1
|
Shima T, Onishi H, Terashima C. Muscle-Derived miR-200a-3p Through Light-Intensity Exercise May Contribute to Improve Memory Dysfunction in Type 2 Diabetic Mice. FASEB J 2025; 39:e70531. [PMID: 40205883 PMCID: PMC11983088 DOI: 10.1096/fj.202500336r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
Memory dysfunction associated with type 2 diabetes mellitus (T2DM) poses a threat to well-being. Engaging in light-intensity exercise has favorable effects on hippocampal function and molecular profiles, including Mct2 mRNA and miR-200a-3p. Here, we investigated the involvement of exosomal miR-200a-3p secretion from gastrocnemius muscles in T2DM mice undergoing light-intensity exercise intervention, focusing on its potential to ameliorate memory dysfunction. We initially assessed the effects of light-intensity exercise over a 4-week period on memory function, the secretion of gastrocnemius muscle-derived exosomal miR-200a-3p, and hippocampal mRNA. Subsequently, the impact of a daily intraperitoneal injection of the mmu-miR-200a-3p mimic over a 4-week duration on hippocampal dysregulation in ob/ob mice was investigated. The light-intensity exercise intervention improved gastrocnemius muscle-derived and plasma exosomal miR-200a-3p levels in ob/ob mice, concomitant with improved memory dysfunction. Intriguingly, the daily intraperitoneal injection of the mmu-miR-200a-3p mimic also improved memory function in ob/ob mice. Notably, both the exercise intervention and miR-200a-3p mimic treatment induced downregulation in hippocampal Keap1 and upregulation in Hsp90aa1 and Mct2 mRNA in ob/ob mice. These results imply that the augmentation of peripherally derived miR-200a-3p contributes to ameliorating memory dysfunction in T2DM mice undergoing light-intensity exercise, with a possible contribution from gastrocnemius muscle-derived exosomal miR-200a-3p to these exercise effects.
Collapse
Affiliation(s)
- Takeru Shima
- Department of Health and Physical Education, Cooperative Faculty of EducationGunma UniversityMaebashiGunmaJapan
| | - Hayate Onishi
- Graduate School of MedicineGunma UniversityMaebashiGunmaJapan
| | - Chiho Terashima
- Department of Health and Physical Education, Cooperative Faculty of EducationGunma UniversityMaebashiGunmaJapan
| |
Collapse
|
2
|
A comparative study of Western, high-carbohydrate, and standard lab diet consumption throughout adolescence on metabolic and anxiety-related outcomes in young adult male and female Long-Evans rats. Behav Brain Res 2023; 438:114184. [PMID: 36336161 DOI: 10.1016/j.bbr.2022.114184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Anxiety and obesity are prevalent health concerns that are affected by diet in rodents and humans. How diet influences the development and maintenance of anxiety and obesity has been challenging to characterize, in part, due to methodological differences in chosen experimental and control diets. Within the same experiment, anxiety- and obesity-related effects were characterized in rats fed a Western diet (WD) relative to two control diets. Sixty Long-Evans rats split equally by sex were given standard diet (SD), control (i.e., high-carbohydrate) diet (HCD), or WD from weaning until sacrifice in early adulthood. Anxiety-related behavior was characterized in a modified open field test (mOFT) that allowed for the measurement of defensive behaviors (e.g., hiding within a refuge area), in addition to traditional OF measures (e.g., time in center). Both anxiety-related behaviors and hippocampal CA3 BDNF revealed specific sex differences. Neither adolescent weight gain of male and female rats, nor total body weight in early adulthood, were dependent on administration of HCD or WD, although the WD group consumed the most calories. In males only, administration of either WD or HCD resulted in elevated leptin levels relative to administration of the SD. Results indicate that SDs and HCDs are two distinct types of control diets that can affect comparability of studies and that using an SD might reveal more subtle metabolic changes. Control diet choice should be strongly considered during study design and interpretation, depending on specific research goals. Such studies should include both males and females as these effects are sex-specific.
Collapse
|
3
|
Espasandín C, Rivero S, Bengoa L, Cal K, Romanelli G, Benech JC, Damián JP. CaMKIV/CREB/BDNF signaling pathway expression in prefrontal cortex, amygdala, hippocampus and hypothalamus in streptozotocin-induced diabetic mice with anxious-like behavior. Exp Brain Res 2022; 240:2687-2699. [PMID: 35984483 DOI: 10.1007/s00221-022-06446-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
Individuals with diabetes mellitus (DM) tend to manifest anxiety and depression, which could be related to changes in the expression of calcium/calmodulin-dependent protein kinase IV (CaMKIV), transcription factor cyclic AMP-responsive element binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) in different brain regions. The objective of this study was to determine whether mice with type 1 diabetes (T1DM) induced with streptozotocin show a profile of anxious-type behaviors and alterations in the expression/activity of CaMKIV, CREB, pCREB and BDNF in different regions of the brain (prefrontal cortex, amygdala, hippocampus and hypothalamus) in comparison to non-diabetic mice (NDB). Mice with 3 months of chronic DM showed an anxious-like behavioral profile in two anxiety tests (Open Field and Elevated Plus Maze), when compared to NDB. There were significant differences in the expression of cell signaling proteins: diabetic mice had a lower expression of CaMKIV in the hippocampus, a greater expression of CREB in the amygdala and hypothalamus, as well as a lower pCREB/CREB in hypothalamus than NDB mice (P < 0.05). This is the first study evaluating the expression of CaMKIV in the brain of animals with DM, who presented lower expression of this protein in the hippocampus. In addition, it is the first time that CREB was evaluated in amygdala and hypothalamus of animals with DM, who presented a higher expression. Further research is necessary to determine the possible link between expression of CaMKIV and CREB, and the behavioral profile of anxiety in diabetic animals.
