1
|
Osathanon T, Egusa H. Notch signaling in induced pluripotent stem cells. MOLECULAR PLAYERS IN IPSC TECHNOLOGY 2022:249-284. [DOI: 10.1016/b978-0-323-90059-1.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Ayllón V, Bueno C, Ramos-Mejía V, Navarro-Montero O, Prieto C, Real PJ, Romero T, García-León MJ, Toribio ML, Bigas A, Menendez P. The Notch ligand DLL4 specifically marks human hematoendothelial progenitors and regulates their hematopoietic fate. Leukemia 2015; 29:1741-53. [PMID: 25778099 DOI: 10.1038/leu.2015.74] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022]
Abstract
Notch signaling is essential for definitive hematopoiesis, but its role in human embryonic hematopoiesis is largely unknown. We show that in hESCs the expression of the Notch ligand DLL4 is induced during hematopoietic differentiation. We found that DLL4 is only expressed in a sub-population of bipotent hematoendothelial progenitors (HEPs) and segregates their hematopoietic versus endothelial potential. We demonstrate at the clonal level and through transcriptome analyses that DLL4(high) HEPs are enriched in endothelial potential, whereas DLL4(low/-) HEPs are committed to the hematopoietic lineage, albeit both populations still contain bipotent cells. Moreover, DLL4 stimulation enhances hematopoietic differentiation of HEPs and increases the amount of clonogenic hematopoietic progenitors. Confocal microscopy analysis of whole differentiating embryoid bodies revealed that DLL4(high) HEPs are located close to DLL4(low/-) HEPs, and at the base of clusters of CD45+ cells, resembling intra-aortic hematopoietic clusters found in mouse embryos. We propose a model for human embryonic hematopoiesis in which DLL4(low/-) cells within hemogenic endothelium receive Notch-activating signals from DLL4(high) cells, resulting in an endothelial-to-hematopoietic transition and their differentiation into CD45+ hematopoietic cells.
Collapse
Affiliation(s)
- V Ayllón
- Gene Regulation, Stem Cells & Development Laboratory, GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - C Bueno
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
| | - V Ramos-Mejía
- Gene Regulation, Stem Cells & Development Laboratory, GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - O Navarro-Montero
- Gene Regulation, Stem Cells & Development Laboratory, GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - C Prieto
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
| | - P J Real
- Gene Regulation, Stem Cells & Development Laboratory, GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - T Romero
- Gene Regulation, Stem Cells & Development Laboratory, GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - M J García-León
- Centro de Biologia Molecular Severo Ochoa (CBM-SO), CSIC-UAM, Campus de la Universidad Autonoma de Madrid, Madrid, Spain
| | - M L Toribio
- Centro de Biologia Molecular Severo Ochoa (CBM-SO), CSIC-UAM, Campus de la Universidad Autonoma de Madrid, Madrid, Spain
| | - A Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - P Menendez
- 1] Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain [2] Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
White DE, Kinney MA, McDevitt TC, Kemp ML. Spatial pattern dynamics of 3D stem cell loss of pluripotency via rules-based computational modeling. PLoS Comput Biol 2013; 9:e1002952. [PMID: 23516345 PMCID: PMC3597536 DOI: 10.1371/journal.pcbi.1002952] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/13/2013] [Indexed: 01/15/2023] Open
Abstract
Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into cells from all germ lineages, making them a potentially robust cell source for regenerative medicine therapies, but difficulties in predicting and controlling ESC differentiation currently limit the development of therapies and applications from such cells. A common approach to induce the differentiation of ESCs in vitro is via the formation of multicellular aggregates known as embryoid bodies (EBs), yet cell fate specification within EBs is generally considered an ill-defined and poorly controlled process. Thus, the objective of this study was to use rules-based cellular modeling to provide insight into which processes influence initial cell fate transitions in 3-dimensional microenvironments. Mouse embryonic stem cells (D3 cell line) were differentiated to examine the temporal and spatial patterns associated with loss of pluripotency as measured through Oct4 expression. Global properties of the multicellular aggregates were accurately recapitulated by a physics-based aggregation simulation when compared to experimentally measured physical parameters of EBs. Oct4 expression patterns were analyzed by confocal microscopy over time and compared to simulated trajectories of EB patterns. The simulations demonstrated that loss of Oct4 can be modeled as a binary process, and that associated patterns can be explained by a set of simple rules that combine baseline stochasticity with intercellular communication. Competing influences between Oct4+ and Oct4- neighbors result in the observed patterns of pluripotency loss within EBs, establishing the utility of rules-based modeling for hypothesis generation of underlying ESC differentiation processes. Importantly, the results indicate that the rules dominate the emergence of patterns independent of EB structure, size, or cell division. In combination with strategies to engineer cellular microenvironments, this type of modeling approach is a powerful tool to predict stem cell behavior under a number of culture conditions that emulate characteristics of 3D stem cell niches.
Collapse
Affiliation(s)
- Douglas E. White
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Melissa A. Kinney
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
| | - Todd C. McDevitt
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Melissa L. Kemp
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Ribeiro AJAM, Gomes AC, Cavaco-Paulo AM. Developing scaffolds for tissue engineering using the Ca2+-induced cold gelation by an experimental design approach. J Biomed Mater Res B Appl Biomater 2012; 100:2269-78. [PMID: 22987762 DOI: 10.1002/jbm.b.32797] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/08/2012] [Accepted: 07/11/2012] [Indexed: 01/27/2023]
Abstract
The Ca(2+)-induced cold gelation technique was found suitable to prepare highly porous biodegradable scaffolds based on bovine serum albumin (BSA) and alpha-casein from bovine milk for tissue engineering. A 2(3) full factorial design was used to study the influence and impact of each factor on the several responses of the scaffolds. In vitro degradation (ID), swelling ratio (SR), porosity (PO), and pore size (PS) as well cytotoxicity (CT) were evaluated and shown to be dependent on the pH of sample preparation and on the amount of BSA and casein present, making these scaffolds tunable structures. Under optimized working conditions (4.19% of BSA, 0.69% of Casein, pH 7.07), the ID attained was 37.97%, the SR observed was 11.87, the PO was 82.11%, the PS measured was 180.63 μm at surface, and 175.91 μm at fracture, whereas maximum cell viability was 84% in comparison to controls. Moreover, the scaffold supported cell adhesion and proliferation. These results, consistent with the prediction by the experimental design approach, support the use of this methodology to develop tunable scaffolds for tissue engineering using the Ca(2+)-induced cold gelation.
Collapse
Affiliation(s)
- Artur J A M Ribeiro
- Departamento de Engenharia Têxtil, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | | | | |
Collapse
|
5
|
Laranjeiro R, Alcobia I, Neves H, Gomes AC, Saavedra P, Carvalho CC, Duarte A, Cidadão A, Parreira L. The notch ligand delta-like 4 regulates multiple stages of early hemato-vascular development. PLoS One 2012; 7:e34553. [PMID: 22514637 PMCID: PMC3326024 DOI: 10.1371/journal.pone.0034553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 03/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis. Methodology/Principal Findings Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis. Conclusions/Significance This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis.
Collapse
Affiliation(s)
- Ricardo Laranjeiro
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Alcobia
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hélia Neves
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia C. Gomes
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Saavedra
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina C. Carvalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Lisbon, Portugal
| | - António Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Lisbon, Portugal
| | - António Cidadão
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail:
| | - Leonor Parreira
- Unidade de Biologia da Hematopoiese, Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|