1
|
Cabiati M, Biondi F, Ghelardoni S, Casieri V, Lionetti V, Sgalippa A, Del Ry S, Madonna R. Ambrisentan Retains Its Pro-Autophagic Activity on Human Pulmonary Artery Endothelial Cells Exposed to Hypoxia in an In Vitro Model Mimicking Diabetes. J Cell Mol Med 2025; 29:e70528. [PMID: 40205749 PMCID: PMC11982177 DOI: 10.1111/jcmm.70528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Cardiovascular comorbidities are associated with reduced treatment response in group 1 pulmonary arterial hypertension (PAH). This may result from misdiagnosis of group 2 PH, but it can also be explained as the loss of ability of pulmonary endothelial cells to respond to specific antiremodeling drugs. We evaluated the effects of high glucose (HG) and hyperosmolar stress (high mannitol, HM) on the response of human pulmonary artery endothelial cells (hPAECs) to ambrisentan (AMB), focusing on autophagy, viability, apoptosis and several microRNAs involved in pulmonary arterial remodelling. hPAECs were incubated with 30.5 mM HG or 25 mM HM, with/without 0.02 nM AMB in normoxia (Nx) or hypoxia (Hx) for 24 h. Hx reduced cell survival (p = 0.03) and autophagy (p = 0.02), an effect mimicked by HG and HM only in Nx. In Nx and Hx, AMB reverted the effect of HG, but not HM on autophagy, almost completely or partially, respectively. Compared to Nx, Hx increased the antiapoptotic miR124-3p in vehicle-treated hPAEC (p = 0.002), and induced an opposite effect on antiapoptotic and proliferative miR191-3p. In Nx, AMB induced miR124-3p in HG- (p = 0.04 vs. HG+A_Nx) and HM-treated (p < 0.0001 vs. HM+AMB_Nx) hPAECs, and miR191-3p in HM-treated hPAECs (p = 0.03). In H, A induced a similar effect on miR124-3p in hPAEC exposed to AMB+HM (p = 0.02). In hPAEC exposed to Hx, AMB retains its pro-autophagic effects in an in vitro model mimicking diabetes. miR124-3p and, to a lesser extent, miR191-3p may act as biomarkers of disease and treatment response to specific drugs in patients with PAH and diabetes.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular BiologyInstitute of Clinical Physiology, CNRPisaItaly
| | - Filippo Biondi
- Department of Pathology, Cardiology DivisionUniversity of PisaPisaItaly
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of BiochemistryUniversity of PisaPisaItaly
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical SciencesInterdisciplinary Research Center “Health Science,” Scuola Superiore Sant'AnnaPisaItaly
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical SciencesInterdisciplinary Research Center “Health Science,” Scuola Superiore Sant'AnnaPisaItaly
| | - Agnese Sgalippa
- Laboratory of Biochemistry and Molecular BiologyInstitute of Clinical Physiology, CNRPisaItaly
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular BiologyInstitute of Clinical Physiology, CNRPisaItaly
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical SciencesInterdisciplinary Research Center “Health Science,” Scuola Superiore Sant'AnnaPisaItaly
| | - Rosalinda Madonna
- Laboratory of Biochemistry and Molecular BiologyInstitute of Clinical Physiology, CNRPisaItaly
- Department of Pathology, Cardiology DivisionUniversity of PisaPisaItaly
| |
Collapse
|
2
|
Wang H, Song TY, Reyes-García J, Wang YX. Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells. Cells 2024; 13:1807. [PMID: 39513914 PMCID: PMC11545379 DOI: 10.3390/cells13211807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary artery endothelial cells (PAECs) are a major contributor to hypoxic pulmonary hypertension (PH) due to the possible roles of reactive oxygen species (ROS). However, the molecular mechanisms and functional roles of ROS in PAECs are not well established. In this study, we first used Amplex UltraRed reagent to assess hydrogen peroxide (H2O2) generation. The result indicated that hypoxic exposure resulted in a significant increase in Amplex UltraRed-derived fluorescence (i.e., H2O2 production) in human PAECs. To complement this result, we employed lucigenin as a probe to detect superoxide (O2-) production. Our assays showed that hypoxia largely increased O2- production. Hypoxia also enhanced H2O2 production in the mitochondria from PAECs. Using the genetically encoded H2O2 sensor HyPer, we further revealed the hypoxic ROS production in PAECs, which was fully blocked by the mitochondrial inhibitor rotenone or myxothiazol. Interestingly, hypoxia caused an increase in the migration of PAECs, determined by scratch wound assay. In contrast, nicotine, a major cigarette or e-cigarette component, had no effect. Moreover, hypoxia and nicotine co-exposure further increased migration. Transfection of lentiviral shRNAs specific for the mitochondrial Rieske iron-sulfur protein (RISP), which knocked down its expression and associated ROS generation, inhibited the hypoxic migration of PAECs. Hypoxia largely increased the proliferation of PAECs, determined using Ki67 staining and direct cell number accounting. Similarly, nicotine caused a large increase in proliferation. Moreover, hypoxia/nicotine co-exposure elicited a further increase in cell proliferation. RISP knockdown inhibited the proliferation of PAECs following hypoxia, nicotine exposure, and hypoxia/nicotine co-exposure. Taken together, our data demonstrate that hypoxia increases RISP-mediated mitochondrial ROS production, migration, and proliferation in human PAECs; nicotine has no effect on migration, increases proliferation, and promotes hypoxic proliferation; the effects of nicotine are largely mediated by RISP-dependent mitochondrial ROS signaling. Conceivably, PAECs may contribute to PH via the RISP-mediated mitochondrial ROS.
Collapse
Affiliation(s)
- Harrison Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| | - Teng-Yao Song
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| | - Jorge Reyes-García
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| |
Collapse
|
3
|
Alqarni AA, Aldhahir AM, Alghamdi SA, Alqahtani JS, Siraj RA, Alwafi H, AlGarni AA, Majrshi MS, Alshehri SM, Pang L. Role of prostanoids, nitric oxide and endothelin pathways in pulmonary hypertension due to COPD. Front Med (Lausanne) 2023; 10:1275684. [PMID: 37881627 PMCID: PMC10597708 DOI: 10.3389/fmed.2023.1275684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD) is classified as Group 3 PH, with no current proven targeted therapies. Studies suggest that cigarette smoke, the most risk factor for COPD can cause vascular remodelling and eventually PH as a result of dysfunction and proliferation of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). In addition, hypoxia is a known driver of pulmonary vascular remodelling in COPD, and it is also thought that the presence of hypoxia in patients with COPD may further exaggerate cigarette smoke-induced vascular remodelling; however, the underlying cause is not fully understood. Three main pathways (prostanoids, nitric oxide and endothelin) are currently used as a therapeutic target for the treatment of patients with different groups of PH. However, drugs targeting these three pathways are not approved for patients with COPD-associated PH due to lack of evidence. Thus, this review aims to shed light on the role of impaired prostanoids, nitric oxide and endothelin pathways in cigarette smoke- and hypoxia-induced pulmonary vascular remodelling and also discusses the potential of using these pathways as therapeutic target for patients with PH secondary to COPD.