Collapse
Affiliation(s)
- Camila Espasandín
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, 11600, Montevideo, CP, Uruguay
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, CP, Uruguay
| | - Sofía Rivero
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, 11600, Montevideo, CP, Uruguay
| | - Laura Bengoa
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, 11600, Montevideo, CP, Uruguay
| | - Karina Cal
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, 11600, Montevideo, CP, Uruguay
- Laboratorio de Patologías del Metabolismo y el Envejecimiento, Institut Pasteur Montevideo, Mataojo 2020, 11400, Montevideo, CP, Uruguay
| | - Gerardo Romanelli
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, CP, Uruguay
| | - Juan Claudio Benech
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, CP, Uruguay
| | - Juan Pablo Damián
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, 11600, Montevideo, CP, Uruguay.
| |
Collapse
|
4
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
5
|
Petersen KF, Rothman DL, Shulman GI. Reply to Carter et al.: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. Am J Physiol Endocrinol Metab 2021; 320:E1003. [PMID: 33843277 DOI: 10.1152/ajpendo.00120.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Douglas L Rothman
- Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, Connecticut
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020; 22:ijms22010201. [PMID: 33379163 PMCID: PMC7796248 DOI: 10.3390/ijms22010201] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.
Collapse
|
7
|
Amadio P, Zarà M, Sandrini L, Ieraci A, Barbieri SS. Depression and Cardiovascular Disease: The Viewpoint of Platelets. Int J Mol Sci 2020; 21:E7560. [PMID: 33066277 PMCID: PMC7589256 DOI: 10.3390/ijms21207560] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a major cause of morbidity and low quality of life among patients with cardiovascular disease (CVD), and it is now considered as an independent risk factor for major adverse cardiovascular events. Increasing evidence indicates not only that depression worsens the prognosis of cardiac events, but also that a cross-vulnerability between the two conditions occurs. Among the several mechanisms proposed to explain this interplay, platelet activation is the more attractive, seeing platelets as potential mirror of the brain function. In this review, we dissected the mechanisms linking depression and CVD highlighting the critical role of platelet behavior during depression as trigger of cardiovascular complication. In particular, we will discuss the relationship between depression and molecules involved in the CVD (e.g., catecholamines, adipokines, lipids, reactive oxygen species, and chemokines), emphasizing their impact on platelet activation and related mechanisms.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| |
Collapse
|
8
|
Komelkova M, Manukhina E, Downey HF, Sarapultsev A, Cherkasova O, Kotomtsev V, Platkovskiy P, Fedorov S, Sarapultsev P, Tseilikman O, Tseilikman D, Tseilikman V. Hexobarbital Sleep Test for Predicting the Susceptibility or Resistance to Experimental Posttraumatic Stress Disorder. Int J Mol Sci 2020; 21:E5900. [PMID: 32824478 PMCID: PMC7460591 DOI: 10.3390/ijms21165900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 11/29/2022] Open
Abstract
Hexobarbital sleep test (HST) was performed in male Wistar rats (hexobarbital 60 mg/kg, i.p.) 30 days prior to stress exposure. Based on the duration of hexobarbital-induced sleep, rats were divided into two groups, animals with high intensity (fast metabolizers (FM), sleep duration <15 min) or low intensity of hexobarbital metabolism (slow metabolizers (SM), sleep duration ≥15 min). The SM and FM groups were then divided into two subgroups: unstressed and stressed groups. The stressed subgroups were exposed to predator scent stress for 10 days followed by 15 days of rest. SM and FM rats from the unstressed group exhibited different behavioral and endocrinological patterns. SM showed greater anxiety and higher corticosterone levels. In stressed animals, anxiety-like posttraumatic stress disorder (PTSD) behavior was aggravated only in SM. Corticosterone levels in the stressed FM, PTSD-resistant rats, were lower than in unstressed SM. Thus, HST was able to predict the susceptibility or resistance to experimental PTSD, which was consistent with the changes in glucocorticoid metabolism.
Collapse
Affiliation(s)
- Maria Komelkova
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (M.K.); (E.M.); (H.F.D.); (O.T.); (V.T.)
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia; (V.K.); (P.S.)
| | - Eugenia Manukhina
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (M.K.); (E.M.); (H.F.D.); (O.T.); (V.T.)
- Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - H. Fred Downey
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (M.K.); (E.M.); (H.F.D.); (O.T.); (V.T.)
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia; (V.K.); (P.S.)
| | - Olga Cherkasova
- Biophysics Laboratory, Institute of Laser Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Viacheslav Kotomtsev
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia; (V.K.); (P.S.)
- Laboratory of Biomedical Research, Ural Research Institute for Phthisiopulmonology of Ministry of Health of Russian Federation, 620039 Ekaterinburg, Russia
| | - Pavel Platkovskiy
- Department of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (P.P.); (S.F.); (D.T.)
| | - Stanislav Fedorov
- Department of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (P.P.); (S.F.); (D.T.)
| | - Petr Sarapultsev
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia; (V.K.); (P.S.)
| | - Olga Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (M.K.); (E.M.); (H.F.D.); (O.T.); (V.T.)
- Department of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (P.P.); (S.F.); (D.T.)
| | - David Tseilikman
- Department of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (P.P.); (S.F.); (D.T.)
| | - Vadim Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (M.K.); (E.M.); (H.F.D.); (O.T.); (V.T.)
