1
|
Nam Y, Ji YJ, Shin SJ, Park HH, Yeon SH, Kim SY, Son RH, Jang GY, Kim HD, Moon M. Platycodon grandiflorum root extract inhibits Aβ deposition by breaking the vicious circle linking oxidative stress and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 177:117090. [PMID: 38968796 DOI: 10.1016/j.biopha.2024.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by irreversible cognitive impairment. A deleterious feedback loop between oxidative stress and neuroinflammation in early AD exacerbates AD-related pathology. Platycodon grandiflorum root extract (PGE) has antioxidant and anti-inflammatory effects in several organs. However, the mechanisms underlying the effects of PGE in the brain remain unclear, particularly regarding its impact on oxidative/inflammatory damage and Aβ deposition. Thus, we aim to identify the mechanism through which PGE inhibits Aβ deposition and oxidative stress in the brain by conducting biochemical and histological analyses. First, to explore the antioxidant mechanism of PGE in the brain, we induced oxidative stress in mice injected with scopolamine and investigated the effect of PGE on cognitive decline and oxidative damage. We also assessed the effect of PGE on reactive oxygen species (ROS) generation and the expressions of antioxidant enzymes and neurotrophic factor in H2O2- and Aβ-treated HT22 hippocampal cells. Next, we investigated whether PGE, which showed antioxidant effects, could reduce Aβ deposition by mitigating neuroinflammation, especially microglial phagocytosis. We directly verified the effect of PGE on microglial phagocytosis, microglial activation markers, and pro-inflammatory cytokines in Aβ-treated BV2 microglial cells. Moreover, we examined the effect of PGE on neuroinflammation, inducing microglial responses in Aβ-overexpressing 5XFAD transgenic mice. PGE exerts antioxidant effects in the brain, enhances microglial phagocytosis of Aβ, and inhibits neuroinflammation and Aβ deposition, ultimately preventing neuronal cell death in AD. Taken together, our findings indicate that the therapeutic potential of PGE in AD is mediated by its targeting of multiple pathological processes.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yun-Jeong Ji
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumsung 27709, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Sung-Hum Yeon
- Healthcare Research Division, HuonsGlobal Bldg., A-dong Pangyo I-Square, 17, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Sang-Yoon Kim
- Healthcare Research Division, HuonsGlobal Bldg., A-dong Pangyo I-Square, 17, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Rak Ho Son
- Healthcare Research Division, HuonsGlobal Bldg., A-dong Pangyo I-Square, 17, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 13449, Republic of Korea
| | - Gwi Yeong Jang
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumsung 27709, Republic of Korea
| | - Hyung Don Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumsung 27709, Republic of Korea; Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
2
|
Jolly A, Hour Y, Lee YC. An outlook on the versatility of plant saponins: A review. Fitoterapia 2024; 174:105858. [PMID: 38365071 DOI: 10.1016/j.fitote.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The abundance of saponin-rich plants across different ecosystems indicates their great potential as a replacement for harmful synthetic surfactants in modern commercial products. These organic saponins have remarkable biological and surface-active properties and align with sustainable and eco-friendly practices. This article examines and discusses the structure and properties of plant saponins with high yield of saponin concentrations and their exploitable applications. This highlights the potential of saponins as ethical substitutes for traditional synthetic surfactants and pharmacological agents, with favorable effects on the economy and environment. For this purpose, studies on the relevant capabilities, structure, and yield of selected plants were thoroughly examined. Studies on the possible uses of the selected saponins have also been conducted. This in-depth analysis highlights the potential of saponins as workable and ethical replacements for traditional synthetic medications and surfactants, thus emphasizing their favorable effects on human health and the environment.
