nephrology, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lipshultz SE, Cochran TR, Briston DA, Brown SR, Sambatakos PJ, Miller TL, Carrillo AA, Corcia L, Sanchez JE, Diamond MB, Freundlich M, Harake D, Gayle T, Harmon WG, Rusconi PG, Sandhu SK, Wilkinson JD. Pediatric cardiomyopathies: causes, epidemiology, clinical course, preventive strategies and therapies. Future Cardiol 2013; 9:817-48. [PMID: 24180540 PMCID: PMC3903430 DOI: 10.2217/fca.13.66] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pediatric cardiomyopathies, which are rare but serious disorders of the muscles of the heart, affect at least one in every 100,000 children in the USA. Approximately 40% of children with symptomatic cardiomyopathy undergo heart transplantation or die from cardiac complications within 2 years. However, a significant number of children suffering from cardiomyopathy are surviving into adulthood, making it an important chronic illness for both pediatric and adult clinicians to understand. The natural history, risk factors, prevalence and incidence of this pediatric condition were not fully understood before the 1990s. Questions regarding optimal diagnostic, prognostic and treatment methods remain. Children require long-term follow-up into adulthood in order to identify the factors associated with best clinical practice including diagnostic approaches, as well as optimal treatment approaches. In this article, we comprehensively review current research on various presentations of this disease, along with current knowledge about their causes, treatments and clinical outcomes.
Collapse
Affiliation(s)
- Steven E Lipshultz
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
- Holtz Children’s Hospital of the University of Miami/Jackson Memorial Medical Center & Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Thomas R Cochran
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - David A Briston
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Stefanie R Brown
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Peter J Sambatakos
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Tracie L Miller
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
- Holtz Children’s Hospital of the University of Miami/Jackson Memorial Medical Center & Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Adriana A Carrillo
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Liat Corcia
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Janine E Sanchez
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Melissa B Diamond
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Michael Freundlich
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Danielle Harake
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Tamara Gayle
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - William G Harmon
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Paolo G Rusconi
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - Satinder K Sandhu
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
| | - James D Wilkinson
- Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA
- Holtz Children’s Hospital of the University of Miami/Jackson Memorial Medical Center & Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
15
|
Atchison DK, Harding P, Beierwaltes WH. Vitamin D increases plasma renin activity independently of plasma Ca2+ via hypovolemia and β-adrenergic activity. Am J Physiol Renal Physiol 2013; 305:F1109-17. [PMID: 23926179 DOI: 10.1152/ajprenal.00010.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1, 25-Dihydroxycholechalciferol (calcitriol) and 19-nor-1, 25-dihydroxyvitamin D2 (paricalcitol) are vitamin D receptor (VDR) agonists. Previous data suggest VDR agonists may actually increase renin-angiotensin activity, and this has always been assumed to be mediated by hypercalcemia. We hypothesized that calcitriol and paricalcitol would increase plasma renin activity (PRA) independently of plasma Ca(2+) via hypercalciuria-mediated polyuria, hypovolemia, and subsequent increased β-adrenergic sympathetic activity. We found that both calcitriol and paricalcitol increased PRA threefold (P < 0.01). Calcitriol caused hypercalcemia, but paricalcitol did not. Both calcitriol and paricalcitol caused hypercalciuria (9- and 7-fold vs. control, P < 0.01) and polyuria (increasing 2.6- and 2.2-fold vs. control, P < 0.01). Paricalcitol increased renal calcium-sensing receptor (CaSR) expression, suggesting a potential cause of paricalcitol-mediated hypercalciuria and polyuria. Volume replacement completely normalized calcitriol-stimulated PRA and lowered plasma epinephrine by 43% (P < 0.05). β-Adrenergic blockade also normalized calcitriol-stimulated PRA. Cyclooxygenase-2 inhibition had no effect on calcitriol-stimulated PRA. Our data demonstrate that vitamin D increases PRA independently of plasma Ca(2+) via hypercalciuria, polyuria, hypovolemia, and increased β-adrenergic activity.