| |
Collapse
|
9
|
Wosiski-Kuhn M, Bota M, Snider CA, Wilson SP, Venkataraju KU, Osten P, Stranahan AM. Hippocampal brain-derived neurotrophic factor determines recruitment of anatomically connected networks after stress in diabetic mice. Hippocampus 2018; 28:900-912. [PMID: 30098276 DOI: 10.1002/hipo.23018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 11/09/2022]
Abstract
Diabetes increases adrenal steroids in humans and animal models, but potential interactions with psychological stress remain poorly understood. Diabetic rodents exhibit anxiety and reductions in hippocampal brain-derived neurotrophic factor (BDNF) expression, and these studies investigated whether loss of BDNF-driven hippocampal activity promotes anxiety and disinhibits the HPA axis. Mice with genetic obesity and diabetes (db/db) received intrahippocampal injections of lentivirus for BDNF overexpression (db/db-BDNFOE), and Wt mice received lentiviral constructs for BDNF knockdown (Wt-BDNFKD). Behavioral anxiety and glucocorticoid responses to acute restraint were compared with mice that received a fluorescent reporter (Wt-GFP, db/db-GFP). These experiments revealed that changes in hippocampal BDNF were necessary and sufficient for behavioral anxiety and HPA axis disinhibition. To examine patterns of stress-induced regional activity, we used algorithmic detection of cFos and automated segmentation of forebrain regions to generate maps of functional covariance, which were subsequently aligned with anatomical connectivity weights from the Brain Architecture Management database. db/db-GFP mice exhibited reduced activation of the hippocampal ventral subiculum (vSub) and anterior bed nucleus of stria terminalis (aBNST), and increases in the paraventricular hypothalamus (PVH), relative to Wt-GFP. BDNFKD recapitulated this pattern in Wt mice, and BDNFOE normalized activation of the vSub > aBNST > PVH pathway in db/db mice. Analysis of forebrain activation revealed largely overlapping patterns of network disruption in db/db-GFP and Wt-BDNFKD mice, implicating BDNF-driven hippocampal activity as a determinant of stress vulnerability in both the intact and diabetic brain.
Collapse
Affiliation(s)
- Marlena Wosiski-Kuhn
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Mihail Bota
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Christina A Snider
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Steven P Wilson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
10
|
Leptin in depression: a potential therapeutic target. Cell Death Dis 2018; 9:1096. [PMID: 30367065 PMCID: PMC6203758 DOI: 10.1038/s41419-018-1129-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/02/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Leptin, produced and secreted by white adipose tissue, plays a critical role in regulating body weight, food intake, and energy metabolism. Recently, several studies have identified an underlying role for leptin in regulation of mood and cognition via regulation of synaptic changes in the brain that have been associated with antidepressant-like actions. Brain neural plasticity occurs in response to a range of intrinsic and extrinsic stimuli, including those that may mediate the effects of antidepressants. Neural plasticity theories of depression are thought to explain multiple aspects of depression and the effects of antidepressants. It is also well documented that leptin has effects on neural plasticity. This review summarizes the recent literature on the role of leptin in neural plasticity in order to elaborate the possible mechanism of leptin’s antidepressant-like effects. Recent findings provide new insights into the underlying mechanisms of neural plasticity in depression. Leptin may influence these mechanisms and consequently constitute a possible target for novel therapeutic approaches to the treatment of depression.
Collapse
|
11
|
LTP or LTD? Modeling the Influence of Stress on Synaptic Plasticity. eNeuro 2018; 5:eN-TNC-0242-17. [PMID: 29662939 PMCID: PMC5898787 DOI: 10.1523/eneuro.0242-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 01/03/2023] Open
Abstract
In cognitive memory, long-term potentiation (LTP) has been shown to occur when presynaptic and postsynaptic activities are highly correlated and glucocorticoid concentrations are in an optimal (i.e., low normal) range. In all other conditions, LTP is attenuated or even long-term depression (LTD) occurs. In this paper, we focus on NMDA receptor (NMDA-R)-dependent LTP and LTD, two processes involving various molecular mechanisms. To understand which of these mechanisms are indispensable for explaining the experimental evidence reported in the literature, we here propose a parsimonious model of NMDA-R-dependent synaptic plasticity. Central to this model are two processes. First, AMPA receptor-subunit trafficking; and second, glucocorticoid-dependent modifications of the brain-derived neurotrophic factor (BDNF)-receptor system. In 2008, we have published a core model, which contained the first process, while in the current paper we present an extended model, which also includes the second process. Using the extended model, we could show that stress attenuates LTP, while it enhances LTD. These simulation results are in agreement with experimental findings from other labs. In 2013, surprising experimental evidence showed that the GluA1 C-tail is unnecessary for LTP. When using our core model in its original form, our simulations already predicted that there would be no requirement for the GluA1 C-tail for LTP, allowing to eliminate a redundant mechanism from our model. In summary, we present a mathematical model that displays reduced complexity and is useful for explaining when and how LTP or LTD occurs at synapses during cognitive memory formation.
Collapse
|
12
|
Siu JJ, Queen NJ, Liu X, Huang W, McMurphy T, Cao L. Molecular Therapy of Melanocortin-4-Receptor Obesity by an Autoregulatory BDNF Vector. Mol Ther Methods Clin Dev 2017; 7:83-95. [PMID: 29296625 PMCID: PMC5744069 DOI: 10.1016/j.omtm.2017.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
Abstract
Mutations in the melanocortin-4-receptor (MC4R) comprise the most common monogenic form of severe early-onset obesity, and conventional treatments are either ineffective long-term or contraindicated. Immediately downstream of MC4R-in the pathway for regulating energy balance-is brain-derived neurotrophic factor (BDNF). Our previous studies show that adeno-associated virus (AAV)-mediated hypothalamic BDNF gene transfer alleviates obesity and diabetes in both diet-induced and genetic models. To facilitate clinical translation, we developed a built-in autoregulatory system to control therapeutic gene expression mimicking the body's natural feedback systems. This autoregulatory approach leads to a sustainable plateau of body weight after substantial weight loss is achieved. Here, we examined the efficacy and safety of autoregulatory BDNF gene therapy in Mc4r heterozygous mice, which best resemble MC4R obese patients. Mc4r heterozygous mice were treated with either autoregulatory BDNF vector or YFP control and monitored for 30 weeks. BDNF gene therapy prevented the development of obesity and metabolic syndromes characterized by decreasing body weight and adiposity, suppressing food intake, alleviating hyperleptinemia and hyperinsulinemia, improving glucose and insulin tolerance, and increasing energy expenditure, without adverse cardiovascular function or behavioral disturbances. These safety and efficacy data provide preclinical evidence that BDNF gene therapy is a compelling treatment option for MC4R-deficient obese patients.
