1
|
Basu M, Mukhopadhyay D, Chakraborty B, Ghosh S, Pal DK, Ghosh A, Panda CK. Differential operation of MLH1/MSH2 and FANCD2 crosstalk in chemotolerant bladder carcinoma: a clinical and therapeutic intervening study. Mol Cell Biochem 2023; 478:1599-1610. [PMID: 36434146 DOI: 10.1007/s11010-022-04616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022]
Abstract
We aimed to understand the crosstalk between mismatch repair (MMR) and FA-BRCA pathway in primary bladder carcinoma (BlCa) samples as well as in chemotolerant cell line. We analysed the genetic alterations of MLH1 and MSH2 (MMR-related genes) and after that we correlated it with the nuclear translocation of FANCD2 protein. Next, we evaluated this crosstalk in T24 BlCa cell line in response to doxorubicin treatment. In primary BlCa tumors, infrequent genetic deletion (17-20%) but frequent promoter methylation (28-55%) of MLH1 and MSH2 was observed, where MLH1 was significantly (p < 0.05) more methylated among the early staged samples (NMIBC). However, MSH2 was significantly more altered among the NMIBC samples, signifying the importance of MMR pathway during the early pathogenesis of the disease. Furthermore, BlCa samples with underexpressed MLH1/MSH2 protein possessed cytoplasmic FANCD2 protein; encouraging that inefficiency of MMR proteins might restrict FANCD2 nuclear translocation. Next, we analysed publicly available data in GEO2R tool where we observed that in response to chemotherapeutic drugs, expression of MLH1, MSH2 and FANCD2 were diminishing. Validating this result in doxorubicin tolerant T24 cells, we found that expression of MLH1 and MSH2 was gradually decreased with increasing dose of doxorubicin. Interestingly, FANCD2 mono-ubiquitination (L-form) was also reduced in chemotolerant T24 cells. The crosstalk between MMR and FA-BRCA pathway was substantiated in the primary BlCa tumors. Further, in response to doxorubicin, this crosstalk was found to be hampered due to under-expression of MLH1 and MSH2 gene, thereby rendering chemotolerance.
Collapse
Affiliation(s)
- Mukta Basu
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 SPMukherjee Road, Kolkata, West Bengal, 700026, India
- Department of Medical Oncology, Cedars Sinai Medical Center, Los Angeles, United States
| | - Debalina Mukhopadhyay
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 SPMukherjee Road, Kolkata, West Bengal, 700026, India
| | - Balarko Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 SPMukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sabnam Ghosh
- Department of Life Science, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Dilip Kumar Pal
- Department of Urology, IPGMER, SSKM, 244 A.J.C. Bose Road, Kolkata, 700020, India
| | - Amlan Ghosh
- Department of Life Science, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 SPMukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
2
|
Mo JL, Liu JS, Xiao Q, Hong WX, Yin JY, Chen J, Liu ZQ. Association of variations in the Fanconi anemia complementation group and prognosis in Non-small cell lung cancer patients with Platinum-based chemotherapy. Gene 2022; 825:146398. [PMID: 35306114 DOI: 10.1016/j.gene.2022.146398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE To explore the associations between FANC (FANCA, FANCC, FANCE, FANCF, and FANCJ) single nucleotide polymorphisms (SNPs) and prognosis of non-small cell lung cancer (NSCLC) patients with platinum-based chemotherapy. METHODS According to the inclusion criteria, we selected 395 DNA samples from NSCLC patients for genotyping and combined with clinical data for Cox regression analysis and stratification analyses to assess relationships between overall survival (OS) and progression free survival (PFS) with SNPs genotypes. RESULTS The results revealed that patients with FANCE rs6907678 TT genotype have a longer OS than TC and CC genotype (Additive model: P = 0.004, HR = 1.696, 95% CI = 1.186-2.425). In stratification analyses, Longer PFS is found in female, age ≤ 55 years old and non-smoking patients with FANCE rs6907678 TT genotype, and patients with TT genotypes were significantly had longer OS in male, age >55 years old, non-smoking, squamous cell carcinoma and stage IV stratification. CONCLUSION Our data demonstrates that patients with FANCE rs6907678 TT genotype are contributed to better prognosis. FANCE rs6907678 may be used as a clinical biomarker for predicting the prognosis of NSCLC patients with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jun-Luan Mo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Jia-Si Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China; Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China; Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China.
| |
Collapse
|
3
|
Jaiswal A, Satardey R, Datta C, Panda C, Pal DK. Association of BRCA1 and BRCA2 genes in arsenic-induced urinary bladder carcinoma. JOURNAL OF CLINICAL UROLOGY 2021. [DOI: 10.1177/20514158211051888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: Study was performed to determine content of arsenic in urinary bladder tumour tissue and association of BRCA1 and BRCA2 protein expression with urinary bladder carcinoma development. Materials and methods: This study was performed in a tertiary care hospital of Eastern India. Post-operative tumour tissue was analysed for arsenic content as well as BRCA1 and BRCA2 expression. Statistical analysis was done and association between stage, grade and BRCA1 and BRCA2 expression with arsenic level in tumour tissue was done. Results: Total 50 patients were included in study. Out of which 26 were arsenic positive as well as 24 were arsenic negative. Maximum patients in arsenic positive group were from arsenic endemic zones of West Bengal, India. There was significant correlation between higher stage and grade of tumour and arsenic positivity. BRCA1 correlation was significant with arsenic positive group whereas BRCA2 correlation was not significant with arsenic positive group. Conclusion: Bladder carcinomas are more common in arsenic endemic zones of our country. This association can help in future to develop drugs which act on selected mutation of genes such as BRCA1, especially in arsenic-associated bladder cancers.
