1
|
Yang Y, Ma M, Su J, Jia L, Zhang D, Lin X. Acetylation, ferroptosis, and their potential relationships: Implications in myocardial ischemia-reperfusion injury. Am J Med Sci 2023; 366:176-184. [PMID: 37290744 DOI: 10.1016/j.amjms.2023.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 06/10/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a serious complication affecting the prognosis of patients with myocardial infarction and can cause cardiac arrest, reperfusion arrhythmias, no-reflow, and irreversible myocardial cell death. Ferroptosis, an iron-dependent, peroxide-driven, non-apoptotic form of regulated cell death, plays a vital role in reperfusion injury. Acetylation, an important post-translational modification, participates in many cellular signaling pathways and diseases, and plays a pivotal role in ferroptosis. Elucidating the role of acetylation in ferroptosis may therefore provide new insights for the treatment of MIRI. Here, we summarized the recently discovered knowledge about acetylation and ferroptosis in MIRI. Finally, we focused on the acetylation modification during ferroptosis and its potential relationship with MIRI.
Collapse
Affiliation(s)
- Yu Yang
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Mengqing Ma
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Jiannan Su
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Lin Jia
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Dingxin Zhang
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China.
| |
Collapse
|
2
|
Yu D, Zhang P, Xu C, Hu Y, Liang Y, Li M. Microplitis bicoloratus Bracovirus Promotes Cyclophilin D-Acetylation at Lysine 125 That Correlates with Apoptosis during Insect Immunosuppression. Viruses 2023; 15:1491. [PMID: 37515179 PMCID: PMC10383377 DOI: 10.3390/v15071491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclophilin D (CypD) is regulated during the innate immune response of insects. However, the mechanism by which CypD is activated under innate immunosuppression is not understood. Microplitis bicoloratus bracovirus (MbBV), a symbiotic virus in the parasitoid wasp, Microplitis bicoloratus, suppresses innate immunity in parasitized Spodoptera litura. Here, we demonstrate that MbBV promotes the CypD acetylation of S. litura, resulting in an immunosuppressive phenotype characterized by increased apoptosis of hemocytes and MbBV-infected cells. Under MbBV infection, the inhibition of CypD acetylation significantly rescued the apoptotic cells induced by MbBV, and the point-mutant fusion proteins of CypDK125R-V5 were deacetylated. The CypD-V5 fusion proteins were acetylated in MbBV-infected cells. Deacetylation of CypDK125R-V5 can also suppress the MbBV-induced increase in apoptosis. These results indicate that CypD is involved in the MbBV-suppressed innate immune response via the CypD-acetylation pathway and S. litura CypD is acetylated on K125.
Collapse
Affiliation(s)
- Dan Yu
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
- Yunnan Provincial Medical Investment Management Group Co., Ltd., Kunming 650500, China
| | - Pan Zhang
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Cuixian Xu
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
- School of Health, Yunnan Technology and Business University, Kunming 650500, China
| | - Yan Hu
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yaping Liang
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Ming Li
- Yunnan International Joint Laboratory of Virology & Immunology, School of Life Sciences, Yunnan University, Kunming 650500, China
| |
Collapse
|
3
|
Deng J, Jiang Y, Chen ZB, Rhee JW, Deng Y, Wang ZV. Mitochondrial Dysfunction in Cardiac Arrhythmias. Cells 2023; 12:679. [PMID: 36899814 PMCID: PMC10001005 DOI: 10.3390/cells12050679] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Electrophysiological and structural disruptions in cardiac arrhythmias are closely related to mitochondrial dysfunction. Mitochondria are an organelle generating ATP, thereby satisfying the energy demand of the incessant electrical activity in the heart. In arrhythmias, the homeostatic supply-demand relationship is impaired, which is often accompanied by progressive mitochondrial dysfunction leading to reduced ATP production and elevated reactive oxidative species generation. Furthermore, ion homeostasis, membrane excitability, and cardiac structure can be disrupted through pathological changes in gap junctions and inflammatory signaling, which results in impaired cardiac electrical homeostasis. Herein, we review the electrical and molecular mechanisms of cardiac arrhythmias, with a particular focus on mitochondrial dysfunction in ionic regulation and gap junction action. We provide an update on inherited and acquired mitochondrial dysfunction to explore the pathophysiology of different types of arrhythmias. In addition, we highlight the role of mitochondria in bradyarrhythmia, including sinus node dysfunction and atrioventricular node dysfunction. Finally, we discuss how confounding factors, such as aging, gut microbiome, cardiac reperfusion injury, and electrical stimulation, modulate mitochondrial function and cause tachyarrhythmia.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yunqiu Jiang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - June-Wha Rhee
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Department of Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhao V. Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Yang Y, Wang W, Tian Y, Shi J. Sirtuin 3 and mitochondrial permeability transition pore (mPTP): A systematic review. Mitochondrion 2022; 64:103-111. [PMID: 35346868 DOI: 10.1016/j.mito.2022.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Mitochondrial permeability transition pore (mPTP) is a channel that opens at the inner mitochondrial membrane under conditions of stress. Sirtuin 3 (Sirt3) is a mitochondrial deacetylase known to play a major role in stress resistance and a regulatory role in cell death. This systematic review aims to elucidate the role of Sirt3 in mPTP inhibition. Electronic databases, including PubMed, EMBASE, Web of Science and Cochrane Library were searched up to May 2020. Original studies that investigated the relationship between Sirt3 and mPTP were included. Two reviewers independently extracted data on study characteristics, methods and outcomes. A total of 194 articles were found. Twenty-nine articles, which met criteria were included in the systematic review. Twenty-three studies provided evidence of the inhibitory effect of Sirt3 on the mPTP aperture. This review summarizes up-to-date evidence of the protective and inhibitory role of Sirt3 through deacetylating Cyclophilin D (CypD) on the mPTP aperture. Furthermore, we discuss the implications of this effect in disease.
Collapse
Affiliation(s)
- Yaping Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiping Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ye Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiong Shi
- China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Nejat R, Sadr AS. Are losartan and imatinib effective against SARS-CoV2 pathogenesis? A pathophysiologic-based in silico study. In Silico Pharmacol 2020; 9:1. [PMID: 33294307 PMCID: PMC7716628 DOI: 10.1007/s40203-020-00058-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Proposing a theory about the pathophysiology of cytokine storm in COVID19, we were to find the potential drugs to treat this disease and to find any effect of these drugs on the virus infectivity through an in silico study. COVID-19-induced ARDS is linked to a cytokine storm phenomenon not explainable solely by the virus infectivity. Knowing that ACE2, the hydrolyzing enzyme of AngII and SARS-CoV2 receptor, downregulates when the virus enters the host cells, we hypothesize that hyperacute AngII upregulation is the eliciting factor of this ARDS. We were to validate this theory through reviewing previous studies to figure out the role of overzealous activation of AT1R in ARDS. According to this theory losartan may attenuate ARDS in this disease. Imatinib, has previously been elucidated to be promising in modulating lung inflammatory reactions and virus infectivity in SARS and MERS. We did an in silico study to uncover any probable other unconsidered inhibitory effects of losartan and imatinib against SARS-CoV2 pathogenesis. Reviewing the literature, we could find that over-activation of AT1R could explain precisely the mechanism of cytokine storm in COVID19. Our in silico study revealed that losartan and imatinib could probably: (1) decline SARS-CoV2 affinity to ACE2. (2) inhibit the main protease and furin, (3) disturb papain-like protease and p38MAPK functions. Our reviewing on renin-angiotensin system showed that overzealous activation of AT1R by hyper-acute excess of AngII due to acute downregulation of ACE2 by SARS-CoV2 explains precisely the mechanism of cytokine storm in COVID-19. Besides, based on our in silico study we concluded that losartan and imatinib are promising in COVID19.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Shahir Sadr
- Bioinformatics Research Center, Cheragh Medical Institute and Hospital, Kabul, Afghanistan
- Department of Computer Science, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
7
|
A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165992. [PMID: 33091565 DOI: 10.1016/j.bbadis.2020.165992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) opening is involved in the pathophysiology of multiple cardiac diseases, such as ischemia/reperfusion injury and heart failure. A growing number of evidence provided by proteomic screening techniques has demonstrated the role of post-translational modifications (PTMs) in several key components of the pore in response to changes in the extra/intracellular environment and bioenergetic demand. This could lead to a fine, complex regulatory mechanism that, under pathological conditions, can shift the state of mitochondrial functions and, thus, the cell's fate. Understanding the complex relationship between these PTMs is still under investigation and can provide new, promising therapeutic targets and treatment approaches. This review, using a systematic review of the literature, presents the current knowledge on PTMs of the mPTP and their role in health and cardiac disease.
