1
|
Zhao T, Cui X, Zhang X, Zhao M, Rastegar-Kashkooli Y, Wang J, Li Q, Jiang C, Li N, Xing F, Han X, Zhang J, Xing N, Wang J, Wang J. Hippocampal sclerosis: A review on current research status and its mechanisms. Ageing Res Rev 2025; 108:102716. [PMID: 40058463 DOI: 10.1016/j.arr.2025.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Hippocampal sclerosis (HS) is a pathological condition characterized by significant loss of hippocampal neurons and gliosis. This condition represents the most common neuropathological change observed in patients with temporal lobe epilepsy (TLE) and is also found in aging individuals. TLE related to HS is the most prevalent type of drug-resistant epilepsy in adults, and its underlying mechanisms are not yet fully understood. Therefore, developing improved methods for predicting and treating drug-resistant patients with TLE-HS is crucial. Patients with TLE-HS often experience cognitive impairment and psychological comorbidities, significantly affecting their quality of life. Consequently, a thorough review of the current research status of TLE-HS is essential, focusing on its prediction, diagnosis, treatment, and underlying mechanisms. The hippocampus plays a pivotal role in memory and cognition. HS of aging (HS-Aging), a condition linked to dementia in the ultra-elderly, is marked by severe CA1 (cornu ammonis) neuronal loss and frequent transactive response DNA-binding protein of 43 kDa (TDP-43) proteinopathy, often misdiagnosed as Alzheimer's disease (AD). Nonetheless, clinical characteristics and patterns of hippocampal atrophy can help differentiate between the two disorders. This review aims to provide a comprehensive overview of the pathological features of HS, the relevant mechanisms underlying TLE-HS and HS-Aging, current imaging diagnostic techniques, including machine learning, and available treatment modalities. It also explores the prognosis and comorbidities related to these conditions. Future research directions include establishing animal models to clarify the poorly understood mechanisms underlying HS, particularly those related to emotional processing. Investigating post-HS behavioral and cognitive changes in these models will lay the foundation for further advancements in this field. This review is a cornerstone for future investigations and suggests additional research endeavors.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Xiaoxiao Cui
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengke Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qiang Li
- Department of Neurology, Shanghai Gongli Hospital of Pudong New Area, Shanghai 200135, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Nan Li
- Department of Neurology, The 2nd Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiong Han
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
2
|
Niedowicz DM, Wang W, Prajapati P, Zhong Y, Fister S, Rogers CB, Sompol P, Powell DK, Patel I, Norris CM, Saatman KE, Nelson PT. Nicorandil treatment improves survival and spatial learning in aged granulin knockout mice. Brain Pathol 2025; 35:e13312. [PMID: 39438022 PMCID: PMC11961209 DOI: 10.1111/bpa.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Mutations in the human granulin (GRN) gene are associated with multiple diseases, including dementia disorders such as frontotemporal dementia (FTD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). We studied a Grn knockout (Grn-KO) mouse model in order to evaluate a potential therapeutic strategy for these diseases using nicorandil, a commercially available agonist for the ABCC9/Abcc9-encoded regulatory subunit of the "K+ATP" channel that is well-tolerated in humans. Aged (13 months) Grn-KO and wild-type (WT) mice were treated as controls or with nicorandil (15 mg/kg/day) in drinking water for 7 months, then tested for neurobehavioral performance, neuropathology, and gene expression. Mortality was significantly higher for aged Grn-KO mice (particularly females), but there was a conspicuous improvement in survival for both sexes treated with nicorandil. Grn-KO mice performed worse on some cognitive tests than WT mice, but Morris Water Maze performance was improved with nicorandil treatment. Neuropathologically, Grn-KO mice had significantly increased levels of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytosis but not ionized calcium binding adaptor molecule 1 (IBA-1)-immunoreactive microgliosis, indicating cell-specific inflammation in the brain. Expression of several astrocyte-enriched genes, including Gfap, were also elevated in the Grn-KO brain. Nicorandil treatment was associated with a subtle shift in a subset of detected brain transcript levels, mostly related to attenuated inflammatory markers. Nicorandil treatment improved survival outcomes, cognition, and inflammation in aged Grn-KO mice.
Collapse
Affiliation(s)
- Dana M. Niedowicz
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Wang‐Xia Wang
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Paresh Prajapati
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Yu Zhong
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Shuling Fister
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Colin B. Rogers
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - David K. Powell
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Indumati Patel
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Peter T. Nelson
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
3
|
Shahidehpour RK, Katsumata Y, Dickson DW, Ghayal NB, Aung KZ, Wu X, Phe P, Jicha GA, Neltner AM, Archer JRC, Corrada MM, Kawas CH, Ahmad Sajjadi S, Woodworth DC, Bukhari SA, Montine TJ, Fardo DW, Nelson PT. LATE-NC Stage 3: a diagnostic rubric to differentiate severe LATE-NC from FTLD-TDP. Acta Neuropathol 2025; 149:38. [PMID: 40293530 PMCID: PMC12037668 DOI: 10.1007/s00401-025-02876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
A diagnostic rubric is required to distinguish between limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In LATE-NC Stage 3, TDP-43 proteinopathy is present in the middle frontal gyrus (MFG), thus posing a potential diagnostic challenge in differentiating these severe LATE-NC cases from FTLD-TDP. LATE-NC Stage 3 cases and other TDP-43 proteinopathies were analyzed from the University of Kentucky (total n = 514 with TDP-43 pathology assessed), The 90+ Study at the University of California Irvine (n = 458), and the Mayo Clinic (n = 5067) brain banks. Digital pathology was used to quantify pathology burden in a select subset of cases (n = 51), complemented by a previously-described manual counting method and expert neuropathologic examinations to evaluate qualitative features such as FTLD-TDP types and subtypes of neuronal cytoplasmic inclusions (NCIs). To evaluate clinical and genetic characteristics of LATE-NC Stage 3, data were analyzed from the National Alzheimer's Coordinating Center (NACC) Neuropathology Data set and correlated with findings from the Alzheimer's Disease Genetics Consortium (ADGC). When using TDP-43 proteinopathy quantification in the MFG as a diagnostic criterion, more than 90% of cases could be classified as either LATE-NC Stage 3 or FTLD-TDP. Diagnostically challenging scenarios included a subset of FTLD-TDP Type B cases with relatively mild MFG TDP-43 pathology and a novel non-LATE-NC, non-FTLD-TDP pathologic subtype with severe MFG TDP-43 pathology. Taking these potential pitfalls into account, a classification schema was developed that could correctly diagnose all included cases. There was no difference in the Alzheimer's disease pathological load in LATE-NC Stages 2 versus 3. In genetic analyses, the GRN (rs5848) risk allele was preferentially associated with LATE-NC Stage 3, whereas TMEM106B and APOE risk-associated variants were not. In conclusion, LATE-NC Stage 3 could be differentiated reliably from FTLD-TDP and other TDP-43-opathies, based on a data-driven diagnostic rubric.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Jr Bldg/U. Kentucky, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Jr Bldg/U. Kentucky, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Nikhil B Ghayal
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Khine Zin Aung
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Jr Bldg/U. Kentucky, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Xian Wu
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Jr Bldg/U. Kentucky, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Panhavuth Phe
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Jr Bldg/U. Kentucky, 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Jr Bldg/U. Kentucky, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
| | - Allison M Neltner
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Jr Bldg/U. Kentucky, 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Jessalin R C Archer
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Jr Bldg/U. Kentucky, 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Maria M Corrada
- Department of Neurology, University of California, Irvine, CA, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | | | - Syed A Bukhari
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - David W Fardo
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Jr Bldg/U. Kentucky, 789 S. Limestone Ave, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center On Aging, University of Kentucky, Rm 575 Lee Todd Jr Bldg/U. Kentucky, 789 S. Limestone Ave, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
4
|
Scholz SW, Cobos I. Genetics and Neuropathology of Neurodegenerative Dementias. Continuum (Minneap Minn) 2024; 30:1801-1822. [PMID: 39620845 DOI: 10.1212/con.0000000000001505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE This article provides an overview of the current understanding of the genetic and pathologic features of neurodegenerative dementias, with an emphasis on Alzheimer disease and related dementias. LATEST DEVELOPMENTS In recent years, there has been substantial progress in genetic research, contributing significant knowledge to our understanding of the molecular risk factors involved in neurodegenerative dementia syndromes. Several genes have been linked to monogenic forms of dementia (eg, APP, PSEN1, PSEN2, SNCA, GRN, C9orf72, MAPT) and an even larger number of genetic variants are known to influence susceptibility for developing dementia. As anti-amyloid therapies for patients with early-stage Alzheimer disease have entered the clinical arena, screening for the apolipoprotein E ε4 high-risk allele has come into focus, emphasizing the importance of genetic counseling. Similarly, advances in the pathologic classifications of neurodegenerative dementia syndromes and molecular pathology highlight their heterogeneity and overlapping features and provide insights into the pathogenesis of these conditions. ESSENTIAL POINTS Recent progress in neurogenetics and molecular pathology has improved our understanding of the complex pathogenetic changes associated with neurodegenerative dementias, facilitating improved disease modeling, enhanced diagnostics, and individualized counseling. The hope is that this knowledge will ultimately pave the way for the development of novel therapeutics.
Collapse
|
5
|
Tomé SO, Gawor K, Thal DR. LATE-NC in Alzheimer's disease: Molecular aspects and synergies. Brain Pathol 2024; 34:e13213. [PMID: 37793659 PMCID: PMC11189776 DOI: 10.1111/bpa.13213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Alzheimer's disease (AD) is classically characterized by senile plaques and neurofibrillary tangles (NFTs). However, multiple copathologies can be observed in the AD brain and contribute to the development of cognitive decline. Limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) accumulates in the majority of AD cases and leads to more severe cognitive decline compared with AD pathology alone. In this review, we focus on the synergistic relationship between LATE-NC and tau in AD, highlighting the aggravating role of TDP-43 aggregates on tau pathogenesis and its impact on the clinical picture and therapeutic strategies. Additionally, we discuss to what extent the molecular patterns of LATE-NC in AD differ from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) neuropathological changes. Thus, we highlight the importance of tau and TDP-43 synergies for subtyping AD patients, which may respond differently to therapeutic interventions depending on the presence of comorbid LATE-NC.
