1
|
Xu Y, Wang Y, Höti N, Clark DJ, Chen SY, Zhang H. The next "sweet" spot for pancreatic ductal adenocarcinoma: Glycoprotein for early detection. MASS SPECTROMETRY REVIEWS 2023; 42:822-843. [PMID: 34766650 PMCID: PMC9095761 DOI: 10.1002/mas.21748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 05/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common neoplastic disease of the pancreas, accounting for more than 90% of all pancreatic malignancies. As a highly lethal malignancy, PDAC is the fourth leading cause of cancer-related deaths worldwide with a 5-year overall survival of less than 8%. The efficacy and outcome of PDAC treatment largely depend on the stage of disease at the time of diagnosis. Surgical resection followed by adjuvant chemotherapy remains the only possibly curative therapy, yet 80%-90% of PDAC patients present with nonresectable PDAC stages at the time of clinical presentation. Despite our advancing knowledge of PDAC, the prognosis remains strikingly poor, which is primarily due to the difficulty of diagnosing PDAC at the early stages. Recent advances in glycoproteomics and glycomics based on mass spectrometry have shown that aberrations in protein glycosylation plays a critical role in carcinogenesis, tumor progression, metastasis, chemoresistance, and immuno-response of PDAC and other types of cancers. A growing interest has thus been placed upon protein glycosylation as a potential early detection biomarker for PDAC. We herein take stock of the advancements in the early detection of PDAC that were carried out with mass spectrometry, with special focus on protein glycosylation.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuefan Wang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Naseruddin Höti
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David J Clark
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shao-Yung Chen
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Pan S, Brentnall TA, Chen R. Proteome alterations in pancreatic ductal adenocarcinoma. Cancer Lett 2020; 469:429-436. [PMID: 31734355 PMCID: PMC9017243 DOI: 10.1016/j.canlet.2019.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Proteins are the essential functional biomolecules profoundly implicated in all aspects of pancreatic tumorigenesis and its progression. While common genomic factors, such as KRAS, TP53, SMAD4, and CDKN2A have been well recognized in association of pancreatic ductal adenocarcinoma (PDAC), our understanding of functional changes at the proteome level merits further investigation. Malignance associated proteome alterations can be attributed to the convoluted outcomes from genetic, epigenetic and environmental factors in initiating and progressing PDAC, and may reflect on changes in protein expressional level, structure, localization, as well as post-translational modifications (PTMs) status. The study of localized or systemic proteome alterations in PDAC, as well as its precursor lesions, such as pancreatic intraepithelial neoplasia (PanIN) and mucinous pancreatic cystic neoplasm, would provide unique perspectives in elucidating functional molecular events underlying PDAC. While efforts have been made, challenges still exist to comprehensively integrate much of the proteomic discovery to the perspectives gained from genomic studies in the context of biomarker discovery. Novel approaches and data from well-defined longitudinal clinical studies and experimental models are needed to facilitate the study of PDAC and precursor lesions for early detection and intervention.
Collapse
|
3
|
Ansari D, Torén W, Zhou Q, Hu D, Andersson R. Proteomic and genomic profiling of pancreatic cancer. Cell Biol Toxicol 2019; 35:333-343. [PMID: 30771135 PMCID: PMC6757097 DOI: 10.1007/s10565-019-09465-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer remains the most fatal human tumor type. The aggressive tumor biology coupled with the lack of early detection strategies and effective treatment are major reasons for the poor survival rate. Collaborative research efforts have been devoted to understand pancreatic cancer at the molecular level. Large-scale genomic studies have generated important insights into the genetic drivers of pancreatic cancer. In the post-genomic era, protein sequencing of tumor tissue, cell lines, pancreatic juice, and blood from patients with pancreatic cancer has provided a fundament for the development of new diagnostic and prognostic biomarkers. The integration of mass spectrometry and genomic sequencing strategies may help characterize protein identities and post-translational modifications that relate to a specific mutation. Consequently, proteomic and genomic techniques have become a compulsory requirement in modern medicine and health care. These types of proteogenomic studies may usher in a new era of precision diagnostics and treatment in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, SE-221 85, Lund, Sweden.