Collapse
Affiliation(s)
- Jason J. Siu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xianglan Liu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Travis McMurphy
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Munoz MJ, Kumar RG, Oh BM, Conley YP, Wang Z, Failla MD, Wagner AK. Cerebrospinal Fluid Cortisol Mediates Brain-Derived Neurotrophic Factor Relationships to Mortality after Severe TBI: A Prospective Cohort Study. Front Mol Neurosci 2017; 10:44. [PMID: 28337122 PMCID: PMC5343043 DOI: 10.3389/fnmol.2017.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/09/2017] [Indexed: 01/04/2023] Open
Abstract
Distinct regulatory signaling mechanisms exist between cortisol and brain derived neurotrophic factor (BDNF) that may influence secondary injury cascades associated with traumatic brain injury (TBI) and predict outcome. We investigated concurrent CSF BDNF and cortisol relationships in 117 patients sampled days 0–6 after severe TBI while accounting for BDNF genetics and age. We also determined associations between CSF BDNF and cortisol with 6-month mortality. BDNF variants, rs6265 and rs7124442, were used to create a gene risk score (GRS) in reference to previously published hypothesized risk for mortality in “younger patients” (<48 years) and hypothesized BDNF production/secretion capacity with these variants. Group based trajectory analysis (TRAJ) was used to create two cortisol groups (high and low trajectories). A Bayesian estimation approach informed the mediation models. Results show CSF BDNF predicted patient cortisol TRAJ group (P = 0.001). Also, GRS moderated BDNF associations with cortisol TRAJ group. Additionally, cortisol TRAJ predicted 6-month mortality (P = 0.001). In a mediation analysis, BDNF predicted mortality, with cortisol acting as the mediator (P = 0.011), yielding a mediation percentage of 29.92%. Mediation effects increased to 45.45% among younger patients. A BDNF*GRS interaction predicted mortality in younger patients (P = 0.004). Thus, we conclude 6-month mortality after severe TBI can be predicted through a mediation model with CSF cortisol and BDNF, suggesting a regulatory role for cortisol with BDNF's contribution to TBI pathophysiology and mortality, particularly among younger individuals with severe TBI. Based on the literature, cortisol modulated BDNF effects on mortality after TBI may be related to known hormone and neurotrophin relationships to neurological injury severity and autonomic nervous system imbalance.
Collapse
Affiliation(s)
- Miranda J Munoz
- Department of Physical Medicine and Rehabilitation, University of PittsburghPittsburgh, PA, USA; Department of Biological Sciences, Carnegie Mellon UniversityPittsburgh, PA, USA
| | - Raj G Kumar
- Department of Physical Medicine and Rehabilitation, University of PittsburghPittsburgh, PA, USA; Department of Epidemiology, University of PittsburghPittsburgh, PA, USA
| | - Byung-Mo Oh
- Department of Physical Medicine and Rehabilitation, University of PittsburghPittsburgh, PA, USA; Department of Rehabilitation Medicine, Seoul National University HospitalSeoul, South Korea
| | - Yvette P Conley
- Department of Physical Medicine and Rehabilitation, University of PittsburghPittsburgh, PA, USA; Department of Epidemiology, University of PittsburghPittsburgh, PA, USA
| | - Zhensheng Wang
- Department of Nursing, University of PittsburghPittsburgh, PA, USA; Safar Center for Resuscitation Research, University of PittsburghPittsburgh, PA, USA
| | - Michelle D Failla
- Department of Psychiatry, Vanderbilt University Medical Center Nashville, TN, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of PittsburghPittsburgh, PA, USA; Safar Center for Resuscitation Research, University of PittsburghPittsburgh, PA, USA; Department of Neuroscience, University of PittsburghPittsburgh, PA, USA; Center for Neuroscience, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
14
|
Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neuroscience 2015; 309:125-39. [PMID: 25934036 DOI: 10.1016/j.neuroscience.2015.04.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/05/2023]
Abstract
Clinical studies suggest that obesity and Type 2 (insulin-resistant) diabetes impair the structural integrity of medial temporal lobe regions involved in memory and confer greater vulnerability to neurological insults. While eliminating obesity and its endocrine comorbidities would be the most straightforward way to minimize cognitive risk, structural barriers to physical activity and the widespread availability of calorically dense, highly palatable foods will likely necessitate additional strategies to maintain brain health over the lifespan. Research in rodents has identified numerous correlates of hippocampal functional impairment in obesity and diabetes, with several studies demonstrating causality in subsequent mechanistic studies. This review highlights recent work on pathways and cell-cell interactions underlying the synaptic consequences of obesity, diabetes, or in models with both pathological conditions. Although the mechanisms vary across different animal models, immune activation has emerged as a shared feature of obesity and diabetes, with synergistic exacerbation of neuroinflammation in model systems with both conditions. This review discusses these findings with reference to the benefits of incorporating existing models from the fields of obesity and metabolic disease. Many transgenic lines with basal metabolic alterations or differential susceptibility to diet-induced obesity have yet to be characterized with respect to their cognitive and synaptic phenotype. Adopting these models, and building on the extensive knowledge base used to generate them, is a promising avenue for understanding interactions between peripheral disease states and neurodegenerative disorders.
Collapse
|
15
|
Willette AA, Kapogiannis D. Does the brain shrink as the waist expands? Ageing Res Rev 2015; 20:86-97. [PMID: 24768742 DOI: 10.1016/j.arr.2014.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that being overweight or obese is related to worse cognitive performance, particularly executive function. Obesity may also increase the risk of Alzheimer's disease. Consequently, there has been increasing interest in whether adiposity is related to gray or white matter (GM, WM) atrophy. In this review, we identified and critically evaluated studies assessing obesity and GM or WM volumes either globally or in specific regions of interest (ROIs). Across all ages, higher adiposity was consistently associated with frontal GM atrophy, particularly in prefrontal cortex. In children and adults <40 years of age, most studies found no relationship between adiposity and occipital or parietal GM volumes, whereas findings for temporal lobe were mixed. In middle-aged and aged adults, a majority of studies found that higher adiposity is associated with parietal and temporal GM atrophy, whereas results for precuneus, posterior cingulate, and hippocampus were mixed. Higher adiposity had no clear association with global or regional WM in any age group. We conclude that higher adiposity may be associated with frontal GM atrophy across all ages and parietal and temporal GM atrophy in middle and old age.
