1
|
Mohieldin AM, Spencer M, Bernal C, Fadol WB, Gupta A, Thirugnanam K, Delahunty C, Nunez F, Pan AY, Brandow AM, Palecek SP, Rarick KR, Ramchandran R, Zennadi R, Yates J, Nauli SM. Comparative Proteomic Analysis Reveals Altered Ciliary Proteins in Sickle Cell Disease. J Proteome Res 2025. [PMID: 40374167 DOI: 10.1021/acs.jproteome.5c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy characterized by sickle-shaped red blood cells (RBCs). Primary cilia are mechanosensory organelles and are projected in the lumen of blood vessels to detect blood flow. We previously reported that interaction between microvasculature endothelial cells and sickled RBCs resulted in altered blood flow that can elevate reactive oxygen species, leading to increased deciliation in SCD patients. However, the impact of deciliation mediated by sickled RBCs in the context of the ciliary protein profiles remains unclear. Here, we investigated cell-cilia stability under different physiological shear-stress magnitudes and examined cilia protein profiles in SCD, utilizing mouse models and human participants. Our results demonstrate that subjecting endothelial cilia to sickled RBCs at 5.0 dyn/cm2 led to significant deciliation events. The proteomic and bioinformatic analyses showed different ciliary protein profiles, distinct signaling pathways, and unique post-translational modification processes in the SCD mouse model. Consistent with the SCD mouse model results, our translational studies validated the enrichment of specific proteins, including Transferrin Receptor-1 (TfR1), Glyceraldehyde-3-Phosphate-Dehydrogenase (GAPDH), and ADP Ribosylation Factor Like GTPase-13B (ARL13B) in SCD patients. These findings underscore the clinical relevance of cilia in SCD and suggest that ciliary proteins are potential biomarkers for assessing vascular damage.
Collapse
Affiliation(s)
- Ashraf M Mohieldin
- College of Graduate Studies, Master Program of Pharmaceutical Science, California Northstate University, Elk Grove, California 95757, United States
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, California 95757, United States
| | - Madison Spencer
- College of Graduate Studies, Master Program of Pharmaceutical Science, California Northstate University, Elk Grove, California 95757, United States
| | - Carter Bernal
- College of Graduate Studies, Master Program of Pharmaceutical Science, California Northstate University, Elk Grove, California 95757, United States
| | - Wala B Fadol
- Department of Clinical Science, College of Medicine, California Northstate University, Elk Grove, California 95757, United States
| | - Ankan Gupta
- Department of Pediatrics, Developmental Vascular Biology Program, Division of Neonatology, Children's Research Institute (CRI), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Karthikeyan Thirugnanam
- Department of Pediatrics, Developmental Vascular Biology Program, Division of Neonatology, Children's Research Institute (CRI), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Claire Delahunty
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Francisco Nunez
- Department of Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618, United States
| | - Amy Y Pan
- Department of Pediatrics, Division of Bioinformatics and Quantitative Child Health, CRI, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Amanda M Brandow
- Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kevin R Rarick
- Department of Pediatrics, Division of Critical Care, CRI, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Developmental Vascular Biology Program, Division of Neonatology, Children's Research Institute (CRI), Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Rahima Zennadi
- Department of Physiology, College of Medicine, The University of Tennessee Health Science, Memphis, Tennessee 38163, United States
| | - John Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Surya M Nauli
- Department of Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Lapin B, Vandensteen J, Gropplero G, Mazloum M, Bienaimé F, Descroix S, Coscoy S. Decoupling shear stress and pressure effects in the biomechanics of autosomal dominant polycystic kidney disease using a perfused kidney-on-chip. Acta Biomater 2025; 197:326-338. [PMID: 40089130 DOI: 10.1016/j.actbio.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Kidney tubular cells are submitted to two distinct mechanical forces generated by the urine flow: shear stress and hydrostatic pressure. In addition, the mechanical properties of the surrounding extracellular matrix modulate tubule deformation under constraints. These mechanical factors likely play a role in the pathophysiology of kidney as exemplified by autosomal dominant polycystic kidney disease, in which pressure, flow and matrix stiffness have been proposed to modulate the cystic dilation of tubules with PKD1 mutations. The lack of in vitro systems recapitulating the mechanical environment of kidney tubules impedes our ability to dissect the role of these mechanical factors. Here we describe a perfused kidney-on-chip with tunable extracellular matrix mechanical properties and hydrodynamic constraints, that allows a decoupling of shear stress and flow. We used this system to dissect how these mechanical cues affect Pkd1-/- tubule dilation. We investigated cell behavior for a flow shear stress of 1 dyn/cm², combined or not with a 10-mbar intraluminal pressure. Our results showed two distinct mechanisms leading to tubular dilation. For Pkd1-/- PCT cells (proximal tubule), overproliferation mechanically leads to tubular dilation of 1.5-2-fold in 5 days, regardless of the mechanical context. For mIMCD-3 cells (collecting duct), tube dilation was associated with a squamous cell morphology but not with overproliferation and was highly sensitive to extracellular matrix properties, with suppression of the dilation when switching extracellular matrix composition from 6 to 9 mg/ml collagen. Contrary to PCT, mIMCD-3 tube dilation was highly sensitive to the nature of hydrodynamic constraint. Surprisingly, flow alone suppressed Pkd1-/- mIMCD-3 tubule dilation observed in static conditions, while the addition of luminal pressure restored it. Our in vitro model emulating nephron geometrical and mechanical organization sheds light on the roles of mechanical constraints in ADPKD and demonstrates the importance of controlling intraluminal pressure in kidney tubule models. STATEMENT OF SIGNIFICANCE: In autosomal dominant polycystic kidney disease, the development of numerous renal cysts leads to renal failure, with no curative therapy available. The initial stage of cyst formation, local tubule dilation, remains poorly understood. Although mechanical cues may be decisive, there is a lack of biomimetic systems recapitulating them. Here, an innovative kidney-on-a-chip was designed to decouple different hydrodynamic cues. We observed disease-specific tube dilation, driven by distinct mechanisms based or not on proliferation, in proximal tubule or collecting duct cell lines. Strikingly in the latter case, dilation, highly dependent on mechanical conditions, was suppressed by flow but restored by luminal pressure. Our model highlights the role of mechanical constraints in ADPKD and the importance of pressure control in renal models.
Collapse
Affiliation(s)
- Brice Lapin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris 75005, France
| | - Jessica Vandensteen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris 75005, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris 75005, France
| | - Manal Mazloum
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département 'Croissance et Signalisation', INSERM UMR1151, CNRS UMR 8253, Paris, France
| | - Frank Bienaimé
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département 'Croissance et Signalisation', INSERM UMR1151, CNRS UMR 8253, Paris, France; Service de Physiologie Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris 75005, France.
| | - Sylvie Coscoy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris 75005, France.