| | - William Torén
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, SE-221 85, Lund, Sweden
| | - Qimin Zhou
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, SE-221 85, Lund, Sweden
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dingyuan Hu
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, SE-221 85, Lund, Sweden
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, SE-221 85, Lund, Sweden
| |
Collapse
|
4
|
Pancreatic preneoplastic lesions plasma signatures and biomarkers based on proteome profiling of mouse models. Br J Cancer 2015; 113:1590-8. [PMID: 26512875 PMCID: PMC4705884 DOI: 10.1038/bjc.2015.370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/28/2015] [Accepted: 09/30/2015] [Indexed: 12/27/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with a mortality that is almost identical to incidence. Because early detected PDAC is potentially curable, blood-based biomarkers that could detect currently developing neoplasia would improve patient survival and management. PDAC develops from pancreatic intraepithelial neoplasia (PanIN) lesions, graded from low grade (PanIN1) to high grade (PanIN3). We made the hypothesis that specific proteomic signatures from each precancerous stage exist and are detectable in plasma. Methods: We explored the peptide profiles of microdissected PanIN cells and of plasma samples corresponding to the different PanIN grade from genetically engineered mouse models of PDAC using capillary electrophoresis coupled to mass spectrometry (CE-MS) and Chip-MS/MS. Results: We successfully characterised differential peptides profiles from PanIN microdissected cells. We found that plasma from tumor-bearing mice and age-matched controls exhibit discriminative peptide signatures. We also determined plasma peptide signatures corresponding to low- and high-grade precancerous step present in the mice pancreas using the two mass spectrometry technologies. Importantly, we identified biomarkers specific of PanIN3. Conclusions: We demonstrate that benign and advanced PanIN lesions display distinct plasma peptide patterns. This strongly supports the perspectives of developing a non-invasive screening test for prediction and early detection of PDAC.
Collapse
|
5
|
Pan S, Brentnall TA, Chen R. Proteomics analysis of bodily fluids in pancreatic cancer. Proteomics 2015; 15:2705-15. [PMID: 25780901 DOI: 10.1002/pmic.201400476] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/06/2015] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
Proteomics study of pancreatic cancer using bodily fluids emphasizes biomarker discovery and clinical application, presenting unique prospect and challenges. Depending on the physiological nature of the bodily fluid and its proximity to pancreatic cancer, the proteomes of bodily fluids, such as pancreatic juice, pancreatic cyst fluid, blood, bile, and urine, can be substantially different in terms of protein constitution and the dynamic range of protein concentration. Thus, a comprehensive discovery and specific detection of cancer-associated proteins within these varied fluids is a complex task, requiring rigorous experiment design and a concerted approach. While major challenges still remain, fluid proteomics studies in pancreatic cancer to date have provided a wealth of information in revealing proteome alterations associated with pancreatic cancer in various bodily fluids.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ru Chen
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Jenkinson C, Earl J, Ghaneh P, Halloran C, Carrato A, Greenhalf W, Neoptolemos J, Costello E. Biomarkers for early diagnosis of pancreatic cancer. Expert Rev Gastroenterol Hepatol 2015; 9:305-15. [PMID: 25373768 DOI: 10.1586/17474124.2015.965145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma is an aggressive malignancy with a 5-year survival rate of approximately 5%. The lack of established strategies for early detection contributes to this poor prognosis. Although several novel candidate biomarkers have been proposed for earlier diagnosis, none have been adopted into routine clinical use. In this review, the authors examine the challenges associated with finding new pancreatic cancer diagnostic biomarkers and explore why translation of biomarker research for patient benefit has thus far failed. The authors also review recent progress and highlight advances in the understanding of the biology of pancreatic cancer that may lead to improvements in biomarker detection and implementation.