Collapse
Affiliation(s)
- Auriel A Willette
- Laboratory of Neurosciences, National Institute on Aging, 3001 S. Hanover St, NM531, Baltimore, MD 21225, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging, 3001 S. Hanover St, NM531, Baltimore, MD 21225, USA.
| |
Collapse
|
16
|
Malikova J, Camats N, Fernández-Cancio M, Heath K, González I, Caimarí M, del Campo M, Albisu M, Kolouskova S, Audí L, Flück CE. Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor), an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis. PLoS One 2014; 9:e104838. [PMID: 25122490 PMCID: PMC4133263 DOI: 10.1371/journal.pone.0104838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/17/2014] [Indexed: 11/26/2022] Open
Abstract
Context Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. Objective To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. Patients 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. Methods SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Results Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Conclusions Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.
Collapse
Affiliation(s)
- Jana Malikova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic; Pediatric Endocrinology, Department of Pediatrics and Department of Clinical Research, University Children's Hospital Bern, Bern, Switzerland
| | - Núria Camats
- Pediatric Endocrinology, Department of Pediatrics and Department of Clinical Research, University Children's Hospital Bern, Bern, Switzerland
| | - Mónica Fernández-Cancio
- Pediatric Endocrinology, Vall d'Hebron Research Institute VHIR, CIBERER, Autonomous University, Barcelona, Spain
| | - Karen Heath
- Institute of Medical and Molecular Genetics INGEMM, Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Isabel González
- Pediatric Endocrinology Service, Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - María Caimarí
- Pediatric Endocrinology, Son Espases University Hospital, Palma de Mallorca, Spain
| | | | - Marian Albisu
- Pediatric Endocrinology, Vall d'Hebron Research Institute VHIR, CIBERER, Autonomous University, Barcelona, Spain
| | - Stanislava Kolouskova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Laura Audí
- Pediatric Endocrinology, Vall d'Hebron Research Institute VHIR, CIBERER, Autonomous University, Barcelona, Spain
| | - Christa E Flück
- Pediatric Endocrinology, Department of Pediatrics and Department of Clinical Research, University Children's Hospital Bern, Bern, Switzerland
| |
Collapse
|
17
|
Wosiski-Kuhn M, Erion JR, Gomez-Sanchez EP, Gomez-Sanchez CE, Stranahan AM. Glucocorticoid receptor activation impairs hippocampal plasticity by suppressing BDNF expression in obese mice. Psychoneuroendocrinology 2014; 42:165-77. [PMID: 24636513 PMCID: PMC4426342 DOI: 10.1016/j.psyneuen.2014.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Diabetes and obesity are associated with perturbation of adrenal steroid hormones and impairment of hippocampal plasticity, but the question of whether these conditions recruit glucocorticoid-mediated molecular cascades that are comparable to other stressors has yet to be fully addressed. We have used a genetic mouse model of obesity and diabetes with chronically elevated glucocorticoids to determine the mechanism for glucocorticoid-induced deficits in hippocampal synaptic function. Pharmacological inhibition of adrenal steroidogenesis attenuates structural and functional impairments by regulating plasticity among dendritic spines in the hippocampus of leptin receptor deficient (db/db) mice. Synaptic deficits evoked by exposure to elevated corticosterone levels in db/db mice are attributable to glucocorticoid receptor-mediated transrepression of AP-1 actions at BDNF promoters I and IV. db/db mice exhibit corticosterone-mediated reductions in brain-derived neurotrophic factor (BDNF), and a change in the ratio of TrkB to P75NTR that silences the functional response to BDNF stimulation. Lentiviral suppression of glucocorticoid receptor expression rescues behavioral and synaptic function in db/db mice, and also reinstates BDNF expression, underscoring the relevance of molecular mechanisms previously demonstrated after psychological stress to the functional alterations observed in obesity and diabetes.
Collapse
Affiliation(s)
- Marlena Wosiski-Kuhn
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th St, Augusta, GA 30912 USA
| | - Joanna R. Erion
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th St, Augusta, GA 30912 USA
| | - Elise P. Gomez-Sanchez
- G.V. (Sonny) Montgomery Veteran’s Affairs Medical Center, 1500 Woodrow Wilson Dr, Jackson, MS 39216 USA
| | - Celso E. Gomez-Sanchez
- G.V. (Sonny) Montgomery Veteran’s Affairs Medical Center, 1500 Woodrow Wilson Dr, Jackson, MS 39216 USA
| | - Alexis M. Stranahan
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th St, Augusta, GA 30912 USA,Corresponding author: Alexis M. Stranahan, Medical College of Georgia, Georgia Regents University, Physiology Department, 1120 15th St, room CA3145, Augusta GA 30912, Phone: (706)721-7885,
| |
Collapse
|
18
|
Ito K, Hirooka Y, Sunagawa K. Corticosterone-activated mineralocorticoid receptor contributes to salt-induced sympathoexcitation in pressure overload mice. Clin Exp Hypertens 2014; 36:550-6. [PMID: 24490674 DOI: 10.3109/10641963.2014.881841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract We previously reported that pressure overload (PO) activates the hypothalamic mineralocorticoid receptor (MR) and angiotensin II type 1 receptor (AT1R). Moreover, salt intake further activates the hypothalamic MR and AT1R, resulting in salt-induced sympathoexcitation. However, the mechanism underlying this pathway activation in response to a high salt intake remains unknown. Although the role of aldosterone is extensively examined as a ligand for MR, corticosterone is able to bind to MR. Therefore, we hypothesized that corticosterone contributes to salt-induced sympathoexcitation in PO-mice. Four weeks after aortic banding to produce PO-mice, or a sham operation for controls, the mice were fed a high-salt diet for an additional 4 weeks. Compared to Sham-mice, the expression levels of hypothalamic MR, serum glucocorticoid-induced kinase 1 (a marker of MR activity) and AT1R increased in PO-mice. Salt intake further increased the expression levels of these proteins only in PO-mice with the increases in sympathetic activity evaluated on the basis of the excretion of 24-h urinary norepinephrine excretion. Bilateral adrenalectomy or the intraperitoneal infusion of metyrapone, a corticosterone synthase inhibitor, attenuated salt-induced sympathoexcitation via inhibition of the hypothalamic MR and AT1R activity. These adrenalectomy-induced alterations disappeared after corticosterone replacement therapy. We also found decreased expression levels of 11β-hydroxysteroid dehydrogenase type 2, suggesting that corticosterone is apt to bind to MR. These results indicate that salt intake in PO-mice causes sympathoexcitation via, at least in part, corticosterone-induced MR and AT1R activation in the hypothalamus.