Collapse
Grants
- 10810 Alzheimer Forschung Initiative (Germany)
- 13803 Alzheimer Forschung Initiative (Germany)
- 22-AAIIA-963171 Alzheimer's Association (USA)
- A2022019F BrightFocus Foundation (USA)
- TH-624-4-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 4-2 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 6-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- G065721N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- G0F8516N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- 2020/017 Stichting Alzheimer Onderzoek (SAO/FRA, Belgium)
- C3/20/057 Onderzoeksraad, KU Leuven (Belgium)
- PDMT2/21/069 Onderzoeksraad, KU Leuven (Belgium)
- IWT 135043 Vlaamse Impulsfinanciering voor Netwerken voor Dementie-onderzoek (Belgium)
- Alzheimer Forschung Initiative (Germany)
- Alzheimer's Association (USA)
- BrightFocus Foundation (USA)
- Deutsche Forschungsgemeinschaft (DFG, Germany)
- Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- Onderzoeksraad, KU Leuven (Belgium)
Collapse
Affiliation(s)
- Sandra O. Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of PathologyUniversity Hospitals of LeuvenLeuvenBelgium
| |
Collapse
|
6
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Katsumata Y, Fardo DW, Shade LMP, Wu X, Karanth SD, Hohman TJ, Schneider JA, Bennett DA, Farfel JM, Gauthreaux K, Mock C, Kukull WA, Abner EL, Nelson PT. Genetic associations with dementia-related proteinopathy: Application of item response theory. Alzheimers Dement 2024; 20:2906-2921. [PMID: 38460116 PMCID: PMC11032554 DOI: 10.1002/alz.13741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Although dementia-related proteinopathy has a strong negative impact on public health, and is highly heritable, understanding of the related genetic architecture is incomplete. METHODS We applied multidimensional generalized partial credit modeling (GPCM) to test genetic associations with dementia-related proteinopathies. Data were analyzed to identify candidate single nucleotide variants for the following proteinopathies: Aβ, tau, α-synuclein, and TDP-43. RESULTS Final included data comprised 966 participants with neuropathologic and WGS data. Three continuous latent outcomes were constructed, corresponding to TDP-43-, Aβ/Tau-, and α-synuclein-related neuropathology endophenotype scores. This approach helped validate known genotype/phenotype associations: for example, TMEM106B and GRN were risk alleles for TDP-43 pathology; and GBA for α-synuclein/Lewy bodies. Novel suggestive proteinopathy-linked alleles were also discovered, including several (SDHAF1, TMEM68, and ARHGEF28) with colocalization analyses and/or high degrees of biologic credibility. DISCUSSION A novel methodology using GPCM enabled insights into gene candidates for driving misfolded proteinopathies. HIGHLIGHTS Latent factor scores for proteinopathies were estimated using a generalized partial credit model. The three latent continuous scores corresponded well with proteinopathy severity. Novel genes associated with proteinopathies were identified. Several genes had high degrees of biologic credibility for dementia risk factors.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - David W. Fardo
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Xian Wu
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Shama D. Karanth
- Department of SurgeryCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
- UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Julie A. Schneider
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Jose M. Farfel
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Kathryn Gauthreaux
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Charles Mock
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Walter A. Kukull
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Erin L. Abner
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Epidemiology and Environmental HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Peter T. Nelson
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyDivision of NeuropathologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
8
|
Sordo L, Qian T, Bukhari SA, Nguyen KM, Woodworth DC, Head E, Kawas CH, Corrada MM, Montine TJ, Sajjadi SA. Characterization of hippocampal sclerosis of aging and its association with other neuropathologic changes and cognitive deficits in the oldest-old. Acta Neuropathol 2023; 146:415-432. [PMID: 37382680 PMCID: PMC10412485 DOI: 10.1007/s00401-023-02606-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Hippocampal sclerosis of aging (HS-A) is a common age-related neuropathological lesion characterized by neuronal loss and astrogliosis in subiculum and CA1 subfield of hippocampus. HS-A is associated with cognitive decline that mimics Alzheimer's disease. Pathological diagnosis of HS-A is traditionally binary based on presence/absence of the lesion. We compared this traditional measure against our novel quantitative measure for studying the relationship between HS-A and other neuropathologies and cognitive impairment. We included 409 participants from The 90+ study with neuropathological examination and longitudinal neuropsychological assessments. In those with HS-A, we examined digitized H&E and LFB stained hippocampal slides. The length of HS-A in each subfield of hippocampus and subiculum, each further divided into three subregions, was measured using Aperio eSlide Manager. For each subregion, the proportion affected by HS-A was calculated. Using regression models, both traditional/binary and quantitative measures were used to study the relationship between HS-A and other neuropathological changes and cognitive outcomes. HS-A was present in 48 (12%) of participants and was always focal, primarily affecting CA1 (73%), followed by subiculum (9%); overlapping pathology (subiculum and CA1) affected 18% of individuals. HS-A was more common in the left (82%) than the right (25%) hemisphere and was bilateral in 7% of participants. HS-A traditional/binary assessment was associated with limbic-predominant age-related TDP-43 encephalopathy (LATE-NC; OR = 3.45, p < 0.001) and aging-related tau astrogliopathy (ARTAG; OR = 2.72, p = 0.008). In contrast, our quantitative approach showed associations between the proportion of HS-A (CA1/subiculum/combined) and LATE-NC (p = 0.001) and arteriolosclerosis (p = 0.005). While traditional binary assessment of HS-A was associated with impaired memory (OR = 2.60, p = 0.007), calculations (OR = 2.16, p = 0.027), and orientation (OR = 3.56, p < 0.001), our quantitative approach revealed additional associations with impairments in language (OR = 1.33, p = 0.018) and visuospatial domains (OR = 1.37, p = 0.006). Our novel quantitative method revealed associations between HS-A and vascular pathologies and impairment in cognitive domains that were not detected using traditional/binary measures.
Collapse
Affiliation(s)
- Lorena Sordo
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Tianchen Qian
- Department of Statistics, University of California, Irvine, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Katelynn M Nguyen
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Davis C Woodworth
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - María M Corrada
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
9
|
Katsumata Y, Fardo DW, Shade LMP, Nelson PT. LATE-NC risk alleles (in TMEM106B, GRN, and ABCC9 genes) among persons with African ancestry. J Neuropathol Exp Neurol 2023; 82:760-768. [PMID: 37528055 PMCID: PMC10440720 DOI: 10.1093/jnen/nlad059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy (LATE) affects approximately one-third of older individuals and is associated with cognitive impairment. However, there is a highly incomplete understanding of the genetic determinants of LATE neuropathologic changes (LATE-NC) in diverse populations. The defining neuropathologic feature of LATE-NC is TDP-43 proteinopathy, often with comorbid hippocampal sclerosis (HS). In terms of genetic risk factors, LATE-NC and/or HS are associated with single nucleotide variants (SNVs) in 3 genes-TMEM106B (rs1990622), GRN (rs5848), and ABCC9 (rs1914361 and rs701478). We evaluated these 3 genes in convenience samples of individuals of African ancestry. The allele frequencies of the LATE-associated alleles were significantly different between persons of primarily African (versus European) ancestry: In persons of African ancestry, the risk-associated alleles for TMEM106B and ABCC9 were less frequent, whereas the risk allele in GRN was more frequent. We performed an exploratory analysis of data from African-American subjects processed by the Alzheimer's Disease Genomics Consortium, with a subset of African-American participants (n = 166) having corroborating neuropathologic data through the National Alzheimer's Coordinating Center (NACC). In this limited-size sample, the ABCC9/rs1914361 SNV was associated with HS pathology. More work is required concerning the genetic factors influencing non-Alzheimer disease pathology such as LATE-NC in diverse cohorts.
Collapse
Affiliation(s)
- Yuriko Katsumata
- University of Kentucky Sanders-Brown Center on Aging, Lexington, Kentucky, USA
- University of Kentucky Department of Biostatistics, Lexington, Kentucky, USA
| | - David W Fardo
- University of Kentucky Sanders-Brown Center on Aging, Lexington, Kentucky, USA
- University of Kentucky Department of Biostatistics, Lexington, Kentucky, USA
| | - Lincoln M P Shade
- University of Kentucky Department of Biostatistics, Lexington, Kentucky, USA
| | - Peter T Nelson
- University of Kentucky Sanders-Brown Center on Aging, Lexington, Kentucky, USA
- University of Kentucky Department of Pathology and Laboratory Medicine, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Nicks R, Clement NF, Alvarez VE, Tripodis Y, Baucom ZH, Huber BR, Mez J, Alosco ML, Aytan N, Cherry JD, Cormier KA, Kubilius C, Mathias R, Svirsky SE, Pothast MJ, Hildebrandt AM, Chung J, Han X, Crary JF, McKee AC, Frosch MP, Stein TD. Repetitive head impacts and chronic traumatic encephalopathy are associated with TDP-43 inclusions and hippocampal sclerosis. Acta Neuropathol 2023; 145:395-408. [PMID: 36681782 PMCID: PMC11360224 DOI: 10.1007/s00401-023-02539-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Hippocampal sclerosis (HS) is associated with advanced age as well as transactive response DNA-binding protein with 43 kDa (TDP-43) deposits. Both hippocampal sclerosis and TDP-43 proteinopathy have also been described in chronic traumatic encephalopathy (CTE), a neurodegenerative disease linked to exposure to repetitive head impacts (RHI). However, the prevalence of HS in CTE, the pattern of TDP-43 pathology, and associations of HS and TDP-43 with RHI are unknown. A group of participants with a history of RHI and CTE at autopsy (n = 401) as well as a group with HS-aging without CTE (n = 33) was examined to determine the prevalence of HS and TDP-43 inclusions in CTE and to compare the clinical and pathological features of HS and TDP-43 inclusions in CTE to HS-aging. In CTE, HS was present in 23.4%, and TDP-43 inclusions were present in 43.3% of participants. HS in CTE occurred at a relatively young age (mean 77.0 years) and was associated with a greater number of years of RHI than CTE without HS adjusting for age (p = 0.029). In CTE, TDP-43 inclusions occurred frequently in the frontal cortex and occurred both with and without limbic TDP-43. Additionally, structural equation modeling demonstrated that RHI exposure years were associated with hippocampal TDP-43 inclusions (p < 0.001) through increased CTE stage (p < 0.001). Overall, RHI and the development of CTE pathology may contribute to TDP-43 deposition and hippocampal sclerosis.
Collapse
Affiliation(s)
- Raymond Nicks
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Nathan F Clement
- C.S. Kubik Laboratory for Neuropathology, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Services, Brooke Army Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Zachery H Baucom
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Kerry A Cormier
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Carol Kubilius
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Rebecca Mathias
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Sarah E Svirsky
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | - Morgan J Pothast
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
| | | | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Xudong Han
- Boston University Bioinformatics Graduate Program, Boston, MA, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence and Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, 02130, USA.
- VA Boston Healthcare System, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Duong MT, Wolk DA. Limbic-Predominant Age-Related TDP-43 Encephalopathy: LATE-Breaking Updates in Clinicopathologic Features and Biomarkers. Curr Neurol Neurosci Rep 2022; 22:689-698. [PMID: 36190653 PMCID: PMC9633415 DOI: 10.1007/s11910-022-01232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently defined neurodegenerative disease characterized by amnestic phenotype and pathological inclusions of TAR DNA-binding protein 43 (TDP-43). LATE is distinct from rarer forms of TDP-43 diseases such as frontotemporal lobar degeneration with TDP-43 but is also a common copathology with Alzheimer's disease (AD) and cerebrovascular disease and accelerates cognitive decline. LATE contributes to clinicopathologic heterogeneity in neurodegenerative diseases, so it is imperative to distinguish LATE from other etiologies. RECENT FINDINGS Novel biomarkers for LATE are being developed with magnetic resonance imaging (MRI) and positron emission tomography (PET). When cooccurring with AD, LATE exhibits identifiable patterns of limbic-predominant atrophy on MRI and hypometabolism on 18F-fluorodeoxyglucose PET that are greater than expected relative to levels of local AD pathology. Efforts are being made to develop TDP-43-specific radiotracers, molecularly specific biofluid measures, and genomic predictors of TDP-43. LATE is a highly prevalent neurodegenerative disease distinct from previously characterized cognitive disorders.
Collapse
Affiliation(s)
- Michael Tran Duong
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Prater KE, Latimer CS, Jayadev S. Glial TDP-43 and TDP-43 induced glial pathology, focus on neurodegenerative proteinopathy syndromes. Glia 2022; 70:239-255. [PMID: 34558120 PMCID: PMC8722378 DOI: 10.1002/glia.24096] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Since its discovery in 2006, TAR DNA binding protein 43 (TDP-43) has driven rapidly evolving research in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic predominant age-related TDP-43 encephalopathy (LATE). TDP-43 mislocalization or aggregation is the hallmark of TDP-43 proteinopathy and is associated with cognitive impairment that can be mapped to its regional deposition. Studies in human tissue and model systems demonstrate that TDP-43 may potentiate other proteinopathies such as the amyloid or tau pathology seen in Alzheimer's Disease (AD) in the combination of AD+LATE. Despite this growing body of literature, there remain gaps in our understanding of whether there is heterogeneity in TDP-43 driven mechanisms across cell types. The growing observations of correlation between TDP-43 proteinopathy and glial pathology suggest a relationship between the two, including pathogenic glial cell-autonomous dysfunction and dysregulated glial immune responses to neuronal TDP-43. In this review, we discuss the available data on TDP-43 in glia within the context of the neurodegenerative diseases ALS and FTLD and highlight the current lack of information about glial TDP-43 interaction in AD+LATE. TDP-43 has proven to be a significant modulator of cognitive and neuropathological outcomes. A deeper understanding of its role in diverse cell types may provide relevant insights into neurodegenerative syndromes.