Collapse
Affiliation(s)
- Claire Jenkinson
- Department of Molecular and Clinical Cancer Medicine, National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee MJ, Na K, Jeong SK, Lim JS, Kim SA, Lee MJ, Song SY, Kim H, Hancock WS, Paik YK. Identification of human complement factor B as a novel biomarker candidate for pancreatic ductal adenocarcinoma. J Proteome Res 2014; 13:4878-88. [PMID: 25057901 DOI: 10.1021/pr5002719] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer (PC; pancreatic ductal adenocarcinoma) is characterized by significant morbidity and mortality worldwide. Although carbohydrate antigen (CA) 19-9 has been known as a PC biomarker, it is not commonly used for general screening because of its low sensitivity and specificity. Therefore, there is an urgent need to develop a new biomarker for PC diagnosis in the earlier stage of cancer. To search for a novel serologic PC biomarker, we carried out an integrated proteomic analysis for a total of 185 pooled or individual plasma from healthy donors and patients with five disease groups including chronic pancreatitis (CP), PC, and other cancers (e.g., hepatocellular carcinoma, cholangiocarcinoma, and gastric cancer) and identified complement factor b (CFB) as a candidate serologic biomarker for PC diagnosis. Immunoblot analysis of CFB revealed more than two times higher expression in plasma samples from PC patients compared with plasma from individuals without PC. Immunoprecipitation coupled to mass spectrometry analysis confirmed both molecular identity and higher expression of CFB in PC samples. CFB showed distinctly higher specificity than CA 19-9 for PC against other types of digestive cancers and in discriminating PC patients from non-PC patients (p < 0.0001). In receiver operator characteristic curve analysis, CFB showed an area under curve of 0.958 (95% CI: 0.956 to 0.959) compared with 0.833 (95% CI: 0.829 to 0.837) for CA 19-9. Furthermore, the Y-index of CFB was much higher than that of CA 19-9 (71.0 vs 50.4), suggesting that CFB outperforms CA 19-9 in discriminating PC from CP and other gastrointestinal cancers. This was further supported by immunoprecipitation and qRT-PCR assays showing higher expression of CFB in PC cell lines than in normal cell lines. A combination of CFB and CA 19-9 showed markedly improved sensitivity (90.1 vs 73.1%) over that of CFB alone in the diagnosis of PC against non-PC, with similar specificity (97.2 vs 97.9%). Thus, our results identify CFB as a novel serologic PC biomarker candidate and warrant further investigation into a large-scale validation and its role in molecular mechanism of pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Min Jung Lee
- Yonsei Proteome Research Center and ‡Department of Integrated OMICS for Biomedical Science and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University , 50 Yonsei-ro, Sudaemoon-ku, Seoul 120-749, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jhaveri DT, Zheng L, Jaffee EM. Specificity delivers: therapeutic role of tumor antigen-specific antibodies in pancreatic cancer. Semin Oncol 2014; 41:559-75. [PMID: 25440603 DOI: 10.1053/j.seminoncol.2014.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most deadly cancers with less than 5% of the patients living beyond 5 years post-diagnosis. Lack of early diagnostic biomarkers and resistance to current therapies help explain these disappointing numbers. Thus, more effective and better-targeted therapies are needed quickly. Monoclonal antibodies offer an attractive alternative targeted therapy option for PDA because they are highly specific and potent. However, currently available monoclonal antibody therapies for PDA are still in their infancy with a low success rate and low likelihood of being approved. The challenges faced by these therapies include the following: lack of predictive and response biomarkers, unfavorable safety profiles, expression of targets not restricted to the cancer cells, flawed preclinical model systems, drug resistance, and PDA's complex nature. Additionally, discovery of novel PDA-specific antigen targets, present on the cell surface or in the extracellular matrix, is needed. Predictive and response markers also need to be determined for PDA patient subgroups so that the most appropriate effective therapy can be delivered. Serologic approaches, recombinant antibody-producing technologies, and advances in antibody engineering techniques will help to identify these predictive biomarkers and aid in the development of new therapeutic antibodies. A combinatorial approach simultaneously targeting antigens on the PDA cell, stroma, and immunosuppressive cells should be employed.