Collapse
|
8
|
Guo R, Liu N, Liu H, Zhang J, Zhang H, Wang Y, Baruscotti M, Zhao L, Wang Y. High content screening identifies licoisoflavone A as a bioactive compound of Tongmaiyangxin Pills to restrain cardiomyocyte hypertrophy via activating Sirt3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153171. [PMID: 32018211 DOI: 10.1016/j.phymed.2020.153171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cardiac hypertrophy is a prominent feature of heart remodeling, which may eventually lead to heart failure. Tongmaiyangxin (TMYX) pills are a clinically used botanical drug for treating multiple cardiovascular diseases including chronic heart failure. The aim of the current study was to identify the bioactive compounds in Tongmaiyangxin pills that attenuate cardiomyocytes hypertrophy, and to investigate the underlying mechanism of action. METHODS AND RESULTS The anti-hypertrophy effect of TMYX was validated in isoproterenol-induced cardiac hypertrophy model in C57BL/6 mice. After TMYX treatment for 2 weeks, the heart ejection fraction and fractional shortening of the mice model was increased by approximately 20% and 15%, respectively, (p < 0.05). Besides, TMYX dose-dependently reduced the cross section area of cardiomyocytes in the angiotensin-II induced hypertrophy H9c2 model (p < 0.01). Combining high content screening and liquid chromatography mass spectrometry, four compounds with anti-cardiac hypertrophy effects were identified from TMYX, which includes emodin, licoisoflavone A, licoricone and glyasperin A. Licoisoflavone A is one of the compounds with most significant protective effect and we continued to investigate the mechanism. Primary cultures of neonatal rat cardiomyocytes were treated with a hypertrophic agonist phenylephrine (PE) in the presence or absence of licoisoflavone A. After 48 h of treatment, cells were harvested and mitochondrial acetylation was analyzed by western blotting and Image analysis. Interestingly, the results suggested that the anti-hypertrophic effects of licoisoflavone A depend on the activation of the deacetylase Sirt3 (p < 0.01). Finally, we showed that licoisoflavone A-treatment was able to decrease relative ANF and BNP levels in the hypertrophic cardiac cells (p < 0.01), but not in cells co-treated with Sirt3 inhibitors (3-TYP) (p > 0.05). CONCLUSION TMYX exerts its anti-hypertrophy effect possibly through upregulating Sirt3 expression. Four compounds were identified from TMYX which may be responsible for the anti-hypertrophy effect. Among these compounds, licoisoflavone A was demonstrated to block the hypertrophic response of cardiomyocytes, which required its positive regulation on the expression of Sirt3. These results suggested that licoisoflavone A is a potential Sirt3 activator with therapeutic effect on cardiac hypertrophy.
Collapse
MESH Headings
- Acetylation
- Angiotensin II/adverse effects
- Animals
- Cardiomegaly/chemically induced
- Cardiomegaly/drug therapy
- Cells, Cultured
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Isoflavones/pharmacology
- Isoproterenol/adverse effects
- Male
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenylephrine/adverse effects
- Rats
- Sirtuin 3/metabolism
Collapse
Affiliation(s)
- Rui Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ningning Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hao Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junhua Zhang
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Han Zhang
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mirko Baruscotti
- Department of Bioscienze, Pacelab, University of Milano, Milan, Italy
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucinska-Wieckowska A, Oliveira PJ. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem 2019; 26:3376-3406. [PMID: 28554320 DOI: 10.2174/0929867324666170529101810] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols - resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin - in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols' beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal.,CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| |
Collapse
|
10
|
The Role of Adenine Nucleotide Translocase in the Assembly of Respiratory Supercomplexes in Cardiac Cells. Cells 2019; 8:cells8101247. [PMID: 31614941 PMCID: PMC6829619 DOI: 10.3390/cells8101247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 12/02/2022] Open
Abstract
Individual electron transport chain complexes have been shown to assemble into the supramolecular structures known as the respiratory chain supercomplexes (RCS). Several studies reported an associative link between RCS disintegration and human diseases, although the physiological role, structural integrity, and mechanisms of RCS formation remain unknown. Our previous studies suggested that the adenine nucleotide translocase (ANT), the most abundant protein of the inner mitochondrial membrane, can be involved in RCS assembly. In this study, we sought to elucidate whether ANT knockdown (KD) affects RCS formation in H9c2 cardiomyoblasts. Results showed that genetic silencing of ANT1, the main ANT isoform in cardiac cells, stimulated proliferation of H9c2 cardiomyoblasts with no effect on cell viability. ANT1 KD reduced the ΔΨm but increased total cellular ATP levels and stimulated the production of total, but not mitochondrial, reactive oxygen species. Importantly, downregulation of ANT1 had no significant effects on the enzymatic activity of individual ETC complexes I–IV; however, RCS disintegration was stimulated in ANT1 KD cells as evidenced by reduced levels of respirasome, the main RCS. The effects of ANT1 KD to induce RCS disassembly was not associated with acetylation of the exchanger. In conclusion, our study demonstrates that ANT is involved in RCS assembly.
Collapse
|
11
|
Escobales N, Nuñez RE, Javadov S. Mitochondrial angiotensin receptors and cardioprotective pathways. Am J Physiol Heart Circ Physiol 2019; 316:H1426-H1438. [PMID: 30978131 PMCID: PMC6620675 DOI: 10.1152/ajpheart.00772.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
A growing body of data provides strong evidence that intracellular angiotensin II (ANG II) plays an important role in mammalian cell function and is involved in the pathogenesis of human diseases such as hypertension, diabetes, inflammation, fibrosis, arrhythmias, and kidney disease, among others. Recent studies also suggest that intracellular ANG II exerts protective effects in cells during high extracellular levels of the hormone or during chronic stimulation of the local tissue renin-angiotensin system (RAS). Notably, the intracellular RAS (iRAS) described in neurons, fibroblasts, renal cells, and cardiomyocytes provided new insights into regulatory mechanisms mediated by intracellular ANG II type 1 (AT1Rs) and 2 (AT2Rs) receptors, particularly, in mitochondria and nucleus. For instance, ANG II through nuclear AT1Rs promotes protective mechanisms by stimulating the AT2R signaling cascade, which involves mitochondrial AT2Rs and Mas receptors. The stimulation of nuclear ANG II receptors enhances mitochondrial biogenesis through peroxisome proliferator-activated receptor-γ coactivator-1α and increases sirtuins activity, thus protecting the cell against oxidative stress. Recent studies in ANG II-induced preconditioning suggest that plasma membrane AT2R stimulation exerts protective effects against cardiac ischemia-reperfusion by modulating mitochondrial AT1R and AT2R signaling. These studies indicate that iRAS promotes the protection of cells through nuclear AT1R signaling, which, in turn, promotes AT2R-dependent processes in mitochondria. Thus, despite abundant data on the deleterious effects of intracellular ANG II, a growing body of studies also supports a protective role for iRAS that could be of relevance to developing new therapeutic strategies. This review summarizes and discusses previous studies on the role of iRAS, particularly emphasizing the protective and counterbalancing actions of iRAS, mitochondrial ANG II receptors, and their implications for organ protection.
Collapse
Affiliation(s)
- Nelson Escobales
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| | - Rebeca E Nuñez
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| |
Collapse
|
12
|
Porter GA, Beutner G. Cyclophilin D, Somehow a Master Regulator of Mitochondrial Function. Biomolecules 2018; 8:E176. [PMID: 30558250 PMCID: PMC6316178 DOI: 10.3390/biom8040176] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cyclophilin D (CyPD) is an important mitochondrial chaperone protein whose mechanism of action remains a mystery. It is well known for regulating mitochondrial function and coupling of the electron transport chain and ATP synthesis by controlling the mitochondrial permeability transition pore (PTP), but more recent evidence suggests that it may regulate electron transport chain activity. Given its identification as a peptidyl-prolyl, cis-trans isomerase (PPIase), CyPD, is thought to be involved in mitochondrial protein folding, but very few reports demonstrate the presence of this activity. By contrast, CyPD may also perform a scaffolding function, as it binds to a number of important proteins in the mitochondrial matrix and inner mitochondrial membrane. From a clinical perspective, inhibiting CyPD to inhibit PTP opening protects against ischemia⁻reperfusion injury, making modulation of CyPD activity a potentially important therapeutic goal, but the lack of knowledge about the mechanisms of CyPD's actions remains problematic for such therapies. Thus, the important yet enigmatic nature of CyPD somehow makes it a master regulator, yet a troublemaker, for mitochondrial function.