Collapse
Affiliation(s)
- Koji Ito
- Department of Cardiovascular Medicine and
| | | | | |
Collapse
|
19
|
Numakawa T, Richards M, Nakajima S, Adachi N, Furuta M, Odaka H, Kunugi H. The role of brain-derived neurotrophic factor in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition. Front Psychiatry 2014; 5:136. [PMID: 25309465 PMCID: PMC4175905 DOI: 10.3389/fpsyt.2014.00136] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/12/2014] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence demonstrates a connection between growth factor function (including brain-derived neurotrophic factor, BDNF), glucocorticoid levels (one of the steroid hormones), and the pathophysiology of depressive disorders. Because both BDNF and glucocorticoids regulate synaptic function in the central nervous system, their functional interaction is of major concern. Interestingly, alterations in levels of estrogen, another steroid hormone, may play a role in depressive-like behavior in postpartum females with fluctuations of BDNF-related molecules in the brain. BDNF and cytokines, which are protein regulators of inflammation, stimulate multiple intracellular signaling cascades involved in neuropsychiatric illness. Pro-inflammatory cytokines may increase vulnerability to depressive symptoms, such as the increased risk observed in patients with cancer and/or autoimmune diseases. In this review, we discuss the possible relationship between inflammation and depression, in addition to the cross-talk among cytokines, BDNF, and steroids. Further, since nutritional status has been shown to affect critical pathways involved in depression through both BDNF function and the monoamine system, we also review current evidence surrounding diet and supplementation (e.g., flavonoids) on BDNF-mediated brain functions.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Misty Richards
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles , Los Angeles, CA , USA
| | - Shingo Nakajima
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Naoki Adachi
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Miyako Furuta
- Department of Physiology, St. Marianna University School of Medicine , Kanagawa , Japan
| | - Haruki Odaka
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| |
Collapse
|
20
|
Hohenadel MG, Thearle MS, Grice BA, Huang H, Dai MH, Tao YX, Hunter LA, Palaguachi GI, Mou Z, Kim RC, Tsang MM, Haack K, Voruganti VS, Cole SA, Butte NF, Comuzzie AG, Muller YL, Baier LJ, Krakoff J, Knowler WC, Yanovski JA, Han JC. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants. Int J Obes (Lond) 2013; 38:1068-74. [PMID: 24276017 PMCID: PMC4033711 DOI: 10.1038/ijo.2013.221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 12/29/2022]
Abstract
Background In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. Objective To compare BDNF concentrations of subjects with loss-of-function (LOF) and gain-of-function (GOF) MC4R variants to those of controls with common sequence MC4R. Methods Circulating BDNF was measured in two cohorts with known MC4R sequence: 148 subjects of Pima Indian heritage ([mean±SD]: age 15.7±6.5y, BMI-Z 1.63±1.03), and 69 subjects of Hispanic heritage (10.8±3.6y, BMI-Z 1.57±1.07). MC4R variants were characterized in vitro by cell surface expression, receptor binding, and cAMP response after agonist administration. BDNF single nucleotide polymorphisms (SNPs) rs12291186, rs6265, and rs7124442 were also genotyped. Results In the Pima cohort, no significant differences in serum BDNF was observed for 43 LOF-subjects versus 65 LOF-matched controls [age-, sex-, and BMI-matched] (P=0.29), or 20 GOF-subjects versus 20 GOF-matched controls (P=0.40). Serum BDNF was significantly associated with genotype for BDNF rs12291186 (P=0.006) and rs6265 (P=0.009), but not rs7124442 (P=0.99); BDNF SNPs did not interact with MC4R status to predict serum BDNF. In the Hispanic cohort, plasma BDNF was not significantly different among 21 LOF-subjects, 20 GOF-subjects, and 28 controls (P=0.79); plasma BDNF was not predicted by BDNF genotype or BDNF-x-MC4R genotype interaction. Conclusions Circulating BDNF concentrations were not significantly associated with MC4R functional status, suggesting that peripheral BDNF does not directly reflect hypothalamic BDNF secretion and/or that MC4R signaling is not a significant regulator of the bulk of BDNF expression in humans.