Collapse
Affiliation(s)
- Alankar Jaiswal
- Department of Urology, Institute of Post Graduate Medical Education & Research, India
| | - Ritesh Satardey
- Department of Urology, Institute of Post Graduate Medical Education & Research, India
| | - Chhanda Datta
- Department of Pathology, Institute of Post Graduate Medical Education & Research, India
| | - Chinmay Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, India
| | - Dilip Kumar Pal
- Department of Urology, Institute of Post Graduate Medical Education & Research, India
| |
Collapse
|
4
|
Integrative genomics and pathway analysis identified prevalent FA-BRCA pathway alterations in arsenic-associated urinary bladder carcinoma: Chronic arsenic accumulation in cancer tissues hampers the FA-BRCA pathway. Genomics 2020; 112:5055-5065. [DOI: 10.1016/j.ygeno.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/09/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
|
5
|
Pierconti F, Martini M, Cenci T, Fiorentino V, Sacco E, Bientinesi R, Pugliese D, Iacovelli R, Schinzari G, Larocca LM, Bassi PF. Methylation study of the Paris system for reporting urinary (TPS) categories. J Clin Pathol 2020; 74:102-105. [PMID: 32527754 DOI: 10.1136/jclinpath-2020-206633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
AIMS Bladder EpiCheck is one of several urinary tests studied to identify bladder tumours and analyses 15 methylation biomarkers determining bladder cancer presence on the basis of methylation profile. METHODS 374 patients diagnosed with high-grade non-muscle invasive bladder cancer were treated and followed for 1 year with voided urine cytology and white-light cystoscopy and biopsies according to European Association of Urology Guidelines. 268 cases were diagnosed with high-grade papillary carcinoma, while 106 cases were carcinoma in situ. Bladder EpiCheck test was performed together with cytology in all cases. RESULTS Comparing cytological categories of negative for high-grade urothelial carcinoma (NHGUC) and atypical urothelial cells (AUCs), we found that an EpiScore <60 correlates with NHGUC (p=0.0003, Fisher's exact test), while comparing AUC and suspicious for high-grade urothelial carcinoma (SHGUC) or SHGUC and high-grade urothelial carcinoma (HGUC) categories, an EpiScore ≥60 correlates with SHGUC and HGUC, respectively (p=0.0031 and p=0.0027, Fisher's exact test). In each TPS category, we found that sensitivity, specificity, Positive Predicitve Value (PPV) and Negative Predictive Value (NPV) of the Bladder EpiCheck test in HGUC category were higher than those observed in SHGUC group (sensitivity=98%, specificity=100%, NPV=85.7%, PPV=100% vs sensitivity=86.6%, specificity=52.3%, NPV=84.6%, PPV=56.5%). CONCLUSIONS Analysing methylation study results, we demonstrated that different TPS cytological categories also carry a distinct molecular signature. Moreover, our results confirm that cytological categories SHGUC and HGUC are different entities also from a molecular point of view and should continue to represent distinct groups in TPS.
Collapse
Affiliation(s)
- Francesco Pierconti
- Division of Anatomic Pathology and Histology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy
| | - Maurizio Martini
- Division of Anatomic Pathology and Histology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy
| | - Tonia Cenci
- Division of Anatomic Pathology and Histology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy
| | - Vincenzo Fiorentino
- Division of Anatomic Pathology and Histology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy
| | - Emilio Sacco
- Department of Urology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy
| | - Riccardo Bientinesi
- Department of Urology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy
| | - Dario Pugliese
- Department of Urology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy
| | - Roberto Iacovelli
- Department of Oncology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy, Rome, Italy
| | - Giovanni Schinzari
- Department of Oncology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy, Rome, Italy
| | - Luigi Maria Larocca
- Division of Anatomic Pathology and Histology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy
| | - Pier Francesco Bassi
- Department of Urology, Catholic University of the Sacred Heart, "Agostino Gemelli" School of Medicine, Rome, Italy
| |
Collapse
|
6
|
Skowron MA, Petzsch P, Hardt K, Wagner N, Beier M, Stepanow S, Drechsler M, Rieder H, Köhrer K, Niegisch G, Hoffmann MJ, Schulz WA. Distinctive mutational spectrum and karyotype disruption in long-term cisplatin-treated urothelial carcinoma cell lines. Sci Rep 2019; 9:14476. [PMID: 31597922 PMCID: PMC6785536 DOI: 10.1038/s41598-019-50891-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
The DNA-damaging compound cisplatin is broadly employed for cancer chemotherapy. The mutagenic effects of cisplatin on cancer cell genomes are poorly studied and might even contribute to drug resistance. We have therefore analyzed mutations and chromosomal alterations in four cisplatin-resistant bladder cancer cell lines (LTTs) by whole-exome-sequencing and array-CGH. 720–7479 genes in the LTTs contained point mutations, with a characteristic mutational signature. Only 53 genes were mutated in all LTTs, including the presumed cisplatin exporter ATP7B. Chromosomal alterations were characterized by segmented deletions and gains leading to severely altered karyotypes. The few chromosomal changes shared among LTTs included gains involving the anti-apoptotic BCL2L1 gene and losses involving the NRF2 regulator KEAP1. Overall, the extent of genomic changes paralleled cisplatin treatment concentrations. In conclusion, bladder cancer cell lines selected for cisplatin-resistance contain abundant and characteristic drug-induced genomic changes. Cisplatin treatment may therefore generate novel tumor genomes during patient treatment.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Hardt
- Institute for Human Genetics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nicholas Wagner
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manfred Beier
- Institute for Human Genetics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Stepanow
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias Drechsler
- Institute for Human Genetics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Harald Rieder
- Institute for Human Genetics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
7
|
Wang L, Wang H, Wang T, Liu J, Chen W, Wang Y, Chen C, Zhu H, Dai P. Analysis of polymorphisms in genes associated with the FA/BRCA pathway in three patients with multiple primary malignant neoplasms. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1101-1112. [PMID: 30942098 DOI: 10.1080/21691401.2019.1575846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cases of more than three primary cancers are very rare. This study analyzed the genetic susceptibility of gene polymorphisms in three patients with multiple primary malignant neoplasms and examined the possible pathogenesis. The clinical data and whole genome sequence of three patients (1 with 5 primary cancers, 1 with 4 primary cancers, and 1 with 3 primary cancers) were aligned with a series of databases. We found the three patients contained a total of seven types of malignant tumours (endometrial cancer, ovarian cancer, breast cancer, colon cancer, ureter cancer, bladder cancer and kidney cancer). It was found that the varied genes in Patient 1 (5 primary cancers) were BRIP1, FANCG, NBN, AXIN2, SRD5A2, and CEBPA. Patient 2 (4 primary cancers) had variations in the following genes: BMPR1A, FANCD2, MLH3, BRCA2, and FANCM. Patient 3 (3 primary cancers) had variations in the following genes: MEN1, ATM, MSH3, BRCA1, FANCL, CEBPA, and FANCA. String software was used to analyze the KEGG pathway of the variations in these three samples, which revealed that the genes are involved in the Fanconi anaemia pathway. Defects in DNA damage repair may be one of the causes of multiple primary cancers.