Collapse
Affiliation(s)
- George A Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Gisela Beutner
- Department of Pediatrics, Division of Cardiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
Mihanfar A, Nejabati HR, Fattahi A, latifi Z, Faridvand Y, Pezeshkian M, Jodati AR, Safaie N, Afrasiabi A, Nouri M. SIRT3-mediated cardiac remodeling/repair following myocardial infarction. Biomed Pharmacother 2018; 108:367-373. [DOI: 10.1016/j.biopha.2018.09.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
|
14
|
Parodi-Rullán RM, Soto-Prado J, Vega-Lugo J, Chapa-Dubocq X, Díaz-Cordero SI, Javadov S. Divergent Effects of Cyclophilin-D Inhibition on the Female Rat Heart: Acute Versus Chronic Post-Myocardial Infarction. Cell Physiol Biochem 2018; 50:288-303. [PMID: 30282073 PMCID: PMC6247791 DOI: 10.1159/000494006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS The mitochondrial permeability transition pore opening plays a critical role in the pathogenesis of myocardial infarction. Inhibition of cyclophilin-D (CyP-D), a key regulator of the mitochondrial permeability transition pore, has been shown to exert cardioprotective effects against ischemia-reperfusion injury on various animal models, mostly in males. However, failure of recent clinical trials requires a detailed elucidation of the cardioprotective efficacy of CyP-D inhibition. The aim of this study was to examine whether cardioprotective effects of sanglifehrin A, a potent inhibitor of CyP-D, on post-infarcted hearts depends on reperfusion. METHODS Acute or chronic myocardial infarction was induced by coronary artery ligation with/without subsequent reperfusion for 2 and 28 days in female Sprague-Dawley rats. Cardiac function was estimated by echocardiography. Oxygen consumption rates, ROS production, permeability transition pore opening, protein carbonylation and respiratory supercomplexes were analyzed in isolated cardiac mitochondria. RESULTS Sanglifehrin A significantly improved cardiac function of reperfused hearts at 2 days but failed to protect after 28 days. No protection was observed in non-reperfused post-infarcted hearts. The respiratory control index of mitochondria was significantly reduced in reperfused infarcted hearts at 2-days with no effect at 28-days post-infarction on reperfused and non-reperfused hearts. Likewise, only a minor increase in reactive oxygen species production was observed at 2-days in non-reperfused post-infarcted hearts. CONCLUSION This study demonstrates that CyP-D inhibition exerts cardioprotective effects in reperfused but not in non-reperfused infarcted hearts of female rats, and the effects are observed only during acute post-infarction injury.
Collapse
|
15
|
Bin-Jaliah I, Hussein AM, Sakr HF, Eid EA. Effects of low dose of aliskiren on isoproterenol-induced acute myocardial infarction in rats. Physiol Int 2018; 105:127-144. [PMID: 29975120 DOI: 10.1556/2060.105.2018.2.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study examined the effects of aliskiren (Ali) (direct renin inhibitor) on serum cardiac enzymes (LDH and CK-MB), electrocardiography (ECG) changes, myocardial oxidative stress markers (MDA, CAT, and GSH) and the expression of Bcl2, HO-1, and Nrf2 genes in isoproterenol (ISO)-induced myocardial infarction (MI). A total of 40 male albino rats were allocated into four groups, (1) normal control (NC) group, (2) Ali group (rats received Ali at 10 mg/kg/day p.o. for 5 days), (3) ISO group (rats received ISO 150 mg/kg i.p. for two consecutive days at 24 h intervals), and (4) Ali + ISO group (rats received ISO + Ali at 10 mg/kg/day p.o. for 5 days from the 2nd dose of ISO). ISO group showed significant rise in serum cardiac enzymes (CK-MB and LDH), myocardial damage scores, myocardial MDA, HO-1, myocardial Nrf2 expression with significant reduction in myocardial antioxidants (CAT and GSH), and Bcl2 expression compared to the normal group (p < 0.05). ECG showed ST segment elevation, prolonged QT interval and QRS complex, and increased heart rate in ISO group. Co-administration of Ali and ISO caused significant increase in cardiac enzymes and morphology with increase in MDA, serum K, and creatinine with significant decrease in Bcl2, HO-1, and Nrf2 without significant changes in ECG parameters compared to ISO group. We concluded that low dose of Ali seems to exacerbate the myocardial injury in ISO-MI, which might be due to the enhanced oxidative stress and apoptosis.
Collapse
Affiliation(s)
- I Bin-Jaliah
- 1 Department of Physiology, College of Medicine, King Khalid University , Abha, Saudi Arabia
| | - A M Hussein
- 2 Medical Physiology Department, Faculty of Medicine, Mansoura University , Mansoura, Egypt
| | - H F Sakr
- 2 Medical Physiology Department, Faculty of Medicine, Mansoura University , Mansoura, Egypt.,3 Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University , Muscat, Oman
| | - E A Eid
- 4 Internal Medicine Department, Delta University for Science and Technology , Gamasa, Egypt
| |
Collapse
|
16
|
Hara T, Nishimura S, Yamamoto T, Kajimoto Y, Kusumoto K, Kanagawa R, Ikeda S, Nishimoto T. TAK-272 (imarikiren), a novel renin inhibitor, improves cardiac remodeling and mortality in a murine heart failure model. PLoS One 2018; 13:e0202176. [PMID: 30092100 PMCID: PMC6084973 DOI: 10.1371/journal.pone.0202176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/30/2018] [Indexed: 01/19/2023] Open
Abstract
The renin-angiotensin system (RAS), which plays an important role in the progression of heart failure, is efficiently blocked by the inhibition of renin, the rate-limiting enzyme in the RAS cascade. In the present study, we investigated the cardioprotective effects of TAK-272 (SCO-272, imarikiren), a novel, orally effective direct renin inhibitor (DRI), and compared its efficacy with that of aliskiren, a DRI that is already available in the market. TAK-272 was administered to calsequestrin transgenic (CSQ-tg) heart failure mouse model that show severe symptoms and high mortality. The CSQ-tg mice treated with 300 mg/kg, the highest dose tested, of TAK-272 showed significantly reduced plasma renin activity (PRA), cardiac hypertrophy, and lung congestion. Further, TAK-272 reduced cardiomyocyte injury accompanied by an attenuation of the increase in NADPH oxidase 4 and nitric oxide synthase 3 expressions. TAK-272 also prolonged the survival of CSQ-tg mice in a dose-dependent manner (30 mg/kg: P = 0.42, 100 mg/kg: P = 0.12, 300 mg/kg: P < 0.01). Additionally, when compared at the same dose level (300 mg/kg), TAK-272 showed strong and sustained PRA inhibition and reduced the heart weight and plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration, a heart failure biomarker, while aliskiren showed a significant weaker PRA inhibition and failed to demonstrate any cardioprotective effects. Our results showed that TAK-272 is an orally active and persistent renin inhibitor, which reduced the mortality of CSQ-tg mice and conferred protection against cardiac hypertrophy and injury. Thus, TAK-272 treatment could provide a new therapeutic approach for heart failure.
Collapse
Affiliation(s)
- Tomoya Hara
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Satoshi Nishimura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Toshihiro Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yumiko Kajimoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Keiji Kusumoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Ray Kanagawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shota Ikeda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tomoyuki Nishimoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
17
|
Parodi-Rullán RM, Chapa-Dubocq XR, Javadov S. Acetylation of Mitochondrial Proteins in the Heart: The Role of SIRT3. Front Physiol 2018; 9:1094. [PMID: 30131726 PMCID: PMC6090200 DOI: 10.3389/fphys.2018.01094] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
A growing number of studies have demonstrated the role of post-translational modifications of proteins, particularly acetylation, in human diseases including neurodegenerative and cardiovascular diseases, diabetes, cancer, and in aging. Acetylation of mitochondrial proteins has been shown to be involved in the pathogenesis of cardiac diseases such as myocardial infarction (ischemia-reperfusion) and heart failure. Indeed, over 60% of mitochondrial proteins contain acetylation sites, and most of these proteins are involved in mitochondrial bioenergetics. Mitochondrial non-enzymatic acetylation is enabled by acetyl-coenzyme A abundance and serves as the primary pathway of acetylation in mitochondria. Hence, regulation of enzymatic deacetylation becomes the most important mechanism to control acetylation/deacetylation of mitochondrial proteins. Acetylation/deacetylation of mitochondrial proteins has been regarded as a key regulator of mitochondrial metabolism and function. Proteins are deacetylated by NAD+-dependent deacetylases known as sirtuins (SIRTs). Among seven sirtuin isoforms, only SIRT3, SIRT4, and SIRT5 are localized in the mitochondria. SIRT3 is the main mitochondrial sirtuin which plays a key role in maintaining metabolic and redox balance in the mitochondria under physiological and pathological conditions. SIRT3 regulates the enzymatic activity of proteins involved in fatty acid oxidation, tricarboxylic acid cycle, electron transport chain, and oxidative phosphorylation. Although many enzymes have been identified as targets for SIRT3, cardiac-specific SIRT3 effects and regulations could differ from those in non-cardiac tissues. Therefore, it is important to elucidate the contribution of SIRT3 and mitochondrial protein acetylation/deacetylation in mitochondrial metabolism and cardiac dysfunction. Here, we summarize previous studies and provide a comprehensive analysis of the role of SIRT3 in mitochondria metabolism and bioenergetics under physiological conditions and in cardiac diseases. In addition, the review discusses mitochondrial protein acetylation as a potential target for cardioprotection.
