1
|
Sabry NC, Michel HE, Menze ET. Repurposing of erythropoietin as a neuroprotective agent against methotrexate-induced neurotoxicity in rats. J Psychopharmacol 2025; 39:147-163. [PMID: 39535118 DOI: 10.1177/02698811241295379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Methotrexate (MTX) is a cytotoxic drug that can trigger neurotoxicity via enhancing oxidative stress, apoptosis, and inflammation. On the other hand, erythropoietin (EPO) functions as an antioxidant, anti-apoptotic, and anti-inflammatory agent, in addition to its hematopoietic effects. AIM The present study was developed to examine the neuroprotective impact of EPO against MTX-provoked neurotoxicity in rats. METHODS Chemo fog was elicited in Wistar rats via injection of one dosage of MTX (20 mg/kg, i.p) on the sixth day of the study. EPO was injected at 500 IU/kg/day, i.p for 10 successive days. RESULTS MTX triggered memory and learning impairment as evidenced by Morris water maze, passive avoidance, and Y-maze cognitive tests. In addition, MTX induced oxidative stress as evident from the decline in hippocampal Nrf2 and HO-1 levels. MTX brought about apoptosis, as demonstrated by the elevation in p53, caspase-3, and Bax levels, as well as the decrease in Bcl2 levels. MTX also decreased Beclin-1, an autophagy-related marker, and increased P62 expression. In addition, MTX downregulated Sirt-1/AKT/FoxO3a pathway and increased miRNA-34a gene expression. Moreover, MTX increased acetylcholinesterase activity and reduced neurogenesis. EPO administration remarkably counteracted MTX-induced molecular and behavioral disorders in rat hippocampi. CONCLUSION Our findings impart preclinical indication for repurposing of EPO as a promising neuroprotective agent through modulating miRNA-34a, autophagy, and the Sirt-1/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Nadine C Sabry
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Richards S, Palmer D, Cawley A, Wainscott M, Keledjian J. Enhanced analysis of equine plasma for the presence of recombinant human erythropoietin - Implementation of an improved workflow. Drug Test Anal 2024. [PMID: 39097987 DOI: 10.1002/dta.3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
An improved screening workflow and a robust capillary flow LC-MS confirmatory method for the detection of recombinant human erythropoietin (rHuEPO) has been implemented to increase the sensitivity of rHuEPO detection and to reduce the number of suspect samples committed to confirmatory testing. The influence of repeated dosing of epoetin-β on the detection window of rHuEPO in equine plasma was assessed using the optimised method. Samples were initially assessed using an economical R&D Human EPO Duo-Set ELISA Development System. Samples indicating a result greater than the batch baseline were analysed using the complementary R&D Human EPO Quantikine IVD ELISA kit. All samples recording an abnormal screening result were subjected to confirmatory analysis. Confirmation of rHuEPO in plasma (≥2.5 ml) in the range of 4-13 mIU/ml (n = 6) was achieved using immunoaffinity enrichment, tryptic digestion, and capillary flow LC-MS/MS. Four horses were administered a single dose of epoetin-β (10,000 IU) via the subcutaneous and intravenous routes, on two occasions, seven days apart. The excretion profile was rapid with epoetin-β detection times of 48 to 72 h following each administration, with no appreciable difference observed between the two routes of administration. This workflow has been shown as an effective anti-doping strategy related to rHuEPO misuse and supports the use of out-of-competition testing of horses in the 2 to 3-day period prior to race-day.
Collapse
Affiliation(s)
- Stacey Richards
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, Australia
| | - David Palmer
- New Zealand Racing Laboratory Services Ltd, Avondale, Auckland, New Zealand
| | - Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, Australia
| | | | - John Keledjian
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, Australia
| |
Collapse
|
3
|
Li X, Li M, Tian J, Shi ZW, Wang LZ, Song K. Secondary Polycythemia May Be an Early Clinical Manifestation of Multiple Myeloma: A Case Report. J Blood Med 2024; 15:325-330. [PMID: 39086399 PMCID: PMC11289518 DOI: 10.2147/jbm.s465827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells that can cause anemia due to renal failure and bone marrow failure. Secondary polycythemia (SE) is a clinically rare disease that involves the overproduction of red blood cells. To our knowledge, the association of multiple myeloma and polycythemia has been reported, but the association of SE and multiple myeloma is rare and has been infrequently reported in literature. In contrast to anemia, the presence of polycythemia in multiple myeloma patients is a rare finding. A patient of IgA-λ multiple myeloma with secondary erythrocytosis recently admitted to our department is now reported as follows and relevant literature is reviewed to improve clinicians' awareness of such rare comorbidities.
Collapse
Affiliation(s)
- XiaoLan Li
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan, People’s Republic of China
| | - Min Li
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan, People’s Republic of China
| | - Juan Tian
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan, People’s Republic of China
| | - Zi-Wei Shi
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan, People’s Republic of China
| | - Ling-Zhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan, People’s Republic of China
| | - Kui Song
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan, People’s Republic of China
| |
Collapse
|
4
|
Sapanidou VG, Asimakopoulos B, Lialiaris T, Lavrentiadou SN, Feidantsis K, Kourousekos G, Tsantarliotou MP. The Role of Erythropoietin in Bovine Sperm Physiology. Animals (Basel) 2024; 14:2175. [PMID: 39123702 PMCID: PMC11311055 DOI: 10.3390/ani14152175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Erythropoietin (EPO), a hormone secreted mainly by the kidney, exerts its biological function by binding to its cell-surface receptor (EpoR). The presence of EPO and EpoR in the male and female reproductive system has been verified. Therefore, some of the key properties of EPO, such as its antioxidant and antiapoptotic effects, could improve the fertilizing capacity of spermatozoa. In the present study, the effect of two different concentrations of EPO (10 mIU/μL and 100 mIU/μL) on bovine sperm-quality parameters was evaluated during a post-thawing 4-h incubation at 37 °C. EPO had a positive effect on sperm motility, viability, and total antioxidant capacity. Moreover, EPO inhibited apoptosis, as it reduced both BCL2-associated X apoptosis regulator (Bax)/B-cell lymphoma 2 (Bcl-2) ratio and cleaved cysteine-aspartic proteases (caspases) substrate levels in a dose-dependent manner. In addition, EPO induced sperm capacitation and acrosome reaction in spermatozoa incubated in capacitation conditioned medeia. These results establish a foundation for the physiological role of EPO in reproductive processes and hopefully will provide an incentive for further research in order to fully decipher the role of EPO in sperm physiology and reproduction.
Collapse
Affiliation(s)
- Vasiliki G. Sapanidou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Byron Asimakopoulos
- Laboratory of Physiology, Faculty of Medicine, School of Health Science, Campus-Dragana, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Theodoros Lialiaris
- Laboratory of Genetics, Faculty of Medicine, School of Health Science, Campus-Dragana, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Sophia N. Lavrentiadou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Feidantsis
- Department of Fisheries & Aquaculture, School of Agricultural Sciences, University of Patras, 26504 Mesolonghi, Greece;
| | - Georgios Kourousekos
- Directorate of Veterinary Centre of Thessaloniki, Department of Reproduction and Artificial Insemination, National Ministry of Rural Development and Food, 57008 Thessaloniki, Greece;
| | - Maria P. Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Metallinou C, Staneloudi C, Nikolettos K, Asimakopoulos B. NGF, EPO, and IGF-1 in the Male Reproductive System. J Clin Med 2024; 13:2918. [PMID: 38792459 PMCID: PMC11122040 DOI: 10.3390/jcm13102918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Several studies have demonstrated interesting results considering the implication of three growth factors (GFs), namely nerve growth factor (NGF), erythropoietin (EPO), and the insulin-like growth factor-I (IGF-1) in the physiology of male reproductive functions. This review provides insights into the effects of NGF, EPO, and IGF-1 on the male reproductive system, emphasizing mainly their effects on sperm motility and vitality. In the male reproductive system, the expression pattern of the NGF system varies according to the species and testicular development, playing a crucial role in morphogenesis and spermatogenesis. In humans, it seems that NGF positively affects sperm motility parameters and NGF supplementation in cryopreservation media improves post-thaw sperm motility. In animals, EPO is found in various male reproductive tissues, and in humans, the protein is present in seminal plasma and testicular germ cells. EPO receptors have been discovered in the plasma membrane of human spermatozoa, suggesting potential roles in sperm motility and vitality. In humans, IGF-1 is expressed mainly in Sertoli cells and is present in seminal plasma, contributing to cell development and the maturation of spermatozoa. IGF-1 seems to modulate sperm motility, and treatment with IGF-1 has a positive effect on sperm motility and vitality. Furthermore, lower levels of NGF or IGF-1 in seminal plasma are associated with infertility. Understanding the mechanisms of actions of these GFs in the male reproductive system may improve the outcome of sperm processing techniques.
Collapse
Affiliation(s)
- Chryssa Metallinou
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| | - Chrysovalanto Staneloudi
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Nikolettos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| | - Byron Asimakopoulos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| |
Collapse
|
6
|
Li K, Shen C, Wen N, Han Y, Guo L. EPO regulates the differentiation and homing of bone marrow mesenchymal stem cells through Notch1/Jagged pathway to treat pulmonary hypertension. Heliyon 2024; 10:e25234. [PMID: 38375306 PMCID: PMC10875385 DOI: 10.1016/j.heliyon.2024.e25234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Purpose To investigate whether erythropoietin (EPO) can treat pulmonary arterial hypertension (PAH) in rats by regulating the differentiation and homing of bone marrow mesenchymal stem cells (BMSCs) through Notch1/Jagged signaling pathway. Materials & methods BMSCs were isolated from the bone marrow of 6-week-old male SD rats by whole bone marrow method and identified. BMSCs were treated with 500 IU/mL EPO, and the proliferation, migration, invasion and differentiation ability, and the expression of MMP-2 and MMP-9 protein of BMSCs were detected in vitro. After the establishment of the pulmonary hypertension model in rats, BMSCs were intervened with different concentrations of EPO and injected into the rats through intravenous injection. The levels of TNF-α, IL-1β and IL-6 in lung tissue, the expression of SRY CXCR4, CCR2, Notch1 and Jagged protein in lung tissue, and the levels of TGF-α, vascular endothelial factor (VEGF), IGF-1 and HGF in serum were detected. Immunofluorescence (IF) staining was used to detect the co-localization of CD34. Results EPO promoted the proliferation, migration, and invasion of BMSCs by inhibiting Notch1/Jagged pathway in vitro, and induced BMSCs to differentiate into vascular smooth muscle cells and vascular endothelial cells. EPO inhibited Notch1/Jagged pathway in PAH rats, induced BMSCs homing and differentiation, increased the levels of TGF-α, VEGF, IGF-1 and HGF, and decreased the levels of TNF-α, IL-1β and IL-6. Discussion & conclusion EPO can inhibit the Notch1/Jagged pathway and promote the proliferation, migration, invasion, homing and differentiation of BMSCs to treat pulmonary hypertension in rats in vitro and in vivo.