Collapse
Affiliation(s)
- M G Hohenadel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - M S Thearle
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - B A Grice
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - H Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - M-H Dai
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Y-X Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - L A Hunter
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - G I Palaguachi
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Z Mou
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - R C Kim
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - M M Tsang
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - K Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - V S Voruganti
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - S A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - N F Butte
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - A G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Y L Muller
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - L J Baier
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - J Krakoff
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - W C Knowler
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - J A Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - J C Han
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
21
|
Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 2013; 112:80-99. [PMID: 24211850 DOI: 10.1016/j.pneurobio.2013.10.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/21/2022]
Abstract
Chronic restraint stress leads to increases in brain derived neurotrophic factor (BDNF) mRNA and protein in some regions of the brain, e.g. the basal lateral amygdala (BLA) but decreases in other regions such as the CA3 region of the hippocampus and dendritic spine density increases or decreases in line with these changes in BDNF. Given the powerful influence that BDNF has on dendritic spine growth, these observations suggest that the fundamental reason for the direction and extent of changes in dendritic spine density in a particular region of the brain under stress is due to the changes in BDNF there. The most likely cause of these changes is provided by the stress initiated release of steroids, which readily enter neurons and alter gene expression, for example that of BDNF. Of particular interest is how glucocorticoids and mineralocorticoids tend to have opposite effects on BDNF gene expression offering the possibility that differences in the distribution of their receptors and of their downstream effects might provide a basis for the differential transcription of the BDNF genes. Alternatively, differences in the extent of methylation and acetylation in the epigenetic control of BDNF transcription are possible in different parts of the brain following stress. Although present evidence points to changes in BDNF transcription being the major causal agent for the changes in spine density in different parts of the brain following stress, steroids have significant effects on downstream pathways from the TrkB receptor once it is acted upon by BDNF, including those that modulate the density of dendritic spines. Finally, although glucocorticoids play a canonical role in determining BDNF modulation of dendritic spines, recent studies have shown a role for corticotrophin releasing factor (CRF) in this regard. There is considerable improvement in the extent of changes in spine size and density in rodents with forebrain specific knockout of CRF receptor 1 (CRFR1) even when the glucocorticoid pathways are left intact. It seems then that CRF does have a role to play in determining BDNF control of dendritic spines.
Collapse
|
22
|
Franco-Robles E, Campos-Cervantes A, Murillo-Ortiz BO, Segovia J, López-Briones S, Vergara P, Pérez-Vázquez V, Solís-Ortiz MS, Ramírez-Emiliano J. Effects of curcumin on brain-derived neurotrophic factor levels and oxidative damage in obesity and diabetes. Appl Physiol Nutr Metab 2013; 39:211-8. [PMID: 24476477 DOI: 10.1139/apnm-2013-0133] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We evaluated the effects of curcumin treatment on protein oxidation (PO), lipid peroxidation (LP) and brain-derived neurotrophic factor (BDNF) levels in the hippocampus and frontal cortex (FC) of diabetic db/db mice (DM) and in sera of obese humans. Thus, DM were treated daily with 50 mg/kg of curcumin during an 8-week period. Obese human were treated daily with 500 and 750 mg of curcumin that was administered orally for 12 weeks; BDNF, PO and LP levels in sera were determined at in weeks 0, 2, 6 and 12 of treatment. BDNF levels decreased in hippocampus and FC of DM as compared with untreated wild-type mice. Curcumin improved or restored BDNF levels to normal levels in DM, but curcumin did not have any effect on BDNF levels in sera of obese humans. In hippocampus and FC of DM, hyperglycaemia and curcumin did not have effect on LP levels. Hyperglycaemia increased PO levels in hippocampus and FC, whereas curcumin decreased these levels in hippocampus but not in FC. In sera of obese humans, the 500-mg dose decreased LP levels in weeks 6 and 12 when compared with basal levels, but the 750-mg dose did not have any effect; both doses of curcumin decreased PO levels in weeks 2, 6 and 12 of treatment when compared with basal levels. Present results suggest a therapeutic potential of curcumin to decrease oxidation caused by obesity in humans and also show that curcumin restores BDNF levels in DM.
Collapse
Affiliation(s)
- Elena Franco-Robles
- a Departamento de Ciencias Médicas, Universidad de Guanajuato, León, Gto., México
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 2013; 14:10122-42. [PMID: 23670594 PMCID: PMC3676832 DOI: 10.3390/ijms140510122] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/27/2013] [Accepted: 04/28/2013] [Indexed: 02/06/2023] Open
Abstract
The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. Unusual changes in TrkB signalling pathway have also been observed and implicated in a range of cancers. Variations in TrkB pathway have been observed in obesity and hyperphagia related disorders as well. Both BDNF and TrkB have been shown to play critical roles in the survival of retinal ganglion cells in the retina. The ability to specifically modulate TrkB signalling can be critical in various pathological scenarios associated with this pathway. In this review, we discuss the mechanisms underlying TrkB signalling, disease implications and explore plausible ameliorative or preventive approaches.
Collapse
|
24
|
Abstract
BACKGROUND Cortisol plays a multifaceted role in major depression disorder (MDD). Diurnal rhythms are disturbed, there is increased resistance to the feedback action of glucocorticoids, excess cortisol may induce MDD, basal levels may be higher and the post-awakening cortisol surge accentuated in those at risk for MDD. Does this suggest new avenues for studying MDD or its clinical management? METHOD The relevant literature was reviewed. RESULTS Cortisol contributes to genetic variants for the risk for MDD and the way that environmental events amplify risk. The corticoids' influence begins prenatally, but continues into adulthood. The impact of cortisol at each phase depends not only on its interaction with other factors, such as psychological traits and genetic variants, but also on events that have, or have not, occurred previously. CONCLUSIONS This review suggests that the time is now right for serious consideration of the role of cortisol in a clinical context. Estimates of cortisol levels and the shape of the diurnal rhythm might well guide the understanding of subtypes of MDD and yield additional indicators for optimal treatment. Patients with disturbed cortisol rhythms might benefit from restitution of those rhythms; they may be distinct from those with more generally elevated levels, who might benefit from cortisol blockade. Higher levels of cortisol are a risk for subsequent depression. Should manipulation of cortisol or its receptors be considered as a preventive measure for some of those at very high risk of future MDD, or to reduce other cortisol-related consequences such as long-term cognitive decline?