Collapse
Affiliation(s)
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195,Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
13
|
Uemura MT, Robinson JL, Cousins KAQ, Tropea TF, Kargilis DC, McBride JD, Suh E, Xie SX, Xu Y, Porta S, Uemura N, Van Deerlin VM, Wolk DA, Irwin DJ, Brunden KR, Lee VMY, Lee EB, Trojanowski JQ. Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease. Acta Neuropathol 2022; 143:15-31. [PMID: 34854996 PMCID: PMC9136643 DOI: 10.1007/s00401-021-02383-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Limbic-predominant age-related TDP-43 encephalopathy (LATE) is characterized by the accumulation of TAR-DNA-binding protein 43 (TDP-43) aggregates in older adults. LATE coexists with Lewy body disease (LBD) as well as other neuropathological changes including Alzheimer's disease (AD). We aimed to identify the pathological, clinical, and genetic characteristics of LATE in LBD (LATE-LBD) by comparing it with LATE in AD (LATE-AD), LATE with mixed pathology of LBD and AD (LATE-LBD + AD), and LATE alone (Pure LATE). We analyzed four cohorts of autopsy-confirmed LBD (n = 313), AD (n = 282), LBD + AD (n = 355), and aging (n = 111). We assessed the association of LATE with patient profiles including LBD subtype and AD neuropathologic change (ADNC). We studied the morphological and distributional differences between LATE-LBD and LATE-AD. By frequency analysis, we staged LATE-LBD and examined the association with cognitive impairment and genetic risk factors. Demographic analysis showed LATE associated with age in all four cohorts and the frequency of LATE was the highest in LBD + AD followed by AD, LBD, and Aging. LBD subtype and ADNC associated with LATE in LBD or AD but not in LBD + AD. Pathological analysis revealed that the hippocampal distribution of LATE was different between LATE-LBD and LATE-AD: neuronal cytoplasmic inclusions were more frequent in cornu ammonis 3 (CA3) in LATE-LBD compared to LATE-AD and abundant fine neurites composed of C-terminal truncated TDP-43 were found mainly in CA2 to subiculum in LATE-LBD, which were not as numerous in LATE-AD. Some of these fine neurites colocalized with phosphorylated α-synuclein. LATE-LBD staging showed LATE neuropathological changes spread in the dentate gyrus and brainstem earlier than in LATE-AD. The presence and prevalence of LATE in LBD associated with cognitive impairment independent of either LBD subtype or ADNC; LATE-LBD stage also associated with the genetic risk variants of TMEM106B rs1990622 and GRN rs5848. These data highlight clinicopathological and genetic features of LATE-LBD.
Collapse
Affiliation(s)
- Maiko T Uemura
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - John L Robinson
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katheryn A Q Cousins
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel C Kargilis
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer D McBride
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Xu
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Norihito Uemura
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, PA, USA
- Penn Memory Center at the Penn Neuroscience Center, Perelman Center for Advanced Medicine, Philadelphia, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-4283, USA
- Institute on Aging, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, PA, USA
- Penn Lewy Body Dementia Association Research Center of Excellence, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-4283, USA
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA, 19104-2676, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Meneses A, Koga S, O’Leary J, Dickson DW, Bu G, Zhao N. TDP-43 Pathology in Alzheimer's Disease. Mol Neurodegener 2021; 16:84. [PMID: 34930382 PMCID: PMC8691026 DOI: 10.1186/s13024-021-00503-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/21/2021] [Indexed: 12/05/2022] Open
Abstract
Transactive response DNA binding protein of 43 kDa (TDP-43) is an intranuclear protein encoded by the TARDBP gene that is involved in RNA splicing, trafficking, stabilization, and thus, the regulation of gene expression. Cytoplasmic inclusion bodies containing phosphorylated and truncated forms of TDP-43 are hallmarks of amyotrophic lateral sclerosis (ALS) and a subset of frontotemporal lobar degeneration (FTLD). Additionally, TDP-43 inclusions have been found in up to 57% of Alzheimer's disease (AD) cases, most often in a limbic distribution, with or without hippocampal sclerosis. In some cases, TDP-43 deposits are also found in neurons with neurofibrillary tangles. AD patients with TDP-43 pathology have increased severity of cognitive impairment compared to those without TDP-43 pathology. Furthermore, the most common genetic risk factor for AD, apolipoprotein E4 (APOE4), is associated with increased frequency of TDP-43 pathology. These findings provide strong evidence that TDP-43 pathology is an integral part of multiple neurodegenerative conditions, including AD. Here, we review the biology and pathobiology of TDP-43 with a focus on its role in AD. We emphasize the need for studies on the mechanisms that lead to TDP-43 pathology, especially in the setting of age-related disorders such as AD.
Collapse
Affiliation(s)
- Axel Meneses
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Justin O’Leary
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
15
|
Agrawal S, Yu L, Nag S, Arfanakis K, Barnes LL, Bennett DA, Schneider JA. The association of Lewy bodies with limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes and their role in cognition and Alzheimer's dementia in older persons. Acta Neuropathol Commun 2021; 9:156. [PMID: 34563269 PMCID: PMC8466680 DOI: 10.1186/s40478-021-01260-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Lewy bodies (LBs) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) are common in older persons and associated with cognitive impairment. However, little is known about the relationship between LBs and LATE-NC and their combined roles in cognitive impairment and Alzheimer's dementia in community-dwelling participants. The study included 1670 community-based participants (mean age-at-death, 89.5 years (SD = 6.65); 69% females) who underwent annual assessments of cognition to create summary measures of global cognition and cognitive domains and evaluation for Alzheimer's dementia. Systematic neuropathologic evaluations were performed to assess LBs, LATE-NC, and Alzheimer's disease (AD) pathology. We excluded cases with pathologically confirmed frontotemporal lobar degeneration in this study. Logistic and linear regression analyses were used, adjusted for demographics and AD pathology. LBs were present in 428 (25.6%) decedents (29 nigra-predominant, 165 limbic-type, and 234 neocortical-type) while 865 (51.7%) decedents exhibited LATE-NC (307 stage 1, 167 stage 2, and 391 stage 3). LBs combined with LATE-NC were common (15% of all participants) and in those with Alzheimer's dementia (25%). Neocortical-type, but not nigral-predominant or limbic-type LBs increased the odds of stage 2/3 LATE-NC (odds ratio = 1.70; 95% confidence interval = 1.26-2.30). The association between neocortical-type LBs and stage 2/3 LATE-NC was stronger in those under 90 years of age and in women. In analyses of cognition and Alzheimer's dementia, LATE-NC and neocortical-type LBs, separately, were related to lower global cognition, five specific cognitive domains, and an increased odds of Alzheimer's dementia, above and beyond the AD pathology. Limbic-type LBs were related to lower global cognition, and the domains of episodic, working, and semantic memory, and increased odds of Alzheimer's dementia. Furthermore, there was no interaction between limbic/neocortical-type LBs and LATE-NC on cognitive function, cognitive domains, or Alzheimer's dementia. These findings suggest that neocortical-type LBs are associated with LATE-NC, specifically in the younger old and in women. Limbic/neocortical-type LBs and LATE-NC have separate and additive effects on cognitive function and odds of Alzheimer's dementia.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison street, Suite 1000, Chicago, IL, 60612, USA.
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sukriti Nag
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison street, Suite 1000, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison street, Suite 1000, Chicago, IL, 60612, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison street, Suite 1000, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
16
|
Dugan AJ, Nelson PT, Katsumata Y, Shade LMP, Boehme KL, Teylan MA, Cykowski MD, Mukherjee S, Kauwe JSK, Hohman TJ, Schneider JA, Fardo DW. Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study. Acta Neuropathol Commun 2021; 9:152. [PMID: 34526147 PMCID: PMC8442328 DOI: 10.1186/s40478-021-01250-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is the most prevalent subtype of TDP-43 proteinopathy, affecting up to 1/3rd of aged persons. LATE-NC often co-occurs with hippocampal sclerosis (HS) pathology. It is currently unknown why some individuals with LATE-NC develop HS while others do not, but genetics may play a role. Previous studies found associations between LATE-NC phenotypes and specific genes: TMEM106B, GRN, ABCC9, KCNMB2, and APOE. Data from research participants with genomic and autopsy measures from the National Alzheimer’s Coordinating Center (NACC; n = 631 subjects included) and the Religious Orders Study and Memory and the Rush Aging Project (ROSMAP; n = 780 included) were analyzed in the current study. Our goals were to reevaluate disease-associated genetic variants using newly collected data and to query whether the specific genotype/phenotype associations could provide new insights into disease-driving pathways. Research subjects included in prior LATE/HS genome-wide association studies (GWAS) were excluded. Single nucleotide variants (SNVs) within 10 kb of TMEM106B, GRN, ABCC9, KCNMB2, and APOE were tested for association with HS and LATE-NC, and separately for Alzheimer’s pathologies, i.e. amyloid plaques and neurofibrillary tangles. Significantly associated SNVs were identified. When results were meta-analyzed, TMEM106B, GRN, and APOE had significant gene-based associations with both LATE and HS, whereas ABCC9 had significant associations with HS only. In a sensitivity analysis limited to LATE-NC + cases, ABCC9 variants were again associated with HS. By contrast, the associations of TMEM106B, GRN, and APOE with HS were attenuated when adjusting for TDP-43 proteinopathy, indicating that these genes may be associated primarily with TDP-43 proteinopathy. None of these genes except APOE appeared to be associated with Alzheimer’s-type pathology. In summary, using data not included in prior studies of LATE or HS genomics, we replicated several previously reported gene-based associations and found novel evidence that specific risk alleles can differentially affect LATE-NC and HS.
Collapse
|
17
|
Wang XM, Zeng P, Fang YY, Zhang T, Tian Q. Progranulin in neurodegenerative dementia. J Neurochem 2021; 158:119-137. [PMID: 33930186 DOI: 10.1111/jnc.15378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023]
Abstract
Long-term or severe lack of protective factors is important in the pathogenesis of neurodegenerative dementia. Progranulin (PGRN), a neurotrophic factor expressed mainly in neurons and microglia, has various neuroprotective effects such as anti-inflammatory effects, promoting neuron survival and neurite growth, and participating in normal lysosomal function. Mutations in the PGRN gene (GRN) have been found in several neurodegenerative dementias, including frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Herein, PGRN deficiency and PGRN hydrolytic products (GRNs) in the pathological changes related to dementia, including aggregation of tau and TAR DNA-binding protein 43 (TDP-43), amyloid-β (Aβ) overproduction, neuroinflammation, lysosomal dysfunction, neuronal death, and synaptic deficit have been summarized. Furthermore, as some therapeutic strategies targeting PGRN have been developed in various models, we highlighted PGRN as a potential anti-neurodegeneration target in dementia.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, China
| | - Teng Zhang
- Department of Neurology, Shanxian Central Hospital, The Affiliated Huxi Hospital of Jining Medical College, Heze, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Sieben A, Van Langenhove T, Vermeiren Y, Gossye H, Praet M, Vanhauwaert D, Cousaert C, Engelborghs S, Raedt R, Boon P, Santens P, De Deyn PP, Bracke KR, De Meulemeester K, Van Broeckhoven C, Martin JJ, Bjerke M. Hippocampal Sclerosis in Frontotemporal Dementia: When Vascular Pathology Meets Neurodegeneration. J Neuropathol Exp Neurol 2021; 80:313-324. [PMID: 33638350 DOI: 10.1093/jnen/nlab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hippocampal sclerosis (HS) is a common neuropathological finding and has been associated with advanced age, TDP-43 proteinopathy, and cerebrovascular pathology. We analyzed neuropathological data of an autopsy cohort of early-onset frontotemporal dementia patients. The study aimed to determine whether in this cohort HS was related to TDP-43 proteinopathy and whether additional factors could be identified. We examined the relationship between HS, proteinopathies in frontotemporal cortices and hippocampus, Alzheimer disease, cerebrovascular changes, and age. We confirmed a strong association between HS and hippocampal TDP-43, whereas there was a weaker association between HS and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Nearly all of the FTLD-TDP cases had TDP-43 pathology in the hippocampus. HS was present in all FTLD-TDP type D cases, in 50% of the FTLD-TDP A cohort and in 6% of the FTLD-TDP B cohort. Our data also showed a significant association between HS and vascular changes. We reviewed the literature on HS and discuss possible pathophysiological mechanisms between TDP-43 pathology, cerebrovascular disease, and HS. Additionally, we introduced a quantitative neuronal cell count in CA1 to objectify the semiquantitative visual appreciation of HS.