Collapse
Affiliation(s)
- Kang Li
- Department of Gastroenterology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet 850000, China
| | - Chongyang Shen
- School of basic medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 230041, Sichuan, China
| | - Nianchi Wen
- Department of Health Management & Physical Examination, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Yicen Han
- Department of Pulmonary and Critical Care Medicine, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| |
Collapse
|
7
|
Papaetis GS. SGLT2 inhibitors, intrarenal hypoxia and the diabetic kidney: insights into pathophysiological concepts and current evidence. Arch Med Sci Atheroscler Dis 2023; 8:e155-e168. [PMID: 38283924 PMCID: PMC10811536 DOI: 10.5114/amsad/176658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024] Open
Abstract
Approximately 20-40% of all diabetic patients experience chronic kidney disease, which is related to higher mortality (cardiovascular and all-cause). A large body of evidence suggests that renal hypoxia is one of the main forces that drives diabetic kidney disease, both in its early and advanced stages. It promotes inflammation, generation of intrarenal collagen, capillary rarefaction and eventually accumulation of extracellular matrix that destroys normal renal architecture. SGLT2 inhibitors are unquestionably a practice-changing drug class and a valuable weapon for patients with type 2 diabetes and chronic kidney disease. They have achieved several beneficial kidney effects after targeting multiple and interrelated signaling pathways, including renal hypoxia, independent of their antihyperglycemic activities. This manuscript discusses the pathophysiological concepts that underly their possible effects on modulating renal hypoxia. It also comprehensively investigates both preclinical and clinical studies that explored the possible role of SGLT2 inhibitors in this setting, so as to achieve long-term renoprotective benefits.
Collapse
Affiliation(s)
- Georgios S. Papaetis
- K.M.P THERAPIS Paphos Medical Center, Internal Medicine and Diabetes Clinic, Paphos, Cyprus
- CDA College, Paphos, Cyprus
| |
Collapse
|
8
|
Karimzadeh I, Rasekh H, Karimian A, Shabani-Borujeni M, Vazin A. Drug Utilization Evaluation of Erythropoietin at a Referral Teaching Hospital in Iran. Adv Pharmacol Pharm Sci 2023; 2023:6685602. [PMID: 38029231 PMCID: PMC10645503 DOI: 10.1155/2023/6685602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Drug utilization evaluation (DUE) studies aim to survey the appropriateness of drug use. DUE is an executive approach used to improve the use of medications as well as reduce the cost of treatment, ensure drug adequacy, and improve patient safety. The aim of this study was to evaluate the pattern of erythropoietin use, according to standard guidelines, in patients admitted to Namazi Hospital in Shiraz, Iran. Methods In this descriptive, retrospective study, 230 patients were assessed. All patients who were hospitalized in different wards of Namazi Hospital, affiliated to Shiraz University of Medical Sciences, and received at least three doses of erythropoietin from September 2019 to March 2020 participated in this study. The following standard indicators of erythropoietin use were evaluated through reviewing medical charts of the cohort: drug dose, dosing intervals, route of administration, indication, monitoring of laboratory parameters, drug dose adjustment based on the response rate as well as target hemoglobin ≥12 g/dl, attention to major drug interactions, and administration of injectable or oral iron supplementation during treatment. Results Most (65.2%) of the participants were male. The mean ± SD age of the patients was 47.55 ± 22.71 years. More than half (51.3%) of the included subjects were hospitalized in the nephrology ward. PDpoetin® and Cinnapoietin® were given to 52.6% and 47.4% of the study participants, respectively. Treatment of anemia due to chronic kidney disease was the most frequent indication of erythropoietin. The time interval of erythropoietin administration was three times a week for 68.3% of the patients. The most frequently administered weekly dose of erythropoietin was 12,000 units. The weekly dose, dose interval, and route of administration of erythropoietin were appropriate in 52.6%, 77.4%, and 100% of the patients, respectively. Dose adjustment based on the response rate, attention to major drug interactions as well as absolute-relative contraindications, and attention to the target hemoglobin ≥12 g/dl to decide whether or not to continue treatment were based on standard guideline in 98.1%, 98.7%, and 93% of the patients, respectively. The sum indexes of erythropoietin use were in line with standard guidelines in 75.84% of the cases. Conclusion According to our results, in the setting of erythropoietin use in hospitals, physicians need more attention and education in areas such as selecting the proper dose of medication, correct indication of the drug, temporal arrangement of monitoring laboratory items, and the patient's need for iron supplements.
Collapse
Affiliation(s)
- Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Rasekh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Karimian
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shabani-Borujeni
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Chen X, Chen W, Wang D, Ma L, Tao J, Zhang A. Subchronic Arsenite Exposure Induced Atrophy and Erythropoietin Sensitivity Reduction in Skeletal Muscle Were Relevant to Declined Serum Melatonin Levels in Middle-Aged Rats. TOXICS 2023; 11:689. [PMID: 37624196 PMCID: PMC10458431 DOI: 10.3390/toxics11080689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Arsenic is a kind of widespread environmental toxicant with multiorgan-toxic effects, and arsenic exposure is associated with the occurrence and development of many chronic diseases. The influence of environmental arsenic exposure on skeletal muscle, which is a vital organ of energy and glucose metabolism, has received increasing attention. This study aimed to investigate the types of inorganic arsenic-induced skeletal muscle injury, and the potential regulatory effects of melatonin (MT) and erythropoietin (EPO) in young (3-month-old) and middle-aged (12-month-old) rats. Our results showed that 1 mg/L sodium arsenite exposure for 3 months could accelerate gastrocnemius muscle atrophy and promote the switch of type II fibers to type I fibers in middle-aged rats; however, it did not cause significant pathological changes of gastrocnemius muscle in young rats. In addition, arsenite could inhibit serum MT levels, and promote serum EPO levels but inhibit EPO receptor (EPOR) expression in gastrocnemius muscle in middle-aged rats, while serum MT levels and EPOR expression in gastrocnemius muscle showed an opposite effect in young rats. Importantly, exogenous MT antagonized the arsenite-induced skeletal muscle toxic effect and restored serum EPO and gastrocnemius muscle EPOR expression levels in middle-aged rats. There was a positive correlation among gastrocnemius muscle index, serum MT level, and gastrocnemius muscle EPOR protein level in arsenite-exposed rats. This study demonstrated that inorganic arsenic could accelerate skeletal muscle mass loss and type II fiber reduction in middle-aged rats, which may be related to decreased MT secretion and declined EPO sensitivity in skeletal muscle.
Collapse
Affiliation(s)
| | | | | | | | | | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (W.C.)
| |
Collapse
|
10
|
Helfrich KK, Saini N, Kwan STC, Rivera OC, Mooney SM, Smith SM. Fetal anemia and elevated hepcidin in a mouse model of fetal alcohol spectrum disorder. Pediatr Res 2023; 94:503-511. [PMID: 36702950 PMCID: PMC11878275 DOI: 10.1038/s41390-023-02469-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Prenatal alcohol exposure (PAE) impairs offspring growth and cognition, and this is worsened by concurrent iron deficiency. Alcohol disrupts fetal iron metabolism and produces functional iron deficiency, even when maternal iron status is adequate. We used a mouse model of moderate PAE to investigate the mechanisms underlying this dysregulated iron status. METHODS C57BL/6J female mice received 3 g/kg alcohol daily from embryonic day (E) 8.5-17.5 and were assessed at E17.5. RESULTS Alcohol reduced fetal hemoglobin, hematocrit, and red blood cell counts, despite elevated erythropoietin production. Alcohol suppressed maternal hepcidin expression and the upstream iron-sensing BMP/SMAD pathway, consistent with its effects in the nonpregnant state. In contrast, alcohol elevated fetal hepcidin, although this was not accompanied by an upregulation of the BMP/SMAD or proinflammatory IL-6/STAT3 pathways. Fetal expression of hepatic genes contributing to hemoglobin synthesis and iron metabolism were unaffected by alcohol, whereas those affecting ribosome biogenesis were suppressed, suggesting a novel candidate effector for this fetal anemia. CONCLUSION These data confirm and extend prior observations that PAE disrupts maternal and fetal iron metabolism and impairs the fetus's ability to regulate iron status. We propose this dysregulation increases gestational iron needs and represents a conserved response to PAE. IMPACT Prenatal alcohol exposure causes a functional iron deficiency in a model that also impairs cognition in later life. Prenatal alcohol exposure causes fetal anemia. This fetal anemia is accompanied by elevated hepcidin and erythropoietin. Findings are consistent with prior observations that prenatal alcohol exposure increases maternal-fetal iron requirements during pregnancy.
Collapse
Affiliation(s)
- Kaylee K Helfrich
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Nipun Saini
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Sze Ting Cecilia Kwan
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Olivia C Rivera
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Sandra M Mooney
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Susan M Smith
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA.
| |
Collapse
|
11
|
Tabatabaei SA, Amini M, Haydar AA, Soleimani M, Cheraqpour K, Shahriari M, Hassanian-Moghaddam H, Zamani N, Akbari MR. Outbreak of methanol-induced optic neuropathy in early COVID-19 era; effectiveness of erythropoietin and methylprednisolone therapy. World J Clin Cases 2023; 11:3502-3510. [PMID: 37383889 PMCID: PMC10294205 DOI: 10.12998/wjcc.v11.i15.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Methanol is a highly toxic, non-potable alcohol. Outbreaks of methanol toxicity occur due to its fraudulent addition to alcoholic beverages as a cheaper substitute for ethanol. Recently, alongside the coronavirus disease 2019 (COVID-19) pandemic, rumors circulated on social media that consuming alcohol can prevent or cure the virus, leading to a COVID-19 and methanol-induced optic neuropathy (MON) syndemic. AIM To investigate the impact of erythropoietin (EPO) on the outcomes of patients diagnosed with MON. METHODS In this prospective study, 105 patients presenting with acute bilateral visual loss secondary to methanol intoxication were enrolled from March to May 2020 at Farabi Eye Hospital. A comprehensive ocular examination was conducted for all participants. Recombinant human EPO and methylprednisolone were administered intravenously to all patients for three consecutive days. RESULTS The mean age of the participants was 39.9 years (± 12.6). Ninety-four patients were male and eleven were female. The mean pre-treatment best corrected visual acuity (BCVA) improved from 2.0 ± 0.86 to 1.39 ± 0.69 logarithm of the minimum angle of resolution post-treatment (P < 0.001), with significant improvement observed in all age categories and genders (P < 0.001). Visual acuity improvement was also significant regardless of whether the patient presented before or after 72 h (P < 0.001), and the post-treatment BCVA remained significant at all monthly follow-up visits (P < 0.001). CONCLUSION EPO and methylprednisolone therapy have been shown to be effective in improving visual outcomes in patients with MON when administrated within the first month of exposure. Public awareness efforts are necessary to prevent further outbreaks of methanol toxicity in the current COVID-19 era.