Collapse
Affiliation(s)
- Douglas K Atchison
- Dept. of Internal Medicine, Hypertension and Vascular Research Div., Henry Ford Hospital, 7121 E&R Bldg., 2799 W. Grand Blvd., Detroit, MI 48202.
| | | | | |
Collapse
|
16
|
Schroten NF, Ruifrok WPT, Kleijn L, Dokter MM, Silljé HH, Lambers Heerspink HJ, Bakker SJL, Kema IP, van Gilst WH, van Veldhuisen DJ, Hillege HL, de Boer RA. Short-term vitamin D3 supplementation lowers plasma renin activity in patients with stable chronic heart failure: an open-label, blinded end point, randomized prospective trial (VitD-CHF trial). Am Heart J 2013; 166:357-364.e2. [PMID: 23895820 DOI: 10.1016/j.ahj.2013.05.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/02/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Many chronic heart failure (CHF) patients have low vitamin D (VitD) and high plasma renin activity (PRA), which are both associated with poor prognosis. Vitamin D may inhibit renin transcription and lower PRA. We investigated whether vitamin D3 (VitD3) supplementation lowers PRA in CHF patients. METHODS AND RESULTS We conducted a single-center, open-label, blinded end point trial in 101 stable CHF patients with reduced left ventricular ejection fraction. Patients were randomized to 6 weeks of 2,000 IU oral VitD3 daily or control. At baseline, mean age was 64 ± 10 years, 93% male, left ventricular ejection fraction 35% ± 8%, and 56% had VitD deficiency. The geometric mean (95% CI) of 25-hydroxyvitamin D3 increased from 48 nmol/L (43-54) at baseline to 80 nmol/L (75-87) after 6 weeks in the VitD3 treatment group and decreased from 47 nmol/L (42-53) to 44 nmol/L (39-49) in the control group (P < .001). The primary outcome PRA decreased from 6.5 ng/mL per hour (3.8-11.2) to 5.2 ng/mL per hour (2.9-9.5) in the VitD3 treatment group and increased from 4.9 ng/mL per hour (2.9-8.5) to 7.3 ng/mL per hour (4.5-11.8) in the control group (P = .002). This was paralleled by a larger decrease in plasma renin concentration in the VitD3 treatment group compared to control (P = .020). No significant changes were observed in secondary outcome parameters, including N-terminal pro-B-type natriuretic peptide natriuretic peptide and fibrosis markers. CONCLUSIONS Most CHF patients had VitD deficiency and high PRA levels. Six weeks of supplementation with 2,000 IU VitD3 increased 25-hydroxyvitamin D3 levels and decreased PRA and plasma renin concentration.
Collapse
Affiliation(s)
- Nicolas F Schroten
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Navarro-González JF, Donate-Correa J, Méndez ML, de Fuentes MM, García-Pérez J, Mora-Fernández C. Anti-inflammatory profile of paricalcitol in hemodialysis patients: a prospective, open-label, pilot study. J Clin Pharmacol 2013; 53:421-426. [PMID: 23426718 DOI: 10.1002/jcph.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/17/2012] [Indexed: 11/07/2022]
Abstract
Inflammation is a strong predictor of increased morbidity and mortality in hemodialysis (HD) patients. Paricalcitol, a selective vitamin D receptor activator used for prevention and treatment of secondary hyperparathyroidism, has shown anti-inflammatory properties in experimental studies, although clinical data are scarce. In an open-label, prospective, single center, pilot study, 25 stable HD patients, previously receiving calcitriol, completed 12 weeks of therapy with oral paricalcitol. Serum and peripheral blood mononuclear cell (PBMC) expression profiles of inflammatory cytokines were analyzed. Serum interleukin (IL)-1, IL-10, and IL-18 did not change, unlike high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), and IL-6, which experienced a significant mean percent decrease of 14.3%, 4.7%, and 5%, respectively. There was a significant reduction in the TNF-α/IL-10 and the IL-6/IL-10 ratios (P < .05). Serum intact parathyroid hormone concentration experienced a mild but significant reduction. In addition, expression levels of TNF-α and IL-6 decreased by 19.1% (P < .01) and 17.5% (P < .001), respectively, whereas expression of IL-10 increased by 17.7% (P < .01) after treatment. In conclusion, paricalcitol administration to HD patients is associated with a beneficial effect on the inflammatory cytokine serum and gene expression profile of PBMC. This effect may contribute to the survival benefits of paricalcitol observed in clinical studies.