Collapse
Affiliation(s)
- Darshil T Jhaveri
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center and the Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lei Zheng
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center and the Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Elizabeth M Jaffee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center and the Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
9
|
Shaw VE, Lane B, Jenkinson C, Cox T, Greenhalf W, Halloran CM, Tang J, Sutton R, Neoptolemos JP, Costello E. Serum cytokine biomarker panels for discriminating pancreatic cancer from benign pancreatic disease. Mol Cancer 2014; 13:114. [PMID: 24884871 PMCID: PMC4032456 DOI: 10.1186/1476-4598-13-114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We investigated whether combinations of serum cytokines, used with logistic disease predictor models, could facilitate the detection of pancreatic ductal adenocarcinoma (PDAC). METHODS The serum levels of 27 cytokines were measured in 241 subjects, 127 with PDAC, 49 with chronic pancreatitis, 20 with benign biliary obstruction and 45 healthy controls. Samples were split randomly into independent training and test sets. Cytokine biomarker panels were selected by identifying the top performing cytokines in best fit logistic regression models during multiple rounds of resampling from the training dataset. Disease prediction by logistic models, built using the resulting cytokine panels, was evaluated with training and test sets and further examined using resampled performance evaluation. RESULTS For the discrimination of PDAC patients from patients with benign disease, a panel of IP-10, IL-6, PDGF plus CA19-9 offered improved diagnostic performance over CA19-9 alone in the training (AUC 0.838 vs. 0.678) and independent test set (AUC 0.884 vs. 0.798). For the discrimination of PDAC from CP, a panel of IL-8, CA19-9, IL-6 and IP-10 offered improved diagnostic performance over CA19-9 alone with the training (AUC 0.880 vs. 0.758) and test set (AUC 0.912 vs. 0.848). Finally, for the discrimination of PDAC in the presence of jaundice from benign controls with jaundice, a panel of IP-10, IL-8, IL-1b and PDGF demonstrated improvement over CA19-9 in the training (AUC 0.810 vs. 0.614) and test set (AUC 0.857 vs. 0.659). CONCLUSIONS These findings support the potential role for cytokine panels in the discrimination of PDAC from patients with benign pancreatic diseases and warrant additional study.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Tumor-Associated, Carbohydrate/blood
- Antigens, Tumor-Associated, Carbohydrate/genetics
- Biomarkers/blood
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Case-Control Studies
- Cholestasis/blood
- Cholestasis/diagnosis
- Cholestasis/genetics
- Cholestasis/pathology
- Cytokines/blood
- Cytokines/genetics
- Diagnosis, Differential
- Female
- Gene Expression
- Humans
- Logistic Models
- Male
- Middle Aged
- Pancreas/metabolism
- Pancreas/pathology
- Pancreatic Neoplasms/blood
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatitis, Chronic/blood
- Pancreatitis, Chronic/diagnosis
- Pancreatitis, Chronic/genetics
- Pancreatitis, Chronic/pathology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
Collapse
Affiliation(s)
- Victoria E Shaw
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - Brian Lane
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - Claire Jenkinson
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - Trevor Cox
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - William Greenhalf
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - Christopher M Halloran
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - Joseph Tang
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - Robert Sutton
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - John P Neoptolemos
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - Eithne Costello
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool and Broadgreen University Hospital NHS Trust, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|
10
|
Guo S, Zou J, Wang G. Advances in the proteomic discovery of novel therapeutic targets in cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1259-71. [PMID: 24187485 PMCID: PMC3810204 DOI: 10.2147/dddt.s52216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Clark Atlanta University, Atlanta, GA, USA
| | | | | |
Collapse
|
11
|
LCN2 and TIMP1 as Potential Serum Markers for the Early Detection of Familial Pancreatic Cancer. Transl Oncol 2013; 6:99-103. [PMID: 23544163 DOI: 10.1593/tlo.12373] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/05/2013] [Accepted: 01/08/2013] [Indexed: 02/08/2023] Open
Abstract