Collapse
Affiliation(s)
- Rebecca M Parodi-Rullán
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Xavier R Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| |
Collapse
|
18
|
Sidorova-Darmos E, Sommer R, Eubanks JH. The Role of SIRT3 in the Brain Under Physiological and Pathological Conditions. Front Cell Neurosci 2018; 12:196. [PMID: 30090057 PMCID: PMC6068278 DOI: 10.3389/fncel.2018.00196] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/17/2018] [Indexed: 12/22/2022] Open
Abstract
Sirtuin enzymes are a family of highly seven conserved protein deacetylases, namely SIRT1 through SIRT7, whose enzymatic activities require the cofactor nicotinamide adenine dinucleotide (NAD+). Sirtuins reside in different compartments within cells, and their activities have been shown to regulate a number of cellular pathways involved in but not limited to stress management, apoptosis and inflammatory responses. Given the importance of mitochondrial functional state in neurodegenerative conditions, the mitochondrial SIRT3 sirtuin, which is the primary deacetylase within mitochondria, has garnered considerable recent attention. It is now clear that SIRT3 plays a major role in regulating a host of mitochondrial molecular cascades that can contribute to both normal and pathophysiological processes. However, most of the currently available knowledge on SIRT3 stems from studies in non-neuronal cells, and the consequences of the interactions between SIRT3 and its targets in the CNS are only beginning to be elucidated. In this review, we will summarize current advances relating to SIRT3, and explore how its known functions could influence brain physiology.
Collapse
Affiliation(s)
- Elena Sidorova-Darmos
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Rosa Sommer
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Qin SG, Tian HY, Wei J, Han ZH, Zhang MJ, Hao GH, Liu X, Pan LF. 3-Bromo-4,5-Dihydroxybenzaldehyde Protects Against Myocardial Ischemia and Reperfusion Injury Through the Akt-PGC1α-Sirt3 Pathway. Front Pharmacol 2018; 9:722. [PMID: 30042676 PMCID: PMC6048356 DOI: 10.3389/fphar.2018.00722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023] Open
Abstract
Natural marine products are useful candidates for the treatment of oxidative and inflammatory diseases, including myocardial ischemia. 3-bromo-4,5 - dihydroxybenzaldehyde (BDB), a natural bromophenol isolated from marine red algae, has been shown to display anti-microbial, anti-oxidative, anti-cancer, anti-inflammatory, and free radical scavenging activities. In this study, the potential protective effects of BDB against myocardial ischemia and reperfusion (IR) injury was investigated in an in vitro model mimicked by oxygen and glucose deprivation (OGD) in cardiomyocytes and in an in vivo model induced by coronary artery ligation in rats. The results showed that BDB attenuated the OGD-induced cytotoxicity in a dose-dependent manner, with no toxic effect when treated alone. BDB significantly decreased apoptosis and the cleavage of caspase-3 after OGD. We found that OGD-induced oxidative stress, as evidenced by increases of reactive oxygen species (ROS) and lipid peroxidation, as well as mitochondrial dysfunction, as measured by mitochondrial reporter gene, cytochrome c release and ATP synthesis, were markedly attenuated by BDB treatment. In addition, BDB increased the enzymatic activities of mitochondrial antioxidant enzymes, including IDH2, GSH-Px and SOD2. Western blot analysis showed that BDB increased Akt phosphorylation and upregulated the expression of Sirt3 and PGC1α after OGD. Furthermore, BDB-induced protection in cardiomyocytes was partially reversed by the Akt inhibitor and downregulation of PGC1α. BDB also attenuated myocardial contractile dysfunction and activated the Akt-PGC1α-Sirt3 pathway in vivo. All these data suggest that BDB protects against myocardial IR injury through activating the Akt-PGC1α-Sirt3 pathway.
Collapse
Affiliation(s)
- Shu-Guang Qin
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Hong-Yan Tian
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Zhen-Hua Han
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Ming-Juan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Guang-Hua Hao
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Xin Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Long-Fei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
20
|
Critical role of angiotensin II type 2 receptors in the control of mitochondrial and cardiac function in angiotensin II-preconditioned rat hearts. Pflugers Arch 2018; 470:1391-1403. [PMID: 29748710 DOI: 10.1007/s00424-018-2153-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
Abstract
Angiotensin II preconditioning (APC) involves an angiotensin II type 1 receptor (AT1-R)-dependent translocation of PKCε and survival kinases to the mitochondria leading to cardioprotection after ischemia-reperfusion (IR). However, the role that mitochondrial AT1-Rs and angiotensin II type 2 receptors (AT2-Rs) play in APC is unknown. We investigated whether pretreatment of Langendorff-perfused rat hearts with losartan (L, AT1-R blocker), PD 123,319 (PD, AT2-R blocker), or their combination (L + PD) affects mitochondrial AT1-R, AT2-R, PKCε, PKCδ, Akt, PKG-1, MAPKs (ERK1/2, JNK, p38), mitochondrial respiration, cardiac function, and infarct size (IS). The results indicate that expression of mitochondrial AT1-Rs and AT2-Rs were enhanced by APC 1.91-fold and 2.32-fold, respectively. Expression of AT2-R was abolished by PD but not by L, whereas the AT1-R levels were abrogated by both blockers. The AT1-R response profile to L and PD was also shared by PKCε, Akt, MAPKs, and PKG-1, but not by PKCδ. A marked increase in state 3 (1.84-fold) and respiratory control index (1.86-fold) of mitochondria was observed with PD regardless of L treatment. PD also enhanced the post-ischemic recovery of rate pressure product (RPP) by 74% (p < 0.05) compared with APC alone. Losartan, however, inhibited the (RPP) by 44% (p < 0.05) before IR and reduced the APC-induced increase of post-ischemic cardiac recovery by 73% (p < 0.05). Finally, L enhanced the reduction of IS by APC through a PD-sensitive mechanism. These findings suggest that APC upregulates angiotensin II receptors in mitochondria and that AT2-Rs are cardioprotective through their permissive action on AT1-R signaling and the suppression of cardiac function.
Collapse
|
21
|
SIRT3: A New Regulator of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7293861. [PMID: 29643974 PMCID: PMC5831850 DOI: 10.1155/2018/7293861] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 01/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide, and defects in mitochondrial function contribute largely to the occurrence of CVDs. Recent studies suggest that sirtuin 3 (SIRT3), the mitochondrial NAD+-dependent deacetylase, may regulate mitochondrial function and biosynthetic pathways such as glucose and fatty acid metabolism and the tricarboxylic acid (TCA) cycle, oxidative stress, and apoptosis by reversible protein lysine deacetylation. SIRT3 regulates glucose and lipid metabolism and maintains myocardial ATP levels, which protects the heart from metabolic disturbances. SIRT3 can also protect cardiomyocytes from oxidative stress-mediated cell damage and block the development of cardiac hypertrophy. Recent reports show that SIRT3 is involved in the protection of several heart diseases. This review discusses the progress in SIRT3-related research and the role of SIRT3 in the prevention and treatment of CVDs.