Collapse
Affiliation(s)
- Anne Sieben
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology, AZ Jan Palfijn, Ghent, Belgium
| | - Tim Van Langenhove
- Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Yannick Vermeiren
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Helena Gossye
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Edegem, Belgium.,Institute Born-Bunge, Laboratory of Neurogenetics, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences (C4N), UZ Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marleen Praet
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | | | | | - Sebastiaan Engelborghs
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences (C4N), UZ Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robrecht Raedt
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Peter Paul De Deyn
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Jacques Martin
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium
| | - Maria Bjerke
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Neurochemistry Laboratory, Department of Clinical Biology and Center for Neurosciences, University hospital Brussels and Free University of Brussels, Brussels, Belgium
| |
Collapse
|
19
|
Katsumata Y, Abner EL, Karanth S, Teylan MA, Mock CN, Cykowski MD, Lee EB, Boehme KL, Mukherjee S, Kauwe JSK, Kryscio RJ, Schmitt FA, Fardo DW, Nelson PT. Distinct clinicopathologic clusters of persons with TDP-43 proteinopathy. Acta Neuropathol 2020; 140:659-674. [PMID: 32797255 PMCID: PMC7572241 DOI: 10.1007/s00401-020-02211-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
To better understand clinical and neuropathological features of TDP-43 proteinopathies, data were analyzed from autopsied research volunteers who were followed in the National Alzheimer's Coordinating Center (NACC) data set. All subjects (n = 495) had autopsy-proven TDP-43 proteinopathy as an inclusion criterion. Subjects underwent comprehensive longitudinal clinical evaluations yearly for 6.9 years before death on average. We tested whether an unsupervised clustering algorithm could detect coherent groups of TDP-43 immunopositive cases based on age at death and extensive neuropathologic data. Although many of the brains had mixed pathologies, four discernible clusters were identified. Key differentiating features were age at death and the severity of comorbid Alzheimer's disease neuropathologic changes (ADNC), particularly neuritic amyloid plaque densities. Cluster 1 contained mostly cases with a pathologic diagnosis of frontotemporal lobar degeneration (FTLD-TDP), consistent with enrichment of frontotemporal dementia clinical phenotypes including appetite/eating problems, disinhibition and primary progressive aphasia (PPA). Cluster 2 consisted of elderly limbic-predominant age-related TDP-43 encephalopathy (LATE-NC) subjects without severe neuritic amyloid plaques. Subjects in Cluster 2 had a relatively slow cognitive decline. Subjects in both Clusters 3 and 4 had severe ADNC + LATE-NC; however, Cluster 4 was distinguished by earlier disease onset, swifter disease course, more Lewy body pathology, less neocortical TDP-43 proteinopathy, and a suggestive trend in a subgroup analysis (n = 114) for increased C9orf72 risk SNP rs3849942 T allele (Fisher's exact test p value = 0.095). Overall, clusters enriched with neocortical TDP-43 proteinopathy (Clusters 1 and 2) tended to have lower levels of neuritic amyloid plaques, and those dying older (Clusters 2 and 3) had far less PPA or disinhibition, but more apathy. Indeed, 98% of subjects dying past age 85 years lacked clinical features of the frontotemporal dementia syndrome. Our study revealed discernible subtypes of LATE-NC and underscored the importance of age of death for differentiating FTLD-TDP and LATE-NC.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Shama Karanth
- Department of Epidemiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, 98105, USA
| | - Charles N Mock
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, 98105, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98105, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin L Boehme
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | | | - John S K Kauwe
- Brigham Young University-Hawaii, Laie, HI, 96762, USA
- Biology Department, Brigham Young University, Provo, UT, 84602, USA
| | - Richard J Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Statistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Pathology, University of Kentucky, Rm 311 Sanders-Brown Center on Aging, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
20
|
Jiang S, Bhaskar K. Degradation and Transmission of Tau by Autophagic-Endolysosomal Networks and Potential Therapeutic Targets for Tauopathy. Front Mol Neurosci 2020; 13:586731. [PMID: 33177989 PMCID: PMC7596180 DOI: 10.3389/fnmol.2020.586731] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/24/2020] [Indexed: 01/21/2023] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer’s disease (AD), Frontotemporal Dementia (FTD), Progressive Supranuclear Palsy (PSP), Corticobasal Degeneration (CBD), and many others where microtubule-associated protein tau (MAPT or tau) is hyperphosphorylated and aggregated to form insoluble paired helical filaments (PHFs) and ultimately neurofibrillary tangles (NFTs). Autophagic-endolysosomal networks (AELN) play important roles in tau clearance. Excessive soluble neurotoxic forms of tau and tau hyperphosphorylated at specific sites are cleared through the ubiquitin-proteasome system (UPS), Chaperon-mediated Autophagy (CMA), and endosomal microautophagy (e-MI). On the other hand, intra-neuronal insoluble tau aggregates are often degraded within lysosomes by macroautophagy. AELN defects have been observed in AD, FTD, CBD, and PSP, and lysosomal dysfunction was shown to promote the cleavage and neurotoxicity of tau. Moreover, several AD risk genes (e.g., PICALM, GRN, and BIN1) have been associated with dysregulation of AELN in the late-onset sporadic AD. Conversely, tau dissociation from microtubules interferes with retrograde transport of autophagosomes to lysosomes, and that tau fragments can also lead to lysosomal dysfunction. Recent studies suggest that tau is not merely an intra-neuronal protein, but it can be released to brain parenchyma via extracellular vesicles, like exosomes and ectosomes, and thus spread between neurons. Extracellular tau can also be taken up by microglial cells and astrocytes, either being degraded through AELN or propagated via exosomes. This article reviews the complex roles of AELN in the degradation and transmission of tau, potential diagnostic/therapeutic targets and strategies based on AELN-mediated tau clearance and propagation, and the current state of drug development targeting AELN and tau against tauopathies.
Collapse
Affiliation(s)
- Shanya Jiang
- Department of Molecular Genetics and Microbiology, The University of New Mexico, Albuquerque, NM, United States
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
21
|
Bayram E, Shan G, Cummings JL. Associations between Comorbid TDP-43, Lewy Body Pathology, and Neuropsychiatric Symptoms in Alzheimer's Disease. J Alzheimers Dis 2020; 69:953-961. [PMID: 31127776 PMCID: PMC6597983 DOI: 10.3233/jad-181285] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
More than half of the patients with Alzheimer's disease (AD) have comorbidities including TDP-43 and Lewy bodies, which are also associated with frontotemporal lobar degeneration and dementia with Lewy bodies, respectively. These comorbidities may help explain the overlapping neuropsychiatric symptoms between AD and other dementias. Data on 221 AD patients with Neuropsychiatric Inventory-Questionnaire were obtained from the National Alzheimer's Coordinating Center. TDP-43 was associated with aberrant motor activity, whereas Lewy bodies were associated with anxiety, irritability, sleep behavior, and appetite problems. The associations between these comorbidities and neuropsychiatric symptoms were more significant for patients with sparse diffuse plaques.
Collapse
Affiliation(s)
- Ece Bayram
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Guogen Shan
- Department of Environmental and Occupational Health, Epidemiology and Biostatistics Program, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeffrey L Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.,School of Allied Health Science, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
22
|
Hokkanen SRK, Kero M, Kaivola K, Hunter S, Keage HAD, Kiviharju A, Raunio A, Tienari PJ, Paetau A, Matthews FE, Fleming J, Graff C, Polvikoski TM, Myllykangas L, Brayne C. Putative risk alleles for LATE-NC with hippocampal sclerosis in population-representative autopsy cohorts. Brain Pathol 2019; 30:364-372. [PMID: 31376286 PMCID: PMC7065086 DOI: 10.1111/bpa.12773] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Limbic‐predominant age‐related TAR‐DNA‐binding protein‐43 (TDP‐43) encephalopathy with hippocampal sclerosis pathology (LATE‐NC + HS) is a neurodegenerative disorder characterized by severe hippocampal CA1 neuron loss and TDP‐43‐pathology, leading to cognitive dysfunction and dementia. Polymorphisms in GRN, TMEM106B and ABCC9 are proposed as LATE‐NC + HS risk factors in brain bank collections. To replicate these results in independent population‐representative cohorts, hippocampal sections from brains donated to three such studies (Cambridge City over 75‐Cohort [CC75C], Cognitive Function and Ageing Study [CFAS], and Vantaa 85+ Study) were stained with hematoxylin–eosin (n = 744) and anti‐pTDP‐43 (n = 713), and evaluated for LATE‐NC + HS and TDP‐43 pathology. Single nucleotide polymorphism genotypes in GRN rs5848, TMEM106B rs1990622 and ABCC9 rs704178 were determined. LATE‐NC + HS (n = 58) was significantly associated with the GRN rs5848 genotype (χ2(2) = 20.61, P < 0.001) and T‐allele (χ2(1) = 21.04, P < 0.001), and TMEM106B rs1990622 genotype (Fisher's exact test, P < 0.001) and A‐allele (χ2(1) = 25.75, P < 0.001). No differences in ABCC9 rs704178 genotype or allele frequency were found between LATE‐NC + HS and non‐LATE‐NC + HS neuropathology cases. Dentate gyrus TDP‐43 pathology associated with GRN and TMEM106B variations, but the association with TMEM106B nullified when LATE‐NC + HS cases were excluded. Our results indicate that GRN and TMEM106B are associated with severe loss of CA1 neurons in the aging brain, while ABCC9 was not confirmed as a genetic risk factor for LATE‐NC + HS. The association between TMEM106B and LATE‐NC + HS may be independent of dentate TDP‐43 pathology.
Collapse
Affiliation(s)
| | - Mia Kero
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Karri Kaivola
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Sally Hunter
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Hannah A D Keage
- Cognitive Ageing and Impairment Neurosciences Laboratory, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, Australia
| | - Anna Kiviharju
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Anna Raunio
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Pentti J Tienari
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Fiona E Matthews
- Institute for Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Jane Fleming
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Caroline Graff
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, J10:20, Visionsgatan 4, Solna, 171 64, Sweden.,Theme Aging, Genetics Unit, Karolinska University Hospital-Solna, QA22, Stockholm, Sweden
| | - Tuomo M Polvikoski
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
23
|
Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. J Transl Med 2019; 99:993-1007. [PMID: 30742063 PMCID: PMC6609463 DOI: 10.1038/s41374-019-0196-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
We review the literature on Tau and TDP-43 proteinopathies in aged human brains and the relevant underlying pathogenetic cascades. Complex interacting pathways are implicated in Alzheimer's disease and related dementias (ADRD), wherein multiple proteins tend to misfold in a manner that is "reactive," but, subsequently, each proteinopathy may contribute strongly to the clinical symptoms. Tau proteinopathy exists in brains of individuals across a broad spectrum of primary underlying conditions-e.g., developmental, traumatic, and inflammatory/infectious diseases. TDP-43 proteinopathy is also expressed in a wide range of clinical disorders. Although TDP-43 proteinopathy was first described in the central nervous system of patients with amyotrophic lateral sclerosis (ALS) and in subtypes of frontotemporal dementia (FTD/FTLD), TDP-43 proteinopathy is also present in chronic traumatic encephalopathy, cognitively impaired persons in advanced age with hippocampal sclerosis, Huntington's disease, and other diseases. We list known Tau and TDP-43 proteinopathies. There is also evidence of cellular co-localization between Tau and TDP-43 misfolded proteins, suggesting common pathways or protein interactions facilitating misfolding in one protein by the other. Multiple pleiotropic gene variants can alter risk for Tau or TDP-43 pathologies, and certain gene variants (e.g., APOE ε4, Huntingtin triplet repeats) are associated with increases of both Tau and TDP-43 proteinopathies. Studies of genetic risk factors have provided insights into multiple nodes of the pathologic cascades involved in Tau and TDP-43 proteinopathies. Variants from a specific gene can be either a low-penetrant risk factor for a group of diseases, or alternatively, a different variant of the same gene may be a disease-driving allele that is associated with a relatively aggressive and early-onset version of a clinically and pathologically specific disease type. Overall, a complex but enlightening paradigm has emerged, wherein both Tau and TDP-43 proteinopathies are linked to numerous overlapping upstream influences, and both are associated with multiple downstream pathologically- and clinically-defined deleterious effects.