Collapse
Affiliation(s)
- Abdullah A. Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Abdulelah M. Aldhahir
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sara A. Alghamdi
- Respiratory Care Department, Al Murjan Hospital, Jeddah, Saudi Arabia
| | - Jaber S. Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Rayan A. Siraj
- Department of Respiratory Care, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Abdulkareem A. AlGarni
- King Abdulaziz Hospital, The Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, College of Applied Medical Sciences, Al Ahsa, Saudi Arabia
| | - Mansour S. Majrshi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Saad M. Alshehri
- Department of Respiratory Therapy, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Linhua Pang
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, Nottingham, United Kingdom
| |
Collapse
|
4
|
Zhang XZ, Fu L, Zou XY, Li S, Ma XD, Xie L, Pang B, Ma JB, Wang YJ, Du YR, Guo SC. Lung transcriptome analysis for the identification of genes involved in the hypoxic adaptation of plateau pika (Ochotona curzoniae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100943. [PMID: 34861554 DOI: 10.1016/j.cbd.2021.100943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The plateau pika, a typical hypoxia-tolerant mammal lives 3000-5000 m above sea level on the Qinghai-Tibet Plateau, has acquired many physiological and morphological characteristics and strategies in its adaptation to sustained, high-altitude hypoxia. Blunted hypoxic pulmonary vasoconstriction is one such strategy, but the genes involved in this strategy have not been elucidated. Here, we investigated the genes involved and their expression profiles in the lung transcriptome of plateau pikas subjected to different hypoxic conditions (using low-pressure oxygen cabins). A slight, right ventricular hypertrophy was observed in pikas of the control group (altitude: 3200 m) vs. those exposed to 5000 m altitude conditions for one week. Our assembly identified 67,774 genes; compared with their expression in the control animals, 866 and 8364 genes were co-upregulated and co-downregulated, respectively, in pikas subjected to 5000 m altitude conditions for 1 and 4 w. We elucidated pathways that were associated with pulmonary vascular arterial pressure, including vascular smooth muscle contraction, HIF-1 signalling, calcium signalling, cGMP-PKG signalling, and PI3K-Akt signalling based on the differentially expressed genes; the top-100 pathway enrichments were found between the control group and the group exposed to 5000 m altitude conditions for 4 w. The mRNA levels of 18 candidate gene showed that more than 83% of genes were expressed and the number of transcriptome The up-regulated genes were EPAS1, Hbα, iNOS, CX40, CD31, PPM1B, HIF-1α, MYLK, Pcdh12, Surfactant protein B, the down-regulated genes were RYR2, vWF, RASA1, CLASRP, HIF-3α. Our transcriptome data are a valuable resource for future genomic studies on plateau pika.
Collapse
Affiliation(s)
- Xu-Ze Zhang
- School of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Lin Fu
- School of Life Science, Yunnan University, Yunnan 650091, China; Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Xiao-Yan Zou
- School of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Li
- Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Xiao-Dong Ma
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Ling Xie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Bo Pang
- College of food science and biology, Hebei university of science and technology, Shijiazhuang 050018, China
| | - Jian-Bin Ma
- Key Laboratory of Biodiversity Formation Mechanism, Qinghai Normal University, Xining 810008, China
| | - Yu-Jun Wang
- Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Yu-Rong Du
- Key Laboratory of Biodiversity Formation Mechanism, Qinghai Normal University, Xining 810008, China.
| | - Song-Chang Guo
- School of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Laban H, Siegmund S, Zappe M, Trogisch FA, Heineke J, Torre CDL, Fisslthaler B, Arnold C, Lauryn J, Büttner M, Mogler C, Kato K, Adams RH, Kuk H, Fischer A, Hecker M, Kuebler WM, Korff T. NFAT5/TonEBP Limits Pulmonary Vascular Resistance in the Hypoxic Lung by Controlling Mitochondrial Reactive Oxygen Species Generation in Arterial Smooth Muscle Cells. Cells 2021; 10:cells10123293. [PMID: 34943801 PMCID: PMC8699676 DOI: 10.3390/cells10123293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic hypoxia increases the resistance of pulmonary arteries by stimulating their contraction and augmenting their coverage by smooth muscle cells (SMCs). While these responses require adjustment of the vascular SMC transcriptome, regulatory elements are not well defined in this context. Here, we explored the functional role of the transcription factor nuclear factor of activated T-cells 5 (NFAT5/TonEBP) in the hypoxic lung. Regulatory functions of NFAT5 were investigated in cultured artery SMCs and lungs from control (Nfat5fl/fl) and SMC-specific Nfat5-deficient (Nfat5(SMC)−/−) mice. Exposure to hypoxia promoted the expression of genes associated with metabolism and mitochondrial oxidative phosphorylation (OXPHOS) in Nfat5(SMC)−/− versus Nfat5fl/fl lungs. In vitro, hypoxia-exposed Nfat5-deficient pulmonary artery SMCs elevated the level of OXPHOS-related transcripts, mitochondrial respiration, and production of reactive oxygen species (ROS). Right ventricular functions were impaired while pulmonary right ventricular systolic pressure (RVSP) was amplified in hypoxia-exposed Nfat5(SMC)−/− versus Nfat5fl/fl mice. Scavenging of mitochondrial ROS normalized the raise in RVSP. Our findings suggest a critical role for NFAT5 as a suppressor of OXPHOS-associated gene expression, mitochondrial respiration, and ROS production in pulmonary artery SMCs that is vital to limit ROS-dependent arterial resistance in a hypoxic environment.
Collapse
Affiliation(s)
- Hebatullah Laban
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Sophia Siegmund
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Maren Zappe
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Felix A. Trogisch
- Department of Cardiovascular Physiology, Mannheim Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany; (F.A.T.); (J.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Jörg Heineke
- Department of Cardiovascular Physiology, Mannheim Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany; (F.A.T.); (J.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
| | - Beate Fisslthaler
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, 60323 Frankfurt, Germany;
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, 60323 Frankfurt, Germany
| | - Caroline Arnold
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
| | - Jonathan Lauryn
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10099 Berlin, Germany; (J.L.); (W.M.K.)