| |
Collapse
|
3
|
Lapin B, Gropplero G, Vandensteen J, Mazloum M, Bienaimé F, Descroix S, Coscoy S. Decoupling shear stress and pressure effects in the biomechanics of autosomal dominant polycystic kidney disease using a perfused kidney-on-chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599137. [PMID: 38948811 PMCID: PMC11212944 DOI: 10.1101/2024.06.18.599137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Kidney tubular cells are submitted to two distinct mechanical forces generated by the urine flow: shear stress and hydrostatic pressure. In addition, the mechanical properties of the surrounding extracellular matrix modulate tubule deformation under constraints. These mechanical factors likely play a role in the pathophysiology of kidney diseases as exemplified by autosomal dominant polycystic kidney disease, in which pressure, flow and matrix stiffness have been proposed to modulate the cystic dilation of tubules with PKD1 mutations. The lack of in vitro systems recapitulating the mechanical environment of kidney tubules impedes our ability to dissect the role of these mechanical factors. Here we describe a perfused kidney-on-chip with tunable extracellular matrix mechanical properties and hydrodynamic constraints, that allows a decoupling of shear stress and flow. We used this system to dissect how these mechanical cues affect Pkd1 -/- tubule dilation. Our results show two distinct mechanisms leading to tubular dilation. For PCT cells (proximal tubule), overproliferation mechanically leads to tubular dilation, regardless of the mechanical context. For mIMCD-3 cells (collecting duct), tube dilation is associated with a squamous cell morphology but not with overproliferation and is highly sensitive to extracellular matrix properties and hydrodynamic constraints. Surprisingly, flow alone suppressed Pkd1 -/- mIMCD-3 tubule dilation observed in static conditions, while the addition of luminal pressure restored it. Our in vitro model emulating nephron geometrical and mechanical organization sheds light on the roles of mechanical constraints in ADPKD and demonstrates the importance of controlling intraluminal pressure in kidney tubule models.
Collapse
Affiliation(s)
- Brice Lapin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Jessica Vandensteen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Manal Mazloum
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département ‘Croissance et Signalisation’, INSERM UMR1151, CNRS UMR 8253 Paris, France
| | - Frank Bienaimé
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département ‘Croissance et Signalisation’, INSERM UMR1151, CNRS UMR 8253 Paris, France
- Service de Physiologie Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Sylvie Coscoy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| |
Collapse
|
4
|
Carneiro de Oliveira K, Wei Y, Repetti RL, Meth J, Majumder N, Sapkota A, Gusella GL, Rohatgi R. Tubular deficiency of ABCA1 augments cholesterol- and Na +-dependent effects on systemic blood pressure in male mice. Am J Physiol Renal Physiol 2024; 326:F265-F277. [PMID: 38153852 PMCID: PMC11207546 DOI: 10.1152/ajprenal.00154.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Dyslipidemia, with changes in plasma membrane (PM) composition, is associated with hypertension, while rising PM cholesterol induces Na+ channel activity. We hypothesize that ablation of renal tubular ABCA1, a cholesterol efflux protein, leads to cholesterol- and Na+-dependent changes in blood pressure (BP). Transgenic mice (TgPAX8rtTA;tetO-Cre/+) expressing a doxycycline (dox)-inducible CRE recombinase were bred with mice expressing floxed ABCA1 to generate renal tubules deficient in ABCA1 (ABCA1FF). Tail-cuff systolic BP (SBP) was measured in mice on specific diets. Immunoblotting was performed on whole and PM protein lysates of kidney from mice completing experimental diets. Cortical PM of ABCA1FF showed reduced ABCA1 (60 ± 28%; n = 10, P < 0.05) compared with wild-type littermates (WT; n = 9). Tail-cuff SBP of ABCA1FF (n = 11) was not only greater post dox, but also during cholesterol or high Na+ feeding (P < 0.05) compared with WT mice (n = 15). A Na+-deficient diet abolished the difference, while 6 wk of cholesterol diet raised SBP in ABCA1FF compared with mice before cholesterol feeding (P < 0.05). No difference in α-ENaC protein abundance was noted in kidney lysate; however, γ-ENaC increased in ABCA1FF mice versus WT mice. In kidney membranes, NKCC2 abundance was greater in ABCA1FF versus WT mice. Cortical lysates of ABCA1FF mouse kidneys expressed less renin and angiotensin I receptor than WT mouse kidneys. Furosemide injection induced a greater diuretic effect in ABCA1FF (n = 7; 45.2 ± 8.7 µL/g body wt) versus WT (n = 7; 33.1 ± 6.9 µL/g body wt; P < 0.05) but amiloride did not. Tubular ABCA1 deficiency induces cholesterol-dependent rise in SBP and modest Na+ sensitivity of SBP, which we speculate is partly related to Na+ transporters and channels.NEW & NOTEWORTHY Cholesterol has been linked to greater Na+ channel activity in kidney cells, which may predispose to systemic hypertension. We showed that when ABCA1, a protein that removes cholesterol from tissues, is ablated from mouse kidneys, systemic blood pressure is greater than normal mice. Dietary cholesterol further increases blood pressure in transgenic mice, whereas low dietary salt intake reduced blood pressure to that of normal mice. Thus, we speculate that diseases and pharmaceuticals that reduce renal ABCA1 expression, like diabetes and calcineurin inhibitors, respectively, contribute to the prominence of hypertension in their clinical presentation.
Collapse
Affiliation(s)
- Karin Carneiro de Oliveira
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Yuan Wei
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Robert L Repetti
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Jennifer Meth
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
| | - Nomrota Majumder
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Ananda Sapkota
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - G Luca Gusella
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Rajeev Rohatgi
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
5
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
6
|
Janssens P, Decuypere JP, De Rechter S, Breysem L, Van Giel D, Billen J, Hindryckx A, De Catte L, Baldewijns M, Claes KBM, Wissing KM, Devriendt K, Bammens B, Meyts I, Torres VE, Vennekens R, Mekahli D. Enhanced MCP-1 Release in Early Autosomal Dominant Polycystic Kidney Disease. Kidney Int Rep 2021; 6:1687-1698. [PMID: 34169210 PMCID: PMC8207325 DOI: 10.1016/j.ekir.2021.03.893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023] Open
Abstract
Introduction Autosomal dominant polycystic kidney disease (ADPKD) causes kidney failure typically in adulthood, but the disease starts in utero. Copeptin, epidermal growth factor (EGF), and monocyte chemoattractant protein-1 (MCP-1) are associated with severity and hold prognostic value in adults but remain unstudied in the early disease stage. Kidneys from adults with ADPKD exhibit macrophage infiltration, and a prominent role of MCP-1 secretion by tubular epithelial cells is suggested from rodent models. Methods In a cross-sectional study, plasma copeptin, urinary EGF, and urinary MCP-1 were evaluated in a pediatric ADPKD cohort and compared with age-, sex-, and body mass index (BMI)-matched healthy controls. MCP-1 was studied in mouse collecting duct cells, human proximal tubular cells, and fetal kidney tissue. Results Fifty-three genotyped ADPKD patients and 53 controls were included. The mean (SD) age was 10.4 (5.9) versus 10.5 (6.1) years (P = 0.543), and the estimated glomerular filtration rate (eGFR) was 122.7 (39.8) versus 114.5 (23.1) ml/min per 1.73 m2 (P = 0.177) in patients versus controls, respectively. Plasma copeptin and EGF secretion were comparable between groups. The median (interquartile range) urinary MCP-1 (pg/mg creatinine) was significantly higher in ADPKD patients (185.4 [213.8]) compared with controls (154.7 [98.0], P = 0.010). Human proximal tubular cells with a heterozygous PKD1 mutation and mouse collecting duct cells with a PKD1 knockout exhibited increased MCP-1 secretion. Human fetal ADPKD kidneys displayed prominent MCP-1 immunoreactivity and M2 macrophage infiltration. Conclusion An increase in tubular MCP-1 secretion is an early event in ADPKD. MCP-1 is an early disease severity marker and a potential treatment target.