Collapse
|
24
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 958] [Impact Index Per Article: 159.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
25
|
TDP-43 proteinopathy in aging: Associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis 2019; 125:67-76. [PMID: 30682540 DOI: 10.1016/j.nbd.2019.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 02/08/2023] Open
Abstract
TDP-43 proteinopathy is very prevalent among the elderly (affecting at least 25% of individuals over 85 years of age) and is associated with substantial cognitive impairment. Risk factors implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, comorbid Alzheimer's disease pathology, and thyroid hormone dysfunction. To test parameters that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of pathologic, genetic, and biochemical data derived from research volunteers in the University of Kentucky Alzheimer's Disease Center autopsy cohort (n = 136 subjects). Digital pathologic methods were used to discriminate and quantify both neuritic and intracytoplasmic TDP-43 pathology in the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular inclusions, which is consistent with results in other prior community-based cohorts. The pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended to be reduced (p = .051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom quintile), there was a higher likelihood of HS-Aging pathology (p = .025 using 2-tailed statistical test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have been associated with altered expression of the astrocytic thyroid hormone receptor (protein product of the nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may play a role in age-related TDP-43 proteinopathy.
Collapse
|
26
|
Koga S, Lin WL, Walton RL, Ross OA, Dickson DW. TDP-43 pathology in multiple system atrophy: colocalization of TDP-43 and α-synuclein in glial cytoplasmic inclusions. Neuropathol Appl Neurobiol 2018; 44:707-721. [PMID: 29660838 DOI: 10.1111/nan.12485] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/17/2018] [Indexed: 12/13/2022]
Abstract
AIMS This study aimed to assess clinicopathologic features of transactive response DNA-binding protein of 43 kDa (TDP-43) pathology and its risk factors in multiple system atrophy (MSA). METHODS Paraffin-embedded sections of the amygdala and basal forebrain from 186 autopsy-confirmed MSA cases were screened with immunohistochemistry for phospho-TDP-43. In cases having TDP-43 pathology, additional brain regions were assessed. Immunohistochemical and immunofluorescence double-staining and immunogold electron microscopy (IEM) were performed to evaluate colocalization of TDP-43 and α-synuclein. Genetic risk factors for TDP-43 pathology were also analysed. RESULTS Immunohistochemistry showed various morphologies of TDP-43 pathology in 13 cases (7%), such as subpial astrocytic inclusions, neuronal inclusions, dystrophic neurites, perivascular inclusions and glial cytoplasmic inclusions (GCIs). Multivariable logistic regression models revealed that only advanced age, but not concurrent Alzheimer's disease, argyrophilic grain disease or hippocampal sclerosis, was an independent risk factor for TDP-43 pathology in MSA (OR: 1.11, 95% CI: 1.04-1.19, P = 0.002). TDP-43 pathology was restricted to the amygdala in eight cases and extended to the hippocampus in two cases. The remaining three cases had widespread TDP-43 pathology. Immunohistochemical and immunofluorescence double-staining and IEM revealed colocalization of α-synuclein and TDP-43 in GCIs with granule-coated filaments. Pilot genetic studies failed to show associations between risk variants of TMEM106B or GRN and TDP-43 pathology. CONCLUSIONS TDP-43 pathology is rare in MSA and occurs mainly in the medial temporal lobe. Advanced age is a risk factor for TDP-43 pathology in MSA. Colocalization of TDP-43 and α-synuclein in GCIs suggests possible direct interaction between the two molecules.
Collapse
Affiliation(s)
- S Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - W-L Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - R L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - O A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - D W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
27
|
Chitramuthu BP, Bennett HPJ, Bateman A. Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease. Brain 2017; 140:3081-3104. [PMID: 29053785 DOI: 10.1093/brain/awx198] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/26/2017] [Indexed: 12/14/2022] Open
Abstract
Progranulin, a secreted glycoprotein, is encoded in humans by the single GRN gene. Progranulin consists of seven and a half, tandemly repeated, non-identical copies of the 12 cysteine granulin motif. Many cellular processes and diseases are associated with this unique pleiotropic factor that include, but are not limited to, embryogenesis, tumorigenesis, inflammation, wound repair, neurodegeneration and lysosome function. Haploinsufficiency caused by autosomal dominant mutations within the GRN gene leads to frontotemporal lobar degeneration, a progressive neuronal atrophy that presents in patients as frontotemporal dementia. Frontotemporal dementia is an early onset form of dementia, distinct from Alzheimer's disease. The GRN-related form of frontotemporal lobar dementia is a proteinopathy characterized by the appearance of neuronal inclusions containing ubiquitinated and fragmented TDP-43 (encoded by TARDBP). The neurotrophic and neuro-immunomodulatory properties of progranulin have recently been reported but are still not well understood. Gene delivery of GRN in experimental models of Alzheimer's- and Parkinson's-like diseases inhibits phenotype progression. Here we review what is currently known concerning the molecular function and mechanism of action of progranulin in normal physiological and pathophysiological conditions in both in vitro and in vivo models. The potential therapeutic applications of progranulin in treating neurodegenerative diseases are highlighted.
Collapse
Affiliation(s)
- Babykumari P Chitramuthu
- Endocrine Research Laboratory, Royal Victoria Hospital, and McGill University Health Centre Research Institute, Centre for Translational Biology, Platform in Metabolic Disorders and Complications, 1001 Decarie Boulevard, QC, Canada, H4A 3J1
| | - Hugh P J Bennett
- Endocrine Research Laboratory, Royal Victoria Hospital, and McGill University Health Centre Research Institute, Centre for Translational Biology, Platform in Metabolic Disorders and Complications, 1001 Decarie Boulevard, QC, Canada, H4A 3J1
| | - Andrew Bateman
- Endocrine Research Laboratory, Royal Victoria Hospital, and McGill University Health Centre Research Institute, Centre for Translational Biology, Platform in Metabolic Disorders and Complications, 1001 Decarie Boulevard, QC, Canada, H4A 3J1
| |
Collapse
|
28
|
Mao Q, Wang D, Li Y, Kohler M, Wilson J, Parton Z, Shmaltsuyeva B, Gursel D, Rademakers R, Weintraub S, Mesulam MM, Xia H, Bigio EH. Disease and Region Specificity of Granulin Immunopositivities in Alzheimer Disease and Frontotemporal Lobar Degeneration. J Neuropathol Exp Neurol 2017; 76:957-968. [PMID: 29044416 DOI: 10.1093/jnen/nlx085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heterozygous loss-of-function mutations in GRN, the progranulin gene, which result in progranulin (PGRN) protein haploinsufficiency, are a major cause of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). PGRN is composed of seven and a half repeats of a highly conserved granulin motif that is cleaved to produce the granulin peptides A-G and paragranulin. To better understand the role of PGRN and granulin (Grn) peptides in the pathogenesis of neurodegeneration, we evaluated PGRN/Grn in brains of patients with Alzheimer disease, FTLD-TDP type A with or without GRN mutations, and normal individuals, using a panel of monoclonal antibodies against Grn peptides A-G. In the neocortex, Grn peptide-specific immunostains were observed, for example, membranous Grn E immunopositivity in pyramidal neurons, and Grn C immunopositivity in ramified microglia. In the hippocampus, Grn immunopositivity in the CA1 and CA2 regions showed disease-specific changes in both neurons and microglia. Most interestingly, in FTLD-TDP type A with GRN mutations, there is a 60% decrease in the density of Grn-positive microglia in the hippocampal CA1, suggesting that haploinsufficiency of the GRN mutations also extends to PGRN expression in microglia. This study provides important insights into future studies of the pathogenesis and treatment of FTLD-TDP.
Collapse
Affiliation(s)
- Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Dongyang Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Yanqing Li
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Missia Kohler
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Jayson Wilson
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Zachary Parton
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Bella Shmaltsuyeva
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Demirkan Gursel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Rosa Rademakers
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Sandra Weintraub
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Marek-Marsel Mesulam
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Haibin Xia
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. China; The Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University School of Medicine, Chicago, Illinois; Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | | |
Collapse
|
29
|
Loss of TMEM106B Ameliorates Lysosomal and Frontotemporal Dementia-Related Phenotypes in Progranulin-Deficient Mice. Neuron 2017; 95:281-296.e6. [PMID: 28728022 DOI: 10.1016/j.neuron.2017.06.026] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Progranulin (GRN) and TMEM106B are associated with several common neurodegenerative disorders including frontotemporal lobar degeneration (FTLD). A TMEM106B variant modifies GRN-associated FTLD risk. However, their functional relationship in vivo and the mechanisms underlying the risk modification remain unclear. Here, using transcriptomic and proteomic analyses with Grn-/- and Tmem106b-/- mice, we show that, while multiple lysosomal enzymes are increased in Grn-/- brain at both transcriptional and protein levels, TMEM106B deficiency causes reduction in several lysosomal enzymes. Remarkably, Tmem106b deletion from Grn-/- mice normalizes lysosomal protein levels and rescues FTLD-related behavioral abnormalities and retinal degeneration without improving lipofuscin, C1q, and microglial accumulation. Mechanistically, TMEM106B binds vacuolar-ATPase accessory protein 1 (AP1). TMEM106B deficiency reduces vacuolar-ATPase AP1 and V0 subunits, impairing lysosomal acidification and normalizing lysosomal protein levels in Grn-/- neurons. Thus, Grn and Tmem106b genes have opposite effects on lysosomal enzyme levels, and their interaction determines the extent of neurodegeneration.