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany;
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University Munich, 80333 Munich, Germany;
| | - Katsuhiro Kato
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, University of Münster, 48149 Münster, Germany; (K.K.); (R.H.A.)
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, University of Münster, 48149 Münster, Germany; (K.K.); (R.H.A.)
| | - Hanna Kuk
- The Ottawa Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Andreas Fischer
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Internal Medicine I, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10099 Berlin, Germany; (J.L.); (W.M.K.)
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany; (H.L.); (S.S.); (M.Z.); (C.A.); (M.H.)
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-544131; Fax: +49-6221-544038
| |
Collapse
|
6
|
Manning EP, Ramachandra AB, Schupp JC, Cavinato C, Raredon MSB, Bärnthaler T, Cosme C, Singh I, Tellides G, Kaminski N, Humphrey JD. Mechanisms of Hypoxia-Induced Pulmonary Arterial Stiffening in Mice Revealed by a Functional Genetics Assay of Structural, Functional, and Transcriptomic Data. Front Physiol 2021; 12:726253. [PMID: 34594238 PMCID: PMC8478173 DOI: 10.3389/fphys.2021.726253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Hypoxia adversely affects the pulmonary circulation of mammals, including vasoconstriction leading to elevated pulmonary arterial pressures. The clinical importance of changes in the structure and function of the large, elastic pulmonary arteries is gaining increased attention, particularly regarding impact in multiple chronic cardiopulmonary conditions. We establish a multi-disciplinary workflow to understand better transcriptional, microstructural, and functional changes of the pulmonary artery in response to sustained hypoxia and how these changes inter-relate. We exposed adult male C57BL/6J mice to normoxic or hypoxic (FiO2 10%) conditions. Excised pulmonary arteries were profiled transcriptionally using single cell RNA sequencing, imaged with multiphoton microscopy to determine microstructural features under in vivo relevant multiaxial loading, and phenotyped biomechanically to quantify associated changes in material stiffness and vasoactive capacity. Pulmonary arteries of hypoxic mice exhibited an increased material stiffness that was likely due to collagen remodeling rather than excessive deposition (fibrosis), a change in smooth muscle cell phenotype reflected by decreased contractility and altered orientation aligning these cells in the same direction as the remodeled collagen fibers, endothelial proliferation likely representing endothelial-to-mesenchymal transitioning, and a network of cell-type specific transcriptomic changes that drove these changes. These many changes resulted in a system-level increase in pulmonary arterial pulse wave velocity, which may drive a positive feedback loop exacerbating all changes. These findings demonstrate the power of a multi-scale genetic-functional assay. They also highlight the need for systems-level analyses to determine which of the many changes are clinically significant and may be potential therapeutic targets.
Collapse
Affiliation(s)
- Edward P Manning
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States.,Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States.,Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States
| | - Thomas Bärnthaler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States.,Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Carlos Cosme
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Inderjit Singh
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - George Tellides
- VA Connecticut Healthcare System, West Haven, CT, United States.,Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States.,Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States
| |
Collapse
|
7
|
Marulanda K, Mercel A, Gillis DC, Sun K, Gambarian M, Roark J, Weiss J, Tsihlis ND, Karver MR, Centeno SR, Peters EB, Clemons TD, Stupp SI, McLean SE, Kibbe MR. Intravenous Delivery of Lung-Targeted Nanofibers for Pulmonary Hypertension in Mice. Adv Healthc Mater 2021; 10:e2100302. [PMID: 34061473 PMCID: PMC8273153 DOI: 10.1002/adhm.202100302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Pulmonary hypertension is a highly morbid disease with no cure. Available treatments are limited by systemic adverse effects due to non-specific biodistribution. Self-assembled peptide amphiphile (PA) nanofibers are biocompatible nanomaterials that can be modified to recognize specific biological markers to provide targeted drug delivery and reduce off-target toxicity. Here, PA nanofibers that target the angiotensin I-converting enzyme and the receptor for advanced glycation end-products (RAGE) are developed, as both proteins are overexpressed in the lung with pulmonary hypertension. It is demonstrated that intravenous delivery of RAGE-targeted nanofibers containing the targeting epitope LVFFAED (LVFF) significantly accumulated within the lung in a chronic hypoxia-induced pulmonary hypertension mouse model. Using 3D light sheet fluorescence microscopy, it is shown that LVFF nanofiber localization is specific to the diseased pulmonary tissue with immunofluorescence analysis demonstrating colocalization of the targeted nanofiber to RAGE in the hypoxic lung. Furthermore, biodistribution studies show that significantly more LVFF nanofibers localized to the lung compared to major off-target organs. Targeted nanofibers are retained within the pulmonary tissue for 24 h after injection. Collectively, these data demonstrate the potential of a RAGE-targeted nanomaterial as a drug delivery platform to treat pulmonary hypertension.
Collapse
Affiliation(s)
- Kathleen Marulanda
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Alexandra Mercel
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - David C Gillis
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Kui Sun
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Maria Gambarian
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Joshua Roark
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Jenna Weiss
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Mark R Karver
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - S Ruben Centeno
- Department of Pediatrics, University of North Carolina, 260 MacNider Building CB# 7220, Chapel Hill, NC, 27599, USA
| | - Erica B Peters
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Tristan D Clemons
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Sean E McLean
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina, 4041 Burnett Womack, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| |
Collapse
|
8
|
He M, Cui T, Cai Q, Wang H, Kong H, Xie W. Iptakalim ameliorates hypoxia-impaired human endothelial colony-forming cells proliferation, migration, and angiogenesis via Akt/eNOS pathways. Pulm Circ 2019; 9:2045894019875417. [PMID: 31692706 DOI: 10.1177/2045894019875417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Hypoxia-associated pulmonary hypertension is characterized by pulmonary vascular remodeling. Pulmonary arterial endothelial cells dysfunction is considered as the initial event. As precursor of endothelial cells, endothelial colony-forming cells (ECFCs) play significant roles in maintenance of endothelium integrity and restoration of normal endothelial cell function. Accumulating data have indicated that hypoxia leads to a decrease in the number and function of ECFCs with defective capacity of endothelial regeneration. Previous studies have reported that the activation of ATP-sensitive potassium channels (KATP) shows therapeutic effects in pulmonary hypertension. However, there have been few reports focusing on the impact of KATP on ECFC function under hypoxic condition. Therefore, the aim of this study was to investigate whether the opening of KATP could regulate hypoxia-induced ECFC dysfunction. Using ECFCs derived from adult peripheral blood, we observed that Iptakalim (Ipt), a novel KATP opener (KCO), significantly promoted ECFC function including cellular viability, proliferation, migration, angiogenesis, and apoptosis compared with ECFCs exposed to hypoxia. Glibenclamide (Gli), a nonselective KATP blocker, could eliminate the effects. The protective role of Ipt is attributed to an increased production of nitric oxide (NO), as well as an enhanced activation of angiogenic transduction pathways, containing Akt and endothelial nitric oxide synthase. Our observations demonstrated that KATP activation could improve ECFC function in hypoxia via Akt/endothelial nitric oxide synthase pathways, which may constitute increase ECFC therapeutic potential for hypoxia-associated pulmonary hypertension treatment.