Collapse
Affiliation(s)
- Le Wang
- a The National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences , Northwest University , Xi'an , PR China.,b Department of Oncology , the First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an, PR China
| | - Hao Wang
- a The National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences , Northwest University , Xi'an , PR China
| | - Ting Wang
- c Faculty of Pharmacy, School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xi'an, PR China
| | - Jinhui Liu
- d College of Medical Technology , Shanxi University of Chinese Medicine , Xianyang , PR China
| | - Wei Chen
- e Medical Affairs Department , Zhongyuan Union Clinical Laborotory Co. Ltd , Tianjin , PR China
| | - Yamin Wang
- a The National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences , Northwest University , Xi'an , PR China
| | - Chao Chen
- a The National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences , Northwest University , Xi'an , PR China
| | - Hongli Zhu
- a The National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences , Northwest University , Xi'an , PR China
| | - Penggao Dai
- a The National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences , Northwest University , Xi'an , PR China
| |
Collapse
|
8
|
Eccles LJ, Bell AC, Powell SN. Inhibition of non-homologous end joining in Fanconi Anemia cells results in rescue of survival after interstrand crosslinks but sensitization to replication associated double-strand breaks. DNA Repair (Amst) 2018; 64:1-9. [PMID: 29459202 DOI: 10.1016/j.dnarep.2018.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
When Fanconi Anemia (FA) proteins were depleted in human U2OS cells with integrated DNA repair reporters, we observed decreases in homologous recombination (HR), decreases in mutagenic non-homologous end joining (m-NHEJ) and increases in canonical NHEJ, which was independently confirmed by measuring V(D)J recombination. Furthermore, depletion of FA proteins resulted in reduced HR protein foci and increased NHEJ protein recruitment to replication-associated DSBs, consistent with our observation that the use of canonical NHEJ increases after depletion of FA proteins in cycling cells. FA-depleted cells and FA-mutant cells were exquisitely sensitive to a DNA-PKcs inhibitor (DNA-PKi) after sustaining replication-associated double strand breaks (DSBs). By contrast, after DNA interstrand crosslinks, DNA-PKi resulted in increased survival in FA-deficient cells, implying that NHEJ is contributing to lethality after crosslink repair. Our results suggest FA proteins inhibit NHEJ, since repair intermediates from crosslinks are rendered lethal by NHEJ. The implication is that bone marrow failure in FA could be triggered by naturally occurring DNA crosslinks, and DNA-PK inhibitors would be protective. Since some sporadic cancers have been shown to have deficiencies in the FA-pathway, these tumors should be vulnerable to NHEJ inhibitors with replication stress, but not with crosslinking agents, which could be tested in future clinical trials.
Collapse
Affiliation(s)
- Laura J Eccles
- Molecular Biology Program and Radiation Oncology Department, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Andrew C Bell
- Molecular Biology Program and Radiation Oncology Department, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Simon N Powell
- Molecular Biology Program and Radiation Oncology Department, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA.
| |
Collapse
|
9
|
Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017; 3:840-856. [PMID: 29198440 DOI: 10.1016/j.trecan.2017.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
The extremely high cancer incidence associated with patients suffering from a rare human genetic disease, Fanconi anemia (FA), demonstrates the importance of FA genes. Over the course of human tumor development, FA genes perform critical tumor-suppression roles. In doing so, FA provides researchers with a unique genetic model system to study cancer etiology. Here, we review how aberrant function of the 22 FA genes and their signaling network contributes to malignancy. From this perspective, we will also discuss how the knowledge discovered from FA research serves basic and translational cancer research.
Collapse
Affiliation(s)
- Manoj Nepal
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Raymond Che
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Chi Ma
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
10
|
Christmann M, Kaina B. Epigenetic regulation of DNA repair genes and implications for tumor therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:15-28. [PMID: 31395346 DOI: 10.1016/j.mrrev.2017.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Abstract
DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to mutations in their coding or promoter region, changes in the expression of transcription factors activating or repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation or demethylation levels. In this review we provide an overview on the epigenetic regulation of DNA repair genes. We summarize the mechanisms underlying CpG methylation and demethylation, with de novo methyltransferases and DNA repair involved in gain and loss of CpG methylation, respectively. We discuss the role of components of the DNA damage response, p53, PARP-1 and GADD45a on the regulation of the DNA (cytosine-5)-methyltransferase DNMT1, the key enzyme responsible for gene silencing. We stress the relevance of epigenetic silencing of DNA repair genes for tumor formation and tumor therapy. A paradigmatic example is provided by the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), which is silenced in up to 40% of various cancers through CpG promoter methylation. The CpG methylation status of the MGMT promoter strongly correlates with clinical outcome and, therefore, is used as prognostic marker during glioblastoma therapy. Mismatch repair genes are also subject of epigenetic silencing, which was shown to correlate with colorectal cancer formation. For many other repair genes shown to be epigenetically regulated the clinical outcome is not yet clear. We also address the question of whether genotoxic stress itself can lead to epigenetic alterations of genes encoding proteins involved in the defense against genotoxic stress.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Bernd Kaina
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
11
|
Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget 2017; 7:9477-90. [PMID: 26843614 PMCID: PMC4891053 DOI: 10.18632/oncotarget.7053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/01/2016] [Indexed: 12/20/2022] Open
Abstract
Purpose DNA repair defects due to detrimental BRCA2-mutations confer increased susceptibility towards DNA interstrand-crosslinking (ICL) agents and define patient subpopulations for individualized genotype-based cancer therapy. However, due to the side effects of these drugs, there is a need to identify additional agents, which could be used alone or in combination with ICL-agents. Therefore, we investigated whether BRCA2-mutations might also increase the sensitivity towards TRAIL-receptors (TRAIL-R)-targeting compounds. Experimental design Two independent model systems were applied: a BRCA2 gene knockout and a BRCA2 gene complementation model. The effects of TRAIL-R-targeting compounds and ICL-agents on cell viability, apoptosis and cell cycle distribution were compared in BRCA2-proficient versus-deficient cancer cells in vitro. In addition, the effects of the TRAIL-R2-targeting antibody LBY135 were assessed in vivo using a murine tumor xenograft model. Results BRCA2-deficient cancer cells displayed an increased sensitivity towards TRAIL-R-targeting agents. These effects exceeded and were mechanistically distinguishable from the well-established effects of ICL-agents. In vitro, ICL-agents expectedly induced an early cell cycle arrest followed by delayed apoptosis, whereas TRAIL-R-targeting compounds caused early apoptosis without prior cell cycle arrest. In vivo, treatment with LBY135 significantly reduced the tumor growth of BRCA2-deficient cancer cells in a xenograft model. Conclusions BRCA2 mutations strongly increase the in vitro- and in vivo-sensitivity of cancer cells towards TRAIL-R-mediated apoptosis. This effect is mechanistically distinguishable from the well-established ICL-hypersensitivity of BRCA2-deficient cells. Our study thus defines a new genetic subpopulation of cancers susceptible towards TRAIL-R-targeting compounds, which could facilitate novel therapeutic approaches for patients with BRCA2-deficient tumors.