Collapse
Affiliation(s)
- Annu Jolly
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Youl Hour
- 125-6, Techno 2-ro, Yuseong-gu, Daejeon 34024, BTGin co., Ltd., Republic of Korea.
| | - Young-Chul Lee
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
3
|
Zhou Y, Jin T, Gao M, Luo Z, Mutahir S, Shi C, Xie T, Lin L, Xu J, Liao Y, Chen M, Deng H, Zheng M, Shan J. Aqueous extract of Platycodon grandiflorus attenuates lipopolysaccharide-induced apoptosis and inflammatory cell infiltration in mouse lungs by inhibiting PI3K/Akt signaling. Chin Med 2023; 18:36. [PMID: 37016413 PMCID: PMC10071731 DOI: 10.1186/s13020-023-00721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/06/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI), an acute inflammatory lung disease, can cause a rapid inflammatory response in clinic, which endangers the patient's life. The components of platycodon grandiflorum, such as platycodins have a wide range of pharmacological activities such as expectorant, anti-apoptotic, anti-inflammatory, anti-tumor and anti-oxidant properties, and can be used for improving human immunity. Previous studies have shown that aqueous extract of platycodon grandiflorum (PAE) has a certain protective effect on ALI, but the main pharmacodynamic components and the mechanism of action are not clear. METHODS The anti-inflammatory properties of PAE were studied using the lipopolysaccharide (LPS)-induced ALI animal model. Hematoxylin and eosin stains were used to assess the degree of acute lung damage. Changes in RNA levels of pro-inflammatory cytokines in the lungs were measured using quantitative RT-qPCR. The potential molecular mechanism of PAE preventing ALI was predicted by lipidomics and network pharmacology. To examine the anti-apoptotic effects of PAE, TdT-mediated dUTP nick-end labelling (TUNEL) was employed to determine apoptosis-related variables. The amounts of critical pathway proteins and apoptosis-related proteins were measured using Western blotting. RESULTS Twenty-six chemical components from the PAE were identified, and their related pathways were obtained by the network pharmacology. Combined with the analysis of network pharmacology and literature, it was found that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway is related to ALI. The results of lipidomics show that PAE alleviates ALI via regulating lung lipids especially phosphatidylinositol (PI). Finally, the methods of molecular biology were used to verify the mechanism of PAE. It can be found that PAE attenuates the inflammatory response to ALI by inhibiting apoptosis through PI3K/Akt signaling pathway. CONCLUSION The study revealed that the PAE attenuates lipopolysaccharide-induced apoptosis and inflammatory cell infiltration in mouse lungs by inhibiting PI3K/Akt signaling. Furthermore, our findings provide a novel strategy for the application of PAE as a potential agent for preventing patients with ALI.
Collapse
Affiliation(s)
- Yang Zhou
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Wuhu Fanchang District People's Hospital, Wuhu, 241200, China
| | - Tianzi Jin
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mingtong Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sadaf Mutahir
- Department of Chemistry, University of Sialkot, Sialkot, 51300, Pakistan
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Lin
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianya Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingzhao Liao
- Department of Pediatrics, Shenzhen Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Shenzhen, 518033, China
| | - Ming Chen
- Jiangsu Suzhong Pharmaceutical Research Institute Co. Ltd, Nanjing, 210031, China
| | - Haishan Deng
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Zheng
- Department of Pediatrics, Shenzhen Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Shenzhen, 518033, China.
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Liu J, Ma Z, Li H, Li X. Chinese medicine in the treatment of autoimmune hepatitis: Progress and future opportunities. Animal Model Exp Med 2022; 5:95-107. [PMID: 35263512 PMCID: PMC9043711 DOI: 10.1002/ame2.12201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease occurring in individuals of all ages with a higher incidence in females and characterized by hypergammaglobulinemia, elevated serum autoantibodies and histological features of interface hepatitis. AIH pathogenesis remains obscure and still needs in‐depth study, which is likely associated with genetic susceptibility and the loss of immune homeostasis. Steroids alone and in combination with other immunosuppressant agents are the primary choices of AIH treatment in the clinic, whereas, in some cases, severe adverse effects and disease relapse may occur. Chinese medicine used for the treatment of AIH has proven its merits over many years and is well tolerated. To better understand the pathogenesis of AIH and to evaluate the efficacy of novel therapies, several animal models have been generated to recapitulate the immune microenvironment of patients with AIH. In the current review, we summarize recent advances in the study of animal models for AIH and their application in pharmacological research of Chinese medicine‐based therapies and also discuss current limitations. This review aims to provide novel insights into the discovery of Chinese medicine‐originated therapies for AIH using cutting‐edge animal models.