High-risk individuals of familial pancreatic cancer (FPC) families are considered to be good candidates for screening programs to detect early PC or its high-grade precursor lesions, especially pancreatic intraepithelial neoplasia (PanIN) 2/3 lesions. There is a definite need for diagnostic markers as neither reliable imaging methods nor biomarkers are available to detect these lesions. On the basis of a literature search, the potential serum markers neutrophil gelatinase-associated lipocalin (LCN2), metallopeptidase inhibitor 1 (TIMP1), chemokine (C-X-C motif) ligand 16 (CXCL16), IGFBP4, and iC3a, which were first tested in transgenic KrasLSL.(G12D/+);p53(R172H/+);Pdx1-Cre mice, were identified. ELISA analyses of LCN2, TIMP1, and CXCL16 revealed significantly higher levels in mice with PanIN2/3 lesions or PC compared to mice with normal pancreata or PanIN1 lesions. Analysis of preoperative human serum samples from patients with sporadic PC (n = 61), hereditary PC (n = 24), chronic pancreatitis (n = 28), pancreatic neuroendocrine tumors (n = 11), and FPC patients with histologically proven multifocal PanIN2/3 lesions (n = 3), as well as healthy control subjects (n = 20), confirmed significantly higher serum levels of LCN2 and TIMP1 in patients with PC and multifocal PanIN2/3 lesions. The combination of LCN2 and TIMP1 as a diagnostic test for the detection of PC had a sensitivity, specificity, and positive predictive value of 100% each. Although this preliminary finding needs to be validated in a large series of individuals at high risk for FPC, serum measurement of LCN2 and TIMP1 might be a promising screening tool.
Collapse
|
12
|
Pan S, Brentnall TA, Kelly K, Chen R. Tissue proteomics in pancreatic cancer study: discovery, emerging technologies, and challenges. Proteomics 2013; 13:710-21. [PMID: 23125171 DOI: 10.1002/pmic.201200319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is a highly lethal disease that is difficult to diagnose and treat. The advances in proteomics technology, especially quantitative proteomics, have stimulated a great interest in applying this technology for pancreatic cancer study. A variety of tissue proteomics approaches have been applied to investigate pancreatic cancer and the associated diseases. These studies were carried out with various goals, aiming to better understand the molecular mechanisms underlying pancreatic tumorigenesis, to improve therapeutic treatment and to identify cancer associated protein signatures, signaling events as well as interactions between cancer cells and tumor microenvironment. Here, we provide an overview on the tissue proteomics studies of pancreatic cancer reported in the past few years in light of discovery and technology development.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
13
|
Shukla HD, Vaitiekunas P, Cotter RJ. Advances in membrane proteomics and cancer biomarker discovery: current status and future perspective. Proteomics 2012; 12:3085-104. [PMID: 22890602 DOI: 10.1002/pmic.201100519] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 07/05/2012] [Accepted: 07/27/2012] [Indexed: 02/06/2023]
Abstract
Membrane proteomic analysis has been proven to be a promising tool for identifying new and specific biomarkers that can be used for prognosis and monitoring of various cancers. Membrane proteins are of great interest particularly those with functional domains exposed to the extracellular environment. Integral membrane proteins represent about one-third of the proteins encoded by the human genome and assume a variety of key biological functions, such as cell-to-cell communication, receptor-mediated signal transduction, selective transport, and pharmacological actions. More than two-thirds of membrane proteins are drug targets, highlighting their immensely important pharmaceutical significance. Most plasma membrane proteins and proteins from other cellular membranes have several PTMs; for example, glycosylation, phosphorylation, and nitrosylation, and moreover, PTMs of proteins are known to play a key role in tumor biology. These modifications often cause change in stoichiometry and microheterogeneity in a protein molecule, which is apparent during electrophoretic separation. Furthermore, the analysis of glyco- and phosphoproteome of cell membrane presents a number of challenges mainly due to their low abundance, their large dynamic range, and the inherent hydrophobicity of membrane proteins. Under pathological conditions, PTMs, such as phosphorylation and glycosylation are frequently altered and have been recognized as a potential source for disease biomarkers. Thus, their accurate differential expression analysis, along with differential PTM analysis is of paramount importance. Here we summarize the current status of membrane-based biomarkers in various cancers, and future perspective of membrane biomarker research.