Collapse
Affiliation(s)
- Mengyu He
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Cui
- The Inspection Department of the first Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Cai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Zhang CF, Zhao FY, Xu SL, Liu J, Xing XQ, Yang J. Autophagy in pulmonary hypertension: Emerging roles and therapeutic implications. J Cell Physiol 2019; 234:16755-16767. [PMID: 30932199 DOI: 10.1002/jcp.28531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 02/05/2023]
Abstract
Autophagy is an important mechanism for cellular self-digestion and basal homeostasis. This gene- and modulator-regulated pathway is conserved in cells. Recently, several studies have shown that autophagic dysfunction is associated with pulmonary hypertension (PH). However, the relationship between autophagy and PH remains controversial. In this review, we mainly introduce the effects of autophagy-related genes and some regulatory molecules on PH and the relationship between autophagy and PH under the conditions of hypoxia, monocrotaline injection, thromboembolic stress, oxidative stress, and other drugs and toxins. The effects of other autophagy-related drugs, such as chloroquine, 3-methyladenine, rapamycin, and other potential therapeutic drugs and targets, in PH are also described.
Collapse
Affiliation(s)
- Chun-Fang Zhang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Fang-Yun Zhao
- Department of Pharmacy, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Shuang-Lan Xu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Jie Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Xi-Qian Xing
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Hussain A, Suleiman MS, George SJ, Loubani M, Morice A. Hypoxic Pulmonary Vasoconstriction in Humans: Tale or Myth. Open Cardiovasc Med J 2017; 11:1-13. [PMID: 28217180 PMCID: PMC5301302 DOI: 10.2174/1874192401711010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Hypoxic Pulmonary vasoconstriction (HPV) describes the physiological adaptive process of lungs to preserves systemic oxygenation. It has clinical implications in the development of pulmonary hypertension which impacts on outcomes of patients undergoing cardiothoracic surgery. This review examines both acute and chronic hypoxic vasoconstriction focusing on the distinct clinical implications and highlights the role of calcium and mitochondria in acute versus the role of reactive oxygen species and Rho GTPases in chronic HPV. Furthermore it identifies gaps of knowledge and need for further research in humans to clearly define this phenomenon and the underlying mechanism.
Collapse
Affiliation(s)
- A Hussain
- Department of Cardiothoracic Surgery, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK
| | - M S Suleiman
- School of Clinical Sciences, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8HW, UK
| | - S J George
- School of Clinical Sciences, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8HW, UK
| | - M Loubani
- Department of Cardiothoracic Surgery, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK
| | - A Morice
- Department of Respiratory Medicine, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK
| |
Collapse
|
11
|
Saboor F, Reckmann AN, Tomczyk CUM, Peters DM, Weissmann N, Kaschtanow A, Schermuly RT, Michurina TV, Enikolopov G, Müller D, Mietens A, Middendorff R. Nestin-expressing vascular wall cells drive development of pulmonary hypertension. Eur Respir J 2016; 47:876-88. [PMID: 26699726 PMCID: PMC5796529 DOI: 10.1183/13993003.00574-2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023]
Abstract
Nestin, a well-known marker of neuronal stem cells, was recently suggested to characterise stem cell-like progenitors in non-neuronal structures during development and tissue repair. Integrating novel morphological approaches (CLARITY), we investigate whether nestin expression defines the proliferating cell population that essentially drives vascular remodelling during development of pulmonary hypertension.The role of nestin was investigated in lungs of nestin-GFP (green fluorescent protein) mice, models of pulmonary hypertension (rat: monocrotaline, SU5416/hypoxia; mouse: hypoxia), samples from pulmonary hypertension patients and human pulmonary vascular smooth muscle cells (VSMCs).Nestin was solely found in lung vasculature and localised to proliferating VSMCs, but not bronchial smooth muscle cells. Nestin was shown to affect cell number and was significantly enhanced in lungs early during development of pulmonary hypertension, correlating well with increased VSMC proliferation, expression of phosphorylated (activated) platelet-derived growth factor receptor β and downregulation of the smooth muscle cell differentiation marker calponin. At later time points when pulmonary hypertension became clinically evident, nestin expression and proliferation returned to control levels. Increase of nestin-positive VSMCs was also found in human pulmonary hypertension, both in vessel media and neointima.Nestin expression seems to be obligatory for VSMC proliferation, and specifies lung vascular wall cells that drive remodelling and (re-)generation. Our data promise novel diagnostic tools and therapeutic targets for pulmonary hypertension.
Collapse
Affiliation(s)
- Farhan Saboor
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany These authors contributed equally
| | - Ansgar N Reckmann
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany These authors contributed equally
| | - Claudia U M Tomczyk
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany These authors contributed equally
| | - Dorothea M Peters
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Dept of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Dept of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Andre Kaschtanow
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Ralph T Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Dept of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Tatyana V Michurina
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA NBIC, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Grigori Enikolopov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA NBIC, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
12
|
NADPH oxidases—do they play a role in TRPC regulation under hypoxia? Pflugers Arch 2015; 468:23-41. [DOI: 10.1007/s00424-015-1731-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022]
|
13
|
Satwiko MG, Ikeda K, Nakayama K, Yagi K, Hocher B, Hirata KI, Emoto N. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension. Biochem Biophys Res Commun 2015; 465:356-62. [PMID: 26275708 DOI: 10.1016/j.bbrc.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 01/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH.