Collapse
|
22
|
Zhang X, Ji R, Liao X, Castillero E, Kennel PJ, Brunjes DL, Franz M, Möbius-Winkler S, Drosatos K, George I, Chen EI, Colombo PC, Schulze PC. MicroRNA-195 Regulates Metabolism in Failing Myocardium Via Alterations in Sirtuin 3 Expression and Mitochondrial Protein Acetylation. Circulation 2018; 137:2052-2067. [PMID: 29330215 DOI: 10.1161/circulationaha.117.030486] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Heart failure leads to mitochondrial dysfunction and metabolic abnormalities of the failing myocardium coupled with an energy-depleted state and cardiac remodeling. The mitochondrial deacetylase sirtuin 3 (SIRT3) plays a pivotal role in the maintenance of mitochondrial function through regulating the mitochondrial acetylome. It is interesting to note that unique cardiac and systemic microRNAs have been shown to play an important role in cardiac remodeling by modulating key signaling elements in the myocardium. METHODS Cellular signaling was analyzed in human cardiomyocyte-like AC16 cells, and acetylation levels in rodent models of SIRT3-/-and transgenic microRNA-195 (miR-195) overexpression were compared with wild type. Luciferase assays, Western blotting, immunoprecipitation assays, and echocardiographic analysis were performed. Enzymatic activities of pyruvate dehydrogenase (PDH) and ATP synthase were measured. RESULTS In failing human myocardium, we observed induction of miR-195 along with decreased expression of the mitochondrial deacetylase SIRT3 that was associated with increased global protein acetylation. We further investigated the role of miR-195 in SIRT3-mediated metabolic processes and its impact on regulating enzymes involved in deacetylation. Proteomic analysis of the total acetylome showed increased overall acetylation, and specific lysine acetylation of 2 central mitochondrial metabolic enzymes, PDH and ATP synthase, as well. miR-195 downregulates SIRT3 expression through direct 3'-untranslated region targeting. Treatments with either sirtuin inhibitor nicotinamide, small interfering RNA-mediated SIRT3 knockdown or miR-195 overexpression enhanced acetylation of PDH complex and ATP synthase. This effect diminished PDH and ATP synthase activity and impaired mitochondrial respiration.SIRT3-/- and miR-195 transgenic mice consistently showed enhanced global protein acetylation, including PDH complex and ATP synthase, associated with decreased enzymatic activity. CONCLUSIONS Altogether, these data suggest that increased levels of miR-195 in failing myocardium regulate a novel pathway that involves direct SIRT3 suppression and enzymatic inhibition via increased acetylation of PDH and ATP synthase that are essential for cardiac energy metabolism.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY (X.Z., R.J., X.L., P.J.K., D.L.B., P.C.C., P.C.S.)
| | - Ruiping Ji
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY (X.Z., R.J., X.L., P.J.K., D.L.B., P.C.C., P.C.S.)
| | - Xianghai Liao
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY (X.Z., R.J., X.L., P.J.K., D.L.B., P.C.C., P.C.S.)
| | - Estibaliz Castillero
- Department of Surgery, Columbia University Medical Center, New York, NY (E.C., I.G.)
| | - Peter J Kennel
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY (X.Z., R.J., X.L., P.J.K., D.L.B., P.C.C., P.C.S.)
| | - Danielle L Brunjes
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY (X.Z., R.J., X.L., P.J.K., D.L.B., P.C.C., P.C.S.)
| | - Marcus Franz
- Department of Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Germany (M.F., S.M.-W., P.C.S.)
| | - Sven Möbius-Winkler
- Department of Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Germany (M.F., S.M.-W., P.C.S.)
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.)
| | - Isaac George
- Department of Surgery, Columbia University Medical Center, New York, NY (E.C., I.G.)
| | - Emily I Chen
- Department of Pharmacology, Columbia University Medical Center, New York, NY (E.I.C.).,Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center, New York, NY (E.I.C.)
| | - Paolo C Colombo
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY (X.Z., R.J., X.L., P.J.K., D.L.B., P.C.C., P.C.S.)
| | - P Christian Schulze
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY (X.Z., R.J., X.L., P.J.K., D.L.B., P.C.C., P.C.S.). .,Department of Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Germany (M.F., S.M.-W., P.C.S.)
| |
Collapse
|
23
|
Nuñez RE, Javadov S, Escobales N. Angiotensin II-preconditioning is associated with increased PKCε/PKCδ ratio and prosurvival kinases in mitochondria. Clin Exp Pharmacol Physiol 2017; 44:1201-1212. [PMID: 28707739 DOI: 10.1111/1440-1681.12816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
Abstract
Angiotensin II-preconditioning (APC) has been shown to reproduce the cardioprotective effects of ischaemic preconditioning (IPC), however, the molecular mechanisms mediating the effects of APC remain unknown. In this study, Langendorff-perfused rat hearts were subjected to IPC, APC or both (IPC/APC) followed by ischaemia-reperfusion (IR), to determine translocation of PKCε, PKCδ, Akt, Erk1/2, JNK, p38 MAPK and GSK-3β to mitochondria as an indicator of activation of the protein kinases. In agreement with previous observations, IPC, APC and IPC/APC increased the recovery of left ventricular developed pressure (LVDP), reduced infarct size (IS) and lactate dehydrogenase (LDH) release, compared to controls. These effects were associated with increased mitochondrial PKCε/PKCδ ratio, Akt, Erk1/2, JNK, and inhibition of permeability transition pore (mPTP) opening. Chelerythrine, a pan-PKC inhibitor, abolished the enhancements of PKCε but increased PKCδ expression, and inhibited Akt, Erk1/2, and JNK protein levels. The drug had no effect on the APC- and IPC/APC-induced cardioprotection as previously reported, but enhanced the post-ischaemic LVDP in controls. Losartan, an angiotensin II type 1 receptor (AT1-R) blocker, abolished the APC-stimulated increase of LVDP and reduced PKCε, Akt, Erk1/2, JNK, and p38. Both drugs reduced ischaemic contracture and LDH release, and abolished the inhibition of mPTP by the preconditioning. Chelerythrine also prevented the reduction of IS by APC and IPC/APC. These results suggest that the cardioprotection induced by APC and IPC/APC involves an AT1-R-dependent translocation of PKCε and survival kinases to the mitochondria leading to mPTP inhibition. In chelerythrine-treated hearts, however, alternate mechanisms appear to maintain cardiac function.
Collapse
Affiliation(s)
- Rebeca E Nuñez
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Nelson Escobales
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
24
|
Javadov S, Jang S, Parodi-Rullán R, Khuchua Z, Kuznetsov AV. Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection? Cell Mol Life Sci 2017; 74:2795-2813. [PMID: 28378042 PMCID: PMC5977999 DOI: 10.1007/s00018-017-2502-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia-reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia-reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Rebecca Parodi-Rullán
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Zaza Khuchua
- Cincinnati Children's Research Foundation, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, 54229, USA
| | - Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
25
|
Parodi-Rullán RM, Chapa-Dubocq X, Rullán PJ, Jang S, Javadov S. High Sensitivity of SIRT3 Deficient Hearts to Ischemia-Reperfusion Is Associated with Mitochondrial Abnormalities. Front Pharmacol 2017; 8:275. [PMID: 28559847 PMCID: PMC5432544 DOI: 10.3389/fphar.2017.00275] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022] Open
Abstract
Aim: Sirtuins are NAD+-dependent deacetylases that regulate cell metabolism through protein acetylation/deacetylation, and SIRT3 is the major deacetylase among mitochondrial isoforms. Here, we elucidated the possible role of acetylation of cyclophilin D, a key regulator of the mitochondrial permeability transition pore (mPTP), in mitochondria-mediated cardiac dysfunction induced by ischemia-reperfusion (IR) in wild type (WT) and SIRT3 knockout (SIRT3-/-) mice. Materials and Methods: Isolated and Langendorff-mode perfused hearts of WT and SIRT3-/- mice were subjected to 25-min global ischemia followed by 60-min of reperfusion in the presence or absence of the mPTP inhibitor, sanglifehrin A (SfA). Results: Analysis of mitochondrial sirtuins demonstrated that SIRT3 deficiency upregulated SIRT4 with no effect on SIRT5 expression. Hearts of SIRT3-/- mice exhibited significantly less recovery of cardiac function at the end of IR compared to WT mice. Intact (non-perfused) SIRT3-/- hearts exhibited an increased rate of Ca2+-induced swelling in mitochondria as an indicator of mPTP opening. However, there was no difference in mPTP opening and cyclophilin D acetylation between WT and SIRT3-/- hearts subjected to IR injury. Ca2+-stimulated H2O2 production was significantly higher in SIRT3-/- mitochondria that was prevented by SfA. Superoxide dismutase activity was lower in SIRT3-/- heart mitochondria subjected to IR which correlated with an increase in protein carbonylation. However, mitochondrial DNA integrity was not affected in SIRT3-/- hearts after IR. Conclusion: SIRT3 deficiency exacerbates cardiac dysfunction during post-ischemic recovery, and increases mPTP opening and ROS generation without oxidative damage to mitochondrial proteins and DNA.