Collapse
Affiliation(s)
- Jia Liu
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Zhi Ma
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Han Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Xiaojiaoyang Li
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
5
|
Crude Saponin from Platycodon grandiflorum Attenuates Aβ-Induced Neurotoxicity via Antioxidant, Anti-Inflammatory and Anti-Apoptotic Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10121968. [PMID: 34943071 PMCID: PMC8750977 DOI: 10.3390/antiox10121968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Although Platycodon grandiflorum saponins exhibit many beneficial biological effects in various diseases and conditions, how they protect nerve cells against neurodegenerative diseases and Alzheimer’s disease (AD) pathology is unknown. We investigated whether P. grandiflorum crude saponin (PGS) protects neurons from neurodegeneration caused by amyloid beta (Aβ)-induced oxidative stress. Hippocampal neuron HT-22 cells were used in the in vitro experiment, and AD mice (5XFAD mice) were used as the in vivo model. Intracellular reactive oxygen species (ROS) was stained with DCF-DA and assessed using fluorescence microscopy. To elucidate the mechanism underlying neuroprotection, intracellular protein levels were assessed by western blotting. In 5XFAD mice, an animal model of AD, nerve damage recovery due to the induction of Aβ toxicity was evaluated by histological analysis. PGS attenuates Aβ-induced neurotoxicity by inhibiting Aβ-induced reactive oxygen species (ROS) production and apoptosis in HT-22 cells. Furthermore, PGS upregulated Nrf2-mediated antioxidant signaling and downregulated NF-κB-mediated inflammatory signaling. Additionally, PGS inhibited apoptosis by regulating the expression of apoptosis-associated proteins. In addition, PGS ameliorated Aβ-mediated pathologies, leading to AD-associated cognitive decline. Conclusions: Taken together, these findings suggest that PGS inhibits Aβ accumulation in the subiculum and cerebral cortex and attenuates Aβ toxicity-induced nerve damage in vitro and in vivo. Therefore, PGS is a resource for developing AD therapeutics.
Collapse
|
6
|
Tu Y, Zhu S, Wang J, Burstein E, Jia D. Natural compounds in the chemoprevention of alcoholic liver disease. Phytother Res 2019; 33:2192-2212. [PMID: 31264302 DOI: 10.1002/ptr.6410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD), caused by excessive consumption of alcohol, is a major cause of chronic liver disease worldwide. Much effort has been expended to explore the pathogenesis of ALD. Hepatic cell injury, oxidative stress, inflammation, regeneration, and bacterial translocation are all involved in the pathogenesis of ALD. Immediate abstinence is the most important therapeutic treatment for affected individuals. However, the medical treatment for ALD had not advanced in a long period. Intriguingly, an increasing body of research indicates the potential of natural compounds in the targeted therapy of ALD. A plethora of dietary natural products such as flavonoids, resveratrol, saponins, and β-carotene are found to exert protective effects on ALD. This occurs through various mechanisms composed of antioxidative, anti-inflammatory, iron chelation, pro-apoptosis, and/or antiproliferation of hepatic stellate cells and hepatocellular carcinoma cells. In this review, we will summarize current knowledge about the pathogenesis and treatments of ALD and focus on the potential of natural compounds in ALD therapies and underlying mechanisms.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shu Zhu
- Chinese Academy of Science and Technology for Development, Ministry of Science and Technology, Institute of Foresight and Evaluation Research, Beijing, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Lim JM, Kim YD, Song CH, Park SJ, Park DC, Cho HR, Jung GW, Bashir KMI, Ku SK, Choi JS. Laxative effects of triple fermented barley extracts (FBe) on loperamide (LP)-induced constipation in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:143. [PMID: 31226979 PMCID: PMC6587300 DOI: 10.1186/s12906-019-2557-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/11/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Constipation, a common health problem, causes discomfort and affects the quality of life. This study intended to evaluate the potential laxative effect of triple fermented barley (Hordeum vulgare L.) extract (FBe), produced by saccharification, Saccharomyces cerevisiae, and Weissella cibaria, on loperamide (LP)-induced constipation in Sprague-Dawley (SD) rats, a well-established animal model of spastic constipation. METHODS Spastic constipation was induced via oral treatment with LP (3 mg/kg) for 6 days 1 h before the administration of each test compound. Similarly, FBe (100, 200 and 300 mg/kg) was orally administered to rats once a day for 6 days. The changes in number, weight, and water content of fecal, motility ratio, colonic mucosa histology, and fecal mucous contents were recorded. The laxative properties of FBe were compared with those of a cathartic stimulant, sodium picosulfate. A total of 48 (8 rats in 6 groups) healthy male rats were selected and following 10 days of acclimatization. Fecal pellets were collected one day before administration of the first dose and starting from immediately after the fourth administration for a duration of 24 h. Charcoal transfer was conducted after the sixth and final administration of the test compounds. RESULTS In the present study, oral administration of 100-300 mg/kg of FBe exhibited promising laxative properties including intestinal charcoal transit ratio, thicknesses and mucous producing goblet cells of colonic mucosa with decreases of fecal pellet numbers and mean diameters remained in the lumen of colon, mediated by increases in gastrointestinal motility. CONCLUSION Therefore, FBe might act as a promising laxative agent and functional food ingredient to cure spastic constipation, with less toxicity observed at a dose of 100 mg/kg.