Collapse
Affiliation(s)
- Peter Janssens
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Brussels, Brussels, Belgium
| | - Jean-Paul Decuypere
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Stéphanie De Rechter
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Luc Breysem
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Dorien Van Giel
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Jaak Billen
- Department of Laboratory Medicine, University Hospitals Leuven, Belgium
| | - An Hindryckx
- Department of Obstetrics and Gynecology, KU Leuven, Belgium
| | - Luc De Catte
- Department of Obstetrics and Gynecology, KU Leuven, Belgium
| | | | | | - Karl M Wissing
- Department of Nephrology, University Hospitals Brussels, Brussels, Belgium
| | - Koen Devriendt
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bert Bammens
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pediatric Nephrology and Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Repetti R, Majumder N, De Oliveira KC, Meth J, Yangchen T, Sharma M, Srivastava T, Rohatgi R. Unilateral Nephrectomy Stimulates ERK and Is Associated With Enhanced Na Transport. Front Physiol 2021; 12:583453. [PMID: 33633581 PMCID: PMC7901926 DOI: 10.3389/fphys.2021.583453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Nephron loss initiates compensatory hemodynamic and cellular effects on the remaining nephrons. Increases in single nephron glomerular filtration rate and tubular flow rate exert higher fluid shear stress (FSS) on tubules. In principal cell (PC) culture models FSS induces ERK, and ERK is implicated in the regulation of transepithelial sodium (Na) transport, as well as, proliferation. Thus, we hypothesize that high tubular flow and FSS mediate ERK activation in the cortical collecting duct (CCD) of solitary kidney which regulates amiloride sensitive Na transport and affects CCD cell number. Immunoblotting of whole kidney protein lysate was performed to determine phospho-ERK (pERK) expression. Next, sham and unilateral nephrectomized mice were stained with anti-pERK antibodies, and dolichos biflorus agglutinin (DBA) to identify PCs with pERK. Murine PCs (mpkCCD) were grown on semi-permeable supports under static, FSS, and FSS with U0126 (a MEK1/2 inhibitor) conditions to measure the effects of FSS and ERK inhibition on amiloride sensitive Na short circuit current (Isc). pERK abundance was greater in kidney lysate of unilateral vs. sham nephrectomies. The total number of cells in CCD and pERK positive PCs increased in nephrectomized mice (9.3 ± 0.4 vs. 6.1 ± 0.2 and 5.1 ± 0.5 vs. 3.6 ± 0.3 cell per CCD nephrectomy vs. sham, respectively, n > 6 per group, p < 0.05). However, Ki67, a marker of proliferation, did not differ by immunoblot or immunohistochemistry in nephrectomy samples at 1 month compared to sham. Next, amiloride sensitive Isc in static mpkCCD cells was 25.3 ± 1.7 μA/cm2 (n = 21), but after exposure to 24 h of FSS the Isc increased to 41.4 ± 2.8 μA/cm2 (n = 22; p < 0.01) and returned to 19.1 ± 2.1 μA/cm2 (n = 18, p < 0.01) upon treatment with U0126. Though FSS did not alter α- or γ-ENaC expression in mpkCCD cells, γ-ENaC was reduced in U0126 treated cells. In conclusion, pERK increases in whole kidney and, specifically, CCD cells after nephrectomy, but pERK was not associated with active proliferation at 1-month post-nephrectomy. In vitro studies suggest high tubular flow induces ERK dependent ENaC Na absorption and may play a critical role in Na balance post-nephrectomy.
Collapse
Affiliation(s)
- Robert Repetti
- Northport VA Medical Center, Northport, NY, United States.,School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Nomrota Majumder
- School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | | | - Jennifer Meth
- Northport VA Medical Center, Northport, NY, United States
| | - Tenzin Yangchen
- Program in Public Health, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Mukut Sharma
- Kansas City VA Medical Center, Kansas City, MO, United States
| | | | - Rajeev Rohatgi
- Northport VA Medical Center, Northport, NY, United States.,School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
8
|
Zimmerman KA, Hopp K, Mrug M. Role of chemokines, innate and adaptive immunity. Cell Signal 2020; 73:109647. [PMID: 32325183 DOI: 10.1016/j.cellsig.2020.109647] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
Polycystic Kidney Disease (PKD) triggers a robust immune system response including changes in both innate and adaptive immunity. These changes involve immune cells (e.g., macrophages and T cells) as well as cytokines and chemokines (e.g., MCP-1) that regulate the production, differentiation, homing, and various functions of these cells. This review is focused on the role of the immune system and its associated factors in the pathogenesis of PKDs as evidenced by data from cell-based systems, animal models, and PKD patients. It also highlights relevant pre-clinical and clinical studies that point to specific immune system components as promising candidates for the development of prognostic biomarkers and therapeutic strategies to improve PKD outcomes.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, Polycystic Kidney Disease Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michal Mrug
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veterans Affairs Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
9
|
Orbital Shear Stress Regulates Differentiation and Barrier Function of Primary Renal Tubular Epithelial Cells. ASAIO J 2019; 64:766-772. [PMID: 29240625 DOI: 10.1097/mat.0000000000000723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Primary cells cultured in vitro gradually lose features characteristic of the in vivo phenotype. Culture techniques that help maintain cell-specific phenotype are advantageous for development of tissue engineered and bioartificial organs. Here we evaluated the phenotype of primary human renal tubular epithelial cells subjected to fluid shear stress by culturing the cells on an orbital shaker. Transepithelial electrical resistance (TEER), cell density, and gene and protein expression of proximal tubule-specific functional markers were measured in cells subjected to orbital shear stress. Cells cultured on an orbital shaker had increased TEER, higher cell density, and enhanced tubular epithelial specific gene and protein expression. This is likely due at least in part to the mechanical stress applied to the apical surface of the cells although other factors including increased nutrient and oxygen delivery and improved mixing could also play a role. These results suggest that orbital shaker culture may be a simple approach to augmenting the differentiated phenotype of cultured renal epithelial cells.
Collapse
|
10
|
Repetti RL, Meth J, Sonubi O, Flores D, Satlin LM, Rohatgi R. Cellular cholesterol modifies flow-mediated gene expression. Am J Physiol Renal Physiol 2019; 317:F815-F824. [PMID: 31364378 DOI: 10.1152/ajprenal.00196.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Downregulation of heme oxygenase-1 (HO-1), cyclooxygenase-2 (COX2), and nitric oxide synthase-2 (NOS2) in the kidneys of Dahl rodents causes salt sensitivity, while restoring their expression aids in Na+ excretion and blood pressure reduction. Loading cholesterol into collecting duct (CD) cells represses fluid shear stress (FSS)-mediated COX2 activity. Thus, we hypothesized that cholesterol represses flow-responsive genes necessary to effectuate Na+ excretion. To this end, CD cells were used to test whether FSS induces these genes and if cholesterol loading represses them. Mice fed either 0% or 1% cholesterol diet were injected with saline, urine volume and electrolytes were measured, and renal gene expression determined. FSS-exposed CD cells demonstrated increases in HO-1 mRNA by 350-fold, COX2 by 25-fold, and NOS2 by 8-fold in sheared cells compared with static cells (P < 0.01). Immunoblot analysis of sheared cells showed increases in HO-1, COX2, and NOS2 protein, whereas conditioned media contained more HO-1 and PGE2 than static cells. Cholesterol loading repressed the sheared mediated protein abundance of HO-1 and NOS2 as well as HO-1 and PGE2 concentrations in media. In cholesterol-fed mice, urine volume was less at 6 h after injection of isotonic saline (P < 0.05). Urinary Na+ concentration, urinary K+ concentration, and osmolality were greater, whereas Na+ excretion was less, at the 6-h urine collection time point in cholesterol-fed versus control mice (P < 0.05). Renal cortical and medullary HO-1 (P < 0.05) and NOS2 (P < 0.05) mRNA were repressed in cholesterol-fed compared with control mice. Cholesterol acts to repress flow induced natriuretic gene expression, and this effect, in vivo, may contribute to renal Na+ avidity.