Collapse
Affiliation(s)
- Muhammad Gahan Satwiko
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Ikeda
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Kazuhiko Nakayama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keiko Yagi
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Berthold Hocher
- Institute for Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Ken-ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriaki Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
14
|
D'Alessio FR, Zhong Q, Jenkins J, Moldobaeva A, Wagner EM. Lung Angiogenesis Requires CD4(+) Forkhead Homeobox Protein-3(+) Regulatory T Cells. Am J Respir Cell Mol Biol 2015; 52:603-10. [PMID: 25275926 DOI: 10.1165/rcmb.2014-0278oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Angiogenesis in ischemic organs is modulated by immune cells. Systemic neovascularization of the ischemic lung requires macrophages, with chemokines playing a central role in new vessel growth. Because regulatory T (Treg) cells modulate tumor-induced neovascularization, we questioned whether this CD4(+) lymphocyte subset impacts blood vessel growth during ischemia. In a model of left lung ischemia, an increase in CD4(+) CD25(+) forkhead homeobox protein-3 (Foxp3)(+) cells was observed 3-5 days after the onset of ischemia in wild-type C57Bl/6 mice. Using transgenic mice where Foxp3(+) Treg cells can be depleted with diphtheria toxin (DT; Foxp3(DTR)), we unexpectedly found that Foxp3(+) Treg depletion led to markedly reduced lung angiogenesis (90% reduction from Foxp3(gfp) controls). Adoptive transfer studies using CD4(+) CD25(+) splenocytes from congenic CD45.1 mice into Foxp3(+) Treg-depleted mice showed an almost complete recovery of the angiogenic phenotype (80% of Foxp3(gfp) controls). A survey of lung gene expression of angiogenic (lipopolysaccharide-induced CXC chemokine [LIX], IL-6, IL-17) and angiostatic (IFN-γ, transforming growth factor-β, IL-10) cytokines showed Treg-dependent differences only in LIX (CXCL5) and IL-6. Protein confirmation demonstrated a significant reduction in LIX in Treg-deficient mice compared with controls 5 days after the onset of ischemia. Phenotyping other inflammatory cells in the lung by multicolor flow cytometry demonstrated a significantly reduced number of macrophages (major histocombatibility complex class II [MHCII](int), CD11C(+)) in Treg-deficient lungs compared with Treg-sufficient lungs. Treg cells are essential for maximal systemic angiogenesis after pulmonary ischemia. One likely mechanism responsible for the decrease in angiogenesis in Treg-depleted mice was the decline in the essential CXC chemokine, LIX.
Collapse
Affiliation(s)
- Franco R D'Alessio
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
15
|
Li L, Wang X, Wang L, Qu L, Zhu X, Li M, Dang X, Li P, Gao Y, Peng Z, Pan L, Wan L. Mammalian target of rapamycin overexpression antagonizes chronic hypoxia-triggered pulmonary arterial hypertension via the autophagic pathway. Int J Mol Med 2015; 36:316-322. [PMID: 26017061 DOI: 10.3892/ijmm.2015.2224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/18/2015] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disorder with high morbidity and mortality, and is characterized by excessive growth of endothelial cells. Recently, the mammalian target of rapamycin (mTOR) has attracted increasing attention due to its potential as a therapeutic target against certain diseases associated with proliferative and metabolic abnormalities. However, the effect on mTOR on PAH has not yet been elucidated. In the present study, a marked downregulation of mTOR was observed in PAH patients. Following construction of a mouse model of PAH by chronic exposure to hypoxia, adenovirus-mediated upregulation of mTOR significantly attenuated right ventricular systolic pressure, right ventricular hypertrophy and wall thickness of pulmonary arterioles, indicating a protective effect of mTOR on PAH. Further analysis confirmed that mTOR overexpression inhibited autophagy triggered by hypoxia through blocking light chain 3 II expression and increasing p62 levels. In vitro, hypoxia enhanced the proliferation of human pulmonary artery endothelial cells (PAECs), which was markedly abrogated by mTOR overexpression. Of note, upregulation of mTOR inhibited the hypoxia-induced autophagy pathway, which contributed to cell proliferation, while silencing of autophagy by RNA interference with ATG5 significantly inhibited cell proliferation. In conclusion, the results of the present study suggested a potential protective effect of mTOR on the progression of PAH by suppressing PAEC proliferation through blocking the autophagic pathway. Therefore, the present study suggested that mTOR is a promising therapeutic agent against PAH.
Collapse
Affiliation(s)
- Lingxia Li
- The Cadre Ward, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaochuang Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lina Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Li Qu
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xinye Zhu
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Manxiang Li
- Department of Respiratory Diseases, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaoyan Dang
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ping Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yanxia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhuo Peng
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Li Wan
- Department of Emergency Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
16
|
Nishimura R, Nishiwaki T, Kawasaki T, Sekine A, Suda R, Urushibara T, Suzuki T, Takayanagi S, Terada J, Sakao S, Tatsumi K. Hypoxia-induced proliferation of tissue-resident endothelial progenitor cells in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 308:L746-58. [PMID: 25502500 DOI: 10.1152/ajplung.00243.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022] Open
Abstract
Exposure to hypoxia induces changes in the structure and functional phenotypes of the cells composing the pulmonary vascular wall from larger to most peripheral vessels. Endothelial progenitor cells (EPCs) may be involved in vascular endothelial repair. Resident EPCs with a high proliferative potential are found in the pulmonary microcirculation. However, their potential location, identification, and functional role have not been clearly established. We investigated whether resident EPCs or bone marrow (BM)-derived EPCs play a major role in hypoxic response of pulmonary vascular endothelial cells (PVECs). Mice were exposed to hypoxia. The number of PVECs transiently decreased followed by an increase in hypoxic animals. Under hypoxic conditions for 1 wk, prominent bromodeoxyuridine incorporation was detected in PVECs. Some Ki67-positive cells were detected among PVECs after 1 wk under hypoxic conditions, especially in the capillaries. To clarify the origin of proliferating endothelial cells, we used BM chimeric mice expressing green fluorescent protein (GFP). The percentage of GFP-positive PVECs was low and constant during hypoxia in BM-transplanted mice, suggesting little engraftment of BM-derived cells in lungs under hypoxia. Proliferating PVECs in hypoxic animals showed increased expression of CD34, suggesting hypoxia-induced gene expression and cell surface antigen of EPC or stem/progenitor cells markers. Isolated PVECs from hypoxic mice showed colony- and tube-forming capacity. The present study indicated that hypoxia could induce proliferation of PVECs, and the origin of these cells might be tissue-resident EPCs.