Collapse
Affiliation(s)
- Rebecca M Parodi-Rullán
- Department of Physiology, University of Puerto Rico School of Medicine, San JuanPR, United States
| | - Xavier Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San JuanPR, United States
| | - Pedro J Rullán
- Department of Physiology, University of Puerto Rico School of Medicine, San JuanPR, United States
| | - Sehwan Jang
- Department of Physiology, University of Puerto Rico School of Medicine, San JuanPR, United States
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San JuanPR, United States
| |
Collapse
|
26
|
Fyn kinase regulates translation in mammalian mitochondria. Biochim Biophys Acta Gen Subj 2016; 1861:533-540. [PMID: 27940153 DOI: 10.1016/j.bbagen.2016.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mitochondrial translation machinery solely exists for the synthesis of 13 mitochondrially-encoded subunits of the oxidative phosphorylation (OXPHOS) complexes in mammals. Therefore, it plays a critical role in mitochondrial energy production. However, regulation of the mitochondrial translation machinery is still poorly understood. In comprehensive proteomics studies with normal and diseased tissues and cell lines, we and others have found the majority of mitochondrial ribosomal proteins (MRPs) to be phosphorylated. Neither the kinases for these phosphorylation events nor their specific roles in mitochondrial translation are known. METHODS Mitochondrial kinases are responsible for phosphorylation of MRPs enriched from bovine mitoplasts by strong cation-exchange chromatography and identified by mass spectrometry-based proteomics analyses of kinase rich fractions. Phosphorylation of recombinant MRPs and 55S ribosomes was assessed by in vitro phosphorylation assays using the kinase-rich fractions. The effect of identified kinase on OXPHOS and mitochondrial translation was assessed by various cell biological and immunoblotting approaches. RESULTS Here, we provide the first evidence for the association of Fyn kinase, a Src family kinase, with mitochondrial translation components and its involvement in phosphorylation of 55S ribosomal proteins in vitro. Modulation of Fyn expression in human cell lines has provided a link between mitochondrial translation and energy metabolism, which was evident by the changes in 13 mitochondrially encoded subunits of OXPHOS complexes. CONCLUSIONS AND GENERAL SIGNIFICANCE Our findings suggest that Fyn kinase is part of a complex mechanism that regulates protein synthesis and OXPHOS possibly by tyrosine phosphorylation of translation components in mammalian mitochondria.
Collapse
|
27
|
Koentges C, Bode C, Bugger H. SIRT3 in Cardiac Physiology and Disease. Front Cardiovasc Med 2016; 3:38. [PMID: 27790619 PMCID: PMC5061741 DOI: 10.3389/fcvm.2016.00038] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
Functional defects in mitochondrial biology causally contribute to various human diseases, including cardiovascular disease. Impairment in oxidative phosphorylation, mitochondrial oxidative stress, and increased opening of the mitochondrial permeability transition pore add to the underlying mechanisms of heart failure or myocardial ischemia–reperfusion (IR) injury. Recent evidence demonstrated that the mitochondrial NAD+-dependent deacetylase sirtuin 3 (SIRT3) may regulate these mitochondrial functions by reversible protein lysine deacetylation. Loss of function studies demonstrated a role of impaired SIRT3 activity in the pathogenesis of myocardial IR injury as well as in the development of cardiac hypertrophy and the transition into heart failure. Gain of function studies and treatment approaches increasing mitochondrial NAD+ availability that ameliorate these cardiac pathologies have led to the proposal that activation of SIRT3 may represent a promising therapeutic strategy to improve mitochondrial derangements in various cardiac pathologies. In the current review, we will present and discuss the available literature on the role of SIRT3 in cardiac physiology and disease.
Collapse
Affiliation(s)
- Christoph Koentges
- Division of Cardiology and Angiology I, Heart Center Freiburg University , Freiburg , Germany
| | - Christoph Bode
- Division of Cardiology and Angiology I, Heart Center Freiburg University , Freiburg , Germany
| | - Heiko Bugger
- Division of Cardiology and Angiology I, Heart Center Freiburg University , Freiburg , Germany
| |
Collapse
|
28
|
SIRT3 in cardiovascular diseases: Emerging roles and therapeutic implications. Int J Cardiol 2016; 220:700-5. [DOI: 10.1016/j.ijcard.2016.06.236] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/26/2016] [Indexed: 12/17/2022]
|
29
|
Javadov S, Escobales N. The Role of SIRT3 in Mediating Cardioprotective Effects of RAS Inhibition on Cardiac Ischemia-Reperfusion. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2016; 18:547-50. [PMID: 26517140 DOI: 10.18433/j3nw2k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiac ischemia-reperfusion stimulates the renin-angiotensin system (RAS) associated with elevated levels of circulating angiotensin II. Numerous studies demonstrate that the antagonist for the angiotensin II type 1 receptor, losartan improves cardiac function in animal models of ischemia-reperfusion. Molecular mechanisms of the cardioprotective effects of RAS inhibitors on cardiac ischemia-reperfusion remain poorly understood, and are not associated with the anti-hypertensive action of these drugs. This Commentary focuses on the study published in the Journal of Pharmacy and Pharmaceutical Sciences, 2015, 18:112-123, that elucidates the role of SIRT3 in the cardioprotective action of losartan against ischemic-reperfusion injury. We provide comprehensive discussion of the role of mitochondria in the cardioprotective effects of losartan through SIRT3. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | | |
Collapse
|
30
|
Zouein FA, Altara R, Chen Q, Lesnefsky EJ, Kurdi M, Booz GW. Pivotal Importance of STAT3 in Protecting the Heart from Acute and Chronic Stress: New Advancement and Unresolved Issues. Front Cardiovasc Med 2015; 2:36. [PMID: 26664907 PMCID: PMC4671345 DOI: 10.3389/fcvm.2015.00036] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/12/2015] [Indexed: 12/25/2022] Open
Abstract
The transcription factor, signal transducer and activator of transcription 3 (STAT3), has been implicated in protecting the heart from acute ischemic injury under both basal conditions and as a crucial component of pre- and post-conditioning protocols. A number of anti-oxidant and antiapoptotic genes are upregulated by STAT3 via canonical means involving phosphorylation on Y705 and S727, although other incompletely defined posttranslational modifications are involved. In addition, STAT3 is now known to be present in cardiac mitochondria and to exert actions that regulate the electron transport chain, reactive oxygen species production, and mitochondrial permeability transition pore opening. These non-canonical actions of STAT3 are enhanced by S727 phosphorylation. The molecular basis for the mitochondrial actions of STAT3 is poorly understood, but STAT3 is known to interact with a critical subunit of complex I and to regulate complex I function. Dysfunctional complex I has been implicated in ischemic injury, heart failure, and the aging process. Evidence also indicates that STAT3 is protective to the heart under chronic stress conditions, including hypertension, pregnancy, and advanced age. Paradoxically, the accumulation of unphosphorylated STAT3 (U-STAT3) in the nucleus has been suggested to drive pathological cardiac hypertrophy and inflammation via non-canonical gene expression, perhaps involving a distinct acetylation profile. U-STAT3 may also regulate chromatin stability. Our understanding of how the non-canonical genomic and mitochondrial actions of STAT3 in the heart are regulated and coordinated with the canonical actions of STAT3 is rudimentary. Here, we present an overview of what is currently known about the pleotropic actions of STAT3 in the heart in order to highlight controversies and unresolved issues.
Collapse
Affiliation(s)
- Fouad A Zouein
- American University of Beirut Faculty of Medicine , Beirut , Lebanon
| | - Raffaele Altara
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University , Richmond, VA , USA
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; McGuire Department of Veterans Affairs Medical Center , Richmond, VA , USA
| | - Mazen Kurdi
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA ; Department of Chemistry and Biochemistry, Faculty of Sciences, Lebanese University , Hadath , Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA
| |
Collapse
|
31
|
Zhao X, Balaji P, Pachon R, Beniamen DM, Vatner DE, Graham RM, Vatner SF. Overexpression of Cardiomyocyte α1A-Adrenergic Receptors Attenuates Postinfarct Remodeling by Inducing Angiogenesis Through Heterocellular Signaling. Arterioscler Thromb Vasc Biol 2015; 35:2451-9. [PMID: 26338300 DOI: 10.1161/atvbaha.115.305919] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/19/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Stimulation of cardiac α1A-adrenergic receptors (α1A-AR) has been proposed for treatment of heart failure, since it increases myocardial contractility. We investigated a different mechanism, induction of angiogenesis. APPROACH AND RESULTS Four to 6 weeks after permanent coronary artery occlusion, transgenic rats with cardiomyocyte-specific α1A-adrenergic receptor overexpression had less remodeling than their nontransgenic littermates, with less fibrosis, hypertrophy and lung weight, and preserved left ventricular ejection fraction and wall stress (all P<0.05). Coronary blood flow, measured with microspheres, increased in the infarct zone in transgenic rats compared with nontransgenic littermates (1.4±0.2 versus 0.5±0.08 mL min(-1) g(-1); P<0.05), which is consistent with angiogenesis, as reflected by a 20% increase in capillary density in the zone adjacent to the infarct. The question arose, how does transgenic overexpression of a gene in cardiomyocytes induce angiogenesis? We identified a paracrine mechanism, whereby vascular endothelial growth factor-A mRNA and protein were increased in isolated transgenic cardiomyocytes and also by nontransgenic littermate cardiomyocytes treated with an α1A-agonist, resulting in angiogenesis. Conditioned medium from cultured cardiomyocytes treated with an α1A agonist enhanced human umbilical vein endothelial cell tubule formation, which was blocked by an anti-vascular endothelial growth factor-A antibody. Moreover, improved cardiac function, blood flow, and increased capillary density after chronic coronary artery occlusion in transgenic rats were blocked by either a mitogen ERK kinase (MEK) or a vascular endothelial growth factor-A inhibitor. CONCLUSION Cardiomyocyte-specific overexpression of the α1A-adrenergic receptors resulted in enhanced MEK-dependent cardiomyocyte vascular endothelial growth factor-A expression, which stimulates angiogenesis via a paracrine mechanism involving heterocellular cardiomyocyte/endothelial cell signaling, protecting against remodeling and heart failure after chronic coronary artery occlusion.