Collapse
Affiliation(s)
- Jong-Min Lim
- Glucan Corp, #305 Marine Bio-Industry Development Center, Hoenggye-ri 27, Ilgwang-myeon, Gijan-gun Busan, 46048 Republic of Korea
| | - Young Dae Kim
- South East Sea Fisheries Research Institute, National Institute of Fisheries Sciences, Tongyoung-si, Gyeongsangnam-do 53085 Republic of Korea
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsanbuk-do 38610 Republic of Korea
- MRC-GHF, College of Korean Medicine, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsanbuk-do 38610 Republic of Korea
| | - Su-Jin Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsanbuk-do 38610 Republic of Korea
- MRC-GHF, College of Korean Medicine, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsanbuk-do 38610 Republic of Korea
| | - Dong-Chan Park
- Glucan Corp, #305 Marine Bio-Industry Development Center, Hoenggye-ri 27, Ilgwang-myeon, Gijan-gun Busan, 46048 Republic of Korea
| | - Hyung-Rae Cho
- Glucan Corp, #305 Marine Bio-Industry Development Center, Hoenggye-ri 27, Ilgwang-myeon, Gijan-gun Busan, 46048 Republic of Korea
| | - Go-Woon Jung
- Glucan Corp, #305 Marine Bio-Industry Development Center, Hoenggye-ri 27, Ilgwang-myeon, Gijan-gun Busan, 46048 Republic of Korea
| | - Khawaja Muhammad Imran Bashir
- German Engineering Research and Development Center for Life Science Technologies in Medicine and Environment, 31, Gwahaksandan 1-ro, 60 beon-gil, Gangseo-gu, Busan, 46742 Republic of Korea
- Seafood Research Center, IACF, Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu Busan, 49277 Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, 290 Yugok-dong, Gyeongsan-si, Gyeongsanbuk-do 38610 Republic of Korea
| | - Jae-Suk Choi
- Division of Bioindustry, College of Medical and Life Sciences, Silla University, 140 Baegyang-daero, 700 beon-gil, Sasang-gu Busan, 46958 Republic of Korea
| |
Collapse
|
8
|
Zhao LC, Liu Y, Wang Z, Tang N, Leng J, Zheng B, Liu YY, Li W. Liquid Chromatography/Mass Spectrometry Analysis and Hepatoprotective Effect of Steamed Platycodi Radix on Acute Alcohol-induced Liver Injury. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.952.962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Kang SJ, Lee EK, Han CH, Lee BH, Lee YJ, Ku SK. Inhibitory effects of Persicariae Rhizoma aqueous extracts on experimental periodontitis and alveolar bone loss in Sprague-Dawley rats. Exp Ther Med 2016; 12:1563-1571. [PMID: 27588077 DOI: 10.3892/etm.2016.3499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/14/2016] [Indexed: 12/17/2022] Open
Abstract
Persicariae Rhizoma (PR) is the dried stem parts of Persicaria tinctoria H. Gross (Polygonaceae), and has been traditionally used as anti-inflammatory and detoxifying agent. In the present study, the effects of PR aqueous extracts on ligation-induced experimental periodontitis (EPD) and associated alveolar bone loss in rats were examined. Following the induction of EPD in rats, PR extracts were orally administered once a day for 10 days, and the changes and gains in body weight, alveolar bone loss and total aerobic bacterial counts of buccal gingiva were observed with histopathological analysis. In addition, anti-inflammatory effects were evaluated by monitoring myeloperoxidase (MPO) activities, and interleukin (IL)-1β and tumor necrosis factor (TNF)-α contents, and anti-oxidant effects were investigated by measuring inducible nitric oxide synthase (iNOS) activities and malondialdehyde (MDA) levels. Bacterial proliferation, periodontitis and associated alveolar bone loss induced by ligature placement were significantly and dose-dependently inhibited by the treatment with PR extracts. The inhibitory effects of 200 mg/kg PR were similar to those of 5 mg/kg indomethacin on ligation-induced periodontitis and associated alveolar bone losses in this study. The results suggest that PR effectively inhibits ligature placement-induced periodontitis and alveolar bone loss in rats via antibacterial, antioxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Su Jin Kang