Collapse
Affiliation(s)
- Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsu Nishiwaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayumi Sekine
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rika Suda
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Urushibara
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshio Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shin Takayanagi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
17
|
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 308:L229-52. [PMID: 25416383 DOI: 10.1152/ajplung.00238.2014] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.
Collapse
Affiliation(s)
- Steven C Pugliese
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado;
| | - Jens M Poth
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mehdi A Fini
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; and
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
18
|
Porter KM, Kang BY, Adesina SE, Murphy TC, Hart CM, Sutliff RL. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase. PLoS One 2014; 9:e98532. [PMID: 24906007 PMCID: PMC4048210 DOI: 10.1371/journal.pone.0098532] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/05/2014] [Indexed: 01/11/2023] Open
Abstract
Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC) were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2) release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.
Collapse
Affiliation(s)
- Kristi M. Porter
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Bum-Yong Kang
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Sherry E. Adesina
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Tamara C. Murphy
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - C. Michael Hart
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Roy L. Sutliff
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Van Hung T, Emoto N, Vignon-Zellweger N, Nakayama K, Yagi K, Suzuki Y, Hirata KI. Inhibition of vascular endothelial growth factor receptor under hypoxia causes severe, human-like pulmonary arterial hypertension in mice: potential roles of interleukin-6 and endothelin. Life Sci 2014; 118:313-28. [PMID: 24412382 DOI: 10.1016/j.lfs.2013.12.215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/19/2013] [Accepted: 12/26/2013] [Indexed: 02/06/2023]
Abstract
AIMS Severe pulmonary arterial hypertension (PAH) is an incurable disease whose exact mechanisms remain unknown. However, growing evidence highlights the role of inflammation and endothelin (ET) signaling. The lack of reliable models makes it difficult to investigate the pathophysiology of this disease. Our aim was therefore to develop a mouse model of severe PAH closely mimicking the human condition to explore the role of interleukin-6 (IL-6), and ET signaling in advanced PAH progression. MAIN METHODS Young male SV129 mice received vascular endothelial growth factor receptor inhibitor (SU5416) three times a week and were exposed to hypoxia (10% O2) for three weeks. Molecular analysis and histological assessment were examined using real-time PCR, Western blot and immunostaining, respectively. KEY FINDINGS The developed murine model presented important characteristics of severe PAH in human: concentric neointimal wall thickening, plexogenic lesions, recruitment of macrophages, and distal arteriolar wall muscularization. We detected an increase of IL-6 production and a stronger macrophage recruitment in adventitia of remodeled arterioles developing plexogenic lesions. Moreover, ET-1 and ET receptor A were up-regulated in lung lysates and media of remodeled arterioles. Recombinant IL-6 stimulated the proliferation and regulated endothelial cells in increasing ET-1 and decreasing ET receptor B. SIGNIFICANCE These data describe a murine model, which displays the most important features of human severe PAH. We assume that inflammation, particularly IL-6 regulating ET signaling, plays a crucial role in forming plexogenic lesions. This model is thus reliable and might be used for a better understanding of severe PAH progression and treatment.
Collapse
Affiliation(s)
- Tran Van Hung
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicie, Kobe, Japan
| | - Noriaki Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicie, Kobe, Japan; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan.
| | | | - Kazuhiko Nakayama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicie, Kobe, Japan; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Keiko Yagi
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Yoko Suzuki
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Ken-ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicie, Kobe, Japan
| |
Collapse
|
20
|
Li XW, Du J, Hu GY, Hu CP, Li D, Li YJ, Li XH. Fluorofenidone attenuates vascular remodeling in hypoxia-induced pulmonary hypertension of rats. Can J Physiol Pharmacol 2014; 92:58-69. [DOI: 10.1139/cjpp-2013-0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluorofenidone (AKF-PD) is a novel pyridone derivate that targets transforming growth factor-β1 (TGF-β1) signaling. Previous studies have proven that AKF-PD functions as an antifibrotic agent in pulmonary fibrosis and renal fibrosis models. Activated TGF-β1 signaling is thought to be a major feature of pulmonary hypertension (PH). TGF-β1 exerts powerful pro-proliferation effects on pulmonary arterial smooth muscle cells (PASMCs), and hence, prompts vascular remodeling. This study is designed to investigate the effect of AKF-PD on vascular remodeling in a rat model of hypoxia-induced PH. PH was induced in rats by 4 weeks of hypoxia. The expression of TGF-β1, collagen I, and collagen III was analyzed by ELISA, immunohistochemistry, real-time PCR, or Western blot. Proliferation of cultured PASMCs was determined by the BrdU incorporation method and flow cytometry. The results showed that AKF-PD treatment (0.5 or 1.0 g·(kg body mass)·d−1) for 4 weeks attenuated pulmonary vascular remodeling and improved homodynamic parameters. TGF-β1 level was significantly down-regulated by AKF-PD both in vivo and in vitro. Furthermore, hypoxia- and TGF-β1-induced PASMC proliferation and collagen expression were both significantly suppressed by AKF-PD. These results suggest that AKF-PD ameliorates the progression of PH induced by hypoxia in rats through its regulation of TGF-β1 expression, PASMC proliferation, and the extracellular matrix.
Collapse
Affiliation(s)
- Xian-Wei Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Jie Du
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| | - Gao-Yun Hu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Chang-Ping Hu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| | - Dai Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 41008, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| |
Collapse
|
21
|
Dubois M, Delannoy E, Duluc L, Closs E, Li H, Toussaint C, Gadeau AP, Gödecke A, Freund-Michel V, Courtois A, Marthan R, Savineau JP, Muller B. Biopterin metabolism and eNOS expression during hypoxic pulmonary hypertension in mice. PLoS One 2013; 8:e82594. [PMID: 24312428 PMCID: PMC3842263 DOI: 10.1371/journal.pone.0082594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH4) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH4 levels and eNOS expression, without modifying dihydrobiopterin (BH2, the oxidation product of BH4) levels, GTP cyclohydrolase-1 or dihydrofolate reductase expression (two key enzymes regulating BH4 availability). In intrapulmonary arteries, chronic hypoxia also increased expression of eNOS, but did not induce destabilisation of eNOS dimers into monomers. In hypoxic mice, sepiapterin prevented increase in right ventricular systolic pressure and right ventricular hypertrophy, whereas it modified neither remodelling nor alteration in vasomotor responses (hyper-responsiveness to phenylephrine, decrease in endothelium-dependent relaxation to acetylcholine) in intrapulmonary arteries. Finally, deletion of eNOS gene partially prevented hypoxia-induced increase in right ventricular systolic pressure, right ventricular hypertrophy and remodelling of intrapulmonary arteries. Collectively, these data demonstrate the absence of BH4/BH2 changes and eNOS dimer destabilisation, which may induce eNOS uncoupling during hypoxia-induced pulmonary hypertension. Thus, even though eNOS gene deletion and sepiapterin treatment exert protective effects on hypoxia-induced pulmonary vascular remodelling, increase on right ventricular pressure and / or right ventricular hypertrophy, these effects appear unrelated to biopterin-dependent eNOS uncoupling within pulmonary vasculature of hypoxic wild-type mice.