Collapse
Affiliation(s)
- Seyed Ali Tabatabaei
- Department of Ophthalmology, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| | - Mohammad Amini
- Department of Ophthalmology, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| | - Ali A Haydar
- Department of Ophthalmology, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| | - Mohammad Soleimani
- Department of Ophthalmology, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| | - Kasra Cheraqpour
- Department of Ophthalmology, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| | - Mansoor Shahriari
- Department of Ophthalmology, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran 1617763141, Iran
| | - Hossein Hassanian-Moghaddam
- Department of Clinical Toxicology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1964512642, Iran
| | - Nasim Zamani
- Department of Internal Medicine, Street, Agnes Medical Center, Fresno, CA 93720, United States
| | - Mohammad Reza Akbari
- Department of Ophthalmology, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| |
Collapse
|
12
|
Rey F, Berardo C, Maghraby E, Mauri A, Messa L, Esposito L, Casili G, Ottolenghi S, Bonaventura E, Cuzzocrea S, Zuccotti G, Tonduti D, Esposito E, Paterniti I, Cereda C, Carelli S. Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants (Basel) 2023; 12:antiox12040965. [PMID: 37107340 PMCID: PMC10135575 DOI: 10.3390/antiox12040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Erika Maghraby
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy
| | - Eleonora Bonaventura
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Davide Tonduti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| |
Collapse
|
13
|
Muacevic A, Adler JR, Torres R, Maita K, Garcia J, Serrano L, Ho O, Forte AJ. Modulation of Burn Hypermetabolism in Preclinical Models. Cureus 2023; 15:e33518. [PMID: 36779088 PMCID: PMC9904913 DOI: 10.7759/cureus.33518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Severe burns elicit a state of physiological stress and increased metabolism to help the body compensate for the changes associated with the traumatic injury. However, this hypermetabolic state is associated with increased insulin resistance, cardiovascular dysfunction, skeletal muscle catabolism, impaired wound healing, and delayed recovery. Several interventions were attempted to modulate burn hypermetabolism, including nutritional support, early excision and grafting, and growth hormone application. However, burn hypermetabolism still imposes significant morbidity and mortality in burn patients. Due to the limitations of in vitro models, animal models are indispensable in burn research. Animal models provide researchers with invaluable tools to test the safety and efficacy of novel treatments or advance our knowledge of previously utilized agents. Several animal studies evaluated novel therapies to modulate burn hypermetabolism in the last few years, including recombinant human growth hormone, erythropoietin, acipimox, apelin, anti-interleukin-6 monoclonal antibody, and ghrelin therapies. Results from these studies are promising and may be effectively translated into human studies. In addition, other studies revisited drugs previously used in clinical practice, such as insulin and metformin, to further investigate their underlying mechanisms as modulators of burn hypermetabolism. This review aims to update burn experts with the novel therapies under investigation in burn hypermetabolism with a focus on applicability and translation. Furthermore, we aim to guide researchers in selecting the correct animal model for their experiments by providing a summary of the methodology and the rationale of the latest studies.
Collapse
|
14
|
Impact of N-Linked Glycosylation on Therapeutic Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248859. [PMID: 36557993 PMCID: PMC9781892 DOI: 10.3390/molecules27248859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Therapeutic proteins have unique advantages over small-molecule drugs in the treatment of various diseases, such as higher target specificity, stronger pharmacological efficacy and relatively low side effects. These advantages make them increasingly valued in drug development and clinical practice. However, although highly valued, the intrinsic limitations in their physical, chemical and pharmacological properties often restrict their wider applications. As one of the most important post-translational modifications, glycosylation has been shown to exert positive effects on many properties of proteins, including molecular stability, and pharmacodynamic and pharmacokinetic characteristics. Glycoengineering, which involves changing the glycosylation patterns of proteins, is therefore expected to be an effective means of overcoming the problems of therapeutic proteins. In this review, we summarize recent efforts and advances in the glycoengineering of erythropoietin and IgG monoclonal antibodies, with the goals of illustrating the importance of this strategy in improving the performance of therapeutic proteins and providing a brief overview of how glycoengineering is applied to protein-based drugs.
Collapse
|
15
|
Zheng R, Yan Y, Pu J, Zhang B. Physiological and Pathological Functions of Neuronal Hemoglobin: A Key Underappreciated Protein in Parkinson's Disease. Int J Mol Sci 2022; 23:9088. [PMID: 36012351 PMCID: PMC9408843 DOI: 10.3390/ijms23169088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of Hemoglobin (Hb) is not restricted to erythrocytes but is also present in neurons. Hb is selectively enriched in vulnerable mesencephalic dopaminergic neurons of Parkinson's disease (PD) instead of resistant neurons. Controversial results of neuronal Hb levels have been reported in postmortem brains of PD patients: although neuronal Hb levels may decline in PD patients, elderly men with higher Hb levels have an increased risk of developing PD. α-synuclein, a key protein involved in PD pathology, interacts directly with Hb protein and forms complexes in erythrocytes and brains of monkeys and humans. These complexes increase in erythrocytes and striatal cytoplasm, while they decrease in striatal mitochondria with aging. Besides, the colocalization of serine 129-phosphorylated (Pser129) α-synuclein and Hb β chains have been found in the brains of PD patients. Several underlying molecular mechanisms involving mitochondrial homeostasis, α-synuclein accumulation, iron metabolism, and hormone-regulated signaling pathways have been investigated to assess the relationship between neuronal Hb and PD development. The formation of fibrils with neuronal Hb in various neurodegenerative diseases may indicate a common fibrillization pathway and a widespread target that could be applied in neurodegeneration therapy.
Collapse
Affiliation(s)
| | | | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
16
|
de Castro Nobre AC, Pimentel CF, do Rêgo GMS, Paludo GR, Pereira Neto GB, de Castro MB, Nitz N, Hecht M, Dallago B, Hagström L. Insights from the use of erythropoietin in experimental Chagas disease. Int J Parasitol Drugs Drug Resist 2022; 19:65-80. [PMID: 35772309 PMCID: PMC9253553 DOI: 10.1016/j.ijpddr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
In addition to the long-established role in erythropoiesis, erythropoietin (Epo) has protective functions in a variety of tissues, including the heart. This is the most affected organ in chronic Chagas disease, caused by the protozoan Trypanosoma cruzi. Despite seven million people being infected with T. cruzi worldwide, there is no effective treatment preventing the disease progression to the chronic phase when the pathological involvement of the heart is often observed. Chronic chagasic cardiomyopathy has a wide variety of manifestations, like left ventricular systolic dysfunction, dilated cardiomyopathy, and heart failure. Since Epo may help maintain cardiac function by reducing myocardial necrosis, inflammation, and fibrosis, this study aimed to evaluate whether the Epo has positive effects on experimental Chagas disease. For that, we assessed the earlier (acute phase) and also the later (chronic phase) use of Epo in infected C57BL/6 mice. Blood cell count, biochemical parameters, parasitic load, and echocardiography data were evaluated. In addition, histopathological analysis was carried out. Our data showed that Epo had no trypanocide effect nor did it modify the production of anti-T. cruzi antibodies. Epo-treated groups exhibited parasitic burden much lower in the heart compared to blood. No pattern of hematological changes was observed combining infection with treatment with Epo. Chronic Epo administration reduced CK-MB serum activity from d0 to d180, irrespectively of T. cruzi infection. Likewise, echocardiography and histological results indicate that Epo treatment is more effective in the chronic phase of experimental Chagas disease. Since treatment is one of the greatest challenges of Chagas disease, alternative therapies should be investigated, including Epo combined with benznidazole.
Collapse
Affiliation(s)
| | - Carlos Fernando Pimentel
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - George Magno Sousa do Rêgo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Giane Regina Paludo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Glaucia Bueno Pereira Neto
- Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Márcio Botelho de Castro
- Laboratory of Veterinary Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Faculty of Physical Education, University of Brasília, Brasília, Brazil.
| |
Collapse
|
17
|
Vignjević Petrinović S, Jauković A, Milošević M, Bugarski D, Budeč M. Targeting Stress Erythropoiesis Pathways in Cancer. Front Physiol 2022; 13:844042. [PMID: 35694408 PMCID: PMC9174937 DOI: 10.3389/fphys.2022.844042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer-related anemia (CRA) is a common multifactorial disorder that adversely affects the quality of life and overall prognosis in patients with cancer. Safety concerns associated with the most common CRA treatment options, including intravenous iron therapy and erythropoietic-stimulating agents, have often resulted in no or suboptimal anemia management for many cancer patients. Chronic anemia creates a vital need to restore normal erythropoietic output and therefore activates the mechanisms of stress erythropoiesis (SE). A growing body of evidence demonstrates that bone morphogenetic protein 4 (BMP4) signaling, along with glucocorticoids, erythropoietin, stem cell factor, growth differentiation factor 15 (GDF15) and hypoxia-inducible factors, plays a pivotal role in SE. Nevertheless, a chronic state of SE may lead to ineffective erythropoiesis, characterized by the expansion of erythroid progenitor pool, that largely fails to differentiate and give rise to mature red blood cells, further aggravating CRA. In this review, we summarize the current state of knowledge on the emerging roles for stress erythroid progenitors and activated SE pathways in tumor progression, highlighting the urgent need to suppress ineffective erythropoiesis in cancer patients and develop an optimal treatment strategy as well as a personalized approach to CRA management.