Collapse
Affiliation(s)
- Robert L Repetti
- Northport Veterans Affairs Medical Center, Northport, New York.,Stony Brook University School of Medicine, Stony Brook, New York
| | - Jennifer Meth
- Northport Veterans Affairs Medical Center, Northport, New York
| | - Oluwatoni Sonubi
- Northport Veterans Affairs Medical Center, Northport, New York.,Stony Brook University School of Medicine, Stony Brook, New York
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajeev Rohatgi
- Northport Veterans Affairs Medical Center, Northport, New York.,Stony Brook University School of Medicine, Stony Brook, New York
| |
Collapse
|
11
|
Ferrell N, Sandoval RM, Molitoris BA, Brakeman P, Roy S, Fissell WH. Application of physiological shear stress to renal tubular epithelial cells. Methods Cell Biol 2019; 153:43-67. [PMID: 31395384 DOI: 10.1016/bs.mcb.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Renal tubular epithelial cells are consistently exposed to flow of glomerular filtrate that creates fluid shear stress at the apical cell surface. This biophysical stimulus regulates several critical renal epithelial cell functions, including transport, protein uptake, and barrier function. Defining the in vivo mechanical conditions in the kidney tubule is important for accurately recapitulating these conditions in vitro. Here we provide a summary of the fluid flow conditions in the kidney and how this translates into different levels of fluid shear stress down the length of the nephron. A detailed method is provided for measuring fluid flow in the proximal tubule by intravital microscopy. Devices to mimic in vivo fluid shear stress for in vitro studies are discussed, and we present two methods for culture and analysis of renal tubule epithelial cells exposed physiological levels of fluid shear stress. The first is a microfluidic device that permits application of controlled shear stress to cells cultured on porous membranes. The second is culture of renal tubule cells on an orbital shaker. Each method has advantages and disadvantages that should be considered in the context of the specific experimental objectives.
Collapse
Affiliation(s)
- Nicholas Ferrell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.
| | - Ruben M Sandoval
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bruce A Molitoris
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paul Brakeman
- Department of Pediatrics, University of California, San Francisco, CA, United States
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - William H Fissell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
12
|
Mohammed SG, Arjona FJ, Verschuren EHJ, Bakey Z, Alkema W, Hijum S, Schmidts M, Bindels RJM, Hoenderop JGJ. Primary cilia‐regulated transcriptome in the renal collecting duct. FASEB J 2018; 32:3653-3668. [DOI: 10.1096/fj.201701228r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sami G. Mohammed
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Francisco J. Arjona
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Eric H. J. Verschuren
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Zeineb Bakey
- Department of Human GeneticsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Wynand Alkema
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Sacha Hijum
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Miriam Schmidts
- Department of Human GeneticsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburg University Medical FacultyFreiburgGermany
| | - Rene J. M. Bindels
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Joost G. J. Hoenderop
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
13
|
Kunnen SJ, Malas TB, Semeins CM, Bakker AD, Peters DJM. Comprehensive transcriptome analysis of fluid shear stress altered gene expression in renal epithelial cells. J Cell Physiol 2017; 233:3615-3628. [PMID: 29044509 PMCID: PMC5765508 DOI: 10.1002/jcp.26222] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/05/2017] [Indexed: 12/21/2022]
Abstract
Renal epithelial cells are exposed to mechanical forces due to flow‐induced shear stress within the nephrons. Shear stress is altered in renal diseases caused by tubular dilation, obstruction, and hyperfiltration, which occur to compensate for lost nephrons. Fundamental in regulation of shear stress are primary cilia and other mechano‐sensors, and defects in cilia formation and function have profound effects on development and physiology of kidneys and other organs. We applied RNA sequencing to get a comprehensive overview of fluid‐shear regulated genes and pathways in renal epithelial cells. Functional enrichment‐analysis revealed TGF‐β, MAPK, and Wnt signaling as core signaling pathways up‐regulated by shear. Inhibitors of TGF‐β and MAPK/ERK signaling modulate a wide range of mechanosensitive genes, identifying these pathways as master regulators of shear‐induced gene expression. However, the main down‐regulated pathway, that is, JAK/STAT, is independent of TGF‐β and MAPK/ERK. Other up‐regulated cytokine pathways include FGF, HB‐EGF, PDGF, and CXC. Cellular responses to shear are modified at several levels, indicated by altered expression of genes involved in cell‐matrix, cytoskeleton, and glycocalyx remodeling, as well as glycolysis and cholesterol metabolism. Cilia ablation abolished shear induced expression of a subset of genes, but genes involved in TGF‐β, MAPK, and Wnt signaling were hardly affected, suggesting that other mechano‐sensors play a prominent role in the shear stress response of renal epithelial cells. Modulations in signaling due to variations in fluid shear stress are relevant for renal physiology and pathology, as suggested by elevated gene expression at pathological levels of shear stress compared to physiological shear.
Collapse
Affiliation(s)
- Steven J Kunnen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tareq B Malas
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis M Semeins
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Mohammed SG, Arjona FJ, Latta F, Bindels RJM, Roepman R, Hoenderop JGJ. Fluid shear stress increases transepithelial transport of Ca
2+
in ciliated distal convoluted and connecting tubule cells. FASEB J 2017; 31:1796-1806. [DOI: 10.1096/fj.201600687rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/03/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sami G. Mohammed
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Francisco J. Arjona
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Femke Latta
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - René J. M. Bindels
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Ronald Roepman
- Department of Human GeneticsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Joost G. J. Hoenderop
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
15
|
Hyperfiltration-associated biomechanical forces in glomerular injury and response: Potential role for eicosanoids. Prostaglandins Other Lipid Mediat 2017; 132:59-68. [PMID: 28108282 DOI: 10.1016/j.prostaglandins.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022]
Abstract
Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-associated increase in biomechanical forces, namely pressure-induced tensile stress and fluid flow-induced shear stress (FFSS) determine cellular injury and response. We believe the current treatment of CKD yields limited success because it largely attenuates pressure-induced tensile stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular epithelial cells and bone osteocytes provide evidence for a significant role of COX-2 generated PGE2 and its receptors in response to tensile stress and FFSS. Preliminary observations show increased urinary PGE2 in children born with a solitary kidney. FFSS-induced COX2-PGE2-EP2 signaling provides an opportunity to identify targets and, for developing novel agents to complement currently available treatment.