Collapse
Affiliation(s)
- Mathilde Dubois
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Estelle Delannoy
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de, Bordeaux, Bordeaux, France
| | - Lucie Duluc
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Ellen Closs
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | | | | | - Axel Gödecke
- Institute of Cardiovascular Physiology, Heinrich-Heine University, Düsseldorf, Germany
| | - Véronique Freund-Michel
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Arnaud Courtois
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Roger Marthan
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de, Bordeaux, Bordeaux, France
| | - Jean-Pierre Savineau
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Bernard Muller
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| |
Collapse
|
22
|
Ahmad A, Ahmad S, Malcolm KC, Miller SM, Hendry-Hofer T, Schaack JB, White CW. Differential regulation of pulmonary vascular cell growth by hypoxia-inducible transcription factor-1α and hypoxia-inducible transcription factor-2α. Am J Respir Cell Mol Biol 2013; 49:78-85. [PMID: 23492195 DOI: 10.1165/rcmb.2012-0107oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hypoxia-inducible transcription factors HIF-1α and HIF-2α can contribute to pulmonary hypertension and vascular remodeling, but their mechanisms remain unknown. This study investigated the role of HIF-1α and HIF-2α in pulmonary artery endothelial and smooth muscle cells. The exposure of human pulmonary artery endothelial cells (HPAECs) to hypoxia (10% O₂ or 5% O₂) increased proliferation over 48 hours, compared with cells during normoxia (21% O₂). The adenovirus-mediated overexpression of HIF-2α that is transcriptionally active during normoxia (mutHIF-2α) increased HPAEC proliferation, whereas the overexpression of HIF-1α, which is transcriptionally active during normoxia (mutHIF-1α), exerted no effect. The knockdown of HIF-2α decreased proliferation during both hypoxia and normoxia. Both HIFs increased migration toward fibrinogen, used as a chemoattractant. In an angiogenesis tube formation assay, mutHIF-2α-transduced cells demonstrated increased tube formation, compared with the mutHIF-1α-transduced cells. In addition, the tubes formed in HIF-2α-transduced cells were more enduring than those in the other groups. In human pulmonary artery smooth muscle cells (HPASMCs), chronic exposure to hypoxia increased proliferation, compared with cells during normoxia. For HPASMCs transduced with adenoviral HIFs, HIF-1α increased proliferation, whereas HIF-2α exerted no such effect. Thus, HIF-1α and HIF-2α exert differential effects in isolated cells of the human pulmonary vasculature. This study demonstrates that HIF-2α plays a predominant role in the endothelial growth pertinent to the remodeling process. In contrast, HIF-1α appears to play a major role in pulmonary smooth muscle growth. The selective targeting of each HIF in specific target cells may more effectively counteract hypoxic pulmonary hypertension and vascular remodeling.
Collapse
Affiliation(s)
- Aftab Ahmad
- Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Hypoxic pulmonary vasoconstriction in humans. BIOMED RESEARCH INTERNATIONAL 2013; 2013:623684. [PMID: 24024204 PMCID: PMC3762074 DOI: 10.1155/2013/623684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/04/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022]
Abstract
Hypoxic pulmonary vasoconstriction is the elegant theory put forward more than six decades ago to explain regional variations in perfusion within the lung in certain animal species in response to localised restrictions in oxygenation. Although considerable progress has been made to describe the phenomenon at the macroscopic level and explain it at the microscopic level, we are far from a universal agreement about the process in humans. This review attempts to highlight some of the important evidence bases of hypoxic pulmonary vasoconstriction in humans and the significant gaps in our knowledge that would need bridging.
Collapse
|
24
|
Wang YY, Luan Y, Zhang X, Lin M, Zhang ZH, Zhu XB, Ma Y, Wang YB. Proteasome inhibitor PS-341 attenuates flow-induced pulmonary arterial hypertension. Clin Exp Med 2013; 14:321-9. [PMID: 23771811 DOI: 10.1007/s10238-013-0244-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/04/2013] [Indexed: 12/29/2022]
Abstract
PS-341, a proteasome inhibitor, is suggested to prevent the vascular remodeling induced by high-flow pulmonary artery hypertension (PAH), but the mechanism remains unclear. The aim of the current study was to investigate the effects and possible mechanism of PS-341 on hypertension-induced vascular remodeling. Male Sprague-Dawley rats were subjected to surgical methods to produce a shunt model of PAH. Three days after the surgical procedure, the animals randomly assigned to four groups (n = 10 in each group): I: sham group; II: shunt group; III: vehicle; IV: treated group. Eight weeks postoperative, the hemodynamics data were measured through Swan-Ganz catheter; the protein expression level of proliferating cell nuclear antigen, nuclear factor-κB (NF-κB), inhibitor of nuclear factor-κB (I-κBα), transforming growth factor beta-β (TGF-β), drosophila mothers against decapentaplegic protein (Smad) and vascular endothelia growth factor (VEGF) were investigated by immunohistochemical and Western blotting; the mRNA expression level of Ubiquitin (Ub), Smad3, TGF-β1and Smad2 in lung were performed to detect by real-time reverse transcription-polymerase chain reaction analysis. The results showed that hemodynamic data and right ventricular hypertrophy were significantly improved (P < 0.05), the expression level of Ub, NF-κB, TGF-β1, Smad2 and VEGF were decreased (P < 0.05), but the level of I-κBα was increased in PS-341 treated group as compared with the shunt and vehicle groups (P < 0.05). In conclusion, the present study indicated that PS-341 could significantly improve the lung damage, attenuate pulmonary vascular remodeling induced by high blood PAH model. The mechanism may be mediated by inhibition of NF-κB and TGF-β/Smad signaling pathway and modulation the effect of VEGF.