Collapse
Affiliation(s)
- Sanja Vignjević Petrinović
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Milošević
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirela Budeč
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Li Z, Zhu Y, Kang Y, Qin S, Chai J. Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Front Cell Neurosci 2022; 16:843069. [PMID: 35418837 PMCID: PMC8995749 DOI: 10.3389/fncel.2022.843069] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication following surgery and general anesthesia, especially in elderly patients. Severe cases delay patient discharge, affect the patient’s quality of life after surgery, and are heavy burdens to society. In addition, as the population ages, surgery is increasingly used for older patients and those with higher prevalences of complications. This trend presents a huge challenge to the current healthcare system. Although studies on POCD are ongoing, the underlying pathogenesis is still unclear due to conflicting results and lack of evidence. According to existing studies, the occurrence and development of POCD are related to multiple factors. Among them, the pathogenesis of neuroinflammation in POCD has become a focus of research in recent years, and many clinical and preclinical studies have confirmed the correlation between neuroinflammation and POCD. In this article, we reviewed how central nervous system inflammation occurred, and how it could lead to POCD with changes in peripheral circulation and the pathological pathways between peripheral circulation and the central nervous system (CNS). Furthermore, we proposed some potential therapeutic targets, diagnosis and treatment strategies at the cellular and molecular levels, and clinical applications. The goal of this article was to provide a better perspective for understanding the occurrence of POCD, its development, and preventive strategies to help manage these vulnerable geriatric patients.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihan Kang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shangyuan Qin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Chai,
| |
Collapse
|
19
|
Geronikolou SA, Takan I, Pavlopoulou A, Mantzourani M, Chrousos GP. Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. Int J Mol Med 2022; 49:35. [PMID: 35059730 PMCID: PMC8815408 DOI: 10.3892/ijmm.2022.5090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The highly heterogeneous symptomatology and unpredictable progress of COVID-19 triggered unprecedented intensive biomedical research and a number of clinical research projects. Although the pathophysiology of the disease is being progressively clarified, its complexity remains vast. Moreover, some extremely infrequent cases of thrombotic thrombocytopenia following vaccination against SARS-CoV-2 infection have been observed. The present study aimed to map the signaling pathways of thrombocytopenia implicated in COVID-19, as well as in vaccine-induced thrombotic thrombocytopenia (VITT). The biomedical literature database, MEDLINE/PubMed, was thoroughly searched using artificial intelligence techniques for the semantic relations among the top 50 similar words (>0.9) implicated in COVID-19-mediated human infection or VITT. Additionally, STRING, a database of primary and predicted associations among genes and proteins (collected from diverse resources, such as documented pathway knowledge, high-throughput experimental studies, cross-species extrapolated information, automated text mining results, computationally predicted interactions, etc.), was employed, with the confidence threshold set at 0.7. In addition, two interactomes were constructed: i) A network including 119 and 56 nodes relevant to COVID-19 and thrombocytopenia, respectively; and ii) a second network containing 60 nodes relevant to VITT. Although thrombocytopenia is a dominant morbidity in both entities, three nodes were observed that corresponded to genes (AURKA, CD46 and CD19) expressed only in VITT, whilst ADAM10, CDC20, SHC1 and STXBP2 are silenced in VITT, but are commonly expressed in both COVID-19 and thrombocytopenia. The calculated average node degree was immense (11.9 in COVID-19 and 6.43 in VITT), illustrating the complexity of COVID-19 and VITT pathologies and confirming the importance of cytokines, as well as of pathways activated following hypoxic events. In addition, PYCARD, NLP3 and P2RX7 are key potential therapeutic targets for all three morbid entities, meriting further research. This interactome was based on wild-type genes, revealing the predisposition of the body to hypoxia-induced thrombosis, leading to the acute COVID-19 phenotype, the 'long-COVID syndrome', and/or VITT. Thus, common nodes appear to be key players in illness prevention, progression and treatment.
Collapse
Affiliation(s)
- Styliani A Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Işil Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey
| | | | - Marina Mantzourani
- First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - George P Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
20
|
Hsieh CC, Chan MJ, Su YJ, Fu JF, Wang IK, Chen CY, Weng CH, Huang WH, Hsu CW, Yen TH. Bone Marrow Hypocellularity in Patients with End-Stage Kidney Disease. Healthcare (Basel) 2021; 9:1452. [PMID: 34828498 PMCID: PMC8621268 DOI: 10.3390/healthcare9111452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Anemia and pancytopenia are not uncommon in patients with chronic kidney disease (CKD). Nevertheless, there is insufficient literature analyzing bone marrow pathology in patients with CKD or end-stage kidney disease (ESKD) receiving dialysis. METHODS This observational cohort study included 22 patients with ESKD and 23 patients with CKD that received bone marrow biopsy and aspiration at Chang Gung Memorial Hospital. Demographic, hematological, and biochemical data were collected at the time of bone marrow study for analysis. RESULTS Bone marrow aspiration demonstrated that patients with ESKD had a lower percentage of blasts than patients with CKD (0.52 ± 0.84 versus 1.06 ± 0.78 %, p = 0.033). Bone marrow biopsy revealed that the overall incidence of hypocellular bone marrow was 55.6%. Furthermore, patients with ESKD had higher proportion of hypocellular bone marrow than patients with CKD (72.7% versus 39.1%, p = 0.023). In a multivariate logistic regression model, it was revealed that ESKD status (odds ratio 9.43, 95% confidence interval 1.66-53.63, p = 0.011) and megakaryocyte count within bone marrow (odds ratio 0.48, 95% confidence interval 0.29-0.79, p = 0.004) were significant predictors for bone marrow hypocellularity. CONCLUSION Bone marrow hypocellularity is common in patients with kidney dysfunction. Hypocellular marrow occurs more frequently in patients with ESKD than patients with CKD.
Collapse
Affiliation(s)
- Chia-Chen Hsieh
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Jen Chan
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yi-Jiun Su
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
| | - Jen-Fen Fu
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Medical Research, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - I-Kuan Wang
- Department of Nephrology, China Medical University Hospital, Taichung 404, Taiwan;
- College of Medicine, China Medical University, Taichung 406, Taiwan
| | - Chao-Yu Chen
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Cheng-Hao Weng
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Wen-Hung Huang
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ching-Wei Hsu
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Tzung-Hai Yen
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
21
|
Ma X, Shi Y. Whether erythropoietin can be a neuroprotective agent against premature brain injury: cellular mechanisms and clinical efficacy. Curr Neuropharmacol 2021; 20:611-629. [PMID: 34030616 DOI: 10.2174/1570159x19666210524154519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022] Open
Abstract
Preterm infants are at high risk of brain injury. With more understanding of the preterm brain injury's pathogenesis, neuroscientists are looking for more effective methods to prevent and treat it, among which erythropoietin (Epo) is considered as a prime candidate. This review tries to clarify the possible mechanisms of Epo in preterm neuroprotection and summarize updated evidence considering Epo as a pharmacological neuroprotective strategy in animal models and clinical trials. To date, various animal models have validated that Epo is an anti-apoptotic, anti-inflammatory, anti-oxidant, anti-excitotoxic, neurogenetic, erythropoietic, angiogenetic, and neurotrophic agent, thus preventing preterm brain injury. However, although the scientific rationale and preclinical data for Epo's neuroprotective effect are promising, when translated to bedside, the results vary in different studies, especially in its long-term efficacy. Based on existing evidence, it is still too early to recommend Epo as the standard treatment for preterm brain injury.
Collapse
Affiliation(s)
- Xueling Ma
- Department of Neonatology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing 400014, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing 400014, China
| |
Collapse
|
22
|
Rink S, Manthou ME, Arnold J, Grigo M, Dicken P, Abdulla DSY, Bendella H, Nohroudi K, Angelov DN. Motor, sensitive, and vegetative recovery in rats with compressive spinal-cord injury after combined treatment with erythropoietin and whole-body vibration. Restor Neurol Neurosci 2021; 39:85-100. [PMID: 33612500 DOI: 10.3233/rnn-201120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Physical therapy with whole body vibration (WBV) following compressive spinal cord injury (SCI) in rats restores density of perisomatic synapses, improves body weight support and leads to a better bladder function. The purpose of the study was to determine whether the combined treatment with WBV plus erythropoietin (EPO) would further improve motor, sensory and vegetative functions after SCI in rats. METHODS Severe compressive SCI at low thoracic level was followed by a single i.p. injection of 2,5μg (250 IU) human recombinant EPO. Physical therapy with WBV started on 14th day after injury and continued over a 12-week post injury period. Locomotor recovery, sensitivity tests and urinary bladder scores were analysed at 1, 3, 6, 9, and 12 weeks after SCI. The closing morphological measurements included lesion volume and numbers of axons in the preserved perilesional neural tissue bridges (PNTB). RESULTS Assessment of motor performance sensitivity and bladder function revealed no significant effects of EPO when compared to the control treatments. EPO treatment neither reduced the lesion volume, nor increased the number of axons in PNTB. CONCLUSIONS The combination of WBV + EPO exerts no positive effects on hind limbs motor performance and bladder function after compressive SCI in rats.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | - Maria Eleni Manthou
- Department of Histology and Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Julia Arnold
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Merle Grigo
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Paulina Dicken
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Diana Saad Yousif Abdulla
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Network Genomic Medicine, Lung Cancer Group Cologne, University of Cologne, Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Klaus Nohroudi
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | | |
Collapse
|
23
|
Aslroosta H, Yaghobee S, Akbari S, Kanounisabet N. The effects of topical erythropoietin on non-surgical treatment of periodontitis: a preliminary study. BMC Oral Health 2021; 21:240. [PMID: 33957902 PMCID: PMC8101234 DOI: 10.1186/s12903-021-01607-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022] Open
Abstract
Background The purpose of periodontal treatments is to reduce inflammation, restore gingival health and clinical attachment level gain by controlling microbial plaque formation and other etiological factors. One of the drugs that has been tested in many areas and shown good anti-inflammatory properties is erythropoietin (EPO). We evaluated the effect of this drug on the improvement of periodontitis after the phase I treatment. Methods This study was conducted on 30 patients with stage III periodontitis who had at least two bilateral teeth with CAL of ≥ 5 mm and PPD ≥ 6 mm at ≥ 2 non‐adjacent teeth and bleeding on probing. After oral hygiene instruction and scaling and root planning (SRP), EPO gel containing a solution of 4000 units was applied deeply in the test group and placebo gel was deeply administered in the control pockets (5 times, every other day). The clinical parameters of the plaque index (PI), gingival index (GI), clinical attachment level (CAL), probing depth (PD) and bleeding index (BI) were measured at baseline and after three months of follow up. The P-value was set at 0.05. Results All clinical variables improved after treatment in both groups. The BI and GI scores (which reflects the degree of gingival inflammation) showed statistically more reduction in test group. The CAL decreased from 5.1 ± 4.1 to 3.40 ± 2.71 mm; and 5.67 ± 4.32 to 4.33 ± 3.19 mm in test and control group, respectively (P < 0.00). After the treatment, there was a significant greater reduction in CAL and also PD values in test group (P < 0.01). Conclusion Local application of EPO gel in adjunct to SRP can improve clinical inflammation and CAL gain in periodontitis. Trial registration: This study was registered at 2017-11-06 in IRCT. All procedures performed in this study were approved with ID number of IR.TUMS.DENTISTRY.REC.1396.3139 in Tehran University of medical science. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01607-y.