Collapse
|
30
|
Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer's disease: a longitudinal retrospective study. Lancet Neurol 2017; 16:917-924. [PMID: 28919059 PMCID: PMC5646369 DOI: 10.1016/s1474-4422(17)30284-3] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022]
Abstract
Background Post-mortem studies have not identified an association between beta-amyloid or tau and rates of hippocampal atrophy in Alzheimer’s disease. TAR DNA binding protein of 43kDa (TDP-43) is another protein recently linked to Alzheimer’s disease. We aimed to determine whether hippocampal TDP-43 is associated with faster rates of hippocampal atrophy. Methods Two-hundred ninety-eight autopsied cases with Alzheimer’s spectrum disease that had antemortem head MRI scans between 1/1/1999–12/31/2012 recruited into the Mayo Clinic Alzheimer’s Disease Research Center or Patient Registry/Study of Aging were analyzed. TDP-43 immunohistochemistry was performed and cases classified as follows: no TDP-43; TDP-43 restricted to amygdala; and TDP-43 spreading into hippocampus. Eight-hundred sixteen MRI scans, spanning 1.0–11.2 years prior to death, were analyzed. We utilized longitudinal FreeSurfer and tensor-based morphometry with symmetric normalization to calculate hippocampal volume on all serial MRI and performed linear mixed-effects regression models to estimate associations between TDP-43 and rate of hippocampal atrophy, and determine the trajectory of TDP-43 associated atrophy. Findings One-hundred forty-one cases showed no TDP-43, 33 had TDP-43 restricted to the amygdala and 124 had TDP-43 in hippocampus. Cases with hippocampal TDP-43 had faster rates of hippocampal atrophy compared to cases with amygdala-only TDP-43 and those without TDP-43 in cases with an intermediate-high likelihood of having Alzheimer’s disease (N=261). Hippocampal TDP-43 was not associated with rate of hippocampal atrophy in cases with low likelihood of having Alzheimer’s disease (N=37). The trajectory analysis suggested that increased rates of TDP-43 associated hippocampal atrophy may be occurring at least 10-years before death. Results were similar for FreeSurfer and tensor-based morphometry. Interpretation In Alzheimer’s disease, TDP-43 should be considered a potential factor related to increased rates of hippocampal atrophy. Given the importance of hippocampal atrophy in Alzheimer’s disease, it is imperative that we develop techniques for detecting TDP-43 pathology in-vivo. Funding National Institute of Aging
Collapse
|
31
|
Cykowski MD, Powell SZ, Schulz PE, Takei H, Rivera AL, Jackson RE, Roman G, Jicha GA, Nelson PT. Hippocampal Sclerosis in Older Patients: Practical Examples and Guidance With a Focus on Cerebral Age-Related TDP-43 With Sclerosis. Arch Pathol Lab Med 2017; 141:1113-1126. [PMID: 28467211 DOI: 10.5858/arpa.2016-0469-sa] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT - Autopsy studies of the older population (≥65 years of age), and particularly of the "oldest-old" (≥85 years of age), have identified a significant proportion (∼20%) of cognitively impaired patients in which hippocampal sclerosis is the major substrate of an amnestic syndrome. Hippocampal sclerosis may also be comorbid with frontotemporal lobar degeneration, Alzheimer disease, and Lewy body disease. Until recently, the terms hippocampal sclerosis of aging or hippocampal sclerosis dementia were applied in this context. Recent discoveries have prompted a conceptual expansion of hippocampal sclerosis of aging because (1) cellular inclusions of TAR DNA-binding protein 43 kDa (TDP-43) are frequent; (2) TDP-43 pathology may be found outside hippocampus; and (3) brain arteriolosclerosis is a common, possibly pathogenic, component. OBJECTIVE - To aid pathologists with recent recommendations for diagnoses of common neuropathologies in older persons, particularly hippocampal sclerosis, and highlight the recent shift in diagnostic terminology from HS-aging to cerebral age-related TDP-43 with sclerosis (CARTS). DATA SOURCES - Peer-reviewed literature and 5 autopsy examples that illustrate common age-related neuropathologies, including CARTS, and emphasize the importance of distinguishing CARTS from late-onset frontotemporal lobar degeneration with TDP-43 pathology and from advanced Alzheimer disease with TDP-43 pathology. CONCLUSIONS - In advanced old age, the substrates of cognitive impairment are often multifactorial. This article demonstrates common and frequently comorbid neuropathologic substrates of cognitive impairment in the older population, including CARTS, to aid those practicing in this area of pathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter T Nelson
- From the Departments of Pathology and Genomic Medicine (Drs Cykowski, Powell, Rivera, and Takei), Internal Medicine (Dr Jackson), and Neurology (Dr Roman), Houston Methodist Hospital, Houston, Texas; the Department of Neurology, University of Texas Health Science Center at Houston (Dr Schulz); the Department of Pathology, Division of Neuropathology (Dr Nelson) and Sanders-Brown Center on Aging (Drs Jicha and Nelson), University of Kentucky, Lexington
| |
Collapse
|
32
|
Katsumata Y, Nelson PT, Ellingson SR, Fardo DW. Gene-based association study of genes linked to hippocampal sclerosis of aging neuropathology: GRN, TMEM106B, ABCC9, and KCNMB2. Neurobiol Aging 2017; 53:193.e17-193.e25. [PMID: 28131462 PMCID: PMC5385271 DOI: 10.1016/j.neurobiolaging.2017.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022]
Abstract
Hippocampal sclerosis of aging (HS-Aging) is a common neurodegenerative condition associated with dementia. To learn more about genetic risk of HS-Aging pathology, we tested gene-based associations of the GRN, TMEM106B, ABCC9, and KCNMB2 genes, which were reported to be associated with HS-Aging pathology in previous studies. Genetic data were obtained from the Alzheimer's Disease Genetics Consortium, linked to autopsy-derived neuropathological outcomes from the National Alzheimer's Coordinating Center. Of the 3251 subjects included in the study, 271 (8.3%) were identified as an HS-Aging case. The significant gene-based association between the ABCC9 gene and HS-Aging appeared to be driven by a region in which a significant haplotype-based association was found. We tested this haplotype as an expression quantitative trait locus using 2 different public-access brain gene expression databases. The HS-Aging pathology protective ABCC9 haplotype was associated with decreased ABCC9 expression, indicating a possible toxic gain of function.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Sally R Ellingson
- Division of Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
33
|
Fardo DW, Katsumata Y, Kauwe JSK, Deming Y, Harari O, Cruchaga C, Nelson PT. CSF protein changes associated with hippocampal sclerosis risk gene variants highlight impact of GRN/PGRN. Exp Gerontol 2017; 90:83-89. [PMID: 28189700 DOI: 10.1016/j.exger.2017.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/31/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hippocampal sclerosis of aging (HS-Aging) is a common cause of dementia in older adults. We tested the variability in cerebrospinal fluid (CSF) proteins associated with previously identified HS-Aging risk single nucleotide polymorphisms (SNPs). METHODS Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n=237) data, combining both multiplexed proteomics CSF and genotype data, were used to assess the association between CSF analytes and risk SNPs in four genes (SNPs): GRN (rs5848), TMEM106B (rs1990622), ABCC9 (rs704180), and KCNMB2 (rs9637454). For controls, non-HS-Aging SNPs in APOE (rs429358/rs7412) and MAPT (rs8070723) were also analyzed against Aβ1-42 and total tau CSF analytes. RESULTS The GRN risk SNP (rs5848) status correlated with variation in CSF proteins, with the risk allele (T) associated with increased levels of AXL Receptor Tyrosine Kinase (AXL), TNF-Related Apoptosis-Inducing Ligand Receptor 3 (TRAIL-R3), Vascular Cell Adhesion Molecule-1 (VCAM-1) and clusterin (CLU) (all p<0.05 after Bonferroni correction). The TRAIL-R3 correlation was significant in meta-analysis with an additional dataset (p=5.05×10-5). Further, the rs5848 SNP status was associated with increased CSF tau protein - a marker of neurodegeneration (p=0.015). These data are remarkable since this GRN SNP has been found to be a risk factor for multiple types of dementia-related brain pathologies.
Collapse
Affiliation(s)
- David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA.
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | | | - Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pathology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
34
|
Nho K, Saykin AJ, Nelson PT. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe. J Alzheimers Dis 2017; 52:373-83. [PMID: 27003218 DOI: 10.3233/jad-160077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Peter T Nelson
- University of Kentucky, Sanders-Brown Center on Aging and Pathology Department, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
35
|
Koga S, Sanchez-Contreras M, Josephs KA, Uitti RJ, Graff-Radford N, van Gerpen JA, Cheshire WP, Wszolek ZK, Rademakers R, Dickson DW. Distribution and characteristics of transactive response DNA binding protein 43 kDa pathology in progressive supranuclear palsy. Mov Disord 2016; 32:246-255. [PMID: 28009087 DOI: 10.1002/mds.26809] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/03/2016] [Accepted: 08/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This study aimed to determine the frequency of transactive response DNA binding protein 43 kDa pathology in PSP, the clinical features of patients with this pathology, and genetic risk factors for it. METHODS Hippocampal sections were screened with immunohistochemistry for transactive response DNA binding protein 43 kDa in 945 PSP cases. A subset of 261 cases that were negative in hippocampus was screened in the amygdala. The density and disruption of this pathology, as well as regional tau burden, and clinical and genetic characteristics were analyzed. RESULTS We observed transactive response DNA binding protein 43 kDa pathology in 47 cases in the hippocampus and an additional 9 cases that only affected the amygdala. Hippocampal sclerosis was the strongest risk factor, followed by Alzheimer's disease pathology, argyrophilic grain disease, and older age at death. Five stages of transactive response DNA binding protein 43 kDa pathology were identified in PSP: Stage A had pathology only in the amygdala (16%); stage I had pathology confined to the hippocampus and entorhinal cortex (9%); stage II included both regions of stage A and I (38%); stage III spread further to medial occipitotemporal gyrus (20%); and stage IV had pathology in the dorsolateral frontal lobe (18%). Anatomical areas vulnerable to PSP pathology had varying degrees of this pathology in stage II and later. PSP with transactive response DNA binding protein 43 kDa pathology were older at disease onset and had lower median MMSE scores; however, the latter was driven by concurrent pathologies. CONCLUSIONS Distribution and clinical characteristics of transactive response DNA binding protein 43 kDa pathology in PSP were influenced by concurrent pathologies. This is the first study to observe that PSP-vulnerable regions are also susceptible to this non-tau pathology. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Keith A Josephs
- Department of Neurology (Behavioral Neurology & Movement Disorders), Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jay A van Gerpen
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
36
|
Nelson PT, Katsumata Y, Nho K, Artiushin SC, Jicha GA, Wang WX, Abner EL, Saykin AJ, Kukull WA, Fardo DW. Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. Acta Neuropathol 2016; 132:841-858. [PMID: 27815632 DOI: 10.1007/s00401-016-1641-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
We report evidence of a novel pathogenetic mechanism in which thyroid hormone dysregulation contributes to dementia in elderly persons. Two single nucleotide polymorphisms (SNPs) on chromosome 12p12 were the initial foci of our study: rs704180 and rs73069071. These SNPs were identified by separate research groups as risk alleles for non-Alzheimer's neurodegeneration. We found that the rs73069071 risk genotype was associated with hippocampal sclerosis (HS) pathology among people with the rs704180 risk genotype (National Alzheimer's Coordinating Center/Alzheimer's Disease Genetic Consortium data; n = 2113, including 241 autopsy-confirmed HS cases). Furthermore, both rs704180 and rs73069071 risk genotypes were associated with widespread brain atrophy visualized by MRI (Alzheimer's Disease Neuroimaging Initiative data; n = 1239). In human brain samples from the Braineac database, both rs704180 and rs73069071 risk genotypes were associated with variation in expression of ABCC9, a gene which encodes a metabolic sensor protein in astrocytes. The rs73069071 risk genotype was also associated with altered expression of a nearby astrocyte-expressed gene, SLCO1C1. Analyses of human brain gene expression databases indicated that the chromosome 12p12 locus may regulate particular astrocyte-expressed genes induced by the active form of thyroid hormone, triiodothyronine (T3). This is informative biologically, because the SLCO1C1 protein transports thyroid hormone into astrocytes from blood. Guided by the genomic data, we tested the hypothesis that altered thyroid hormone levels could be detected in cerebrospinal fluid (CSF) obtained from persons with HS pathology. Total T3 levels in CSF were elevated in HS cases (p < 0.04 in two separately analyzed groups), but not in Alzheimer's disease cases, relative to controls. No change was detected in the serum levels of thyroid hormone (T3 or T4) in a subsample of HS cases prior to death. We conclude that brain thyroid hormone perturbation is a potential pathogenetic factor in HS that may also provide the basis for a novel CSF-based clinical biomarker.
Collapse
|
37
|
Rabinovici GD, Carrillo MC, Forman M, DeSanti S, Miller DS, Kozauer N, Petersen RC, Randolph C, Knopman DS, Smith EE, Isaac M, Mattsson N, Bain LJ, Hendrix JA, Sims JR. Multiple comorbid neuropathologies in the setting of Alzheimer's disease neuropathology and implications for drug development. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 3:83-91. [PMID: 29067320 PMCID: PMC5651346 DOI: 10.1016/j.trci.2016.09.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dementia is often characterized as being caused by one of several major diseases, such as Alzheimer's disease (AD), cerebrovascular disease, Lewy body disease, or a frontotemporal degeneration. Failure to acknowledge that more than one entity may be present precludes attempts to understand interactive relationships. The clinicopathological studies of dementia demonstrate that multiple pathologic processes often coexist. How overlapping pathologic findings affect the diagnosis and treatment of clinical AD and other dementia phenotypes was the topic taken up by the Alzheimer's Association's Research Roundtable in October 2014. This review will cover the neuropathologic basis of dementia, provide clinical perspectives on multiple pathologies, and discuss therapeutics and biomarkers targeting overlapping pathologies and how these issues impact clinical trials.High prevalence of multiple pathologic findings among individuals with clinical diagnosis of AD suggests that new treatment strategies may be needed to effectively treat AD and other dementing illnesses.