Collapse
Affiliation(s)
- Juan F Navarro-González
- Nephrology Service, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The renin-angiotensin-aldosterone-system (RAAS) plays a central role in the pathophysiology of heart failure and cardiorenal interaction. Drugs interfering in the RAAS form the pillars in treatment of heart failure and cardiorenal syndrome. Although RAAS inhibitors improve prognosis, heart failure–associated morbidity and mortality remain high, especially in the presence of kidney disease. The effect of RAAS blockade may be limited due to the loss of an inhibitory feedback of angiotensin II on renin production. The subsequent increase in prorenin and renin may activate several alternative pathways. These include the recently discovered (pro-) renin receptor, angiotensin II escape via chymase and cathepsin, and the formation of various angiotensin subforms upstream from the blockade, including angiotensin 1–7, angiotensin III, and angiotensin IV. Recently, the direct renin inhibitor aliskiren has been proven effective in reducing plasma renin activity (PRA) and appears to provide additional (tissue) RAAS blockade on top of angiotensin-converting enzyme and angiotensin receptor blockers, underscoring the important role of renin, even (or more so) under adequate RAAS blockade. Reducing PRA however occurs at the expense of an increase plasma renin concentration (PRC). PRC may exert direct effects independent of PRA through the recently discovered (pro-) renin receptor. Additional novel possibilities to interfere in the RAAS, for instance using vitamin D receptor activation, as well as the increased knowledge on alternative pathways, have revived the question on how ideal RAAS-guided therapy should be implemented. Renin and prorenin are pivotal since these are at the base of all of these pathways.
Collapse
|
19
|
Bae S, Singh SS, Yu H, Lee JY, Cho BR, Kang PM. Vitamin D signaling pathway plays an important role in the development of heart failure after myocardial infarction. J Appl Physiol (1985) 2013; 114:979-87. [PMID: 23429874 DOI: 10.1152/japplphysiol.01506.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Accumulating evidence suggests that vitamin D deficiency plays a crucial role in heart failure. However, whether vitamin D signaling itself plays an important role in cardioprotection is poorly understood. In this study, we examined the mechanism of modulating vitamin D signaling on progression to heart failure after myocardial infarction (MI) in mice. Vitamin D signaling was activated by administration of paricalcitol (PC), an activated vitamin D analog. Wild-type (WT) mice underwent sham or MI surgery and then were treated with either vehicle or PC. Compared with vehicle group, PC attenuated development of heart failure after MI associated with decreases in biomarkers, apoptosis, inflammation, and fibrosis. There was also improvement of cardiac function with PC treatment after MI. Furthermore, vitamin D receptor (VDR) mRNA and protein levels were restored by PC treatment. Next, to explore whether defective vitamin D signaling exhibited deleterious responses after MI, WT and VDR knockout (KO) mice underwent sham or MI surgery and were analyzed 4 wk after MI. VDR KO mice displayed a significant decline in survival rate and cardiac function compared with WT mice after MI. VDR KO mice also demonstrated a significant increase in heart failure biomarkers, apoptosis, inflammation, and fibrosis. Vitamin D signaling promotes cardioprotection after MI through anti-inflammatory, antifibrotic and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Soochan Bae
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ferder M, Inserra F, Manucha W, Ferder L. The world pandemic of vitamin D deficiency could possibly be explained by cellular inflammatory response activity induced by the renin-angiotensin system. Am J Physiol Cell Physiol 2013; 304:C1027-39. [PMID: 23364265 DOI: 10.1152/ajpcell.00403.2011] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review attempts to show that there may be a relationship between inflammatory processes induced by chronic overstimulation of the renin-angiotensin system (RAS) and the worldwide deficiency of vitamin D (VitD) and that both disorders are probably associated with environmental factors. Low VitD levels represent a risk factor for several apparently different diseases, such as infectious, autoimmune, neurodegenerative, and cardiovascular diseases, as well as diabetes, osteoporosis, and cancer. Moreover, VitD insufficiency seems to predispose to hypertension, metabolic syndrome, left ventricular hypertrophy, heart failure, and chronic vascular inflammation. On the other hand, inappropriate stimulation of the RAS has also been associated with the pathogenesis of hypertension, heart attack, stroke, and hypertrophy of the left ventricle and vascular smooth muscle cells. Because VitD receptors (VDRs) and RAS receptors are almost distributed in the same tissues, a possible link between VitD and the RAS is even more plausible. Furthermore, from an evolutionary point of view, both systems were developed simultaneously, actively participating in the regulation of inflammatory and immunological mechanisms. Changes in RAS activity and activation of the VDR seem to be inversely related; thus any changes in one of these systems would have a completely opposite effect on the other, making it possible to speculate that the two systems could have a feedback relationship. In fact, the pandemic of VitD deficiency could be the other face of increased RAS activity, which probably causes lower activity or lower levels of VitD. Finally, from a therapeutic point of view, the combination of RAS blockade and VDR stimulation appears to be more effective than either RAS blockade or VDR stimulation individually.