Collapse
Affiliation(s)
- Hem D Shukla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
14
|
Sun C, Rosendahl AH, Ansari D, Andersson R. Proteome-based biomarkers in pancreatic cancer. World J Gastroenterol 2011; 17:4845-4852. [PMID: 22171124 PMCID: PMC3235626 DOI: 10.3748/wjg.v17.i44.4845] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/01/2011] [Accepted: 08/08/2011] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, as a highly malignant cancer and the fourth cause of cancer-related death in world, is characterized by dismal prognosis, due to rapid disease progression, highly invasive tumour phenotype, and resistance to chemotherapy. Despite significant advances in treatment of the disease during the past decade, the survival rate is little improved. A contributory factor to the poor outcome is the lack of appropriate sensitive and specific biomarkers for early diagnosis. Furthermore, biomarkers for targeting, directing and assessing therapeutic intervention, as well as for detection of residual or recurrent cancer are also needed. Thus, the identification of adequate biomarkers in pancreatic cancer is of extreme importance. Recently, accompanying the development of proteomic technology and devices, more and more potential biomarkers have appeared and are being reported. In this review, we provide an overview of the role of proteome-based biomarkers in pancreatic cancer, including tissue, serum, juice, urine and cell lines. We also discuss the possible mechanism and prospects in the future. That information hopefully might be helpful for further research in the field.
Collapse
|
15
|
Zhou W, Capello M, Fredolini C, Racanicchi L, Piemonti L, Liotta LA, Novelli F, Petricoin EF. Proteomic analysis reveals Warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 2011; 11:554-63. [PMID: 22050456 DOI: 10.1021/pr2009274] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this present work, we characterized the proteomes of pancreatic ductal adenocarcinoma (PDAC) cell line PANC-1 and normal pancreatic duct cells by mass spectrometry using LTQ-Orbitrap and identified more than 1700 proteins from each sample. On the basis of the spectra count label-free quantification approach, we identified a large number of differentially expressed metabolic enzymes and proteins involved in cytoskeleton, cell adhesion, transport, transcription, translation, and cell proliferation as well. The data demonstrated that metabolic pathways were altered in PANC-1, consistent with the Warburg effect. In addition, the comparative MS analysis unveiled anomalous metabolism of glutamine, suggesting that glutamine was largely consumed as a nitrogen donor in nucleotide and amino acid biosynthesis in PANC-1. Our analysis provides a potentially comprehensive picture of metabolism in PANC-1, which may serve as the basis of new diagnostics and treatment of PDAC.
Collapse
Affiliation(s)
- Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Turtoi A, Musmeci D, Wang Y, Dumont B, Somja J, Bevilacqua G, De Pauw E, Delvenne P, Castronovo V. Identification of novel accessible proteins bearing diagnostic and therapeutic potential in human pancreatic ductal adenocarcinoma. J Proteome Res 2011; 10:4302-13. [PMID: 21755970 DOI: 10.1021/pr200527z] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreas ductal adenocarcinoma (PDAC) remains a deadly malignancy with poor early diagnostic and no effective therapy. Although several proteomic studies have performed comparative analysis between normal and malignant tissues, there is a lack of clear characterization of proteins that could be of clinical value. Systemically reachable ("potentially accessible") proteins, suitable for imaging technologies and targeted therapies represent a major group of interest. The current study explores potentially accessible proteins overexpressed in PDAC, employing innovative proteomics technologies. In the discovery phase, potentially accessible proteins from fresh human normal and PDAC tissues were ex vivo biotinylated, isolated and identified using 2D-nano-HPLC-MS/MS method. The analysis revealed 422 up-regulated proteins in the tumor, of which 83 (including protein isoforms) were evaluated as potentially accessible. Eleven selected candidates were further confirmed as up-regulated using Western blot and multiple reaction monitoring protein quantification. Of these, transforming growth factor beta-induced (TGFBI), latent transforming growth factor beta binding 2 (LTBP2), and asporin (ASPN) were further investigated by employing large scale immunohistochemistry-based validations. They were found to be significantly expressed in a large group of clinical PDAC samples compared to corresponding normal and inflammatory tissues. In conclusion, TGFBI, LTBP2, and ASPN are novel, overexpressed, and potentially accessible proteins in human PDAC. They bear the potential to be of clinical value for diagnostic and therapeutic applications and merit further studies using in vivo models.