Collapse
Affiliation(s)
- Gil D Rabinovici
- Memory & Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria C Carrillo
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago IL, USA
| | | | | | | | | | - Ronald C Petersen
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Christopher Randolph
- MedAvante, Hamilton, NJ, USA.,Department of Neurology, Loyola University Medical Center, Maywood, IL, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Eric E Smith
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Niklas Mattsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Lisa J Bain
- Independent Science Writer, Elverson, PA, USA
| | - James A Hendrix
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago IL, USA
| | | |
Collapse
|
38
|
Nicholson AM, Finch NA, Almeida M, Perkerson RB, van Blitterswijk M, Wojtas A, Cenik B, Rotondo S, Inskeep V, Almasy L, Dyer T, Peralta J, Jun G, Wood AR, Frayling TM, Fuchsberger C, Fowler S, Teslovich TM, Manning AK, Kumar S, Curran J, Lehman D, Abecasis G, Duggirala R, Pottier C, Zahir HA, Crook JE, Karydas A, Mitic L, Sun Y, Dickson DW, Bu G, Herz J, Yu G, Miller BL, Ferguson S, Petersen RC, Graff-Radford N, Blangero J, Rademakers R. Prosaposin is a regulator of progranulin levels and oligomerization. Nat Commun 2016; 7:11992. [PMID: 27356620 PMCID: PMC4931318 DOI: 10.1038/ncomms11992] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/19/2016] [Indexed: 01/09/2023] Open
Abstract
Progranulin (GRN) loss-of-function mutations leading to progranulin protein (PGRN) haploinsufficiency are prevalent genetic causes of frontotemporal dementia. Reports also indicated PGRN-mediated neuroprotection in models of Alzheimer's and Parkinson's disease; thus, increasing PGRN levels is a promising therapeutic for multiple disorders. To uncover novel PGRN regulators, we linked whole-genome sequence data from 920 individuals with plasma PGRN levels and identified the prosaposin (PSAP) locus as a new locus significantly associated with plasma PGRN levels. Here we show that both PSAP reduction and overexpression lead to significantly elevated extracellular PGRN levels. Intriguingly, PSAP knockdown increases PGRN monomers, whereas PSAP overexpression increases PGRN oligomers, partly through a protein–protein interaction. PSAP-induced changes in PGRN levels and oligomerization replicate in human-derived fibroblasts obtained from a GRN mutation carrier, further supporting PSAP as a potential PGRN-related therapeutic target. Future studies should focus on addressing the relevance and cellular mechanism by which PGRN oligomeric species provide neuroprotection. Increasing progranulin (PGRN) levels is a promising approach for treating frontotemporal dementia and other neurodegenerative diseases. Here Nicholson et al. show that the prosaposin (PSAP) locus is associated with plasma PGRN levels and demonstrate that PSAP can alter PGRN levels and its oligomerization.
Collapse
Affiliation(s)
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas 78520, USA
| | - Ralph B Perkerson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | - Aleksandra Wojtas
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Basar Cenik
- Department of Neuroscience, Molecular Genetics, and Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sergio Rotondo
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Venette Inskeep
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas 78520, USA
| | - Thomas Dyer
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas 78520, USA
| | - Juan Peralta
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas 78520, USA
| | - Goo Jun
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andrew R Wood
- Genetics of Complex Traits, St Luke's Campus, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Timothy M Frayling
- Genetics of Complex Traits, St Luke's Campus, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Christian Fuchsberger
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sharon Fowler
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Tanya M Teslovich
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alisa K Manning
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas 78520, USA
| | - Joanne Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas 78520, USA
| | - Donna Lehman
- Department of Medicine/Cardiology and Cellular &Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Goncalo Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas 78520, USA
| | - Cyril Pottier
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Haaris A Zahir
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Julia E Crook
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Anna Karydas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94143, USA
| | - Laura Mitic
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94143, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Joachim Herz
- Department of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Gang Yu
- Department of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California 94143, USA
| | - Shawn Ferguson
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
| | | | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas 78520, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
| |
Collapse
|
39
|
Nelson PT, Trojanowski JQ, Abner EL, Al-Janabi OM, Jicha GA, Schmitt FA, Smith CD, Fardo DW, Wang WX, Kryscio RJ, Neltner JH, Kukull WA, Cykowski MD, Van Eldik LJ, Ighodaro ET. "New Old Pathologies": AD, PART, and Cerebral Age-Related TDP-43 With Sclerosis (CARTS). J Neuropathol Exp Neurol 2016; 75:482-98. [PMID: 27209644 PMCID: PMC6366658 DOI: 10.1093/jnen/nlw033] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
The pathology-based classification of Alzheimer's disease (AD) and other neurodegenerative diseases is a work in progress that is important for both clinicians and basic scientists. Analyses of large autopsy series, biomarker studies, and genomics analyses have provided important insights about AD and shed light on previously unrecognized conditions, enabling a deeper understanding of neurodegenerative diseases in general. After demonstrating the importance of correct disease classification for AD and primary age-related tauopathy, we emphasize the public health impact of an underappreciated AD "mimic," which has been termed "hippocampal sclerosis of aging" or "hippocampal sclerosis dementia." This pathology affects >20% of individuals older than 85 years and is strongly associated with cognitive impairment. In this review, we provide an overview of current hypotheses about how genetic risk factors (GRN, TMEM106B, ABCC9, and KCNMB2), and other pathogenetic influences contribute to TDP-43 pathology and hippocampal sclerosis. Because hippocampal sclerosis of aging affects the "oldest-old" with arteriolosclerosis and TDP-43 pathologies that extend well beyond the hippocampus, more appropriate terminology for this disease is required. We recommend "cerebral age-related TDP-43 and sclerosis" (CARTS). A detailed case report is presented, which includes neuroimaging and longitudinal neurocognitive data. Finally, we suggest a neuropathology-based diagnostic rubric for CARTS.
Collapse
Affiliation(s)
- Peter T Nelson
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC).
| | - John Q Trojanowski
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Erin L Abner
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Omar M Al-Janabi
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Gregory A Jicha
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Frederick A Schmitt
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Charles D Smith
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - David W Fardo
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Wang-Xia Wang
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Richard J Kryscio
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Janna H Neltner
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Walter A Kukull
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Matthew D Cykowski
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Linda J Van Eldik
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Eseosa T Ighodaro
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| |
Collapse
|
40
|
Abstract
The diagnostic hallmarks of hippocampal sclerosis (HS) are severe volume loss of the hippocampus, severe neuronal loss, and reactive gliosis involving primarily two especially vulnerable fields, CA1 and the subiculum. Occasionally, HS may be the only neuropathological change detected in older individuals with dementia and is known as pure HS. In the majority of cases, HS occurs in the setting of other degenerative changes, usually Alzheimer's disease (AD). In these cases, it is classified as combined HS. Although a clinical profile for HS has been identified, its similarities with AD make the diagnosis during life quite challenging; thus, the diagnosis is often made postmortem. The pathogenesis of HS is not completely understood, but the strong association with transactive response DNA-binding protein 43 (TDP-43), in approximately 90%, and the recent discovery of genetic risk factors are important contributions to a better understanding of the disease process.
Collapse
Affiliation(s)
- Juliana R Dutra
- Division of Aging and Dementia, Department of Neurology, Columbia University Medical Center, 622 West 168th Street, PH-19, Room 121, New York, NY, 10032, USA,
| | | | | |
Collapse
|
41
|
Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds. Neuroscience 2016; 315:175-95. [DOI: 10.1016/j.neuroscience.2015.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022]
|
42
|
Xu HM, Tan L, Wan Y, Tan MS, Zhang W, Zheng ZJ, Kong LL, Wang ZX, Jiang T, Tan L, Yu JT. PGRN Is Associated with Late-Onset Alzheimer's Disease: a Case-Control Replication Study and Meta-analysis. Mol Neurobiol 2016; 54:1187-1195. [PMID: 26820675 DOI: 10.1007/s12035-016-9698-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
Progranulin (PGRN) plays an important role in Alzheimer's disease (AD) through participating in altering neurite outgrowth and neuronal survival. Previous studies identified that rs5848 in the 3'-untranslated region (3'-UTR) of the PGRN gene (GRN) is strongly associated with AD in Caucasians. In order to assess the involvement of the GRN polymorphism in the risk of late-onset AD (LOAD), we analyzed the genotype and allele distributions of rs5848 in 2350 Han Chinese subjects (AD, 992; control, 1358). The minor T allele of rs5848 was significantly associated with an increased risk of LOAD (P = 0.005, odds ratio (OR) = 1.197, 95 % confidence interval (CI) = 1.057-1.355). Moreover, the association was further validated in the multivariate logistic regression analysis (dominant model: OR = 1.195, P = 0.038, recessive model: OR = 1.386, P = 0.025; additive model: OR = 1.187, P = 0.009). Interestingly, we observed that the interaction between apolipoprotein E (APOE) and rs5848 significantly altered the risk for AD. The rs5848 polymorphism was only significantly associated with LOAD in APOE ε4 allele carriers. Then we included five studies (including the present study) and conducted a meta-analysis which consisted of 3236 cases (male, 1152; female, 2084) and 3405 (male, 1436; female, 1969) controls. The result of the meta-analysis supported T allele of rs5848 within GRN as a risk factor for AD. In conclusion, our results demonstrated that rs5848 polymorphism within GRN was associated with LOAD.
Collapse
Affiliation(s)
- Hui-Min Xu
- Department of Neurology, Qingdao Municipal Hospital, Taishan Medical University, Qingdao, China
| | - Lin Tan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, 266000, China
| | - Yu Wan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Wei Zhang
- Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Zhan-Jie Zheng
- Department of Geriatric, Qingdao Mental Health Center, Qingdao, 266034, China
| | - Ling-Li Kong
- Department of Geriatric, Qingdao Mental Health Center, Qingdao, 266034, China
| | - Zi-Xuan Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Taishan Medical University, Qingdao, China.
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, 266000, China.
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China.
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao, Shandong Province, 266071, China.
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
43
|
Nelson PT, Jicha GA, Wang WX, Ighodaro E, Artiushin S, Nichols CG, Fardo DW. ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev 2015; 24:111-25. [PMID: 26226329 PMCID: PMC4661124 DOI: 10.1016/j.arr.2015.07.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023]
Abstract
The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium ("KATP") channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The KATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a "druggable target", relevant perhaps to both HS-Aging and Alzheimer's disease. We conclude that more work is required to better understand the roles of ABCC9/SUR2 in the human brain during health and disease conditions.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Pathology, Lexington, KY 40536, USA.
| | - Gregory A Jicha
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Neurology, Lexington, KY, 40536, USA
| | - Wang-Xia Wang
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Eseosa Ighodaro
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Sergey Artiushin
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David W Fardo
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; Department of Biostatistics, Lexington, KY, 40536, USA
| |
Collapse
|
44
|
Mattson MP. Late-onset dementia: a mosaic of prototypical pathologies modifiable by diet and lifestyle. NPJ Aging Mech Dis 2015. [PMID: 28642821 PMCID: PMC5478237 DOI: 10.1038/npjamd.2015.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic late-onset dementia (ILOD) describes impairments of memory, reasoning and/or social abilities in the elderly that compromise their daily functioning. Dementia occurs in several major prototypical neurodegenerative disorders that are currently defined by neuropathological criteria, most notably Alzheimer’s disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD) and hippocampal sclerosis of aging (HSA). However, people who die with ILOD commonly exhibit mixed pathologies that vary within and between brain regions. Indeed, many patients diagnosed with probable AD exhibit only modest amounts of disease-defining amyloid β-peptide plaques and p-Tau tangles, and may have features of FTD (TDP-43 inclusions), Parkinson’s disease (α-synuclein accumulation), HSA and vascular lesions. Here I argue that this ‘mosaic neuropathological landscape’ is the result of commonalities in aging-related processes that render neurons vulnerable to the entire spectrum of ILODs. In this view, all ILODs involve deficits in neuronal energy metabolism, neurotrophic signaling and adaptive cellular stress responses, and associated dysregulation of neuronal calcium handling and autophagy. Although this mosaic of neuropathologies and underlying mechanisms poses major hurdles for development of disease-specific therapeutic interventions, it also suggests that certain interventions would be beneficial for all ILODs. Indeed, emerging evidence suggests that the brain can be protected against ILOD by lifelong intermittent physiological challenges including exercise, energy restriction and intellectual endeavors; these interventions enhance cellular stress resistance and facilitate neuroplasticity. There is also therapeutic potential for interventions that bolster neuronal bioenergetics and/or activate one or more adaptive cellular stress response pathways in brain cells. A wider appreciation that all ILODs share age-related cellular and molecular alterations upstream of aggregated protein lesions, and that these upstream events can be mitigated, may lead to implementation of novel intervention strategies aimed at reversing the rising tide of ILODs.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
45
|
Hippocampal Sclerosis of Aging Can Be Segmental: Two Cases and Review of the Literature. J Neuropathol Exp Neurol 2015; 74:642-52. [PMID: 26083567 DOI: 10.1097/nen.0000000000000204] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hippocampal sclerosis of aging (HS-Aging) is a neurodegenerative disease that mimics Alzheimer disease (AD) clinically and has a prevalence rivaling AD in advanced age. Whereas clinical biomarkers are not yet optimized, HS-Aging has distinctive pathological features that distinguish it from other diseases with "hippocampal sclerosis" pathology, such as epilepsy, cerebrovascular perturbations, and frontotemporal lobar degeneration. By definition, HS-Aging brains show neuronal cell loss and gliosis in the hippocampal formation out of proportion to AD-type pathology; it is strongly associated with aberrant TDP-43 pathology and arteriolosclerosis. Here, we describe 2 cases of "segmental" HS-Aging in which "sclerosis" in the hippocampus was evident only in a subset of brain sections by hematoxylin and eosin (H&E) stain. In these cases, TDP-43 pathology was more widespread on immunostained sections than the neuronal cell loss and gliosis seen in H&E stains. The 2 patients were cognitively intact at baseline and were tracked longitudinally over a decade using cognitive studies with at least 1 neuroimaging scan. We discuss the relevant HS-Aging literature, which indicates the need for a clearer consensus-based delineation of "hippocampal sclerosis" and TDP-43 pathologies in aged subjects.