Collapse
Affiliation(s)
- Marcelo Ferder
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
21
|
Cozzolino M, Bruschetta E, Stucchi A, Ronco C, Cusi D. Role of Vitamin D Receptor Activators in Cardio-Renal Syndromes. Semin Nephrol 2012; 32:63-9. [DOI: 10.1016/j.semnephrol.2011.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Prunotto M, Gabbiani G, Pomposiello S, Ghiggeri G, Moll S. The kidney as a target organ in pharmaceutical research. Drug Discov Today 2011; 16:244-59. [DOI: 10.1016/j.drudis.2010.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/11/2010] [Accepted: 11/24/2010] [Indexed: 02/07/2023]
|
23
|
Biggar PH, Liangos O, Fey H, Brandenburg VM, Ketteler M. Vitamin D, chronic kidney disease and survival: a pluripotent hormone or just another bone drug? Pediatr Nephrol 2011; 26:7-18. [PMID: 20422225 DOI: 10.1007/s00467-010-1526-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/06/2010] [Accepted: 03/08/2010] [Indexed: 12/18/2022]
Abstract
It is now about 40 years ago that the mechanism of renal 1-α-hydroxylation of vitamin D was discovered and characterized. After this seminal observation, the key role of the active vitamin D derivative 1, 25-(OH)2-vitamin D (calcitriol) in calcium homeostasis and bone mineralization, and its specific role in the course of chronic kidney disease (CKD) and renal osteopathy, was unraveled step by step, while the precursor 25-OH-vitamin D (calcidiol) was gradually ignored. Calcitriol and its synthetic analogue alfa-calcidol became the first-line standard drug to tackle secondary hyperparathyroidism (sHPT) in CKD. Potential side-effects, including hypercalcemia, hyperphosphatemia, and vascular calcification, were partly abrogated by developing less calcemic substances such as paricalcitol or maxacalcitol. Thus, TIME Magazine surprised when nominating vitamin D, with regard to its newly discovered pleiotropic actions, as one of the "top medical breakthroughs" in the December issue of 2007. This vote was driven by novel and spectacular insights into the pivotal regulatory role of vitamin D with regard to autoimmune diseases, immune defense, cancer development and progression, and cardiovascular function and disease. More than 30 cell types express the vitamin D receptor (VDR), and more than ten organs in addition to the kidney are capable of paracrine 1-α-hydroxylation. More than 200 genes are under the control of calcitriol. A MEDLINE search performed in December 2009 focusing on the keywords "vitamin D-and-kidney-and-2009" yielded 523 hits. This review intends to give a subjective and CKD-related update on novel biological and clinical insights with relevance to the steroid hormone vitamin D.
Collapse
Affiliation(s)
- Patrick H Biggar
- Division of Nephrology, Klinikum Coburg GmbH, Ketschendorfer Str. 33, 96450, Coburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Ohara I, Tanimoto M, Gohda T, Yamazaki T, Hagiwara S, Murakoshi M, Aoki T, Toyoda H, Ishikawa Y, Funabiki K, Horikoshi S, Tomino Y. Effect of Combination Therapy with Angiotensin Receptor Blocker and 1,25-Dihydroxyvitamin D3 in Type 2 Diabetic Nephropathy in KK-Ay/Ta Mice. ACTA ACUST UNITED AC 2011; 117:e124-32. [DOI: 10.1159/000320284] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/12/2010] [Indexed: 11/19/2022]
|
25
|
Kim TH, Ji JD. Paricalcitol, a synthetic vitamin D analog: A candidate for combination therapy with biological agents in rheumatoid arthritis. Med Hypotheses 2010; 75:634-5. [DOI: 10.1016/j.mehy.2010.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 08/01/2010] [Indexed: 10/19/2022]
|
26
|
Combined vitamin D analog and AT1 receptor antagonist synergistically block the development of kidney disease in a model of type 2 diabetes. Kidney Int 2010; 77:1000-9. [DOI: 10.1038/ki.2010.22] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
New therapies: calcimimetics, phosphate binders and vitamin D receptor activators. Pediatr Nephrol 2010; 25:609-16. [PMID: 20151157 DOI: 10.1007/s00467-010-1462-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 02/08/2023]
Abstract
At present, new compounds are available to treat secondary hyperparathyroidism, namely calcimimetics, novel phosphorus binders and also novel vitamin D receptor activators. Calcimimetics increase the sensitivity of the parathyroid gland to calcium through spatial configurational changes of the calcium-sensing receptor. In addition, experimental studies have demonstrated that calcimimetics also upregulate both the calcium-sensing receptor and the vitamin D receptor. They are efficacious in children, though the experience in paediatric chronic kidney disease is still limited. Sevelamer, lanthanum carbonate and magnesium iron hydroxycarbonate are novel phosphorus binders available on the market. Several studies have demonstrated their efficacy and safety up to 6 years, though costs are the main limitation for a wider use. Since almost all the experience available on the new phosphorus binders comes from its use in adults, studies on children are needed in order to confirm the efficacy and safety of these products. Other new salts and polymers are also being developed. New vitamin D receptor activators, such as paricalcitol, are as effective at suppressing parathyroid hormone (PTH) as the traditional vitamin D receptor activators used for the past two decades, but they have a better and safer profile, showing fewer calcaemic and phosphoraemic effects while preserving the desirable effects of the vitamin D receptor activators on the cardiovascular system, hypertension, inflammation and fibrosis. Their use in children with chronic kidney disease has revealed similar responses to those of adults. The novel compounds discussed in this review should facilitate and improve the management of mineral and bone disorders in children with chronic kidney disease.