Collapse
|
12
|
Song W, Ma H. The expression of ERCC1 and BRCA1 predicts prognosis of platinum-based chemotherapy in urothelial cancer. Onco Targets Ther 2016; 9:3465-71. [PMID: 27366083 PMCID: PMC4913982 DOI: 10.2147/ott.s101319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective To investigate the expression and clinical significance of ERCC1 and BRCA1 genes in urothelial cancer patients. Methods Forty-two urothelial cancer patients who did not receive platinum-based chemotherapy during January 2009 to May 2013 were enrolled. The expression levels of ERCC1 and BRCA1 were determined by immunohistochemistry and the median survival time (MST) for these patients was calculated. Results ERCC1-positive patients who received oxaliplatin-based chemotherapy had a shorter MST than ERCC1-negative patients (P<0.05), whereas there is no difference of MST between BRCA1-positive and -negative patients. Furthermore, MST in ERCC1 and BRCA1 double-positive patients was shorter than ERCC1 and BRCA1 double-negative patients (P<0.05). The positive expression of ERCC1 had a significant positive correlation with BRCA1 (r=0.313, P=0.044). Conclusion The expression level of ERCC1 may be used as a prognostic marker for urothelial cancer patients who received postoperative adjuvant chemotherapy.
Collapse
Affiliation(s)
- Wenhui Song
- Department of Urology, Tianjin First Center Hospital, Tianjin, People's Republic of China
| | - Hongshun Ma
- Department of Urology, Tianjin First Center Hospital, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Villalona-Calero MA, Duan W, Zhao W, Shilo K, Schaaf LJ, Thurmond J, Westman JA, Marshall J, Xiaobai L, Ji J, Rose J, Lustberg M, Bekaii-Saab T, Chen A, Timmers C. Veliparib Alone or in Combination with Mitomycin C in Patients with Solid Tumors With Functional Deficiency in Homologous Recombination Repair. J Natl Cancer Inst 2016; 108:djv437. [PMID: 26848151 DOI: 10.1093/jnci/djv437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND BRCA germline mutations are being targeted for development of PARP inhibitors. BRCA genes collaborate with several others in the Fanconi Anemia (FA) pathway. We screened cancer patients' tumors for FA functional defects then aimed to establish the safety/feasibility of administering PARP inhibitors as monotherapy and combined with a DNA-breaking agent. METHODS Patients underwent FA functional screening for the presence (or lack) of tumor FancD2 nuclear foci formation on their archival tumor material, utilizing a newly developed method (Fanconi Anemia triple-stain immunofluorescence [FATSI]), performed in a Clinical Laboratory Improvement Amendments-certified laboratory. FATSI-negative patients were selected for enrollment in a two-arm dose escalation trial of veliparib, or veliparib/mitomycin-C (MMC). RESULTS One hundred eighty-five of 643 (28.7%) screened patients were FATSI-negative. Sixty-one received veliparib or veliparib/MMC through 14 dose levels. Moderate/severe toxicities included fatigue (DLT at veliparib 400mg BID), diarrhea, and thrombocytopenia. Recommended doses are 300mg BID veliparib and veliparib 200mg BID for 21 days following 10mg/m(2) MMC every 28 days. Six antitumor responses occurred, five in the combination arm (3 breast, 1 ovarian, 1 endometrial [uterine], and 1 non-small cell lung cancer). Two patients have received 36 and 60 cycles to date. BRCA germline analysis among 51 patients revealed five deleterious mutations while a targeted FA sequencing gene panel showed missense/nonsense mutations in 29 of 49 FATSI-negative tumor specimens. CONCLUSIONS FATSI screening showed that a substantial number of patients' tumors have FA functional deficiency, which led to germline alterations in several patients' tumors. Veliparib alone or with MMC was safely administered to these patients and produced clinical benefit in some. However, a better understanding of resistance mechanisms in this setting is needed.
Collapse
Affiliation(s)
- Miguel A Villalona-Calero
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Wenrui Duan
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Weiqiang Zhao
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Konstantin Shilo
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Larry J Schaaf
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Jennifer Thurmond
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Judith A Westman
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - John Marshall
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Li Xiaobai
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Jiuping Ji
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Jeffrey Rose
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Maryam Lustberg
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Tanios Bekaii-Saab
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Alice Chen
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Cynthia Timmers
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| |
Collapse
|
14
|
Abdul-Sater Z, Cerabona D, Potchanant ES, Sun Z, Enzor R, He Y, Robertson K, Goebel WS, Nalepa G. FANCA safeguards interphase and mitosis during hematopoiesis in vivo. Exp Hematol 2015; 43:1031-1046.e12. [PMID: 26366677 PMCID: PMC4666759 DOI: 10.1016/j.exphem.2015.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022]
Abstract
The Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in nonhematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA crosslinking and anti-mitotic chemotherapeutics in primary FANCA-/- cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers.
Collapse
Affiliation(s)
- Zahi Abdul-Sater
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Donna Cerabona
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth Sierra Potchanant
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zejin Sun
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rikki Enzor
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying He
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kent Robertson
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - W Scott Goebel
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Grzegorz Nalepa
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana; Bone Marrow Failure Program, Division of Pediatric Hematology-Oncology, Riley Hospital for Children, Indianapolis, Indiana.