Collapse
|
46
|
Niu T, Liu N, Zhao M, Xie G, Zhang L, Li J, Pei YF, Shen H, Fu X, He H, Lu S, Chen XD, Tan LJ, Yang TL, Guo Y, Leo PJ, Duncan EL, Shen J, Guo YF, Nicholson GC, Prince RL, Eisman JA, Jones G, Sambrook PN, Hu X, Das PM, Tian Q, Zhu XZ, Papasian CJ, Brown MA, Uitterlinden AG, Wang YP, Xiang S, Deng HW. Identification of a novel FGFRL1 MicroRNA target site polymorphism for bone mineral density in meta-analyses of genome-wide association studies. Hum Mol Genet 2015; 24:4710-4727. [PMID: 25941324 PMCID: PMC4512621 DOI: 10.1093/hmg/ddv144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/24/2015] [Accepted: 04/19/2015] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNA target sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)- and femoral neck (FN)-bone mineral density (BMD). In stage I, 41 102 poly-miRTSs were meta-analyzed in seven cohorts with a genome-wide significance (GWS) α = 0.05/41 102 = 1.22 × 10(-6). By applying α = 5 × 10(-5) (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P = 7.67 × 10(-6) and 1.58 × 10(-5)) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P = 5.08 × 10(-3)) at α = 0.10/11 = 9.09 × 10(-3). PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P = 7.55 × 10(-6)) at α = 0.05/2 = 0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P = 8.87 × 10(-12)). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation.
Collapse
Affiliation(s)
- Tianhua Niu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Ning Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Ming Zhao
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Guie Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Lei Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA, Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Jian Li
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Yu-Fang Pei
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Xiaoying Fu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Hao He
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Shan Lu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Xiang-Ding Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Li-Jun Tan
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Tie-Lin Yang
- Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yan Guo
- Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Paul J Leo
- Human Genetics Group, University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Emma L Duncan
- Human Genetics Group, University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia, Department of Diabetes and Endocrinology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Jie Shen
- Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yan-Fang Guo
- Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P. R. China
| | | | - Richard L Prince
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia, Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Perth, Australia
| | - John A Eisman
- Garvan Institute of Medical Research, University of New South Wales, Sydney, Australia
| | - Graeme Jones
- Menzies Research Institute, University of Tasmania, Hobart, Australia
| | - Philip N Sambrook
- Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, Australia
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Partha M Das
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Xue-Zhen Zhu
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Christopher J Papasian
- Department of Basic Medical Science, University of Missouri-Kansas City, Kansas City, USA
| | - Matthew A Brown
- Human Genetics Group, University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - André G Uitterlinden
- Department of Internal Medicine and , Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands, Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands and
| | - Yu-Ping Wang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA, Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China,
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA, Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China,
| |
Collapse
|
47
|
Snyder HM, Hendrix J, Bain LJ, Carrillo MC. Alzheimer's disease research in the context of the national plan to address Alzheimer's disease. Mol Aspects Med 2015; 43-44:16-24. [PMID: 26096321 DOI: 10.1016/j.mam.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/22/2022]
Abstract
In 2012, the first National Plan to Address Alzheimer's Disease in the United States (U.S.) was released, a component of the National Alzheimer's Project Act legislation. Since that time, there have been incremental increases in U.S. federal funding for Alzheimer's disease and related dementia research, particularly in the areas of biomarker discovery, genetic link and related biological underpinnings, and prevention studies for Alzheimer's. A central theme in each of these areas has been the emphasis of cross-sector collaboration and private-public partnerships between government, non-profit organizations and for-profit organizations. This paper will highlight multiple private-public partnerships supporting the advancement of Alzheimer's research in the context of the National Plan to Address Alzheimer's.
Collapse
Affiliation(s)
- Heather M Snyder
- Alzheimer's Association, Medical & Scientific Relations, Chicago, IL, USA.
| | - James Hendrix
- Alzheimer's Association, Medical & Scientific Relations, Chicago, IL, USA
| | - Lisa J Bain
- Independent Science Writer, Philadelphia, PA, USA
| | - Maria C Carrillo
- Alzheimer's Association, Medical & Scientific Relations, Chicago, IL, USA
| |
Collapse
|
48
|
Yokoyama JS, Bonham LW, Sears RL, Klein E, Karydas A, Kramer JH, Miller BL, Coppola G. Decision tree analysis of genetic risk for clinically heterogeneous Alzheimer's disease. BMC Neurol 2015; 15:47. [PMID: 25880661 PMCID: PMC4459447 DOI: 10.1186/s12883-015-0304-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/12/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Heritability of Alzheimer's disease (AD) is estimated at 74% and genetic contributors have been widely sought. The ε4 allele of apolipoprotein E (APOE) remains the strongest common risk factor for AD, with numerous other common variants contributing only modest risk for disease. Variability in clinical presentation of AD, which is typically amnestic (AmnAD) but can less commonly involve visuospatial, language and/or dysexecutive syndromes (atypical or AtAD), further complicates genetic analyses. Taking a multi-locus approach may increase the ability to identify individuals at highest risk for any AD syndrome. In this study, we sought to develop and investigate the utility of a multi-variant genetic risk assessment on a cohort of phenotypically heterogeneous patients with sporadic AD clinical diagnoses. METHODS We genotyped 75 variants in our cohort and, using a two-staged study design, we developed a 17-marker AD risk score in a Discovery cohort (n = 59 cases, n = 133 controls) then assessed its utility in a second Validation cohort (n = 126 cases, n = 150 controls). We also performed a data-driven decision tree analysis to identify genetic and/or demographic criteria that are most useful for accurately differentiating all AD cases from controls. RESULTS We confirmed APOE ε4 as a strong risk factor for AD. A 17-marker risk panel predicted AD significantly better than APOE genotype alone (P < 0.00001) in the Discovery cohort, but not in the Validation cohort. In decision tree analyses, we found that APOE best differentiated cases from controls only in AmnAD but not AtAD. In AtAD, HFE SNP rs1799945 was the strongest predictor of disease; variation in HFE has previously been implicated in AD risk in non-ε4 carriers. CONCLUSIONS Our study suggests that APOE ε4 remains the best predictor of broad AD risk when compared to multiple other genetic factors with modest effects, that phenotypic heterogeneity in broad AD can complicate simple polygenic risk modeling, and supports the association between HFE and AD risk in individuals without APOE ε4.
Collapse
Affiliation(s)
- Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Renee L Sears
- Semel Institute for Neuroscience and Human Behavior, Departments of Neurology and Psychiatry, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Eric Klein
- Semel Institute for Neuroscience and Human Behavior, Departments of Neurology and Psychiatry, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Anna Karydas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, Departments of Neurology and Psychiatry, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
49
|
Association of progranulin polymorphism rs5848 with neurodegenerative diseases: a meta-analysis. J Neurol 2015; 262:814-22. [PMID: 25578179 DOI: 10.1007/s00415-014-7630-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 12/25/2022]
Abstract
The purpose of this meta-analysis was to investigate the association between progranulin polymorphism rs5848 and risk of the neurodegenerative diseases frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Published literature from PubMed and other databases were retrieved, and 16 case-control studies were identified as eligible: 5 on FTLD (1,439 cases, 4,461 controls), 5 on AD (2,502 cases, 2,162 controls), 3 on PD (1,605 cases, 1,591 controls), and 3 on ALS (663 cases, 811 controls). The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated. We found that rs5848 was associated with an increased risk of neurodegenerative diseases in the homozygous (TT vs. CC: OR, 1.24; 95% CI, 1.10-1.39; P < 0.001) and recessive models (TT vs. CC + CT: OR, 1.23; 95% CI, 1.10-1.37; P < 0.001). Stratified analyses showed associations of rs5848 with increased risk of AD and PD in the homozygous and recessive models. Our data indicate that rs5848 is associated with risk of AD and PD, suggesting important roles of progranulin in neurodegenerative processes.
Collapse
|
50
|
Nelson PT, Wang WX, Partch AB, Monsell SE, Valladares O, Ellingson SR, Wilfred BR, Naj AC, Wang LS, Kukull WA, Fardo DW. Reassessment of risk genotypes (GRN, TMEM106B, and ABCC9 variants) associated with hippocampal sclerosis of aging pathology. J Neuropathol Exp Neurol 2015; 74:75-84. [PMID: 25470345 PMCID: PMC4270894 DOI: 10.1097/nen.0000000000000151] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hippocampal sclerosis of aging (HS-Aging) is a common high-morbidity neurodegenerative condition in elderly persons. To understand the risk factors for HS-Aging, we analyzed data from the Alzheimer's Disease Genetics Consortium and correlated the data with clinical and pathologic information from the National Alzheimer's Coordinating Center database. Overall, 268 research volunteers with HS-Aging and 2,957 controls were included; detailed neuropathologic data were available for all. The study focused on single-nucleotide polymorphisms previously associated with HS-Aging risk: rs5848 (GRN), rs1990622 (TMEM106B), and rs704180 (ABCC9). Analyses of a subsample that was not previously evaluated (51 HS-Aging cases and 561 controls) replicated the associations of previously identified HS-Aging risk alleles. To test for evidence of gene-gene interactions and genotype-phenotype relationships, pooled data were analyzed. The risk for HS-Aging diagnosis associated with these genetic polymorphisms was not secondary to an association with either Alzheimer disease or dementia with Lewy body neuropathologic changes. The presence of multiple risk genotypes was associated with a trend for additive risk for HS-Aging pathology. We conclude that multiple genes play important roles in HS-Aging, which is a distinctive neurodegenerative disease of aging.
Collapse
Affiliation(s)
- Peter T. Nelson
- University of Kentucky, Department of Pathology and Sanders-Brown Center on Aging, Lexington, Kentucky (PTN)
| | - Wang-Xia Wang
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, Kentucky (W-XW, BRW)
| | - Amanda B. Partch
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania (ABP, OV, L-SW)
| | - Sarah E. Monsell
- University of Washington, National Alzheimer's Coordinating Center, Seattle, Washington (SEM)
| | - Otto Valladares
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania (ABP, OV, L-SW)
| | - Sally R. Ellingson
- University of Kentucky, Division of Biomedical Informatics, College of Public Health, Lexington, Kentucky (SRE)
| | - Bernard R. Wilfred
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, Kentucky (W-XW, BRW)
| | - Adam C. Naj
- University of Pennsylvania, Department of Biostatistics and Epidemiology, Perelman School of Medicine, Philadelphia, Pennsylvania (ACN)
| | - Li-San Wang
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania (ABP, OV, L-SW)
| | - Walter A. Kukull
- University of Washington, Department of Epidemiology, Seattle, Washington (WAK)
| | - David W. Fardo
- University of Kentucky, Department of Biostatistics and Sanders-Brown Center on Aging, Lexington, Kentucky (DWF)
| |
Collapse
|