Collapse
|
16
|
Brakeman P, Miao S, Cheng J, Lee CZ, Roy S, Fissell WH, Ferrell N. A modular microfluidic bioreactor with improved throughput for evaluation of polarized renal epithelial cells. BIOMICROFLUIDICS 2016; 10:064106. [PMID: 27917253 PMCID: PMC5116024 DOI: 10.1063/1.4966986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/23/2016] [Indexed: 05/16/2023]
Abstract
Most current microfluidic cell culture systems are integrated single use devices. This can limit throughput and experimental design options, particularly for epithelial cells, which require significant time in culture to obtain a fully differentiated phenotype. In addition, epithelial cells require a porous growth substrate in order to fully polarize their distinct apical and basolateral membranes. We have developed a modular microfluidic system using commercially available porous culture inserts to evaluate polarized epithelial cells under physiologically relevant fluid flow conditions. The cell-support for the bioreactor is a commercially available microporous membrane that is ready to use in a 6-well format, allowing for cells to be seeded in advance in replicates and evaluated for polarization and barrier function prior to experimentation. The reusable modular system can be easily assembled and disassembled using these mature cells, thus improving experimental throughput and minimizing fabrication requirements. The bioreactor consists of an apical microfluidic flow path and a static basolateral chamber that is easily accessible from the outside of the device. The basolateral chamber acts as a reservoir for transport across the cell layer. We evaluated the effect of initiation of apical shear flow on short-term intracellular signaling and mRNA expression using primary human renal epithelial cells (HRECs). Ten min and 5 h after initiation of apical fluid flow over a stable monolayer of HRECs, cells demonstrated increased phosphorylation of extracellular signal-related kinase and increased expression of interleukin 6 (IL-6) mRNA, respectively. This bioreactor design provides a modular platform with rapid experimental turn-around time to study various epithelial cell functions under physiologically meaningful flow conditions.
Collapse
Affiliation(s)
- Paul Brakeman
- Department of Pediatrics, University of California , San Francisco, San Francisco, California 94143, USA
| | - Simeng Miao
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, USA
| | - Jin Cheng
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, USA
| | - Chao-Zong Lee
- Department of Pediatrics, University of California , San Francisco, San Francisco, California 94143, USA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, San Francisco, California 94143, USA
| | - William H Fissell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, USA
| | - Nicholas Ferrell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, USA
| |
Collapse
|
17
|
Pandit MM, Gao Y, van Hoek A, Kohan DE. Osmolar regulation of endothelin-1 production by the inner medullary collecting duct. Life Sci 2015; 159:135-139. [PMID: 26546722 DOI: 10.1016/j.lfs.2015.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/16/2015] [Accepted: 10/31/2015] [Indexed: 02/01/2023]
Abstract
AIMS Endothelin-1 (ET-1) is an autocrine inhibitor of collecting duct (CD) Na(+) and water reabsorption. CD ET-1 production is increased by a high salt diet and is important in promoting a natriuretic response. The mechanisms by which a high salt diet enhances CD ET-1 are being uncovered. In particular, elevated tubule fluid flow, as occurs in salt loading, enhances CD ET-1 synthesis. Tubule fluid solute content and interstitial osmolality can also be altered by a high salt diet, however their effect on CD ET-1 alone, or in combination with flow, is poorly understood. MAIN METHODS ET-1 mRNA production by a mouse inner medullary CD cell line (mIMCD3) in response to changing flow and/or osmolality was assessed. KEY FINDINGS Flow or hyperosmolality (using NaCl, mannitol or urea) individually caused an ~2-fold increase in ET-1 mRNA, while flow and hyperosmolality together increased ET-1 mRNA by ~14 fold. The hyperosmolality effect alone and the synergistic effect of flow + hyperosmolality was inhibited by chelation of intracellular Ca(2+), however were not altered by blockade of downstream Ca(2+)-signaling pathways (calcineurin or NFATc), inhibition of cellular Ca(2+) entry channels (purinergic receptors or polycystin-2), or blockade of the epithelial Na(+) channel. Inhibition of NFAT5 with rottlerin or NFAT5 siRNA greatly reduced the stimulatory effect of osmolality alone and osmolality + flow on mIMCD3 ET-1 mRNA levels. SIGNIFICANCE Both flow and osmolality individually and synergistically stimulate mIMCD3 ET-1 mRNA content. These findings may be relevant to explaining high salt diet induction of CD ET-1 production.
Collapse
Affiliation(s)
- Meghana M Pandit
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, Salt Lake City, UT, USA
| | - Yang Gao
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Alfred van Hoek
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, Salt Lake City, UT, USA; Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| |
Collapse
|
18
|
Liu Y, Flores D, Carrisoza-Gaytán R, Rohatgi R. Cholesterol affects flow-stimulated cyclooxygenase-2 expression and prostanoid secretion in the cortical collecting duct. Am J Physiol Renal Physiol 2015; 308:F1229-37. [PMID: 25761882 DOI: 10.1152/ajprenal.00635.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
Essential hypertension (eHTN) is associated with hypercholesterolemia, but how cholesterol contributes to eHTN is unknown. Recent evidence demonstrates that short-term dietary cholesterol ingestion induces epithelial Na channel (ENaC)-dependent Na absorption with a subsequent rise in blood pressure (BP), implicating cholesterol in salt-sensitive HTN. Prostaglandin E2 (PGE2), an autocrine/paracrine molecule, is induced by flow in endothelia to vasodilate the vasculature and inhibit ENaC-dependent Na absorption in the renal collecting duct (CD), which reduce BP. We hypothesize that cholesterol suppresses flow-mediated cyclooxygenase-2 (COX-2) expression and PGE2 release in the CD, which, in turn, affects Na absorption. Cortical CDs (CCDs) were microperfused at 0, 1, and 5 nl·min(-1)·mm(-1), and PGE2 release was measured. Secreted PGE2 was similar between no- and low-flow (151 ± 28 vs. 121 ± 48 pg·ml(-1)·mm(-1)) CCDs, but PGE2 was greatest from high-flow (578 ± 146 pg·ml(-1)·mm(-1); P < 0.05) CCDs. Next, mice were fed either a 0 or 1% cholesterol diet, injected with saline to generate high urine flow rates, and CCDs were microdissected for PGE2 secretion. CCDs isolated from cholesterol-fed mice secreted less PGE2 and had a lower PGE2-generating capacity than CCDs isolated from control mice, implying cholesterol repressed flow-induced PGE2 synthesis. Next, cholesterol extraction in a CD cell line induced COX-2 expression and PGE2 release while cholesterol incorporation, conversely, suppressed their expression. Moreover, fluid shear stress (FSS) and cholesterol extraction induced COX-2 protein abundance via p38-dependent activation. Thus cellular cholesterol composition affects biomechanical signaling, which, in turn, affects FSS-mediated COX-2 expression and PGE2 release via a p38-dependent mechanism.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and
| | - Daniel Flores
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and
| | | | - Rajeev Rohatgi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
19
|
Pandit MM, Inscho EW, Zhang S, Seki T, Rohatgi R, Gusella L, Kishore B, Kohan DE. Flow regulation of endothelin-1 production in the inner medullary collecting duct. Am J Physiol Renal Physiol 2015; 308:F541-52. [PMID: 25587122 DOI: 10.1152/ajprenal.00456.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Collecting duct-derived endothelin (ET)-1 is an autocrine inhibitor of Na(+) and water reabsorption; its deficiency causes hypertension and water retention. Extracellular fluid volume expansion increases collecting duct ET-1, thereby promoting natriuresis and diuresis; however, how this coupling between volume expansion and collecting duct ET-1 occurs is incompletely understood. One possibility is that volume expansion increases tubular fluid flow. To investigate this, cultured IMCD3 cells were subjected to static or flow conditions. Exposure to a shear stress of 2 dyn/cm(2) for 2 h increased ET-1 mRNA content by ∼2.3-fold. Absence of perfusate Ca(2+), chelation of intracellular Ca(2+), or inhibition of Ca(2+) signaling (calmodulin, Ca(2+)/calmodulin-dependent kinase, calcineurin, PKC, or phospholipase C) prevented the flow response. Evaluation of possible flow-activated Ca(2+) entry pathways revealed no role for transient receptor potential (TRP)C3, TRPC6, and TRPV4; however, cells with TRPP2 (polycystin-2) knockdown had no ET-1 flow response. Flow increased intracellular Ca(2+) was blunted in TRPP2 knockdown cells. Nonspecific blockade of P2 receptors, as well as specific inhibition of P2X7 and P2Y2 receptors, prevented the ET-1 flow response. The ET-1 flow response was not affected by inhibition of either epithelial Na(+) channels or the mitochondrial Na(+)/Ca(2+) exchanger. Taken together, these findings provide evidence that in IMCD3 cells, flow, via polycystin-2 and P2 receptors, engages Ca(2+)-dependent signaling pathways that stimulate ET-1 synthesis.