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Pediatrics, The Second Hospital of Shandong University, 247#, Beiyuan Dajie, Jinan, 250033, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Porter KM, Walp ER, Elms SC, Raynor R, Mitchell PO, Guidot DM, Sutliff RL. Human immunodeficiency virus-1 transgene expression increases pulmonary vascular resistance and exacerbates hypoxia-induced pulmonary hypertension development. Pulm Circ 2013; 3:58-67. [PMID: 23662175 PMCID: PMC3641741 DOI: 10.4103/2045-8932.109915] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary arterial resistance and vessel remodeling. Patients living with human immunodeficiency virus-1 (HIV-1) have an increased susceptibility to develop severe pulmonary hypertension (PH) irrespective of their CD4+ lymphocyte counts. While the underlying cause of HIV-PAH remains unknown, the interaction of HIV-1 proteins with the vascular endothelium may play a critical role in HIV-PAH development. Hypoxia promotes PH in experimental models and in humans, but the impact of HIV-1 proteins on hypoxia-induced pulmonary vascular dysfunction and PAH has not been examined. Therefore, we hypothesize that the presence of HIV-1 proteins and hypoxia synergistically augment the development of pulmonary vascular dysfunction and PH. We examined the effect of HIV-1 proteins on pulmonary vascular resistance by measuring pressure-volume relationships in isolated lungs from wild-type (WT) and HIV-1 Transgenic (Tg) rats. WT and HIV-1 Tg rats were exposed to 10% O2 for four weeks to induce experimental pulmonary hypertension to assess whether HIV-1 protein expression would impact the development of hypoxia-induced PH. Our results demonstrate that HIV-1 protein expression significantly increased pulmonary vascular resistance (PVR). HIV-1 Tg mice demonstrated exaggerated pulmonary vascular responses to hypoxia as evidenced by greater increases in right ventricular systolic pressures, right ventricular hypertrophy and vessel muscularization when compared to wild-type controls. This enhanced PH was associated with enhanced expression of HIF-1α and PCNA. In addition, in vitro studies reveal that medium from HIV-infected monocyte derived macrophages (MDM) potentiates hypoxia-induced pulmonary artery endothelial proliferation. These results indicate that the presence of HIV-1 proteins likely impact pulmonary vascular resistance and exacerbate hypoxia-induced PH.
Collapse
Affiliation(s)
- Kristi M Porter
- Department of Pulmonary, Allergy, and Critical Care, Emory University School of Medicine/Atlanta Veterans Affairs Medical Center Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Yu M, Gong D, Lim M, Arutyunyan A, Groffen J, Heisterkamp N. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice. PLoS One 2012; 7:e49756. [PMID: 23152932 PMCID: PMC3495860 DOI: 10.1371/journal.pone.0049756] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 10/16/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined. METHODOLOGY/PRINCIPAL FINDINGS Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia. CONCLUSIONS Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.
Collapse
Affiliation(s)
- Min Yu
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, and The Saban Research Institute of Children’s Hospital, Los Angeles, California, United States of America
| | - Dapeng Gong
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, and The Saban Research Institute of Children’s Hospital, Los Angeles, California, United States of America
| | - Min Lim
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Anna Arutyunyan
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, and The Saban Research Institute of Children’s Hospital, Los Angeles, California, United States of America
| | - John Groffen
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, and The Saban Research Institute of Children’s Hospital, Los Angeles, California, United States of America
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Nora Heisterkamp
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, and The Saban Research Institute of Children’s Hospital, Los Angeles, California, United States of America
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, Taraseviciene-Stewart L, Sung Y, Kraskauskas D, Farkas D, Conrad DH, Nicolls MR, Voelkel NF. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol 2012; 302:L977-91. [PMID: 22307907 DOI: 10.1152/ajplung.00362.2011] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many chronic pulmonary diseases are associated with pulmonary hypertension (PH) and pulmonary vascular remodeling, which is a term that continues to be used to describe a wide spectrum of vascular abnormalities. Pulmonary vascular structural changes frequently increase pulmonary vascular resistance, causing PH and right heart failure. Although rat models had been standard models of PH research, in more recent years the availability of genetically engineered mice has made this species attractive for many investigators. Here we review a large amount of data derived from experimental PH reports published since 1996. These studies using wild-type and genetically designed mice illustrate the challenges and opportunities provided by these models. Hemodynamic measurements are difficult to obtain in mice, and right heart failure has not been investigated in mice. Anatomical, cellular, and genetic differences distinguish mice and rats, and pharmacogenomics may explain the degree of PH and the particular mode of pulmonary vascular adaptation and also the response of the right ventricle.
Collapse
Affiliation(s)
- Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Disease Research, Virginia Commonwealth University, 1220 E. Broad St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yu L, Hales CA. Silencing of sodium-hydrogen exchanger 1 attenuates the proliferation, hypertrophy, and migration of pulmonary artery smooth muscle cells via E2F1. Am J Respir Cell Mol Biol 2011; 45:923-30. [PMID: 21454803 DOI: 10.1165/rcmb.2011-0032oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously found that deficiency of the sodium-hydrogen exchanger 1 (NHE1) gene prevented hypoxia-induced pulmonary hypertension and vascular remodeling in mice, which were accompanied by a significantly reduced proliferation of pulmonary artery smooth muscle cells (PASMCs), and which decreased the medial-wall thickness of pulmonary arteries. That finding indicated the involvement of NHE1 in the proliferation and hypertrophy of PASMCs, but the underlying mechanism was not fully understood. To define the mechanism by which the inhibition of NHE1 decreases hypoxic pulmonary hypertension and vascular remodeling, we investigated the role of E2F1, a nuclear transcription factor, in silencing the NHE1 gene-induced inhibition of the proliferation, hypertrophy, and migration of human PASMCs. We found that: (1) silencing of NHE1 by short, interfering RNA (siRNA) significantly inhibited PASMC proliferation and cell cycle progression, decreased hypoxia-induced hypertrophy (in terms of cell size and protein/DNA ratio) and migration (in terms of the wound-healing and migration chamber assays); (2) hypoxia induced the expression of E2F1, which was reversed by NHE1 siRNA; and (3) the overexpression of E2F1 blocked the inhibitory effect of NHE1 siRNA on the proliferation, hypertrophy, and migration of PASMCs. The present study determined that silencing the NHE1 gene significantly inhibited the hypoxia-induced proliferation, hypertrophy, and migration of human PASMCs via repression of the nuclear transcription factor E2F1. This study revealed a novel mechanism underlying the regulation of hypoxic pulmonary hypertension and vascular remodeling via NHE1.
Collapse
Affiliation(s)
- Lunyin Yu
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, 02114-2696, USA.
| | | |
Collapse
|