| |
Collapse
|
15
|
Duan W, Gao L, Aguila B, Kalvala A, Otterson GA, Villalona-Calero MA. Fanconi anemia repair pathway dysfunction, a potential therapeutic target in lung cancer. Front Oncol 2014; 4:368. [PMID: 25566506 PMCID: PMC4271581 DOI: 10.3389/fonc.2014.00368] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022] Open
Abstract
The Fanconi anemia (FA) pathway is a major mechanism of homologous recombination DNA repair. The functional readout of the pathway is activation through mono-ubiquitination of FANCD2 leading to nuclear foci of repair. We have recently developed an FA triple-staining immunofluorescence based method (FATSI) to evaluate FANCD2 foci formation in formalin fixed paraffin-embedded (FFPE) tumor samples. DNA-repair deficiencies have been considered of interest in lung cancer prevention, given the persistence of damage produced by cigarette smoke in this setting, as well as in treatment, given potential increased efficacy of DNA-damaging drugs. We screened 139 non-small cell lung cancer (NSCLC) FFPE tumors for FANCD2 foci formation by FATSI analysis. Among 104 evaluable tumors, 23 (22%) were FANCD2 foci negative, thus repair deficient. To evaluate and compare novel-targeted agents in the background of FA deficiency, we utilized RNAi technology to render several lung cancer cell lines FANCD2 deficient. Successful FANCD2 knockdown was confirmed by reduction in the FANCD2 protein. Subsequently, we treated the FA defective H1299D2-down and A549D2-down NSCLC cells and their FA competent counterparts (empty vector controls) with the PARP inhibitors veliparib (ABT-888) (5 μM) and BMN673 (0.5 μM), as well as the CHK1 inhibitor Arry-575 at a dose of 0.5 μM. We also treated the FA defective small cell lung cancer cell lines H719D2-down and H792D2-down and their controls with the BCL-2/XL inhibitor ABT-263 at a dose of 2 μM. The treated cells were harvested at 24, 48, and 72 h post treatment. MTT cell viability analysis showed that each agent was more cytotoxic to the FANCD2 knock-down cells. In all tests, the FA defective lung cancer cells had less viable cells as comparing to controls 72 h post treatment. Both MTT and clonogenic analyses comparing the two PARP inhibitors, showed that BMN673 was more potent compared to veliparib. Given that FA pathway plays essential roles in response to DNA damage, our results suggest that a subset of lung cancer patients are likely to be more susceptible to DNA cross-link based therapy, or to treatments in which additional repair mechanisms are targeted. These subjects can be identified through FATSI analysis. Clinical trials to evaluate this therapeutic concept are needed.
Collapse
Affiliation(s)
- Wenrui Duan
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health , Columbus, OH , USA ; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine and Public Health , Columbus, OH , USA
| | - Li Gao
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health , Columbus, OH , USA
| | - Brittany Aguila
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health , Columbus, OH , USA
| | - Arjun Kalvala
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health , Columbus, OH , USA
| | - Gregory A Otterson
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health , Columbus, OH , USA ; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine and Public Health , Columbus, OH , USA
| | - Miguel A Villalona-Calero
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Public Health , Columbus, OH , USA ; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine and Public Health , Columbus, OH , USA ; Department of Pharmacology, The Ohio State University College of Medicine and Public Health , Columbus, OH , USA
| |
Collapse
|
16
|
Burdak-Rothkamm S, Rothkamm K, McClelland K, Al Rashid ST, Prise KM. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells. Cancer Lett 2014; 356:454-61. [PMID: 25304378 DOI: 10.1016/j.canlet.2014.09.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.
Collapse
Affiliation(s)
- Susanne Burdak-Rothkamm
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton/Didcot OX11 0RQ, UK
| | - Keeva McClelland
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shahnaz T Al Rashid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
17
|
Zhao L, Li N, Yu JK, Tang HT, Li YL, He M, Yu ZJ, Bai XF, Zheng ZH, Wang EH, Wei MJ. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells. ACTA ACUST UNITED AC 2013; 47:24-34. [PMID: 24345874 PMCID: PMC3932970 DOI: 10.1590/1414-431x20132938] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 07/29/2013] [Indexed: 01/02/2023]
Abstract
Fanconi anemia complementation group F protein (FANCF) is a key factor, which
maintains the function of FA/BRCA, a DNA damage response pathway. However, the
functional role of FANCF in breast cancer has not been elucidated. We performed a
specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell
viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline
comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow
cytometry. The expression levels of protein were determined by Western blot using
specific antibodies. Based on these results, we used cell migration and invasion
assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA
effectively inhibited expression of FANCF. We found that proliferation of FANCF
knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited,
with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation.
Inhibition of FANCF also resulted in decreased cell migration and invasion. In
addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells.
These results suggest that FANCF may be a potential target for molecular, therapeutic
intervention in breast cancer.
Collapse
Affiliation(s)
- L Zhao
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - N Li
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - J K Yu
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - H T Tang
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - Y L Li
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - M He
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - Z J Yu
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - X F Bai
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - Z H Zheng
- China Medical University, Institute of Pathology and Pathophysiology, Heping Ward, Shenyang City,Liaoning, China, Institute of Pathology and Pathophysiology, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - E H Wang
- China Medical University, Institute of Pathology and Pathophysiology, Heping Ward, Shenyang City,Liaoning, China, Institute of Pathology and Pathophysiology, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - M J Wei
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| |
Collapse
|
18
|
Duan W, Gao L, Zhao W, Leon M, Sadee W, Webb A, Resnick K, Wu X, Ramaswamy B, Cohn DE, Shapiro C, Andreassen PR, Otterson GA, Villalona-Calero MA. Assessment of FANCD2 nuclear foci formation in paraffin-embedded tumors: a potential patient-enrichment strategy for treatment with DNA interstrand crosslinking agents. Transl Res 2013; 161:156-64. [PMID: 23063585 PMCID: PMC3755957 DOI: 10.1016/j.trsl.2012.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 08/27/2012] [Accepted: 09/12/2012] [Indexed: 11/22/2022]
Abstract
A major mechanism of DNA repair related to homologous recombination is the Fanconi anemia (FA) pathway. FA genes collaborate with BRCA genes to form foci of DNA repair on chromatin after DNA damage or during the S phase of the cell cycle. Our goal was to develop a method capable of evaluating the functional status of the pathway in patients' tumor tissue, which could also be practically incorporated into large-scale screening. To develop this method, we first used Western immunoblot to detect FANCD2 protein monoubiquitination in fresh tumor specimens of patients with ovarian cancer undergoing surgery and stained formalin-fixed paraffin-embedded tumor tissue simultaneously with 4',6-diamidino-2-phenylindole, FANCD2, and Ki67 antibodies, eventually extending this method to other solid tumors. This triple stain permitted evaluation of the presence, or lack thereof, of FANCD2 subnuclear repair foci in proliferating cells by immunofluorescence microscopy. Overall, we evaluated 156 formalin-fixed paraffin-embedded tumor samples using the FA triple-staining immunofluorescence method. The ratios of FANCD2 foci-negative tumors in ovarian, lung, and breast tumor samples were 21%, 20%, and 29.4%, respectively. Our studies have led to the development of a suitable method for screening, capable of identifying tumors with somatic functional defects in the FA pathway. The use of paraffin-embedded tissues renders the reported method suitable for large-scale screening to select patients for treatment with DNA interstrand crosslinking agents, poly ADP-ribose polymerase inhibitors, or their combination.