Collapse
Affiliation(s)
- Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University Hospital CHU, University of Liege, Bat B23, 4000 Liege, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pan S, Chen R, Crispin DA, May D, Stevens T, McIntosh MW, Bronner MP, Ziogas A, Anton-Culver H, Brentnall TA. Protein alterations associated with pancreatic cancer and chronic pancreatitis found in human plasma using global quantitative proteomics profiling. J Proteome Res 2011; 10:2359-76. [PMID: 21443201 DOI: 10.1021/pr101148r] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is a lethal disease that is difficult to diagnose at early stages when curable treatments are effective. Biomarkers that can improve current pancreatic cancer detection would have great value in improving patient management and survival rate. A large scale quantitative proteomics study was performed to search for the plasma protein alterations associated with pancreatic cancer. The enormous complexity of the plasma proteome and the vast dynamic range of protein concentration therein present major challenges for quantitative global profiling of plasma. To address these challenges, multidimensional fractionation at both protein and peptide levels was applied to enhance the depth of proteomics analysis. Employing stringent criteria, more than 1300 proteins total were identified in plasma across 8-orders of magnitude in protein concentration. Differential proteins associated with pancreatic cancer were identified, and their relationship with the proteome of pancreatic tissue and pancreatic juice from our previous studies was discussed. A subgroup of differentially expressed proteins was selected for biomarker testing using an independent cohort of plasma and serum samples from well-diagnosed patients with pancreatic cancer, chronic pancreatitis, and nonpancreatic disease controls. Using ELISA methodology, the performance of each of these protein candidates was benchmarked against CA19-9, the current gold standard for a pancreatic cancer blood test. A composite marker of TIMP1 and ICAM1 demonstrate significantly better performance than CA19-9 in distinguishing pancreatic cancer from the nonpancreatic disease controls and chronic pancreatitis controls. In addition, protein AZGP1 was identified as a biomarker candidate for chronic pancreatitis. The discovery and technical challenges associated with plasma-based quantitative proteomics are discussed and may benefit the development of plasma proteomics technology in general. The protein candidates identified in this study provide a biomarker candidate pool for future investigations.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, Washington 98195, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Metabolites of purine nucleoside phosphorylase (NP) in serum have the potential to delineate pancreatic adenocarcinoma. PLoS One 2011; 6:e17177. [PMID: 21448452 PMCID: PMC3063153 DOI: 10.1371/journal.pone.0017177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 01/24/2011] [Indexed: 01/13/2023] Open
Abstract
Pancreatic Adenocarcinoma (PDAC), the fourth highest cause of cancer related deaths in the United States, has the most aggressive presentation resulting in a very short median survival time for the affected patients. Early detection of PDAC is confounded by lack of specific markers that has motivated the use of high throughput molecular approaches to delineate potential biomarkers. To pursue identification of a distinct marker, this study profiled the secretory proteome in 16 PDAC, 2 carcinoma in situ (CIS) and 7 benign patients using label-free mass spectrometry coupled to 1D-SDS-PAGE and Strong Cation-Exchange Chromatography (SCX). A total of 431 proteins were detected of which 56 were found to be significantly elevated in PDAC. Included in this differential set were Parkinson disease autosomal recessive, early onset 7 (PARK 7) and Alpha Synuclein (aSyn), both of which are known to be pathognomonic to Parkinson's disease as well as metabolic enzymes like Purine Nucleoside Phosphorylase (NP) which has been exploited as therapeutic target in cancers. Tissue Microarray analysis confirmed higher expression of aSyn and NP in ductal epithelia of pancreatic tumors compared to benign ducts. Furthermore, extent of both aSyn and NP staining positively correlated with tumor stage and perineural invasion while their intensity of staining correlated with the existence of metastatic lesions in the PDAC tissues. From the biomarker perspective, NP protein levels were higher in PDAC sera and furthermore serum levels of its downstream metabolites guanosine and adenosine were able to distinguish PDAC from benign in an unsupervised hierarchical classification model. Overall, this study for the first time describes elevated levels of aSyn in PDAC as well as highlights the potential of evaluating NP protein expression and levels of its downstream metabolites to develop a multiplex panel for non-invasive detection of PDAC.