Collapse
Affiliation(s)
- Hoori Aslroosta
- Department of Periodontics, School of Dentistry, Faculty of Dentistry, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran
| | - Siamak Yaghobee
- Department of Periodontics, School of Dentistry, Faculty of Dentistry, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran
| | - Solmaz Akbari
- Department of Periodontics, School of Dentistry, Faculty of Dentistry, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran
| | - Negar Kanounisabet
- Department of Periodontics, School of Dentistry, Faculty of Dentistry, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran.
| |
Collapse
|
24
|
Koh AEH, Subbiah SK, Farhana A, Alam MK, Mok PL. Mitigation of Sodium Iodate-Induced Cytotoxicity in Retinal Pigment Epithelial Cells in vitro by Transgenic Erythropoietin-Expressing Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:652065. [PMID: 33937251 PMCID: PMC8082501 DOI: 10.3389/fcell.2021.652065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSC) have shown promise in restoring the vision of patients in clinical trials. However, this therapeutic effect is not observed in every treated patient and is possibly due to the inefficacies of cell delivery and high cell death following transplantation. Utilizing erythropoietin can significantly enhance the regenerative properties of MSCs and hence improve retinal neuron survivability in oxidative stress. Hence, this study aimed to investigate the efficacy of conditioned medium (CM) obtained from transgenic human erythropoietin-expressing MSCs (MSC EPO ) in protecting human retinal pigment epithelial cells from sodium iodate (NaIO3)-induced cell death. Human MSC and MSC EPO were first cultured to obtain conditioned media (CM). The IC50 of NaIO3 in the ARPE-19 culture was then determined by an MTT assay. After that, the efficacy of both MSC-CM and MSC-CM EPO in ARPE-19 cell survival were compared at 24 and 48 h after NaIO3 treatment with MTT. The treatment effects on mitochondrial membrane potential was then measured by a JC-1 flow cytometric assay. The MTT results indicated a corresponding increase in cell survivability (5-58%) in the ARPE-19 cell cultures. In comparison to MSC-CM, the use of conditioned medium collected from the MSC-CM EPO further enhanced the rate of ARPE-19 survivability at 24 h (P < 0.05) and 48 h (P < 0.05) in the presence of NaIO3. Furthermore, more than 90% were found viable with the JC-1 assay after MSC-CM EPO treatment, showing a positive implication on the mitochondrial dynamics of ARPE-19. The MSC-CM EPO provided an enhanced mitigating effect against NaIO3-induced ARPE-19 cell death over that of MSC-CM alone during the early phase of the treatment, and it may act as a future therapy in treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Avin Ee-Hwan Koh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Pooi Ling Mok
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
25
|
[Into thin air - Altitude training and hypoxic conditioning: From athlete to patient]. Rev Mal Respir 2021; 38:404-417. [PMID: 33722445 DOI: 10.1016/j.rmr.2021.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Hypoxic exposure should be considered as a continuum, the effects of which depend on the dose and individual response to hypoxia. Hypoxic conditioning (HC) represents an innovative and promising strategy, ranging from improved human performance to therapeutic applications. STATE OF THE ART With the aim of improving sports performance, the effectiveness of hypoxic exposure, whether natural or simulated, is difficult to demonstrate because of the large variability of the protocols used. In therapeutics, the benefits of HC are described in many pathological conditions such as obesity or cardiovascular pathologies. If the HC benefits from a strong preclinical rationale, its application to humans remains limited. PERSPECTIVES Advances in training and acclimation will require greater personalization and precise periodization of hypoxic exposures. For patients, the harmonization of HC protocols, the identification of biomarkers and the development and subsequent validation of devices allowing a precise control of the hypoxic stimulus are necessary steps for the development of HC. CONCLUSIONS From the athlete to the patient, HC represents an innovative and promising field of research, ranging from the improvement of human performance to the prevention and treatment of certain pathologies.
Collapse
|
26
|
Erythropoietin Stimulates GABAergic Maturation in the Mouse Hippocampus. eNeuro 2021; 8:ENEURO.0006-21.2021. [PMID: 33495244 PMCID: PMC7890522 DOI: 10.1523/eneuro.0006-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Several neurodevelopmental disabilities are strongly associated with alterations in GABAergic transmission, and therapies to stimulate its normal development are lacking. Erythropoietin (EPO) is clinically used in neonatology to mitigate acute brain injury, and to stimulate neuronal maturation. Yet it remains unclear whether EPO can stimulate maturation of the GABAergic system. Here, with the use of a transgenic mouse line that constitutively overexpresses neuronal EPO (Tg21), we show that EPO stimulates postnatal GABAergic maturation in the hippocampus. We show an increase in hippocampal GABA-immunoreactive neurons, and postnatal elevation of interneurons expressing parvalbumin (PV), somatostatin (SST), and neuropeptide Y (NPY). Analysis of perineuronal net (PNN) formation and innervation of glutamatergic terminals onto PV+ cells, shows to be enhanced early in postnatal development. Additionally, an increase in GABAAergic synapse density and IPSCs in CA1 pyramidal cells from Tg21 mice is observed. Detection of EPO receptor (EPOR) mRNA was observed to be restricted to glutamatergic pyramidal cells and increased in Tg21 mice at postnatal day (P)7, along with reduced apoptosis. Our findings show that EPO can stimulate postnatal GABAergic maturation in the hippocampus, by increasing neuronal survival, modulating critical plasticity periods, and increasing synaptic transmission. Our data supports EPO’s clinical use to balance GABAergic dysfunction.
Collapse
|
27
|
Elfar W, Gurjar AA, Talukder MAH, Noble M, Di Lorenzo C, Elfar J. Erythropoietin promotes functional recovery in a mouse model of postoperative ileus. Neurogastroenterol Motil 2021; 33:e14049. [PMID: 33368893 DOI: 10.1111/nmo.14049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysmotility and postoperative ileus (POI) are major clinical problems after surgical trauma and it is associated with increased intestinal inflammation and oxidative stress. Despite the high occurrence of POI following intra-abdominal surgeries, no effective treatment is currently available. Erythropoietin (EPO) is a multifunctional tissue-protective cytokine with potent anti-inflammatory and anti-oxidative properties, and it is an FDA approved medicine for clinical use. While both EPO and EPO receptors (EPOR) are widely expressed in the gut, the role of EPO in POI is largely unknown. This study was designed to explore the possible beneficial effect of EPO in a mouse model of POI. METHODS Mice were subjected to intestinal manipulation to induce standard POI and intestinal transit time was determined at 24-h post-injury with or without EPO treatment (5000 units/kg, once, IP, immediately after intestinal trauma). Intestinal samples were harvested for histological and immunohistochemical analysis. RESULTS Systemic EPO significantly improved intestinal transit time compared with control group and it was associated with significantly increased levels of tissue macrophages and reduced levels of oxidative stress. CONCLUSIONS AND INFERENCES This is the first pre-clinical study to document novel beneficial effects of EPO in gut dysmotility and our findings suggest that the beneficial effects of EPO in POI is predominantly mediated by its anti-oxidative and immunomodulatory properties.
Collapse
Affiliation(s)
- Walaa Elfar
- Division of Gastroenterology and Nutrition, Department of Pediatrics, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Anagha A Gurjar
- Department of Orthopedics and Rehabilitation, Center for Orthopedics and Translational Sciences (CORTS), The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - M A Hassan Talukder
- Department of Orthopedics and Rehabilitation, Center for Orthopedics and Translational Sciences (CORTS), The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | - Carlo Di Lorenzo
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - John Elfar
- Department of Orthopedics and Rehabilitation, Center for Orthopedics and Translational Sciences (CORTS), The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
28
|
Vukelic J, Dobrila-Dintinjana R, Marijic B, Marzic D, Braut T, Velepic M. New insights into erythropoietin and erythropoietin receptor in laryngeal cancer tissue. Medicine (Baltimore) 2021; 100:e23943. [PMID: 33545970 PMCID: PMC7837855 DOI: 10.1097/md.0000000000023943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
To investigate whether laryngeal cancer cells express erythropoietin (Epo) and erythropoietin receptor (EpoR) and what is their possible relationship with clinical and pathological features of the tumor.We performed immunohistochemical analysis of Epo and EpoR expression on 78 tissue samples of invasive and in situ squamous cell laryngeal carcinoma.The statistical analysis showed a weak positive and statistically significant correlation of EpoHS and EpoR HS expression levels. Epo HS and EpoR HS levels did not correlate with patient sex or age, type of diagnosis, cancer stage, histological tumor grade, presence or absence of disease recurrence, type of oncologic cancer therapy provided, or results of selected laboratory blood work. The results show a statistically significant difference in Epo expression with respect to survival.We confirmed the presence of Epo an EpoR in malignant laryngeal tumors and demonstrated the correlation between Epo expression and survival. Further studies are needed to more precisely define the role of Epo and EpoR in treatment of patients with laryngeal cancer.
Collapse
Affiliation(s)
| | | | | | - Diana Marzic
- Center for audiology and phoniatry, Clinical Hospital Center Rijeka, Kresimirova 42, Rijeka, Croatia
| | - Tamara Braut
- Department for Otolaryngology and Head and Neck surgery
| | - Marko Velepic
- Department for Otolaryngology and Head and Neck surgery
| |
Collapse
|
29
|
Mitochondrial Metabolism as Target of the Neuroprotective Role of Erythropoietin in Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10010121. [PMID: 33467745 PMCID: PMC7830512 DOI: 10.3390/antiox10010121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Existing therapies for Parkinson's disease (PD) are only symptomatic. As erythropoietin (EPO) is emerging for its benefits in neurodegenerative diseases, here, we test the protective effect driven by EPO in in vitro (SH-SY5Y cells challenged by MPP+) and in vivo (C57BL/6J mice administered with MPTP) PD models. EPO restores cell viability in both protective and restorative layouts, enhancing the dopaminergic recovery. Specifically, EPO rescues the PD-induced damage to mitochondria, as shown by transmission electron microscopy, Mitotracker assay and PINK1 expression. Moreover, EPO promotes a rescue of mitochondrial respiration while markedly enhancing the glycolytic rate, as shown by the augmented extracellular acidification rate, contributing to elevated ATP levels in MPP+-challenged cells. In PD mice, EPO intrastriatal infusion markedly improves the outcome of behavioral tests. This is associated with the rescue of dopaminergic markers and decreased neuroinflammation. This study demonstrates cellular and functional recovery following EPO treatment, likely mediated by the 37 Kda isoform of the EPO-receptor. We report for the first time, that EPO-neuroprotection is exerted through restoring ATP levels by accelerating the glycolytic rate. In conclusion, the redox imbalance and neuroinflammation associated with PD may be successfully treated by EPO.
Collapse
|
30
|
Talukder MAH, Lee JI, Hegarty JP, Gurjar AA, O'Brien M, Karuman Z, Wandling GD, Govindappa PK, Elfar JC. Obligatory role of Schwann cell-specific erythropoietin receptors in erythropoietin-induced functional recovery and neurogenic muscle atrophy after nerve injury. Muscle Nerve 2020; 63:268-272. [PMID: 33205838 DOI: 10.1002/mus.27121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Erythropoietin (EPO) promotes myelination and functional recovery in rodent peripheral nerve injury (PNI). While EPO receptors (EpoR) are present in Schwann cells, the role of EpoR in PNI recovery is unknown because of the lack of EpoR antagonists or Schwann cell-specific EpoR knockout animals. METHODS Using the Cre-loxP system, we developed a myelin protein zero (Mpz) promoter-driven knockout mouse model of Schwann cell EpoR (MpzCre-EpoRflox/flox , Mpz-EpoR-KO). Mpz-EpoR-KO and control mice were assigned to sciatic nerve crush injury followed by EPO treatment. RESULTS EPO treatment significantly accelerated functional recovery in control mice in contrast to significantly reduced functional recovery in Mpz-EpoR-KO mice. Significant muscle atrophy was found in the injured hindlimb of EPO-treated Mpz-EpoR-KO mice but not in EPO-treated control mice. CONCLUSIONS These preliminary findings provide direct evidence for an obligatory role of Schwann-cell specific EpoR for EPO-induced functional recovery and muscle atrophy following PNI.