Collapse
Affiliation(s)
- Wenrui Duan
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Li Gao
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Weiqiang Zhao
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Pathology, Division of Gynecologic Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Marino Leon
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Pathology, Division of Gynecologic Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Wolfgang Sadee
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Pharmacology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Amy Webb
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Pharmacology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Kimberly Resnick
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Xin Wu
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - David E. Cohn
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Charles Shapiro
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gregory A. Otterson
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| | - Miguel A. Villalona-Calero
- Comprehensive Cancer Center Division of Medical Oncology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
- Department of Pharmacology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio
| |
Collapse
|
19
|
Reduced FANCD2 influences spontaneous SCE and RAD51 foci formation in uveal melanoma and Fanconi anaemia. Oncogene 2013; 32:5338-46. [PMID: 23318456 PMCID: PMC3898318 DOI: 10.1038/onc.2012.627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 12/31/2022]
Abstract
Uveal melanoma (UM) is unique among cancers in displaying reduced endogenous levels of sister chromatid exchange (SCE). Here we demonstrate that FANCD2 expression is reduced in UM and that ectopic expression of FANCD2 increased SCE. Similarly, FANCD2-deficient fibroblasts (PD20) derived from Fanconi anaemia patients displayed reduced spontaneous SCE formation relative to their FANCD2-complemented counterparts, suggesting that this observation is not specific to UM. In addition, spontaneous RAD51 foci were reduced in UM and PD20 cells compared with FANCD2-proficient cells. This is consistent with a model where spontaneous SCEs are the end product of endogenous recombination events and implicates FANCD2 in the promotion of recombination-mediated repair of endogenous DNA damage and in SCE formation during normal DNA replication. In both UM and PD20 cells, low SCE was reversed by inhibiting DNA-PKcs (DNA-dependent protein kinase, catalytic subunit). Finally, we demonstrate that both PD20 and UM are sensitive to acetaldehyde, supporting a role for FANCD2 in repair of lesions induced by such endogenous metabolites. Together, these data suggest FANCD2 may promote spontaneous SCE by influencing which double-strand break repair pathway predominates during normal S-phase progression.
Collapse
|
20
|
Li Y, Zhao L, Sun H, Yu J, Li N, Liang J, Wang Y, He M, Bai X, Yu Z, Zheng Z, Mi X, Wang E, Wei M. Gene silencing of FANCF potentiates the sensitivity to mitoxantrone through activation of JNK and p38 signal pathways in breast cancer cells. PLoS One 2012; 7:e44254. [PMID: 22952942 PMCID: PMC3429446 DOI: 10.1371/journal.pone.0044254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia complementation group-F (FANCF) is a key factor to maintain the function of FA/BRCA, a DNA-damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. In this study, we examined the effects and mechanisms of FANCF-RNAi on the sensitivity of breast cancer cells to mitoxantrone (MX). FANCF silencing by FANCF-shRNA blocked functions of FA/BRCA pathway through inhibition of FANCD2 mono-ubiquitination in breast cancer cell lines MCF-7 and T-47D. In addition, FANCF shRNA inhibited cell proliferation, induced apoptosis, and chromosome fragmentation in both breast cancer cells. We also found that FANCF silencing potentiated the sensitivity to MX in breast cancer cells, accompanying with an increase in intracellular MX accumulation and a decrease in BCRP expression. Furthermore, we found that the blockade of FA/BRCA pathway by FANCF-RNAi activated p38 and JNK MAPK signal pathways in response to MX treatment. BCRP expression was restored by p38 inhibitor SB203580, but not by JNK inhibitor SP600125. FANCF silencing increased JNK and p38 mediated activation of p53 in MX-treated breast cancer cells, activated the mitochondrial apoptosis pathway. Our findings indicate that FANCF shRNA potentiates the sensitivity of breast cancer cells to MX, suggesting that FANCF may be a potential target for therapeutic strategies for the treatment of breast tumors.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Haigang Sun
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Jiankun Yu
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Na Li
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Jingwei Liang
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Yan Wang
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Miao He
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Xuefeng Bai
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Zhaojin Yu
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Zhihong Zheng
- Institute of Pathophysiology, China Medical University, Shenyang City, Liaoning, China
| | - Xiaoyi Mi
- Institute of Pathophysiology, China Medical University, Shenyang City, Liaoning, China
| | - Enhua Wang
- Institute of Pathophysiology, China Medical University, Shenyang City, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
- Institute of Pathophysiology, China Medical University, Shenyang City, Liaoning, China
- * E-mail:
| |
Collapse
|
21
|
Bakker ST, van de Vrugt HJ, Visser JA, Delzenne-Goette E, van der Wal A, Berns MAD, van de Ven M, Oostra AB, de Vries S, Kramer P, Arwert F, van der Valk M, de Winter JP, te Riele H. Fancf-deficient mice are prone to develop ovarian tumours. J Pathol 2011; 226:28-39. [PMID: 21915857 DOI: 10.1002/path.2992] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 01/05/2023]
Abstract
Fanconi anaemia (FA) is a rare recessive disorder marked by developmental abnormalities, bone marrow failure, and a high risk for the development of leukaemia and solid tumours. The inactivation of FA genes, in particular FANCF, has also been documented in sporadic tumours in non-FA patients. To study whether there is a causal relationship between FA pathway defects and tumour development, we have generated a mouse model with a targeted disruption of the FA core complex gene Fancf. Fancf-deficient mouse embryonic fibroblasts displayed a phenotype typical for FA cells: they showed an aberrant response to DNA cross-linking agents as manifested by G(2) arrest, chromosomal aberrations, reduced survival, and an inability to monoubiquitinate FANCD2. Fancf homozygous mice were viable, born following a normal Mendelian distribution, and showed no growth retardation or developmental abnormalities. The gonads of Fancf mutant mice functioned abnormally, showing compromised follicle development and spermatogenesis as has been observed in other FA mouse models and in FA patients. In a cohort of Fancf-deficient mice, we observed decreased overall survival and increased tumour incidence. Notably, in seven female mice, six ovarian tumours developed: five granulosa cell tumours and one luteoma. One mouse had developed tumours in both ovaries. High-resolution array comparative genomic hybridization (aCGH) on these tumours suggests that the increased incidence of ovarian tumours correlates with the infertility in Fancf-deficient mice and the genomic instability characteristic of FA pathway deficiency.
Collapse
Affiliation(s)
- Sietske T Bakker
- Division of Molecular Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Valeri A, Martínez S, Casado JA, Bueren JA. Fanconi anaemia: from a monogenic disease to sporadic cancer. Clin Transl Oncol 2011; 13:215-21. [PMID: 21493181 DOI: 10.1007/s12094-011-0645-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The dissection of the molecular pathways participating in genetic instability disorders has rendered invaluable information about the mechanisms of cancer pathogenesis and progression, and is offering a unique opportunity to establish targeted anticancer therapies. Fanconi anaemia (FA) is a paradigm of cancer-prone inherited monogenic disorders. Moreover, accumulated evidence indicates that genetic and epigenetic alterations in FA genes can also play an important role in sporadic cancer in the general population. Here, we summarise current progress in the understanding of the molecular biology of FA and review the principal mechanisms accounting for a disrupted FA pathway in sporadic cancer. Additionally, we discuss the impact of these findings in the development of new anticancer therapies, particularly with DNA interstrand crosslinkers and with new inhibitors of the FA and/or alternative DNA repair pathways.