Collapse
Affiliation(s)
- Meghana M Pandit
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Pharmaceutics and Pharmaceutical Chemistry, Salt Lake City, Utah
| | | | - Shali Zhang
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Tsugio Seki
- Department of Medical Education, California Northstate University, Elk Grove, California
| | - Rajeev Rohatgi
- Department of Medicine, James J. Peter Veterans Affairs Medical Center, Bronx, New York; Department of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Luca Gusella
- Department of Medicine, James J. Peter Veterans Affairs Medical Center, Bronx, New York; Department of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Bellamkonda Kishore
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Pharmaceutics and Pharmaceutical Chemistry, Salt Lake City, Utah; Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
20
|
Chung HH, Chan CK, Khire TS, Marsh GA, Clark A, Waugh RE, McGrath JL. Highly permeable silicon membranes for shear free chemotaxis and rapid cell labeling. LAB ON A CHIP 2014; 14:2456-68. [PMID: 24850320 PMCID: PMC4540053 DOI: 10.1039/c4lc00326h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream. Here we demonstrate a chemotaxis system in which two chambers are separated by a molecularly thin (15 nm), transparent, and nanoporous silicon membrane. One chamber is a microfluidic channel that carries a flow-generated gradient while the other chamber is a shear-free environment for cell observation. The molecularly thin membranes provide effectively no resistance to molecular diffusion between the two chambers, making them ideal elements for creating flow-free chambers in microfluidic systems. Analytical and computational flow models that account for membrane and chamber geometry, predict shear reduction of more than five orders of magnitude. This prediction is confirmed by observing the pure diffusion of nanoparticles in the cell-hosting chamber despite high input flow (Q = 10 μL min(-1); vavg ~ 45 mm min(-1)) in the flow chamber only 15 nm away. Using total internal reflection fluorescence (TIRF) microscopy, we show that a flow-generated molecular gradient will pass through the membrane into the quiescent cell chamber. Finally we demonstrate that our device allows us to expose migrating neutrophils to a chemotactic gradient or fluorescent label without any influence from flow.
Collapse
Affiliation(s)
- Henry H Chung
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Cabral PD, Garvin JL. TRPV4 activation mediates flow-induced nitric oxide production in the rat thick ascending limb. Am J Physiol Renal Physiol 2014; 307:F666-72. [PMID: 24966090 DOI: 10.1152/ajprenal.00619.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) regulates renal function. Luminal flow stimulates NO production in the thick ascending limb (TAL). Transient receptor potential vanilloid 4 (TRPV4) is a mechano-sensitive channel activated by luminal flow in different types of cells. We hypothesized that TRPV4 mediates flow-induced NO production in the rat TAL. We measured NO production in isolated, perfused rat TALs using the fluorescent dye DAF FM. Increasing luminal flow from 0 to 20 nl/min stimulated NO from 8 ± 3 to 45 ± 12 arbitrary units (AU)/min (n = 5; P < 0.05). The TRPV4 antagonists, ruthenium red (15 μmol/l) and RN 1734 (10 μmol/l), blocked flow-induced NO production. Also, luminal flow did not increase NO production in the absence of extracellular calcium. We also studied the effect of luminal flow on NO production in TALs transduced with a TRPV4shRNA. In nontransduced TALs luminal flow increased NO production by 47 ± 17 AU/min (P < 0.05; n = 5). Similar to nontransduced TALs, luminal flow increased NO production by 39 ± 11 AU/min (P < 0.03; n = 5) in TALs transduced with a control negative sequence-shRNA while in TRPV4shRNA-transduced TALs, luminal flow did not increase NO production (Δ10 ± 15 AU/min; n = 5). We then tested the effect of two different TRPV4 agonists on NO production in the absence of luminal flow. 4α-Phorbol 12,13-didecanoate (1 μmol/l) enhanced NO production by 60 ± 11 AU/min (P < 0.002; n = 7) and GSK1016790A (10 ηmol/l) increased NO production by 52 ± 15 AU/min (P < 0.03; n = 5). GSK1016790A (10 ηmol/l) did not stimulate NO production in TRPV4shRNA-transduced TALs. We conclude that activation of TRPV4 channels mediates flow-induced NO production in the rat TAL.
Collapse
Affiliation(s)
- Pablo D Cabral
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and Universidad de Buenos Aires, Facultad de Medicina, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and
| |
Collapse
|
22
|
A minimally invasive method for retrieving single adherent cells of different types from cultures. Sci Rep 2014; 4:5424. [PMID: 24957932 PMCID: PMC4067612 DOI: 10.1038/srep05424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023] Open
Abstract
The field of single-cell analysis has gained a significant momentum over the last decade. Separation and isolation of individual cells is an indispensable step in almost all currently available single-cell analysis technologies. However, stress levels introduced by such manipulations remain largely unstudied. We present a method for minimally invasive retrieval of selected individual adherent cells of different types from cell cultures. The method is based on a combination of mechanical (shear flow) force and biochemical (trypsin digestion) treatment. We quantified alterations in the transcription levels of stress response genes in individual cells exposed to varying levels of shear flow and trypsinization. We report optimal temperature, RNA preservation reagents, shear force and trypsinization conditions necessary to minimize changes in the stress-related gene expression levels. The method and experimental findings are broadly applicable and can be used by a broad research community working in the field of single cell analysis.
Collapse
|
23
|
Carrisoza-Gaytan R, Liu Y, Flores D, Else C, Lee HG, Rhodes G, Sandoval RM, Kleyman TR, Lee FYI, Molitoris B, Satlin LM, Rohatgi R. Effects of biomechanical forces on signaling in the cortical collecting duct (CCD). Am J Physiol Renal Physiol 2014; 307:F195-204. [PMID: 24872319 DOI: 10.1152/ajprenal.00634.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affected by biomechanical forces. We hypothesized that FSS and CS differentially affect MAPK signaling and PGE2 release to modulate cation transport in the CCD. To validate that CS is a physiological force in vivo, we applied the intravital microscopic approach to rodent kidneys in vivo to show that saline or furosemide injection led to a 46.5 ± 2.0 or 170 ± 32% increase, respectively, in distal tubular diameter. Next, murine CCD (mpkCCD) cells were grown on glass or silicone coated with collagen type IV and subjected to 0 or 0.4 dyne/cm(2) of FSS or 10% CS, respectively, forces chosen based on prior biomechanical modeling of ex vivo microperfused CCDs. Cells exposed to FSS expressed an approximately twofold greater abundance of phospho(p)-ERK and p-p38 vs. static cells, while CS did not alter p-p38 and p-ERK expression compared with unstretched controls. FSS induced whereas CS reduced PGE2 release by ∼40%. In conclusion, FSS and CS differentially affect ERK and p38 activation and PGE2 release in a cell culture model of the CD. We speculate that TFF differentially regulates biomechanical signaling and, in turn, cation transport in the CCD.