Collapse
Affiliation(s)
- M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jung Il Lee
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Guri, South Korea
| | - John P Hegarty
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Anagha A Gurjar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Mary O'Brien
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zara Karuman
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Grant D Wandling
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedics and Translational Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
31
|
Constanthin PE, Contestabile A, Petrenko V, Quairiaux C, Salmon P, Hüppi PS, Kiss JZ. Endogenous erythropoietin signaling regulates migration and laminar positioning of upper-layer neurons in the developing neocortex. Development 2020; 147:dev190249. [PMID: 32764029 PMCID: PMC7561482 DOI: 10.1242/dev.190249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023]
Abstract
Erythropoietin (EPO), the hypoxia-inducible hematopoietic hormone, has well-established neuroprotective/neurotrophic roles in the developing central nervous system and the therapeutic potential of EPO has been widely explored in clinical studies for the treatment of perinatal hypoxic brain lesion, as well as prematurity. Here, we reveal that both EPO and Epo receptor (EPOR) are expressed in the developing rat somatosensory cortex during radial migration and laminar positioning of granular and supragranular neurons. Experimental deregulation of EPO signaling using genetic approaches results in aberrant migration, as well as permanent neuronal misplacement leading to abnormal network activity and protracted sensory behavioral deficits. We identify ERK as the downstream effector of the EPO signaling pathway for neuronal migration. These findings reveal a crucial role for endogenous EPO signaling in neuronal migration, and offer important insights for understanding how the temporary deregulation of EPO could result in migration defects that lead to abnormal behavior in the adult.
Collapse
Affiliation(s)
- Paul E Constanthin
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Alessandro Contestabile
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, 1201 Geneva, Switzerland
- Department of Cell Physiology and Metabolism; Diabetes Center, Faculty of Medicine, University of Geneva; Institute of Genetics and Genomics in Geneva (iGE3), 1201 Geneva, Switzerland
| | - Charles Quairiaux
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Patrick Salmon
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Petra S Hüppi
- Department of Pediatrics, Faculty of Medicine, University Hospital of Geneva, 1201 Geneva, Switzerland
| | - Jozsef Z Kiss
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| |
Collapse
|
32
|
Hierro-Bujalance C, Infante-Garcia C, Sanchez-Sotano D, del Marco A, Casado-Revuelta A, Mengual-Gonzalez CM, Lucena-Porras C, Bernal-Martin M, Benavente-Fernandez I, Lubian-Lopez S, Garcia-Alloza M. Erythropoietin Improves Atrophy, Bleeding and Cognition in the Newborn Intraventricular Hemorrhage. Front Cell Dev Biol 2020; 8:571258. [PMID: 33043002 PMCID: PMC7525073 DOI: 10.3389/fcell.2020.571258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
The germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most devastating complications of prematurity. The short- and long-term neurodevelopmental consequences after severe GM-IVH are a major concern for neonatologists. These kids are at high risk of psychomotor alterations and cerebral palsy; however, therapeutic approaches are limited. Erythropoietin (EPO) has been previously used to treat several central nervous system complications due to its role in angiogenesis, neurogenesis and as growth factor. In addition, EPO is regularly used to reduce the number of transfusions in the preterm infant. Moreover, EPO crosses the blood-brain barrier and EPO receptors are expressed in the human brain throughout development. To analyze the role of EPO in the GM-IVH, we have administered intraventricular collagenase (Col) to P7 mice, as a model of GM-IVH of the preterm infant. After EPO treatment, we have characterized our animals in the short (14 days) and the long (70 days) term. In our hands, EPO treatment significantly limited brain atrophy and ventricle enlargement. EPO also restored neuronal density and ameliorated dendritic spine loss. Likewise, inflammation and small vessel bleeding were also reduced, resulting in the preservation of learning and memory abilities. Moreover, plasma gelsolin levels, as a feasible peripheral marker of GM-IVH-induced damage, recovered after EPO treatment. Altogether, our data support the positive effect of EPO treatment in our preclinical model of GM-IVH, both in the short and the long term.
Collapse
Affiliation(s)
- Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidadde Cádiz, Cádiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidadde Cádiz, Cádiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | | | - Angel del Marco
- Division of Physiology, School of Medicine, Universidadde Cádiz, Cádiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Ana Casado-Revuelta
- Division of Physiology, School of Medicine, Universidadde Cádiz, Cádiz, Spain
| | | | | | | | - Isabel Benavente-Fernandez
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
- Division of Paediatrics, Section of Neonatology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Simon Lubian-Lopez
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
- Division of Paediatrics, Section of Neonatology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidadde Cádiz, Cádiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
33
|
Lim HK, Choi J, Kim D, Bae SM, Kim DK, Choi IY, Kim HH. Single-and repeat-dose toxicity of HM10760A, a long-acting erythropoietin, in rats and monkeys. Toxicol Appl Pharmacol 2020; 402:115126. [PMID: 32645313 DOI: 10.1016/j.taap.2020.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/18/2020] [Accepted: 06/27/2020] [Indexed: 11/17/2022]
Abstract
Anemia is a frequent complication of chronic kidney disease (CKD) that causes an increase in morbidity and mortality and accelerates the rate of disease progression. Treatment with recombinant human erythropoietin (rhEPO) is a major breakthrough in the therapy of renal anemia. HM10760A, a long-acting EPO, has been developed as a treatment for anemia in CKD patients. A series of preclinical toxicology studies, such as acute, 4 week repeat-dose, and 13 week repeat-dose, was completed to support the safety of human exposure to HM10760A for up to 13 weeks. The rodent and non-rodent species used in the pivotal preclinical general toxicity studies were rats and monkeys, respectively. A once-a-week or once-every-two-week i.v dosing regimen was applied for 4 week and 13 week repeat-dose toxicity studies, respectively, in consideration of the expected administration frequency in humans. Based on the 13 week repeat-dose toxicity studies, 2.61 μg/kg and 22.03 μg/kg can be considered as the NOAELs (no observed adverse effect levels) in rats and monkeys, respectively. Almost all observations recorded at the low- and mid-dose levels are typical pharmacological effects of EPO and not uniquely attributed HM10760A toxicity. To account for the differences between human being and animal physiologies, the safety of HM10760A needs to be further confirmed in future clinical studies.
Collapse
Affiliation(s)
- Hyung-Kyu Lim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea
| | - Jaehyuk Choi
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea
| | - Daejin Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea
| | - Sung Min Bae
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - In Young Choi
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
34
|
Altun G, Cakiroglu Y, Pulathan Z, Yulug E, Mentese A. Renoprotective potential of exogen erythropoietin on experimental ruptured abdominal aortic aneurysm model: An animal study. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:271-276. [PMID: 32405372 PMCID: PMC7211356 DOI: 10.22038/ijbms.2019.36215.8626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective(s): The aim of this study is to investigate the renoprotective effect of erythropoietin (EPO) on hypovolemic shock and ischemia/reperfusion (IR) injury on kidneys as end-organs in an experimentally-created ruptured abdominal aortic aneurysm (rAAA) model. Materials and Methods: Thirty anesthetized Sprague-Dawley male rats were randomized to sham ((Sh n:6) (Sh+EPO n:6)) or shock and I/R groups ((S/IR n:9) (S/IR+EPO n:9)). Additional surgical procedure except aortic exploration was not performed on Sh and Sh+EPO groups. 60 min of shock, 60 min of ischemia, and 120 min of reperfusion were applied on S/IR and S/IR+EPO groups. In the S/IR and S/IR+EPO groups, hemorrhagic shock, lower torso ischemia, and reperfusion were created. At the end of the shock period, saline solutions were separately and equally administered to Sh and S/IR groups, whereas 2000 U/kg EPO was intraperitoneally administered to Sh+EPO and S/IR+EPO groups. At the end of the experimental study, some biochemical and histological parameters were studied in serum and kidney tissues. Results: Biochemical parameters were all significantly increased in the S/IR group compared with the Sh group. These parameters were not statistically significantly different between S/IR+EPO and Sh+EPO groups. In histopathologic examination, EPO prevented high-grade injury. Conclusion: Our data indicate that EPO may have a renoprotective effect and reduce the systemic inflammatory response that resulted from shock and I/R in an experimental model of rAAA.
Collapse
Affiliation(s)
- Gokalp Altun
- Department of Cardiovascular Surgery, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Yavuz Cakiroglu
- Department of Cardiovascular Surgery, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Zerrin Pulathan
- Department of Cardiovascular Surgery, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ahmet Mentese
- Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
35
|
Rey F, Balsari A, Giallongo T, Ottolenghi S, Di Giulio AM, Samaja M, Carelli S. Erythropoietin as a Neuroprotective Molecule: An Overview of Its Therapeutic Potential in Neurodegenerative Diseases. ASN Neuro 2020; 11:1759091419871420. [PMID: 31450955 PMCID: PMC6712762 DOI: 10.1177/1759091419871420] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a cytokine mainly induced in hypoxia conditions. Its major production site is the kidney. EPO primarily acts on the erythroid progenitor cells in the bone marrow. More and more studies are highlighting its secondary functions, with a crucial focus on its role in the central nervous system. Here, EPO may interact with up to four distinct isoforms of its receptor (erythropoietin receptor [EPOR]), activating different signaling cascades with roles in neuroprotection and neurogenesis. Indeed, the EPO/EPOR axis has been widely studied in the neurodegenerative diseases field. Its potential therapeutic effects have been evaluated in multiple disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, spinal cord injury, as well as brain ischemia, hypoxia, and hyperoxia. EPO is showing great promise by counteracting secondary neuroinflammatory processes, reactive oxygen species imbalance, and cell death in these diseases. Multiple studies have been performed both in vitro and in vivo, characterizing the mechanisms through which EPO exerts its neurotrophic action. In some cases, clinical trials involving EPO have been performed, highlighting its therapeutic potential. Together, all these works indicate the potential beneficial effects of EPO.
Collapse
Affiliation(s)
- Federica Rey
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Alice Balsari
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Toniella Giallongo
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Sara Ottolenghi
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Anna M Di Giulio
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| | - Michele Samaja
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Stephana Carelli
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| |
Collapse
|
36
|
Campos ML, Prado GS, Dos Santos VO, Nascimento LC, Dohms SM, da Cunha NB, Ramada MHS, Grossi-de-Sa MF, Dias SC. Mosses: Versatile plants for biotechnological applications. Biotechnol Adv 2020; 41:107533. [PMID: 32151692 DOI: 10.1016/j.biotechadv.2020.107533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/03/2023]
Abstract
Mosses have long been recognized as powerful experimental tools for the elucidation of complex processes in plant biology. Recent increases in the availability of sequenced genomes and mutant collections, the establishment of novel technologies for targeted mutagenesis, and the development of viable protocols for large-scale production in bioreactors are now transforming mosses into one of the most versatile tools for biotechnological applications. In the present review, we highlight the astonishing biotechnological potential of mosses and how these plants are being exploited for industrial, pharmaceutical, and environmental applications. We focus on the biological features that support their use as model organisms for basic and applied research, and how these are being leveraged to explore the biotechnological potential in an increasing number of species. Finally, we also provide an overview of the available moss cultivation protocols from an industrial perspective, offering insights into batch operations that are not yet well established or do not even exist in the literature. Our goal is to bolster the use of mosses as factories for the biosynthesis of molecules of interest and to show how these species can be harnessed for the generation of novel and commercially useful bioproducts.