Collapse
|
28
|
Garcia VC, Martini LA. Vitamin D and cardiovascular disease. Nutrients 2010; 2:426-37. [PMID: 22254031 PMCID: PMC3257655 DOI: 10.3390/nu2040426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 12/14/2022] Open
Abstract
Vitamin D insufficiency/deficiency has been observed worldwide at all stages of life. It has been characterized as a public health problem, since low concentrations of this vitamin have been linked to the pathogenesis of several chronic diseases. Several studies have suggested that vitamin D is involved in cardiovascular diseases and have provided evidence that it has a role in reducing cardiovascular disease risk. It may be involved in regulation of gene expression through the presence of vitamin D receptors in various cells, regulation of blood pressure (through renin-angiotensin system), and modulation of cell growth and proliferation including vascular smooth muscle cells and cardiomyocytes. Identifying correct mechanisms and relationships between vitamin D and such diseases could be important in relation to patient care and healthcare policies.
Collapse
Affiliation(s)
- Vivian Cristina Garcia
- Nutrition Department, School of Public Health, Sao Paulo University, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, Brazil.
| | | |
Collapse
|
29
|
Tan X, He W, Liu Y. Combination therapy with paricalcitol and trandolapril reduces renal fibrosis in obstructive nephropathy. Kidney Int 2009; 76:1248-1257. [PMID: 19759524 PMCID: PMC5527548 DOI: 10.1038/ki.2009.346] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Growing evidence suggests that active vitamin D slows the progression of chronic kidney diseases. Here we compared the individual renal protective efficacy of paricalcitol and trandolapril (an angiotensin-converting enzyme inhibitor) in obstructive nephropathy, and examined any potential additive effects of their combination on attenuating renal fibrosis and inflammation. Mice underwent unilateral ureteral obstruction and were treated individually with paricalcitol or trandolapril or their combination. Compared to vehicle-treated controls, monotherapy with paricalcitol or trandolapril inhibited the expression and accumulation of fibronectin and type I and type III collagen, suppressed alpha-smooth muscle actin, vimentin, and Snail1 expression, and reduced total collagen content in the obstructed kidney. Combination therapy led to a more profound inhibition of all parameters. Monotherapy also suppressed renal RANTES (regulated on activation, normal T cell expressed and secreted) and tumor necrosis factor (TNF)-alpha expression and inhibited renal infiltration of T cells and macrophages, whereas the combination had additive effects. Renin expression was induced in the fibrotic kidney and was augmented by trandolapril. Paricalcitol blocked renin induction in the absence or presence of trandolapril. Our study indicates that paricalcitol has renal protective effects, comparable to that of trandolapril, in reducing interstitial fibrosis and inflammation. Combination therapy had additive efficacy in retarding renal scar formation during obstructive nephropathy.