Collapse
Affiliation(s)
- Xin Zhao
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Poornima Balaji
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Ronald Pachon
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Daniella M Beniamen
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Dorothy E Vatner
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Robert M Graham
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.)
| | - Stephen F Vatner
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (X.Z., R.P., D.E.V., S.F.V.); and Victor Chang Cardiac Research Institute and Faculty of Medicine and Life Sciences, University of New South Wales, Sydney, New South Wales, Australia (P.B., D.M.B., R.M.G.).
| |
Collapse
|
32
|
Koentges C, Pfeil K, Schnick T, Wiese S, Dahlbock R, Cimolai MC, Meyer-Steenbuck M, Cenkerova K, Hoffmann MM, Jaeger C, Odening KE, Kammerer B, Hein L, Bode C, Bugger H. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol 2015; 110:36. [PMID: 25962702 DOI: 10.1007/s00395-015-0493-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022]
Abstract
Sirtuin 3 (SIRT3) is a mitochondrial NAD(+)-dependent deacetylase that regulates energy metabolic enzymes by reversible protein lysine acetylation in various extracardiac tissues. The role of SIRT3 in myocardial energetics and in the development of mitochondrial dysfunction in cardiac pathologies, such as the failing heart, remains to be elucidated. To investigate the role of SIRT3 in the regulation of myocardial energetics and function SIRT3(-/-) mice developed progressive age-related deterioration of cardiac function, as evidenced by a decrease in ejection fraction and an increase in enddiastolic volume at 24 but not 8 weeks of age using echocardiography. Four weeks following transverse aortic constriction, ejection fraction was further decreased in SIRT3(-/-) mice compared to WT mice, accompanied by a greater degree of cardiac hypertrophy and fibrosis. In isolated working hearts, a decrease in cardiac function in SIRT3(-/-) mice was accompanied by a decrease in palmitate oxidation, glucose oxidation, and oxygen consumption, whereas rates of glycolysis were increased. Respiratory capacity and ATP synthesis were decreased in cardiac mitochondria of SIRT3(-/-) mice. HPLC measurements revealed a decrease of the myocardial ATP/AMP ratio and of myocardial energy charge. Using LC-MS/MS, we identified increased acetylation of 84 mitochondrial proteins, including 6 enzymes of fatty acid import and oxidation, 50 subunits of the electron transport chain, and 3 enzymes of the tricarboxylic acid cycle. Lack of SIRT3 impairs mitochondrial and contractile function in the heart, likely due to increased acetylation of various energy metabolic proteins and subsequent myocardial energy depletion.
Collapse
Affiliation(s)
- Christoph Koentges
- Division of Cardiology and Angiology I, Heart Center Freiburg University, Hugstetter Str. 55, 79106, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Barreto-Torres G, Hernandez JS, Jang S, Rodríguez-Muñoz AR, Torres-Ramos CA, Basnakian AG, Javadov S. The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARα-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol 2015; 308:H749-58. [PMID: 25617357 DOI: 10.1152/ajpheart.00414.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
AMP kinase (AMPK) plays an important role in the regulation of energy metabolism in cardiac cells. Furthermore, activation of AMPK protects the heart from myocardial infarction and heart failure. The present study examines whether or not AMPK affects the peroxisome proliferator-activated receptor-α (PPARα)/mitochondria pathway in response to acute oxidative stress in cultured cardiomyocytes. Cultured H9c2 rat embryonic cardioblasts were exposed to H2O2-induced acute oxidative stress in the presence or absence of metformin, compound C (AMPK inhibitor), GW6471 (PPARα inhibitor), or A-769662 (AMPK activator). Results showed that AMPK activation by metformin reverted oxidative stress-induced inactivation of AMPK and prevented oxidative stress-induced cell death. In addition, metformin attenuated reactive oxygen species generation and depolarization of the inner mitochondrial membrane. The antioxidative effects of metformin were associated with the prevention of mitochondrial DNA damage in cardiomyocytes. Coimmunoprecipitation studies revealed that metformin abolished oxidative stress-induced physical interactions between PPARα and cyclophilin D (CypD), and the abolishment of these interactions was associated with inhibition of permeability transition pore formation. The beneficial effects of metformin were not due to acetylation or phosphorylation of PPARα in response to oxidative stress. In conclusion, this study demonstrates that the protective effects of metformin-induced AMPK activation against oxidative stress converge on mitochondria and are mediated, at least in part, through the dissociation of PPARα-CypD interactions, independent of phosphorylation and acetylation of PPARα and CypD.
Collapse
Affiliation(s)
- Giselle Barreto-Torres
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| | - Jessica Soto Hernandez
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| | - Adlín R Rodríguez-Muñoz
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| | - Carlos A Torres-Ramos
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| |
Collapse
|
34
|
Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol 2014; 306:H1602-9. [PMID: 24748594 DOI: 10.1152/ajpheart.00027.2014] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ischemia-reperfusion (IR) injury is significantly worse in aged hearts, but the underlying mechanisms are poorly understood. Age-related damage to mitochondria may be a critical feature, which manifests in an exacerbation of IR injury. Silent information regulator of transcription 3 (SIRT3), the major mitochondrial NAD(+)-dependent lysine deacetylase, regulates a variety of functions, and its inhibition may disrupt mitochondrial function to impact recovery from IR injury. In this study, the role of SIRT3 in mediating the response to cardiac IR injury was examined using an in vitro model of SIRT3 knockdown (SIRT3(kd)) in H9c2 cardiac-derived cells and in Langendorff preparations from adult (7 mo old) wild-type (WT) and SIRT3(+/-) hearts and aged (18 mo old) WT hearts. SIRT3(kd) cells were more vulnerable to simulated IR injury and exhibited a 46% decrease in mitochondrial complex I (Cx I) activity with low O2 consumption rates compared with controls. In the Langendorff model, SIRT3(+/-) adult hearts showed less functional recovery and greater infarct vs. WT, which recapitulates the in vitro results. In WT aged hearts, recovery from IR injury was similar to SIRT3(+/-) adult hearts. Mitochondrial protein acetylation was increased in both SIRT3(+/-) adult and WT aged hearts (relative to WT adult), suggesting similar activities of SIRT3. Also, enzymatic activities of two SIRT3 targets, Cx I and MnSOD, were similarly and significantly inhibited in SIRT3(+/-) adult and WT aged cardiac mitochondria. In conclusion, decreased SIRT3 may increase the susceptibility of cardiac-derived cells and adult hearts to IR injury and may contribute to a greater level of IR injury in the aged heart.
Collapse
Affiliation(s)
- George A Porter
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - William R Urciuoli
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| | - Sergiy M Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
35
|
Koid SS, Ziogas J, Campbell DJ. Aliskiren reduces myocardial ischemia-reperfusion injury by a bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanism. Hypertension 2014; 63:768-73. [PMID: 24420538 DOI: 10.1161/hypertensionaha.113.02902] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Angiotensin-converting enzyme inhibitors and angiotensin AT1 receptor blockers reduce myocardial ischemia-reperfusion injury via bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanisms. The renin inhibitor aliskiren increases cardiac tissue kallikrein and bradykinin levels. In the present study, we investigated the effect of aliskiren on myocardial ischemia-reperfusion injury and the roles of B2 and AT2 receptors in this effect. Female Sprague-Dawley rats were treated with aliskiren (10 mg/kg per day) and valsartan (30 mg/kg per day), alone or in combination, together with the B2 receptor antagonist icatibant (0.5 mg/kg per day) or the AT2 receptor antagonist PD123319 (30 mg/kg per day), for 4 weeks before myocardial ischemia-reperfusion injury. Aliskiren increased cardiac bradykinin levels and attenuated valsartan-induced increases in plasma angiotensin II levels. In vehicle-treated rats, myocardial infarct size (% area at risk, mean±SEM, n=7-13) was 43±3%. This was reduced to a similar extent by aliskiren, valsartan, and their combination to 24±3%, 25±3%, and 22±2%, respectively. Icatibant reversed the cardioprotective effects of aliskiren and the combination of aliskiren plus valsartan, but not valsartan alone, indicating that valsartan-induced cardioprotection was not mediated by the B2 receptor. PD123319 reversed the cardioprotective effects of aliskiren, valsartan, and the combination of aliskiren plus valsartan. Aliskiren protects the heart from myocardial ischemia-reperfusion injury via a B2 receptor- and AT2 receptor-mediated mechanism, whereas cardioprotection by valsartan is mediated via the AT2 receptor. In addition, aliskiren attenuates valsartan-induced increases in angiotensin II levels, thus preventing AT2 receptor-mediated cardioprotection by valsartan.