Collapse
Affiliation(s)
- Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Guilherme Souza Prado
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Vanessa Olinto Dos Santos
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Lara Camelo Nascimento
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Stephan Machado Dohms
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Nicolau Brito da Cunha
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Marcelo Henrique Soller Ramada
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Maria Fatima Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil.
| |
Collapse
|
37
|
Govindappa PK, Talukder MAH, Gurjar AA, Hegarty JP, Elfar JC. An effective erythropoietin dose regimen protects against severe nerve injury-induced pathophysiological changes with improved neural gene expression and enhances functional recovery. Int Immunopharmacol 2020; 82:106330. [PMID: 32143001 PMCID: PMC7483891 DOI: 10.1016/j.intimp.2020.106330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
The functional recovery following non-severing peripheral nerve injury (PNI) is often incomplete. Erythropoietin (EPO) is a pleiotropic hormone and it has been shown to protect peripheral nerves following mild and even moderate severity injuries. However, the effectiveness of EPO in severe PNI is largely unknown. In this study, we sought to investigate the neuroprotective effect of a new dose regimen of EPO in severe sciatic nerve crush injury (SSCI). Adult male mice (8 animals/group) were randomly assigned to sham (normal saline, 0.1 ml/mouse), SSCI (normal saline, 0.1 ml/mouse) and SSCI with EPO (5000 IU/kg) groups. SSCI was performed using calibrated forceps for 30 sec. EPO or normal saline was administered intraperitoneally immediately after the SSCI and at post-injury day1 and 2. The functional recovery after injury was assessed by sciatic function index (SFI), von Frey Test (VFT), and grip strength test. Mice were euthanized on day 7 and 21 and nerves at injury/peri-injury site were processed for gene (quantitative real-time PCR) and protein (immunohistochemistry) expression analysis. EPO significantly improved SFI, VFT, and hind limb paw grip strength from post-injury day 7. EPO demonstrated significant regulatory effects on mRNA expression of inflammatory (IL-1β and TNF-α), anti-inflammatory (IL-10), angiogenesis (VEGF and eNOS), and myelination (MBP) genes. The protein expression of IL-1β, F4/80, CD31, NF-κB p65, NF-H, MPZ, and DHE (redox-sensitive probe) was also significantly modulated by EPO treatment. In conclusion, the new dose regimen of EPO augments sciatic nerve functional recovery by mitigating inflammatory, anti-inflammatory, oxidative stress, angiogenesis, and myelination components of SSCI.
Collapse
Affiliation(s)
- Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Anagha A Gurjar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - John P Hegarty
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
38
|
Effects of topical erythropoietin on healing experimentally-induced avascular scleral damage in a rabbit model. Exp Eye Res 2020; 190:107898. [DOI: 10.1016/j.exer.2019.107898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023]
|
39
|
Wu SH, Lu IC, Tai MH, Chai CY, Kwan AL, Huang SH. Erythropoietin Alleviates Burn-induced Muscle Wasting. Int J Med Sci 2020; 17:33-44. [PMID: 31929736 PMCID: PMC6945565 DOI: 10.7150/ijms.38590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Burn injury induces long-term skeletal muscle pathology. We hypothesized EPO could attenuate burn-induced muscle fiber atrophy. Methods: Rats were allocated into four groups: a sham burn group, an untreated burn group subjected to third degree hind paw burn, and two burn groups treated with weekly or daily EPO for four weeks. Gastrocnemius muscle was analyzed at four weeks post-burn. Results: EPO attenuated the reduction of mean myofiber cross-sectional area post-burn and the level of the protective effect was no significant difference between two EPO-treated groups (p=0.784). Furthermore, EPO decreased the expression of atrophy-related ubiquitin ligase, atrogin-1, which was up-regulated in response to burn. Compared to untreated burn rats, those receiving weekly or daily EPO groups had less cell apoptosis by TUNEL assay. EPO decreased the expression of cleaved caspase 3 (key factor in the caspase-dependent pathway) and apoptosis-inducing factor (implicated in the caspase-independent pathway) after burn. Furthermore, EPO alleviated connective tissue overproduction following burn via transforming growth factor beta 1-Smad2/3 pathway. Daily EPO group caused significant erythrocytosis compared with untreated burn group but not weekly EPO group. Conclusion: EPO therapy attenuated skeletal muscle apoptosis and fibrosis at four weeks post-burn. Weekly EPO may be a safe and effective option in muscle wasting post-burn.
Collapse
Affiliation(s)
- Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - I-Cheng Lu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chee-Yin Chai
- Departments of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
40
|
Pharmacological Benefits and Risk of Using Hormones in Organ Perfusion and Preservation Solutions in the Aspect of Minimizing Hepatic Ischemia-Reperfusion Injury during Storage. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6467134. [PMID: 31828112 PMCID: PMC6881579 DOI: 10.1155/2019/6467134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/31/2019] [Accepted: 10/23/2019] [Indexed: 01/11/2023]
Abstract
For several years, research has been carried out on the effectiveness of solutions for perfusion and preservation of organs, including the liver. There is a search for an optimal pharmacological composition of these solutions, allowing to preserve or improve vital functions of the organ for as long as possible until it is transplanted into a recipient. Hormones due to their properties, often resulting from their pleiotropic effects, may be a valuable component for optimizing the composition of liver perfusion and preservation solutions. The paper presents the current state of knowledge on liver perfusion and preservation solutions modified with hormones. It also shows the characteristics of the hormones evaluated, taking into account their physiological functions in the body.
Collapse
|
41
|
Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res 2019; 98:780-795. [PMID: 31608497 DOI: 10.1002/jnr.24538] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
Traumatic peripheral nerve injury represents a major clinical and public health problem that often leads to significant functional impairment and permanent disability. Despite modern diagnostic procedures and advanced microsurgical techniques, functional recovery after peripheral nerve repair is often unsatisfactory. Therefore, there is an unmet need for new therapeutic or adjunctive strategies to promote the functional recovery in nerve injury patients. In contrast to the central nervous system, Schwann cells in the peripheral nervous system play a pivotal role in several aspects of nerve repair such as degeneration, remyelination, and axonal growth. Several non-surgical approaches, including pharmacological, electrical, cell-based, and laser therapies, have been employed to promote myelination and enhance functional recovery after peripheral nerve injury. This review will succinctly discuss the potential therapeutic strategies in the context of myelination following peripheral neurotrauma.
Collapse
Affiliation(s)
- Max Modrak
- School of Medicine & Dentistry, The University of Rochester Medical Center, Rochester, New York, USA
| | - M A Hassan Talukder
- Department of Orthopaedics & Rehabilitation, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Khatuna Gurgenashvili
- Department of Neurology, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mark Noble
- Department of Biomedical Genetics, The University of Rochester Medical Center, Rochester, New York, USA
| | - John C Elfar
- Department of Orthopaedics & Rehabilitation, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
42
|
Saini N, Helfrich KK, Kwan STC, Huebner SM, Abazi J, Flentke GR, Blohowiak SE, Kling PJ, Smith SM. Alcohol's Dysregulation of Maternal-Fetal IL-6 and p-STAT3 Is a Function of Maternal Iron Status. Alcohol Clin Exp Res 2019; 43:2332-2343. [PMID: 31524964 DOI: 10.1111/acer.14200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) causes long-term growth and neurodevelopmental deficits that are worsened by maternal iron deficiency (ID). In our preclinical rat model, PAE causes fetal anemia, brain ID, and elevated hepatic iron via increased maternal and fetal hepcidin synthesis. These changes are normalized by a prenatal iron-fortified (IF) diet. Here, we hypothesize that iron status and PAE dysregulate the major upstream pathways that govern hepcidin production-EPO/BMP6/SMAD and IL-6/JAK2/STAT3. METHODS Pregnant, Long Evans rat dams consumed ID (2 to 6 ppm iron), iron-sufficient (IS, 100 ppm iron), or IF (500 ppm iron) diets and received alcohol (5 g/kg) or isocaloric maltodextrin daily from gestational days (GD) 13.5 to 19.5. Protein and gene expression were quantified in the 6 experimental groups at GD 20.5. RESULTS PAE did not affect Epo or Bmp6 expression, but reduced p-SMAD1/5/8/SMAD1/5/8 protein ratios in both IS and ID maternal and fetal liver (all p's < 0.01). In contrast, PAE stimulated maternal hepatic expression of Il-6 (p = 0.03) and elevated p-STAT3/STAT3 protein ratios in both IS and ID maternal and fetal liver (all p's < 0.02). PAE modestly elevated maternal Il-1β, Tnf-α, and Ifn-γ. Fetal cytokine responses to PAE were muted compared with dams, and PAE did not affect hepatic Il-6 (p = 0.78) in IS and ID fetuses. Dietary iron fortification sharply attenuated Il-6 expression in response to PAE, with IF driving a 150-fold decrease (p < 0.001) in maternal liver and a 10-fold decrease (p < 0.01) in fetal liver. The IF diet also normalized p-STAT3/STAT3 ratios in both maternal and fetal liver. CONCLUSIONS These findings suggest that alcohol-driven stimulation of the IL-6/JAK2/STAT3 pathway mediates the elevated hepcidin observed in the PAE dam and fetus. Normalization of these signals by IF suggests that dysregulated hepcidin is driven by alcohol's disruption of the IL-6/JAK2/STAT3 pathway. Prenatal dietary IF represents a potential therapeutic approach for PAE that warrants further investigation.
Collapse
Affiliation(s)
- Nipun Saini
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Kaylee K Helfrich
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Sze Ting Cecilia Kwan
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Shane M Huebner
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Juna Abazi
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - George R Flentke
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Sharon E Blohowiak
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Pamela J Kling
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan M Smith
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| |
Collapse
|
43
|
Farokhi-Sisakht F, Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Mohaddes G. Cognitive Rehabilitation Improves Ischemic Stroke-Induced Cognitive Impairment: Role of Growth Factors. J Stroke Cerebrovasc Dis 2019; 28:104299. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/24/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022] Open
|
44
|
Montesanto A, Bonfigli AR, De Luca M, Crocco P, Garagnani P, Marasco E, Pirazzini C, Giuliani C, Romagnoli F, Franceschi C, Passarino G, Testa R, Olivieri F, Rose G. Erythropoietin (EPO) haplotype associated with all-cause mortality in a cohort of Italian patients with Type-2 Diabetes. Sci Rep 2019; 9:10395. [PMID: 31316151 PMCID: PMC6637129 DOI: 10.1038/s41598-019-46894-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 06/27/2019] [Indexed: 01/04/2023] Open
Abstract
Type-2 Diabetes (T2D), diabetic complications, and their clinical risk factors harbor a substantial genetic component but the genetic factors contributing to overall diabetes mortality remain unknown. Here, we examined the association between genetic variants at 21 T2D-susceptibility loci and all-cause mortality in an elderly cohort of 542 Italian diabetic patients who were followed for an average of 12.08 years. Univariate Cox regression analyses detected age, waist-to-hip ratio (WHR), glycosylated haemoglobin (HbA1c), diabetes duration, retinopathy, nephropathy, chronic kidney disease (CKD), and anaemia as predictors of all-cause mortality. When Cox proportional hazards multivariate models adjusted for these factors were run, three erythropoietin (EPO) genetic variants in linkage disequilibrium (LD) with each other (rs1617640-T/G, rs507392-T/C and rs551238-A/C) were significantly (False Discovery Rate < 0.1) associated with mortality. Haplotype multivariate analysis revealed that patients carrying the G-C-C haplotype have an increased probability of survival, while an opposite effect was observed among subjects carrying the T-T-A haplotype. Our findings provide evidence that the EPO gene is an independent predictor of mortality in patients with T2D. Thus, understanding the mechanisms by which the genetic variability of EPO affects the mortality of T2D patients may provide potential targets for therapeutic interventions to improve the survival of these patients.