Collapse
Affiliation(s)
- Xiaoyue Tan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Weichun He
- Department of Medicine, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Sochorová K, Budinský V, Rozková D, Tobiasová Z, Dusilová-Sulková S, Spísek R, Bartůnková J. Paricalcitol (19-nor-1,25-dihydroxyvitamin D2) and calcitriol (1,25-dihydroxyvitamin D3) exert potent immunomodulatory effects on dendritic cells and inhibit induction of antigen-specific T cells. Clin Immunol 2009; 133:69-77. [PMID: 19660988 DOI: 10.1016/j.clim.2009.06.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 06/01/2009] [Accepted: 06/30/2009] [Indexed: 12/11/2022]
Abstract
Paricalcitol (19-nor-1,25/OH(2)/D(2)), a second generation vitamin D receptor (VDR) activator, is a synthetic analogue of vitamin D3. In contrast to calcitriol, paricalcitol has a reduced effect on intestinal calcium resorption thus avoiding undesirable hypercalcemia. Information about immunomodulatory activity of paricalcitol is scarce. In this study we show that, in all investigated aspects, paricalcitol retains significant immunomodulatory activity, comparable to calcitriol. Both VDR agonists impaired differentiation of immature dendritic cells (DCs) from monocytes. The presence of VDR agonists during DC differentiation abolished their capacity to be activated and, despite potent Toll-like receptor mediated stimulation, VDR agonist-treated DCs remained in the immature state. In accordance with these findings, VDR-treated DCs produced no bioactive IL-12 and had a significantly decreased capacity to induce antigen-specific T cells while the capacity to induce functional Tregs remained unchanged when compared to control DCs. As DCs and T cells play an important role in the pathogenesis of atherosclerosis, in end-stage renal disease patients, paricalcitol should be a VDR agonist of choice for the reduction of the risk of atherosclerosis due to its immunomodulatory effect proven in this study and known limited hypercalcemic effect. The immunomodulatory potency of paricalcitol makes it a drug of interest in the therapy of chronic immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Klára Sochorová
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 150 06 Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Valdivielso JM, Cannata-Andía J, Coll B, Fernández E. A new role for vitamin D receptor activation in chronic kidney disease. Am J Physiol Renal Physiol 2009; 297:F1502-9. [PMID: 19625376 DOI: 10.1152/ajprenal.00130.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin D has proven to be much more than a simple "calcium hormone." The fact that the vitamin D receptor has been found in cells not related to mineral metabolism supports that statement. The interest of nephrologists in vitamin D and its effects beyond mineral metabolism has increased over the last few years, evidencing the importance of this so-called "sunshine hormone." In the present review, we highlight the most recent developments in the traditional use of vitamin D in chronic kidney disease (CKD) patients, namely, the control of secondary hyperparathyroidism (sHPT). Furthermore, we also explore the data available regarding the new possible therapeutic uses of vitamin D for the treatment of other complications present in CKD patients, such as vascular calcification, left ventricular hypertrophy, or proteinuria. Finally, some still scarce but very promising data regarding a possible role of vitamin D in kidney transplant patients also are reviewed. The available data point to a potential beneficial effect of vitamin D in CKD patients beyond the control of mineral metabolism.
Collapse
Affiliation(s)
- José M Valdivielso
- Laboratorio de Nefrología Experimental, IRBLLEIDA, Hospital Universitari Arnau de Vilanova, Rovira Roure 80, 25198 Lleida, Spain.
| | | | | | | |
Collapse
|
33
|
Zhang Y, Deb DK, Kong J, Ning G, Wang Y, Li G, Chen Y, Zhang Z, Strugnell S, Sabbagh Y, Arbeeny C, Li YC. Long-term therapeutic effect of vitamin D analog doxercalciferol on diabetic nephropathy: strong synergism with AT1 receptor antagonist. Am J Physiol Renal Physiol 2009; 297:F791-801. [PMID: 19535571 DOI: 10.1152/ajprenal.00247.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intrarenal renin-angiotensin system (RAS) plays a key role in the development of diabetic nephropathy. Recently, we showed that combination therapy with an AT(1) receptor blocker (ARB) and an activated vitamin D analog produced excellent synergistic effects against diabetic nephropathy, as a result of blockade of the ARB-induced compensatory renin increase. Given the diversity of vitamin D analogs, here we used a pro-drug vitamin D analog, doxercalciferol (1alpha-hydroxyvitamin D(2)), to further test the efficacy of the combination strategy in long-term treatment. Streptozotocin-induced diabetic DBA/2J mice were treated with vehicle, losartan, doxercalciferol (0.4 and 0.6 microg/kg), or losartan and doxercalciferol combinations for 20 wk. Vehicle-treated diabetic mice developed progressive albuminuria and glomerulosclerosis. Losartan alone moderately ameliorated kidney injury, with renin being drastically upregulated. A similar therapeutic effect was seen with doxercalciferol alone, which markedly suppressed renin and angiotensinogen