Collapse
Affiliation(s)
| | - Yu Liu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Flores
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York
| | - Cindy Else
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Heon Goo Lee
- Department of Orthopedics, Robert Carroll and Jane Chace Carroll Laboratories, Columbia College of Physicians and Surgeons, New York, New York
| | - George Rhodes
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Ruben M Sandoval
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Francis Young-In Lee
- Department of Orthopedics, Robert Carroll and Jane Chace Carroll Laboratories, Columbia College of Physicians and Surgeons, New York, New York
| | - Bruce Molitoris
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajeev Rohatgi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York;
| |
Collapse
|
24
|
Liu Y, Flores D, Carrisoza-Gaytán R, Rohatgi R. Biomechanical regulation of cyclooxygenase-2 in the renal collecting duct. Am J Physiol Renal Physiol 2013; 306:F214-23. [PMID: 24226521 DOI: 10.1152/ajprenal.00327.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
High-dietary sodium (Na), a feature of the Western diet, requires the kidney to excrete ample Na to maintain homeostasis and prevent hypertension. High urinary flow rate, presumably, leads to an increase in fluid shear stress (FSS) and FSS-mediated release of prostaglandin E2 (PGE2) by the cortical collecting duct (CCD) that enhances renal Na excretion. The pathways by which tubular flow biomechanically regulates PGE2 release and cyclooxygenase-2 (COX-2) expression are limited. We hypothesized that FSS, through stimulation of neutral-sphingomyelinase (N-SM) activity, enhances COX-2 expression to boost Na excretion. To test this, inner medullary CD3 cells were exposed to FSS in vitro and mice were injected with isotonic saline in vivo to induce high tubular flow. In vitro, FSS induced N-SM activity and COX-2 protein expression in cells while inhibition of N-SM activity repressed FSS-induced COX-2 protein abundance. Moreover, the murine CCD expresses N-SM protein and, when mice are injected with isotonic saline to induce high tubular flow, renal immunodetectable COX-2 is induced. Urinary PGE2 (445 ± 91 vs. 205 ± 14 pg/ml; P < 0.05) and microdissected CCDs (135.8 ± 21.7 vs. 65.8 ± 11.0 pg·ml(-1)·mm(-1) CCD; P < 0.05) from saline-injected mice generate more PGE2 than sham-injected controls, respectively. Incubation of CCDs with arachidonic acid and subsequent measurement of secreted PGE2 are a reflection of the PGE2 generating potential of the epithelia. CCDs isolated from polyuric mice doubled their PGE2 generating potential and this was due to induction of COX-2 activity/protein. Thus, high tubular flow and FSS induce COX-2 protein/activity to enhance PGE2 release and, presumably, effectuate Na excretion.
Collapse
Affiliation(s)
- Yu Liu
- One Gustave L. Levy Place, Box 1664, The Mount Sinai School of Medicine, New York, NY 10029.
| | | | | | | |
Collapse
|
25
|
Ta MHT, Harris DCH, Rangan GK. Role of interstitial inflammation in the pathogenesis of polycystic kidney disease. Nephrology (Carlton) 2013; 18:317-30. [DOI: 10.1111/nep.12045] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Michelle HT Ta
- Centre for Transplant and Renal Research; Westmead Millennium Institute; The University of Sydney; Sydney; New South Wales; Australia
| | - David CH Harris
- Centre for Transplant and Renal Research; Westmead Millennium Institute; The University of Sydney; Sydney; New South Wales; Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research; Westmead Millennium Institute; The University of Sydney; Sydney; New South Wales; Australia
| |
Collapse
|
26
|
Liu Y, Rajagopal M, Lee K, Battini L, Flores D, Gusella GL, Pao AC, Rohatgi R. Prostaglandin E(2) mediates proliferation and chloride secretion in ADPKD cystic renal epithelia. Am J Physiol Renal Physiol 2012; 303:F1425-34. [PMID: 22933297 DOI: 10.1152/ajprenal.00010.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) contributes to cystogenesis in genetically nonorthologous models of autosomal dominant polycystic kidney disease (ADPKD). However, it remains unknown whether PGE(2) induces the classic features of cystic epithelia in genetically orthologous models of ADPKD. We hypothesized that, in ADPKD epithelia, PGE(2) induces proliferation and chloride (Cl(-)) secretion, two archetypal phenotypic features of ADPKD. To test this hypothesis, proliferation and Cl(-) secretion were measured in renal epithelial cells deficient in polycystin-1 (PC-1). PC-1-deficient cells increased in cell number (proliferated) faster than PC-1-replete cells, and this proliferative advantage was abrogated by cyclooxygenase inhibition, indicating a role for PGE(2) in cell proliferation. Exogenous administration of PGE(2) increased proliferation of PC-1-deficient cells by 38.8 ± 5.2% (P < 0.05) but inhibited the growth of PC-1-replete control cells by 49.4 ± 1.9% (P < 0.05). Next, we tested whether PGE(2)-specific E prostanoid (EP) receptor agonists induce intracellular cAMP and downstream β-catenin activation. PGE(2) and EP4 receptor agonism (TCS 2510) increased intracellular cAMP concentration and the abundance of active β-catenin in PC-1-deficient cells, suggesting a mechanism for PGE(2)-mediated proliferation. Consistent with this hypothesis, antagonizing EP4 receptors reverted the growth advantage of PC-1-deficient cells, implicating a central role for the EP4 receptor in proliferation. To test whether PGE(2)-dependent Cl(-) secretion is also enhanced in PC-1-deficient cells, we used an Ussing chamber to measure short-circuit current (I(sc)). Addition of PGE(2) induced a fivefold higher increase in I(sc) in PC-1-deficient cells compared with PC-1-replete cells. This PGE(2)-induced increase in I(sc) in PC-1-deficient cells was blocked by CFTR-172 and flufenamic acid, indicating that PGE(2) activates CFTR and calcium-activated Cl(-) channels. In conclusion, PGE(2) activates aberrant signaling pathways in PC-1-deficient epithelia that contribute to the proliferative and secretory phenotype characteristic of ADPKD and suggests a therapeutic role for PGE(2) inhibition and EP4 receptor antagonism.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Flores D, Liu Y, Liu W, Satlin LM, Rohatgi R. Flow-induced prostaglandin E2 release regulates Na and K transport in the collecting duct. Am J Physiol Renal Physiol 2012; 303:F632-8. [PMID: 22696602 DOI: 10.1152/ajprenal.00169.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fluid shear stress (FSS) is a critical regulator of cation transport in the collecting duct (CD). High-dietary sodium (Na) consumption increases urine flow, Na excretion, and prostaglandin E(2) (PGE(2)) excretion. We hypothesize that increases in FSS elicited by increasing tubular flow rate induce the release of PGE(2) from renal epithelial cells into the extracellular compartment and regulate ion transport. Media retrieved from CD cells exposed to physiologic levels of FSS reveal several fold higher concentration of PGE(2) compared with static controls. Treatment of CD cells with either cyclooxygenase-1 (COX-1) or COX-2 inhibitors during exposure to FSS limited the increase in PGE(2) concentration to an equal extent, suggesting COX-1 and COX-2 contribute equally to FSS-induced PGE(2) release. Cytosolic phospholipase A2 (cPLA2), the principal enzyme that generates the COX substrate arachidonic acid, is regulated by mitogen-activated protein-kinase-dependent phosphorylation and intracellular Ca(2+) concentration ([Ca(2+)](i)), both signaling processes, of which, are activated by FSS. Inhibition of the ERK and p38 pathways reduced PGE(2) release by 53.3 ± 8.4 and 32.6 ± 11.3%, respectively, while antagonizing the JNK pathway had no effect. In addition, chelation of [Ca(2+)](i) limited the FSS-mediated increase in PGE(2) concentration by 47.5 ± 7.5% of that observed in untreated sheared cells. Sheared cells expressed greater phospho-cPLA2 protein abundance than static cells; however, COX-2 protein expression was unaffected (P = 0.064) by FSS. In microperfused CDs, COX inhibition enhanced flow-stimulated Na reabsorption and abolished flow-stimulated potassium (K) secretion, but did not affect ion transport at a slow flow rate, implicating that high tubular flow activates autocrine/paracrine PGE(2) release and, in turn, regulates flow-stimulated cation transport. In conclusion, FSS activates cPLA2 to generate PGE(2) that regulates flow-mediated Na and K transport in the native CD. We speculate that dietary sodium intake modulates tubular flow rate to regulate paracrine PGE(2) release and cation transport in the CD.