Collapse
Affiliation(s)
- Suang Suang Koid
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.
| | | | | |
Collapse
|
36
|
Correa F, Buelna-Chontal M, Hernández-Reséndiz S, García-Niño WR, Roldán FJ, Soto V, Silva-Palacios A, Amador A, Pedraza-Chaverrí J, Tapia E, Zazueta C. Curcumin maintains cardiac and mitochondrial function in chronic kidney disease. Free Radic Biol Med 2013; 61:119-29. [PMID: 23548636 DOI: 10.1016/j.freeradbiomed.2013.03.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 01/14/2023]
Abstract
Curcumin, a natural pigment with antioxidant activity obtained from turmeric and largely used in traditional medicine, is currently being studied in the chemoprevention of several diseases for its pleiotropic effects and nontoxicity. In chronic renal failure, the pathogenic mechanisms leading to cardiovascular disorders have been associated with increased oxidative stress, a process inevitably linked with mitochondrial dysfunction. Thus, in this study we aimed at investigating if curcumin pretreatment exerts cardioprotective effects in a rat model of subtotal nephrectomy (5/6Nx) and its impact on mitochondrial homeostasis. Curcumin was orally administered (120mg/kg) to Wistar rats 7 days before nephrectomy and after surgery for 60 days (5/6Nx+curc). Renal dysfunction was detected a few days after nephrectomy, whereas changes in cardiac function were observed until the end of the protocol. Our results indicate that curcumin treatment protects against pathological remodeling, diminishes ischemic events, and preserves cardiac function in uremic rats. Cardioprotection was related to diminished reactive oxygen species production, decreased oxidative stress markers, increased antioxidant response, and diminution of active metalloproteinase-2. We also observed that curcumin's cardioprotective effects were related to maintaining mitochondrial function. Aconitase activity was significantly higher in the 5/6Nx + curc (408.5±68.7nmol/min/mg protein) than in the 5/6Nx group (104.4±52.3nmol/min/mg protein, P<0.05), and mitochondria from curcumin-treated rats showed enhanced oxidative phosphorylation capacities with both NADH-linked substrates and succinate plus rotenone (3.6±1 vs 1.1±0.9 and 3.1±0.7 vs 1.2±0.8, respectively, P<0.05). The mechanisms involved in cardioprotection included both direct antioxidant effects and indirect strategies that could be related to protein kinase C-activated downstream signaling.
Collapse
Affiliation(s)
- Francisco Correa
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico; Department of Biochemistry, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Mabel Buelna-Chontal
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico; Department of Biochemistry, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Sauri Hernández-Reséndiz
- Department of Biochemistry, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Wylly R García-Niño
- Renal Pathophysiology Laboratory, Department of Nephrology, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Francisco J Roldán
- Department of Echocardiography, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Virgilia Soto
- Department of Pathology, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080, DF, Mexico
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Alejandra Amador
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | | | - Edilia Tapia
- Renal Pathophysiology Laboratory, Department of Nephrology, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico; Department of Biochemistry, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico.
| |
Collapse
|
37
|
Current World Literature. Curr Opin Cardiol 2013; 28:369-79. [DOI: 10.1097/hco.0b013e328360f5be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Javadov S, Kuznetsov A. Mitochondrial permeability transition and cell death: the role of cyclophilin d. Front Physiol 2013; 4:76. [PMID: 23596421 PMCID: PMC3622878 DOI: 10.3389/fphys.2013.00076] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/21/2013] [Indexed: 12/22/2022] Open
Abstract
Mitochondria serve as a “powerhouse” which provides near 90% of ATP necessary for cell life. However, recent studies provide strong evidence that mitochondria also play a central role in cell death. Mitochondrial permeability transition (mPT) at high conductance in response to oxidative or other cellular stresses is accompanied by pathological and non-specific mPT pore (mPTP) opening in the inner membrane of mitochondria. Mitochondrial PTP can serve as a target to prevent cell death under pathological conditions such as cardiac and brain ischemia/reperfusion injury and diabetes. On the other hand, mPTP can be used as an executioner to specifically induce cell death thus blocking tumorigenesis in cancer diseases. Despite many studies, the molecular identity of the mPTP remains unclear. Cyclophilin D (CyP-D) plays an essential regulatory role in pore opening. This review will discuss direct and indirect mechanisms underlying CyP-D interaction with a target protein of the mPTP complex. Understanding of the mechanisms of mPTP opening will be helpful to further develop new pharmacological agents targeting mitochondria-mediated cell death.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| | | |
Collapse
|
39
|
Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 2013; 56:133-71. [PMID: 23104101 DOI: 10.1016/j.freeradbiomed.2012.10.525] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/31/2012] [Accepted: 10/05/2012] [Indexed: 12/14/2022]
Abstract
Sirtuins are a class of NAD(+)-dependent deacetylases having beneficial health effects. This extensive review describes the numerous intracellular actions of the seven mammalian sirtuins, their protein targets, intracellular localization, the pathways they modulate, and their role in common diseases of aging. Selective pharmacological targeting of sirtuins is of current interest in helping to alleviate global disease burden. Since all sirtuins are activated by NAD(+), strategies that boost NAD(+) in cells are of interest. While most is known about SIRT1, the functions of the six other sirtuins are now emerging. Best known is the involvement of sirtuins in helping cells adapt energy output to match energy requirements. SIRT1 and some of the other sirtuins enhance fat metabolism and modulate mitochondrial respiration to optimize energy harvesting. The AMP kinase/SIRT1-PGC-1α-PPAR axis and mitochondrial sirtuins appear pivotal to maintaining mitochondrial function. Downregulation with aging explains much of the pathophysiology that accumulates with aging. Posttranslational modifications of sirtuins and their substrates affect specificity. Although SIRT1 activation seems not to affect life span, activation of some of the other sirtuins might. Since sirtuins are crucial to pathways that counter the decline in health that accompanies aging, pharmacological agents that boost sirtuin activity have clinical potential in treatment of diabetes, cardiovascular disease, dementia, osteoporosis, arthritis, and other conditions. In cancer, however, SIRT1 inhibitors could have therapeutic value. Nutraceuticals such as resveratrol have a multiplicity of actions besides sirtuin activation. Their net health benefit and relative safety may have originated from the ability of animals to survive environmental changes by utilizing these stress resistance chemicals in the diet during evolution. Each sirtuin forms a key hub to the intracellular pathways affected.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, Building F13, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
40
|
Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: results from the IQOLA Project. International Quality of Life Assessment. PPAR Res 1998; 2016:9282087. [PMID: 27051413 PMCID: PMC4802016 DOI: 10.1155/2016/9282087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
Activated AMPK protects the heart from cardiac ischemia-reperfusion (IR) injury and is associated with inhibition of mitochondrial permeability transition pore (PTP) opening. On the other hand, pharmacological inhibition of the PTP reduces infarct size and improves cardiac function. However, it is unclear whether beneficial effects of AMPK are mediated through the PTP and, if they are not, whether simultaneous activation of AMPK and inhibition of the PTP exert synergistic protective effects against cardiac IR injury. Here, we examined the effects of the AMPK activator, A-769662 in combination with the PTP inhibitor, sanglifehrin A (SfA) on in vivo cardiac IR. Cardiac dysfunction following IR injury was associated with decreased activity of the mitochondrial electron transport chain (ETC) and increased mitochondrial ROS and PTP opening. Administration of A-769662 or SfA individually upon reperfusion improved cardiac function, reduced infarction size, and inhibited ROS production and PTP opening. However, simultaneous administration of SfA and A-769662 did not provide synergistic improvement of postischemic recovery of cardiac and mitochondrial function, though both compounds disrupted IR-induced interaction between PPARα and CyP-D. In conclusion, A-769662 or SfA prevents PPARα interaction with CyP-D, improving cardiac outcomes and increasing mitochondrial function, and simultaneous administration of the drugs does not provide synergistic effects.
Collapse
|