expression. The losartan and doxercalciferol combination most effectively prevented albuminuria, restored glomerular filtration barrier structure, and dramatically reduced glomerulosclerosis in a dose-dependent manner. These effects were accompanied by blockade of intrarenal renin upregulation and ANG II accumulation. These data demonstrate an excellent therapeutic potential for doxercalciferol in diabetic renal disease and confirm the concept that blockade of the compensatory renin increase enhances the efficacy of RAS inhibition and produces synergistic therapeutic effects in combination therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Biological Sciences, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Recent decades have witnessed the revelation of expanding roles of the vitamin D endocrine system beyond calcium and phosphorus metabolism. Along with these non-calcemic or non-classic actions of vitamin D are newly discovered therapeutic actions of vitamin D analogs in a number of pathological conditions, including kidney disease. The kidney is the major organ involved in the synthesis of the hormonal metabolite of vitamin D, and vitamin D deficiency is a common feature of chronic kidney disease even in its early stages. Experimental data suggest that vitamin D deficiency may in turn accelerate the progression of kidney disease. Low-calcemic vitamin D analogs have exhibited impressive therapeutic effects in various kidney disease models, with targets ranging from the NF-kappaB pathway to the renin-angiotensin system. These recent studies demonstrate that vitamin D analogs have potent renoprotective effects. The emerging experimental and clinical evidence has provided a solid foundation for the continuing exploration of vitamin D analogs in prevention and intervention in kidney disease.
Collapse
Affiliation(s)
- Yan Chun Li
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
35
|
Abstract
Diabetic nephropathy (DN) is the most common renal complication of diabetes mellitus and a leading cause of end-stage renal disease. The renin-angiotensin system (RAS) is a major mediator of progressive renal injury in DN, and RAS inhibitors have been used as the mainstay treatment for DN. One major problem limiting the efficacy of the RAS inhibitors is the compensatory renin increase caused by disruption of renin feedback inhibition. Vitamin D negatively regulates the RAS by suppressing renin expression and thus plays a renoprotective role in DN. Diabetic vitamin D receptor-null mutant mice develop more severe renal injuries because of more robust RAS activation. Combination therapy with an RAS inhibitor and a vitamin D analogue markedly ameliorates renal injuries due to blockade of the compensatory renin increase by the analogue. These most recent data demonstrate that vitamin D and its analogues have renoprotective and therapeutic potentials in DN through targeting the RAS.
Collapse
Affiliation(s)
- Yan Chun Li
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
36
|
Freundlich M, Quiroz Y, Zhang Z, Zhang Y, Bravo Y, Weisinger JR, Li YC, Rodriguez-Iturbe B. Suppression of renin–angiotensin gene expression in the kidney by paricalcitol. Kidney Int 2008; 74:1394-402. [DOI: 10.1038/ki.2008.408] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: blockade of compensatory renin increase. Proc Natl Acad Sci U S A 2008; 105:15896-901. [PMID: 18838678 DOI: 10.1073/pnas.0803751105] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The renin-angiotensin system (RAS) plays a critical role in the development of diabetic nephropathy, and blockade of the RAS is currently used for treatment of diabetic nephropathy. One major problem for the current RAS inhibitors is the compensatory renin increase, which reduces the efficacy of RAS inhibition. We have shown that vitamin D exerts renoprotective actions by transcriptionally suppressing renin. Here we demonstrated that combination therapy with an AT1 receptor blocker and a vitamin D analog markedly ameliorated renal injury in the streptozotocin (STZ)-induced diabetes model due to the blockade of the compensatory renin rise by the vitamin D analog, leading to more effective RAS inhibition. STZ-treated diabetic DBA/2J mice developed progressive albuminuria and glomerulosclerosis within 13 weeks, accompanied by increased intrarenal production of angiotensin (Ang) II, fibronection, TGF-beta, and MCP-1 and decreased expression of slit diaphragm proteins. Treatment of the diabetic mice with losartan or paricalcitol (19-nor-1,25-dihydroxyvitamin D(2), an activated vitamin D analog) alone moderately ameliorated kidney injury; however, combined treatment with losartan and paricalcitol completely prevented albuminuria, restored glomerular filtration barrier structure, and markedly reduced glomerulosclerosis. The combined treatment suppressed the induction of fibronection, TGF-beta, and MCP-1 and reversed the decline of slit diaphragm proteins nephrin, Neph-1, ZO-1, and alpha-actinin-4. These were accompanied by blockade of intrarenal renin and Ang II accumulation induced by hyperglycemia and losartan. These data demonstrate that inhibition of the RAS with combination of vitamin D analogs and RAS inhibitors effectively prevents renal injury in diabetic nephropathy.