Collapse
Affiliation(s)
- J Herbert
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK.
| |
Collapse
|
25
|
Rios M. BDNF and the central control of feeding: accidental bystander or essential player? Trends Neurosci 2013; 36:83-90. [PMID: 23333344 DOI: 10.1016/j.tins.2012.12.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 01/15/2023]
Abstract
A considerable body of evidence links diminished brain-derived neurotrophic factor (BDNF) signaling to energy balance dysregulation and severe obesity in humans and rodents. Because BDNF exhibits broad neurotrophic properties, the underpinnings of these effects and its true role in the central regulation of food intake remain topics of debate in the field. Here, I discuss recent evidence supporting a critical role for this neurotrophin in physiological mechanisms regulating nutrient intake and body weight in the mature brain. They include reports of functional interactions of BDNF with central anorexigenic and orexigenic signaling pathways and evidence of recognized appetite hormones exerting neurotrophic effects similar to those of BDNF.
Collapse
Affiliation(s)
- Maribel Rios
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA 02111, USA.
| |
Collapse
|
26
|
Rao RP, Anilkumar S, McEwen BS, Chattarji S. Glucocorticoids protect against the delayed behavioral and cellular effects of acute stress on the amygdala. Biol Psychiatry 2012; 72:466-75. [PMID: 22572034 PMCID: PMC3753225 DOI: 10.1016/j.biopsych.2012.04.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND A single episode of acute immobilization stress has previously been shown to trigger a delayed onset of anxiety-like behavior and spinogenesis in the basolateral amygdala (BLA) of rats. Spurred on by a seemingly paradoxical observation in which even a modest increase in corticosterone (CORT), caused by a single vehicle injection before stress, could dampen the delayed effects of stress, we hypothesized a protective role for glucocorticoids against stress. METHODS We tested this hypothesis by analyzing how manipulations in CORT levels modulate delayed increase in anxiety-like behavior of rats on the elevated plus-maze 10 days after acute stress. We also investigated the cellular correlates of different levels of anxiety under different CORT conditions by quantifying spine density on Golgi-stained BLA principal neurons. RESULTS CORT in drinking water for 12 hours preceding acute stress prevented delayed increase in anxiety rather than exacerbating it. Conversely, vehicle injection failed to prevent the anxiogenic effect of stress in bilaterally adrenalectomized rats. However, when CORT was restored in adrenalectomized rats by injection, the delayed anxiogenic effect of stress was once again blocked. Finally, high and low anxiety states were accompanied by high and low levels of BLA spine density. CONCLUSIONS Our findings suggest that the presence of elevated levels of CORT at the time of acute stress confers protection against the delayed enhancing effect of stress on BLA synaptic connectivity and anxiety-like behavior. These observations are consistent with clinical reports on the protective effects of glucocorticoids against the development of posttraumatic symptoms triggered by traumatic stress.
Collapse
Affiliation(s)
- Rajnish P Rao
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | | | | | |
Collapse
|
27
|
Rothman SM, Griffioen KJ, Wan R, Mattson MP. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Ann N Y Acad Sci 2012; 1264:49-63. [PMID: 22548651 PMCID: PMC3411899 DOI: 10.1111/j.1749-6632.2012.06525.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders.
Collapse
Affiliation(s)
- Sarah M Rothman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
28
|
Arendt DH, Smith JP, Bastida CC, Prasad MS, Oliver KD, Eyster KM, Summers TR, Delville Y, Summers CH. Contrasting hippocampal and amygdalar expression of genes related to neural plasticity during escape from social aggression. Physiol Behav 2012; 107:670-9. [PMID: 22450262 DOI: 10.1016/j.physbeh.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 01/03/2023]
Abstract
Social subjugation has widespread consequences affecting behavior and underlying neural systems. We hypothesized that individual differences in stress responsiveness were associated with differential expression of neurotrophin associated genes within the hippocampus and amygdala. To do this we examined the brains of hamsters placed in resident/intruder interactions, modified by the opportunity to escape from aggression. In the amygdala, aggressive social interaction stimulated increased BDNF receptor TrK(B) mRNA levels regardless of the ability to escape the aggressor. In contrast, the availability of escape limited the elevation of GluR(1) AMPA subunit mRNA. In the hippocampal CA(1), the glucocorticoid stress hormone, cortisol, was negatively correlated with BDNF and TrK(B) gene expression, but showed a positive correlation with BDNF expression in the DG. Latency to escape the aggressor was also negatively correlated with CA(1) BDNF expression. In contrast, the relationship between amygdalar TrK(B) and GluR(1) was positive with respect to escape latency. These results suggest that an interplay of stress and neurotrophic systems influences learned escape behavior. Animals which escape faster seem to have a more robust neurotrophic profile in the hippocampus, with the opposite of this pattern in the amygdala. We propose that changes in the equilibrium of hippocampal and amygdalar learning result in differing behavioral stress coping choices.
Collapse
Affiliation(s)
- David H Arendt
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Stranahan AM. Physiological variability in brain-derived neurotrophic factor expression predicts dendritic spine density in the mouse dentate gyrus. Neurosci Lett 2011; 495:60-2. [PMID: 21420469 PMCID: PMC3081893 DOI: 10.1016/j.neulet.2011.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 11/17/2022]
Abstract
Dendritic spines are the predominant sites of excitatory neurotransmission in the adult brain, and brain-derived neurotrophic factor (BDNF) is a well-characterized determinant of dendritic spine number and morphology. The relationship between BDNF expression and dendritic spine number is particularly evident in the hippocampus, where environmental conditions that enhance hippocampal BDNF levels also promote local increases in dendritic spine density. However, the relationship between physiological variability in hippocampal BDNF expression and spine number has yet to be assessed. To determine whether natural variability in BDNF expression is associated with hippocampal dendritic spine number, correlations between BDNF protein levels and dendritic spine density among Golgi-impregnated neurons in the hippocampal dentate gyrus and CA1 subfields were assessed in adult male C57Bl/6J mice. In the dentate gyrus, but not in the apical oblique dendrites of CA1 pyramidal cells, BDNF protein expression was significantly correlated with dendritic spine density. This observation suggests that there may be a subregionally specific relationship between hippocampal BDNF expression and the density of spines.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Physiology Department, Georgia Health Sciences University, 1120 15th St., rm CA3145, Augusta, GA 30912, United States.
| |
Collapse
|