Collapse
Affiliation(s)
- Antonio Valeri
- Hematopoiesis and Gene Therapy Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) y Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Wang LC, Gautier J. The Fanconi anemia pathway and ICL repair: implications for cancer therapy. Crit Rev Biochem Mol Biol 2011; 45:424-39. [PMID: 20807115 DOI: 10.3109/10409238.2010.502166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fanconi anemia (FA) is an inherited disease caused by mutations in at least 13 genes and characterized by genomic instability. In addition to displaying strikingly heterogenous clinical phenotypes, FA patients are exquisitely sensitive to treatments with crosslinking agents that create interstrand crosslinks (ICL). In contrast to bacteria and yeast, in which ICLs are repaired through replication-dependent and -independent mechanisms, it is thought that ICLs are repaired primarily during DNA replication in vertebrates. However, recent data indicate that replication-independent ICL repair also operates in vertebrates. While the precise role of the FA pathway in ICL repair remains elusive, increasing evidence suggests that FA proteins function at different steps in the sensing, recognition and processing of ICLs, as well as in signaling from these very toxic lesions, which can be generated by a wide variety of cancer chemotherapeutic drugs. Here, we discuss some of the recent findings that have shed light on the role of the FA pathway in ICL repair, with special emphasis on the implications of these findings for cancer therapy since disruption of FA genes have been associated with cancer predisposition.
Collapse
Affiliation(s)
- Lily C Wang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
24
|
Palagyi A, Neveling K, Plinninger U, Ziesch A, Targosz BS, Denk GU, Ochs S, Rizzani A, Meier D, Thasler WE, Hanenberg H, De Toni EN, Bassermann F, Schäfer C, Göke B, Schindler D, Gallmeier E. Genetic inactivation of the Fanconi anemia gene FANCC identified in the hepatocellular carcinoma cell line HuH-7 confers sensitivity towards DNA-interstrand crosslinking agents. Mol Cancer 2010; 9:127. [PMID: 20509860 PMCID: PMC2890608 DOI: 10.1186/1476-4598-9-127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 05/28/2010] [Indexed: 01/19/2023] Open
Abstract
Background Inactivation of the Fanconi anemia (FA) pathway through defects in one of 13 FA genes occurs at low frequency in various solid cancer entities among the general population. As FA pathway inactivation confers a distinct hypersensitivity towards DNA interstrand-crosslinking (ICL)-agents, FA defects represent rational targets for individualized therapeutic strategies. Except for pancreatic cancer, however, the prevalence of FA defects in gastrointestinal (GI) tumors has not yet been systematically explored. Results A panel of GI cancer cell lines was screened for FA pathway inactivation applying FANCD2 monoubiquitination and FANCD2/RAD51 nuclear focus formation and a newly identified FA pathway-deficient cell line was functionally characterized. The hepatocellular carcinoma (HCC) line HuH-7 was defective in FANCD2 monoubiquitination and FANCD2 nuclear focus formation but proficient in RAD51 focus formation. Gene complementation studies revealed that this proximal FA pathway inactivation was attributable to defective FANCC function in HuH-7 cells. Accordingly, a homozygous inactivating FANCC nonsense mutation (c.553C > T, p.R185X) was identified in HuH-7, resulting in partial transcriptional skipping of exon 6 and leading to the classic cellular FA hypersensitivity phenotype; HuH-7 cells exhibited a strongly reduced proliferation rate and a pronounced G2 cell cycle arrest at distinctly lower concentrations of ICL-agents than a panel of non-isogenic, FA pathway-proficient HCC cell lines. Upon retroviral transduction of HuH-7 cells with FANCC cDNA, FA pathway functions were restored and ICL-hypersensitivity abrogated. Analyses of 18 surgical HCC specimens yielded no further examples for genetic or epigenetic inactivation of FANCC, FANCF, or FANCG in HCC, suggesting a low prevalence of proximal FA pathway inactivation in this tumor type. Conclusions As the majority of HCC are chemoresistant, assessment of FA pathway function in HCC could identify small subpopulations of patients expected to predictably benefit from individualized treatment protocols using ICL-agents.
Collapse
Affiliation(s)
- Andreas Palagyi
- Department of Medicine II, Ludwig-Maximilians-University, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sun J, Chen Z, Zhu T, Yu J, Ma K, Zhang H, He Y, Luo X, Zhu J. Hypermethylated SFRP1, but none of other nine genes "informative" for western countries, is valuable for bladder cancer detection in Mainland China. J Cancer Res Clin Oncol 2009; 135:1717-27. [PMID: 19565266 DOI: 10.1007/s00432-009-0619-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE A 11-gene set by methylation-specific PCR in urine sediments for sensitive/specific detection of bladder cancer has been identified previously. In this study, we have evaluated 10 DNA methylation biomarkers that have been reported informative in western countries for bladder cancer diagnosis for a better set. MATERIALS AND METHODS The promoter CpG Islands of the following 10 genes: CDH1, FANCF, LOXL1, LOXL4, p16INK4, SFRP1, SOX9, TIG1, TIMP3, and XAF1 have been subjected to methylation-specific PCR analysis in the DNA of 2 bladder cancer cell lines, 2 normal bladder tissues and urine sediments of 82 bladder cancer patients, 15 non-cancerous urogenital patients and 5 healthy volunteers. RESULTS Both XAF1 and LOXL1 genes were heterozygously methylated in the normal bladder tissues, showing no cancer state specificity. While the hypermethylated states were detected in urine sediments of bladder cancer at a frequency not less than 2.4% (2/82 cases), nine genes were also methylated in the patients of the non-cancerous urogenital diseases. The methylated SFRP1 was detected in 36.6% (30/82 cases) of bladder cancer and 6.7% (1/15 cases) of non-cancerous urogenital diseases, showing the bladder cancer specificity. CONCLUSIONS Inclusion of the SFRP1 gene into a set of 11 genes has improved the bladder cancer detection. The insufficiency of predicting disease onset in this study with the previously recommended targets in western countries suggests a possible disease disparity between these two populations. Alternatively, the tissue-specific methylation might be mistaken as the cancer specific in the studies where no non-cancerous lesion controls were involved.