Collapse
Affiliation(s)
- Daniel Flores
- The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
28
|
Abdul-Majeed S, Moloney BC, Nauli SM. Mechanisms regulating cilia growth and cilia function in endothelial cells. Cell Mol Life Sci 2012; 69:165-73. [PMID: 21671118 PMCID: PMC11115144 DOI: 10.1007/s00018-011-0744-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/19/2011] [Accepted: 05/30/2011] [Indexed: 12/22/2022]
Abstract
The primary cilium is an important sensory organelle present in most mammalian cells. Our current studies aim at examining intracellular molecules that regulate cilia length and/or cilia function in vitro and ex vivo. For the first time, we show that intracellular cAMP and cAMP-dependent protein kinase (PKA) regulate both cilia length and function in vascular endothelial cells. Although calcium-dependent protein kinase modulates cilia length, it does not play a significant role in cilia function. Cilia length regulation also involves mitogen-activated protein kinase (MAPK), protein phosphatase-1 (PP-1), and cofilin. Furthermore, cofilin regulates cilia length through actin rearrangement. Overall, our study suggests that the molecular interactions between cilia function and length can be independent of one another. Although PKA regulates both cilia length and function, changes in cilia length by MAPK, PP-1, or cofilin do not have a direct correlation to changes in cilia function. We propose that cilia length and function are regulated by distinct, yet complex intertwined signaling pathways.
Collapse
Affiliation(s)
- Shakila Abdul-Majeed
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH 43614 USA
| | - Bryan C. Moloney
- Department of Medicine, The University of Toledo, Toledo, OH 43614 USA
| | - Surya M. Nauli
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH 43614 USA
- Department of Medicine, The University of Toledo, Toledo, OH 43614 USA
- Department of Pharmacology, The University of Toledo, Health Science Campus, HEB 274, 3000 Arlington Ave., MS 1015, Toledo, OH 43614 USA
| |
Collapse
|
29
|
Snouber LC, Letourneur F, Chafey P, Broussard C, Monge M, Legallais C, Leclerc E. Analysis of transcriptomic and proteomic profiles demonstrates improved Madin-Darby canine kidney cell function in a renal microfluidic biochip. Biotechnol Prog 2011; 28:474-84. [DOI: 10.1002/btpr.743] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/11/2011] [Indexed: 02/04/2023]
|
30
|
Chang MY, Lu JK, Tian YC, Chen YC, Hung CC, Huang YH, Chen YH, Wu MS, Yang CW, Cheng YC. Inhibition of the P2X7 receptor reduces cystogenesis in PKD. J Am Soc Nephrol 2011; 22:1696-706. [PMID: 21636640 DOI: 10.1681/asn.2010070728] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The P2X7 receptor participates in purinergic signaling, which may promote the progression of ADPKD. We examined the effects of a P2X7 receptor antagonist and a P2X7 receptor agonist on cyst development in a zebrafish model of polycystic kidney disease in which we knocked down pkd2 by morpholinos. We used live wt-1b pronephric-specific GFP-expressing zebrafish embryos to directly observe changes in the pronephros. Exposure of pkd2-morphant zebrafish to a P2X7 receptor antagonist (oxidized ATP [OxATP]) significantly reduced the frequency of the cystic phenotype compared with either exposure to a P2X7 receptor agonist (BzATP) or with no treatment (P < 0.01). Histology confirmed improvement of glomerular cysts in OxATP-treated pkd2 morphants. OxATP also reduced p-ERK activity and cell proliferation in pronephric kidneys in pkd2 morphants. Inhibition of P2X7 with an additional specific antagonist (A-438079), and through morpholino-mediated knockdown of p2rx7, confirmed these effects. In conclusion, blockade of the P2X7 receptor reduces cyst formation via ERK-dependent pathways in a zebrafish model of polycystic kidney disease, suggesting that P2X7 antagonists may have therapeutic potential in ADPKD.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Miravète M, Klein J, Besse-Patin A, Gonzalez J, Pecher C, Bascands JL, Mercier-Bonin M, Schanstra JP, Buffin-Meyer B. Renal tubular fluid shear stress promotes endothelial cell activation. Biochem Biophys Res Commun 2011; 407:813-7. [PMID: 21443862 DOI: 10.1016/j.bbrc.2011.03.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/13/2023]
Abstract
Modified urinary fluid shear stress (FSS) induced by variations of urinary fluid flow and composition is observed in early phases of most kidney diseases. In this study, we hypothesized that changes in urinary FSS represent a tubular aggression that contributes to the development of inflammation, a key event in progression of nephropathies. Human renal tubular cells (HK-2) were exposed to FSS for 30 min at 0.01 Pa. Treatment of human endothelial cells (HMEC-1) with the resulting conditioned medium (FSS-CM) increased C-C chemokine ligand 2 (CCL2) and tumor necrosis factor (TNF)-α protein secretion, increased endothelial vascular adhesion molecule-1 (VCAM-1) mRNA expression and stimulated adhesion of human (THP-1) monocytes to the endothelial monolayer. These effects were TNF-α dependent as they were abolished by neutralization of TNF-α. Interestingly, the origin of TNF-α was not epithelial, but resulted from autocrine endothelial production. However, in contrast to short term FSS, long term FSS (5h) induced the release of the key inflammatory proteins CCL2 and TNF-α directly from tubular cells. In conclusion, these results suggest for the first time that urinary FSS can contribute to the inflammatory state involved in initiation/perpetuation of renal diseases.
Collapse
Affiliation(s)
- Mathieu Miravète
- Institut National de Santé et de Recherche Médicale (INSERM), U1048, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|