Collapse
|
38
|
Brancaccio D, Bommer J, Coyne D. Vitamin D receptor activator selectivity in the treatment of secondary hyperparathyroidism: understanding the differences among therapies. Drugs 2008; 67:1981-98. [PMID: 17883283 DOI: 10.2165/00003495-200767140-00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secondary hyperparathyroidism (SHPT) is a common and serious consequence of chronic kidney disease (CKD). SHPT is a complex condition characterised by a decline in 1,25-dihydroxyvitamin D and consequent vitamin D receptor (VDR) activation, abnormalities in serum calcium and phosphorus levels, parathyroid gland hyperplasia, elevated parathyroid hormone (PTH) secretion, and systemic mineral and bone abnormalities. There are three classes of drugs used for treatment of SHPT: (i) nonselective VDR activators or agonists (VDRAs); (ii) selective VDRAs; and (iii) calcimimetics. The VDRAs act on the VDR, whereas the calcimimetics act on the calcium-sensing receptor. Calcimimetics are commonly used in conjunction with VDRA therapy. By virtue of the differences in their chemical structure, the nonselective and selective VDRAs differ in their effects on gene expression, and ultimately parathyroid gland, bone and intestine function. Medications in all three classes are effective in suppression of PTH; however, clinical studies show that calcimimetics are associated with an unfavourable tolerability profile and hypocalcaemia, whereas nonselective VDRAs, and to a lesser extent selective VDRAs, are associated with dose-limiting hypercalcaemia and hyperphosphataemia. Selective VDRAs also have minimal undesirable effects on calcium absorption in the intestine, and calcium and phosphorus mobilisation in the bone compared with nonselective VDRAs. Calcium load in patients with CKD can lead to vascular calcification, accelerated progression of cardiovascular disease and increased mortality. High serum phosphorus levels are also associated with adverse effects on cardiorenal function and survival. Recent evidence suggests that VDRAs are associated with a survival benefit in CKD patients, with a more favourable effect with selective VDRAs than nonselective VDRAs. Paricalcitol, a selective VDRA, is reported to exert specific effects on gene expression in various cell types that are involved in vascular calcification and the development of coronary artery disease. This article examines the molecular mechanisms that determine selectivity of VDRAs, and reviews the evidence for clinical efficacy, safety and survival associated with the three drug classes used for treatment of SHPT in CKD patients.
Collapse
Affiliation(s)
- Diego Brancaccio
- Renal Division, Ospedale San Paulo, University of Milan, Via di Rudini 8, 20142 Milan, Italy.
| | | | | |
Collapse
|
39
|
Fetal deaths in Alabama, 1974-1983: a birth weight-specific analysis. Obstet Gynecol 1988; 2013:519130. [PMID: 23819050 PMCID: PMC3684115 DOI: 10.1155/2013/519130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/08/2013] [Indexed: 12/26/2022]
Abstract
Objective. Although angiotensin II-mediated inflammation and extracellular matrix accumulation are considered to be associated with the progression of diabetic nephropathy, these processes have not yet been sufficiently clarified. The objective of this study was to determine whether the correction of the abnormal renal expression of MMPs and its inhibitors (MMPs/TIMPs) and cytokines following the administration of aliskiren to KK-Ay mice results in a renoprotective effect. Methods. KK-Ay mice were divided into two groups, that is, untreated (saline) and treated (aliskiren) groups. Systolic BP, HbA1c levels, and the albumin-creatinine ratio (ACR) were measured. The renal expression of MMPs/TIMPs, fibronectin, type IV collagen, MCP-1, and (pro)renin receptor ((P)RR) was examined using real-time PCR and/or immunohistochemical staining. Renal MAPK and NF-κB activity were also examined by Western blot analyses and ELISA, respectively. Results. Significant decreases in systolic BP and ACR levels were observed in treated KK-Ay mice compared with the findings in untreated KK-Ay mice. Furthermore, increases in MMPs/TIMPs, fibronectin, type IV collagen, MCP-1, and (P)RR expression, in addition to MAPK and NF-κB activity, were significantly attenuated by aliskiren administration. Conclusions. It appears that aliskiren improves albuminuria and renal fibrosis by regulating inflammation and the alteration of collagen synthesis and degradation.
Collapse
|