Collapse
Affiliation(s)
- Jinfeng Sun
- School of Medicine, Fudan University, 200032 Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Low incidence of methylation of the promoter region of the FANCF gene in Japanese primary breast cancer. Breast Cancer 2009; 18:120-3. [PMID: 19813073 DOI: 10.1007/s12282-009-0175-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 08/18/2009] [Indexed: 01/25/2023]
Abstract
PURPOSE The link between BRCA1 dysfunction and basal-like breast cancer or triple-negative breast cancer (TNBC) has been suggested; however, the associations of other factors involved in the Fanconi anemia (FA)/BRCA pathway with the pathogenesis of basal-like breast cancer remain unidentified. FANCF protein is a component of the FA core complex. The methylation of CpG islands in the FANCF gene plays an important role in occurrence of ovarian cancer and also is an important regulator of cisplatin sensitivity of ovarian cancer. The purpose of this study is to investigate the frequency of FANCF methylation, and to discuss its involvement in the pathogenesis of TNBC and its potency as a predictor of cisplatin sensitivity for breast cancer. METHODS The methylation of the FANCF gene promoter was investigated, using methylation-specific PCR, in genomic DNA of 99 invasive breast carcinoma specimens obtained from Japanese patients. RESULTS FANCF methylation was recognized in only 4 of 99 cases (4.0%). No significant correlation was found between FANCF methylation and the expression of ER, PR, HER2, and TNBC. CONCLUSIONS FANCF methylation is a rare event in Japanese primary invasive breast cancer. This suggests it is not involved in the pathogenesis of TNBC, and it could not be used as a predictor of cisplatin sensitivity in breast cancer.
Collapse
|
27
|
Neveling K, Endt D, Hoehn H, Schindler D. Genotype-phenotype correlations in Fanconi anemia. Mutat Res 2009; 668:73-91. [PMID: 19464302 DOI: 10.1016/j.mrfmmm.2009.05.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/30/2009] [Accepted: 05/12/2009] [Indexed: 11/30/2022]
Abstract
Although still incomplete, we now have a remarkably detailed and nuanced picture of both phenotypic and genotypic components of the FA spectrum. Initially described as a combination of pancytopenia with a limited number of physical anomalies, it was later recognized that additional features were compatible with the FA phenotype, including a form without detectable malformations (Estren-Dameshek variant). The discovery of somatic mosaicism extended the boundaries of the FA phenotype to cases even without any overt hematological manifestations. This clinical heterogeneity was augmented by new conceptualizations. There was the realization of a constant risk for the development of myelodysplasia and certain malignancies, including acute myelogenous leukemia and squamous cell carcinoma, and there was the emergence of a distinctive cellular phenotype. A striking degree of genetic heterogeneity became apparent with the delineation of at least 12 complementation groups and the identification of their underlying genes. Although functional genetic insights have fostered the interpretation of many phenotypic features, surprisingly few stringent genotype-phenotype connections have emerged. In addition to myriad genetic alterations, less predictable influences are likely to modulate the FA phenotype, including modifier genes, environmental factors and chance effects. In reviewing the current status of genotype-phenotype correlations, we arrive at a unifying hypothesis to explain the remarkably wide range of FA phenotypes. Given the large body of evidence that genomic instability is a major underlying mechanism of accelerated ageing phenotypes, we propose that the numerous FA variants can be viewed as differential modulations and compression in time of intrinsic biological ageing.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human and Medical Genetics, University of Wurzburg, Biozentrum, Am Hubland, Wurzburg D-97074, Germany
| | | | | | | |
Collapse
|
28
|
Sinha S, Singh RK, Alam N, Roy A, Roychoudhury S, Panda CK. Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma. Mol Cancer 2008; 7:84. [PMID: 18990233 PMCID: PMC2633285 DOI: 10.1186/1476-4598-7-84] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/06/2008] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Younger women with breast carcinoma (BC) exhibits more aggressive pathologic features compared to older women; young age could be an independent predictor of adverse prognosis. To find any existing differences in the molecular pathogenesis of BC in both younger and older women, alterations at chromosomal (chr.) 9q22.32-22.33 region were studied owing to its association in wide variety of tumors. Present work focuses on comparative analysis of alterations of four candidate genes; PHF2, FANCC, PTCH1 and XPA located within 4.4 Mb region of the afore-said locus in two age groups of BC, as well as the interrelation and prognostic significance of alterations of these genes. METHODS Deletion analysis of PHF2, FANCC, PTCH1 and XPA were examined in a subset of 47 early-onset (group-A: < or = 40 years) and 59 late-onset (group-B: > 40 years) breast carcinomas using both microsatellite and exonic markers. Methylation Sensitive Restriction analysis (MSRA) was done to check for promoter methylation. Quantitative real-time polymerase chain reaction (Q-PCR) and immunohistochemisty (IHC) was done in some genes to see their relative mRNA and protein expressions respectively. Clinico-pathological correlation of different parameters as well as patient survival was calculated using different statistical softwares like EpiInfo 6.04b, SPSS 10.0 etc. RESULTS Either age group exhibited high frequency of overall alterations in PHF2, FANCC and PTCH1 compared to XPA. Samples with alteration (deletion/methylation) in these genes showed reduced level of mRNA expression as seen by Q-PCR. Immunohistochemical analysis of FANCC and PTCH1 also supported this observation. Poor patient survival was noted in both age groups having alterations in FANCC. Similar result was also seen with PTCH1 and XPA alterations in group-A and PHF2 alterations in group-B. This reflected their roles as prognostic tools in the respective groups in which they were altered. CONCLUSION Overall alterations of PHF2, FANCC and PTCH1 were comparatively higher than XPA. Differential association of alterations in FANCC and PTCH1 with that of PHF2, XPA and two breast cancer susceptibility genes (BRCA1/BRCA2) in the two age groups suggests differences in their molecular pathogenesis and dysregulation of multiple DNA repair pathways as well as hedgehog dependent stem cell renewal pathway.
Collapse
Affiliation(s)
- Satyabrata Sinha
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ratnesh K Singh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anup Roy
- Department of Pathology, Medical College, Kolkata, India
| | - Susanta Roychoudhury
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
29
|
Chromosomal instability in bladder cancer. Arch Toxicol 2008; 82:173-82. [PMID: 18253719 DOI: 10.1007/s00204-008-0280-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 01/09/2008] [Indexed: 01/10/2023]
|
30
|
Genetic instability syndromes with progeroid features. Z Gerontol Geriatr 2007; 40:339-48. [DOI: 10.1007/s00391-007-0483-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 01/09/2023]
|