Collapse
Affiliation(s)
- Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Elena Marasco
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Fabio Romagnoli
- Diabetology Unit, IRCCS INRCA, National Institute, Ancona, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Roberto Testa
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, National Institute IRCCS INRCA, Ancona, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
45
|
Golubinskaya PA, Sarycheva MV, Burda SY, Puzanov MV, Nadezhdina NA, Kulikovskiy VF, Nadezhdin SV, Korokin MV, Burda YE. Pharmacological modulation of cell functional activity with valproic acid and erythropoietin. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.34710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Valproic acid (VA) is carboxylic acid with a branched chain, which is used as an antiepileptic drug.
Valproic acid influence on cells in vivo: VA, which is an antiepileptic drug, is also a teratogen, which causes defects of a neural tube and an axial skeleton, although the mechanisms are not yet fully clear.
Valproic acid influence on mesenchymal stem cells (MSC) in vitro: It is shown that valproic acid reduces the intracellular level of oxygen active forms.
Valproic acid effect on tumor cells: VA inhibits tumor growth through several mechanisms, including the cell cycle stop, differentiation induction and inhibition of growth of tumor vessels.
Valproic acid influence on enzymes: It affects mainly GSK-3.
Valproic acid influence on animals’ cells: It is shown that VA can significantly improve an ability to develop in vitro and improve nuclear reprogramming of embryos.
Erythropoietin (EPO): Is an hypoxia-induced hormone and a cytokine, which is necessary for normal erythropoiesis. EPO is widely used in in vitro experiments.
Conclusion: Thus, the influence of VA and EPO on cells can be used in cell technologies.
Collapse
|
46
|
Will there still be a role for the originator erythropoiesis-simulating agents after the biosimilars and the hypoxia-inducible factor stabilizers approval? Curr Opin Nephrol Hypertens 2019; 27:339-344. [PMID: 29846220 DOI: 10.1097/mnh.0000000000000432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To discuss if there will still be a role for the originator ESAs after the already available biosimilars and the approval of HIF stabilizers in the near future. RECENT FINDINGS Current treatment with erythropoiesis-simulating agents (ESAs) is effective and generally well tolerated, but requires parenteral injections. It is also surrounded by safety concerns and is still expensive. Functional iron deficiency is the major obstacle for efficient ESA therapy. ESA resistance may develop, calling for high ESA doses, further increasing the side effects associated with ESA use. Biosimilars were introduced for reducing costs. In searching for an ideal antianemic drug, new investigational strategies have been proposed including the attractive alternative hypoxia-inducible factor (HIF) stabilizers, which stimulate endogenous EPO production. However, we should caution in translating the historical results referring to the side effects of ESAs to current clinical practice, considering that hemoglobin targets and ESAs doses are now much lower. We could anticipate that side effects will be much less. SUMMARY According to preliminary data, orally administered HIF stabilizers could provide pharmacological advantages over the existing ESAs. These will need confirmation by the findings of large, phase-3, clinical trials. Finally, cost will be an important issue determining their future use.
Collapse
|
47
|
Vanillic Acid Suppresses HIF-1α Expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK Pathways in Human Colon Cancer HCT116 Cells. Int J Mol Sci 2019; 20:ijms20030465. [PMID: 30678221 PMCID: PMC6387037 DOI: 10.3390/ijms20030465] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tumor adaptation to microenvironmental hypoxia, and it also exerts important roles in angiogenesis and tumor development. Vanillic acid is a dietary phenolic compound reported to exhibit anticancer properties. However, the mechanisms by which vanillic acid inhibits tumor growth are not fully understood. Here, we investigated the effect of vanillic acid on HIF-1α activation. Vanillic acid significantly inhibits HIF-1α expression induced by hypoxia in various human cancer cell lines. Further analysis revealed that vanillic acid inhibited HIF-1α protein synthesis. Neither the HIF-1α protein degradation rate nor the steady-state HIF-1α mRNA levels were affected by vanillic acid. Moreover, vanillic acid inhibited HIF-1α expression by suppressing mammalian target of rapamycin/p70 ribosomal protein S6 kinase/eukaryotic initiation factor 4E-binding protein-1 and Raf/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathways. We found that vanillic acid dose-dependently inhibited VEGF and EPO protein expressions and disrupted tube formation. The results suggest that vanillic acid effectively inhibits angiogenesis. Flow cytometry analysis demonstrated that vanillic acid significantly induced G1 phase arrest and inhibited the proliferation of human colon cancer HCT116 cells. In vivo experiments confirmed that vanillic acid treatment caused significant inhibition of tumor growth in a xenografted tumor model. These studies reveal that vanillic acid is an effective inhibitor of HIF-1α and provides new perspectives into the mechanism of its antitumor activity.
Collapse
|
48
|
Liu F, Wen Y, Kang J, Wei C, Wang M, Zheng Z, Peng J. Regulation of TLR4 expression mediates the attenuating effect of erythropoietin on inflammation and myocardial fibrosis in rat heart. Int J Mol Med 2018; 42:1436-1444. [PMID: 29845292 PMCID: PMC6089778 DOI: 10.3892/ijmm.2018.3707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
The mechanism underlying the anti-inflammatory or antifibrotic activity of erythropoietin (EPO) in myocardial fibrosis (MF) remains elusive. In the current study, abdominal aortic constriction (AAC) was performed on rats and EPO and/or Toll-like receptor (TLR)4 were overexpressed in rat hearts through intramyocardial administration of lentivirus expressing the EPO and TLR4 genes. Hematoxylin and eosin staining and Masson's trichrome staining were performed on tissue sections from rat hearts for histopathological examination. ELISA was used to determine the levels of inflammatory mediators in serum. Gene expression levels were determined by quantitative polymerase chain reaction analysis and protein expression levels were determined by western blot analysis and immunofluorescence staining. The results indicated that EPO overexpression improved MF in rat hearts, by inhibiting the release of transforming growth factor (TGF)-β1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, IL-17A, matrix metalloproteinase (MMP)-9 and MMP-2. Moreover, EPO overexpression suppressed the expression of TLR4, while promoting phosphoinositide 3-kinase (PI3K) and phosphorylated AKT serine/threonine kinase 1 (Akt) expression levels. However, the beneficial effects of EPO were attenuated by overexpression of TLR4. In addition, inhibition of PI3K/Akt signaling activity by treatment with LY294002 markedly reversed the protective effect of EPO on the AAC-induced MF. Taken together, the present study demonstrated that EPO may have a critical role against MF by activating PI3K/Akt signaling and by down-regulating TLR4 expression, thereby inhibiting the release of TGF-β1, TNF-α, IL-6, IL-1β, IL-17A, MMP-9 and MMP-2. These findings suggest that the PI3K/Akt/TLR4 signaling pathway is associated with the anti-inflammatory effects of EPO and may play a role in attenuating AAC-induced MF.
Collapse
Affiliation(s)
- Fei Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuan Wen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinyuan Kang
- Department of Cardiovascular Medicine, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, P.R. China
| | - Chunying Wei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghong Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zeqi Zheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jingtian Peng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
49
|
Thiele S, Heise S, Hessenkemper W, Bongartz H, Fensky M, Schaper F, Klamt S. Designing optimal experiments to discriminate interaction graph models. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 16:925-935. [PMID: 29993657 DOI: 10.1109/tcbb.2018.2812184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Modern methods for the inference of cellular networks from experimental data often express nondeterminism through an ensemble of candidate models. To discriminate among these candidates new experiments need to be carried out. Theoretically, the number of possible experiments is exponential in the number of possible perturbations. In praxis, experiments are expensive and there exist several limiting constraints. Limiting factors exist on the combinations of perturbations that are technically possible, which components can be measured, and on the number of affordable experiments. Further, not all experiments are equally well suited to discriminate model candidates. The goal of optimal experiment design is to determine those experiments that discriminate most of the candidates while minimizing the costs. We present an approach for experiment planning with interaction graph models and sign consistency methods. This new approach can be used in combination with methods for network inference and consistency checking. We applied our method to study the Erythropoietin signal transduction in human kidney cells HEK293. We first used simulated experiment data from an ODE model to demonstrate in silico that our experimental design results in the inference of the gold standard model. Finally, we used the approach to plan in vivo experiments that discriminate model candidates for the Erythropoietin signal transduction in this cell line.
Collapse
|
50
|
Rezaee MA, Moallem SA, Mohammadpour AH, Mahmoudi M, Sankian M, Farzadnia M, Alavi H, Imenshahidi M. Histopathological study of erythropoietin protective effect on carbon monoxide-induced cardiotoxicity in rat. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 20:1189-1193. [PMID: 29299194 PMCID: PMC5749351 DOI: 10.22038/ijbms.2017.9471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): Cardiotoxicity is one of the major consequences in carbon monoxide poisoning. Following our previous work, in this study we aimed to define the myocardium changes induced by carbon monoxide (CO) intoxication and evaluate erythropoietin (EPO) effect on CO cardiotoxicity in rat. Materials and Methods: Severe carbon monoxide toxicity induced by 3000 ppm CO in Wistar rat. EPO was administrated (5000 IU/Kg, intraperitoneal injection) at the end of CO exposure and then the animals were re-oxygenated with the ambient air. Subsequently heart was removed and assessed by histopathology and electron microscopy examinations. Results: 3000 ppm CO induced significant myocardium injury; multiple foci of necrosis and lymphocyte infiltration compare with the control (P<0.05). Electron microscopy examination showed myofibril lysis and mitochondrial swelling in myocardium due to 3000 ppm CO poisoning. However EPO administration after CO exposure resulted in significant reduction in cardiomyocytes injury (P<0.05). Conclusion: Our results represented protective effect of EPO on cardiac injury induced by CO intoxication in rat.
Collapse
Affiliation(s)
- Mitra Asgharian Rezaee
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutical Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Laboratory, Immunology Research Center, Bu-Ali research Institute, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Farzadnia
- Department of Pathology, School of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Alavi
- Electron Microscope Unit, Bu-Ali Research Institute, Mashhad University of Medical Science, Mashhad, Iran.,School of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohsen Imenshahidi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|