Collapse
|
20
|
Screening technologies for target identification in pancreatic cancer. Cancers (Basel) 2010; 3:79-90. [PMID: 24212607 PMCID: PMC3756350 DOI: 10.3390/cancers3010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 01/19/2023] Open
Abstract
Pancreatic cancer exhibits an extraordinarily high level of resistance to almost any kind of systemic therapy evaluated in clinical trials so far. Therefore, the identification of novel therapeutic targets is urgently required. High-throughput screens have emerged as an important tool to identify putative targets for diagnosis and therapy in an unbiased manner. More than a decade ago, microarray technology was introduced to identify differentially expressed genes in pancreatic cancer as compared to normal pancreas, chronic pancreatitis and other cancer types located in close proximity to the pancreas. In addition, proteomic screens have facilitated the identification of differentially secreted proteins in body fluids of pancreatic cancer patients, serving as possible biomarkers. Recently, RNA interference-based loss-of-function screens have been used to identify functionally relevant genes, whose knock-down has impact on pancreatic cancer cell viability, thereby representing potential new targets for therapeutic intervention. This review summarizes recent results of transcriptional, proteomic and functional screens in pancreatic cancer and discusses potentials and limitations of the respective technologies as well as their impact on future therapeutic developments.
Collapse
|
21
|
Teng PN, Bateman NW, Hood BL, Conrads TP. Advances in proximal fluid proteomics for disease biomarker discovery. J Proteome Res 2010; 9:6091-100. [PMID: 21028795 DOI: 10.1021/pr100904q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although serum/plasma has been the preferred source for identification of disease biomarkers, these efforts have been met with little success, in large part due the relatively small number of highly abundant proteins that render the reliable detection of low abundant disease-related proteins challenging due to the expansive dynamic range of concentration of proteins in this sample. Proximal fluid, the fluid derived from the extracellular milieu of tissues, contains a large repertoire of shed and secreted proteins that are likely to be present at higher concentrations relative to plasma/serum. It is hypothesized that many, if not all, proximal fluid proteins exchange with peripheral circulation, which has provided significant motivation for utilizing proximal fluids as a primary sample source for protein biomarker discovery. The present review highlights recent advances in proximal fluid proteomics, including the various protocols utilized to harvest proximal fluids along with detailing the results from mass spectrometry- and antibody-based analyses.
Collapse
Affiliation(s)
- Pang-ning Teng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | | | | | | |
Collapse
|
22
|
Verma M. Pancreatic cancer biomarkers and their implication in cancer diagnosis and epidemiology. Cancers (Basel) 2010; 2:1830-7. [PMID: 24281203 PMCID: PMC3840448 DOI: 10.3390/cancers2041830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/29/2010] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related mortality in the United States. Biomarkers are needed to detect this cancer early during the disease development and for screening populations to identify those who are at risk. In cancer, “biomarker” refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker might be either a molecule secreted by a tumor or it can be a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis, and epidemiology. A number of potential biomarkers have been identified for pancreatic cancer. These markers can be assayed in non-invasively collected biofluids. These biomarkers need analytical and clinical validation so that they can be used for the purpose of screening and diagnosing pancreatic cancer and determining disease prognosis. In this article, the latest developments in pancreatic cancer biomarkers are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institues of Health (NIH), 6130 Executive Blvd., Suite 5100. Bethesda, MD 20892-7324, USA.
| |
Collapse
|