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - Eun Kyung Lee
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - Chang Hyun Han
- Department of Medical History and Literature, Korean Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Bong Hyo Lee
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea; Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - Young Joon Lee
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - Sae Kwang Ku
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea; Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| |
Collapse
|
10
|
LEE WONHO, CHOI SEONGHUN, KANG SUJIN, SONG CHANGHYUN, PARK SOOJIN, LEE YOUNGJOON, KU SAEKWANG. Genotoxicity testing of Persicariae Rhizoma ( Persicaria tinctoria H. Gross) aqueous extracts. Exp Ther Med 2016; 12:123-134. [PMID: 27347027 PMCID: PMC4906793 DOI: 10.3892/etm.2016.3273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/05/2016] [Indexed: 12/27/2022] Open
Abstract
Persicariae Rhizoma (PR) has been used as an anti-inflammatory and detoxification agent in Korea, and contains the biologically active dyes purple indirubin and blue indigo. Despite synthetic indigo showing genotoxic potential, thorough studies have not been carried out on the genotoxicity of PR. The potential genotoxicity of an aqueous extract of PR containing indigo (0.043%) and indirubin (0.009%) was evaluated using a standard battery of tests for safety assessment. The PR extract did not induce any genotoxic effects under the conditions of this study. The results of a reverse mutation assay in four Salmonella typhimurium strains and one Escherichia coli strain indicated that PR extract did not increase the frequency of revertant colonies in any strain, regardless of whether S9 mix was present or not. The PR extract also did not increase chromosomal aberrations in the presence or absence of S9 mix. Although slight signs of diarrhea were restrictedly detected in the mice treated with 2,000 mg/kg PR extract, no noteworthy changes in the frequency of micronucleated polychromatic erythrocytes were observed at doses ≤2,000 mg/kg in a bone marrow micronucleus test. These results indicate the potential safety of the PR extract, particularly if it is consumed in small amounts compared with the quantities used in the genotoxicity tests.
Collapse
Affiliation(s)
- WON HO LEE
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SEONG HUN CHOI
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SU JIN KANG
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - CHANG HYUN SONG
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SOO JIN PARK
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - YOUNG JOON LEE
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SAE KWANG KU
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| |
Collapse
|
11
|
Kim HS, Park SI, Choi SH, Song CH, Park SJ, Shin YK, Han CH, Lee YJ, Ku SK. Single oral dose toxicity test of blue honeysuckle concentrate in mice. Toxicol Res 2015; 31:61-8. [PMID: 25874034 PMCID: PMC4395656 DOI: 10.5487/tr.2015.31.1.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to obtain single oral dose toxicity information for concentrated and lyophilized powder of blue honeysuckle (Lonicera caerulea L., Caprifoliaceae; BHcL) in female and male ICR mice to aid in the process of developing natural origin medicinal ingredients or foods following proximate analysis and phytochemical profile measurement. The proximate analysis revealed that BHcL had an energy value of 3.80 kcal/g and contained 0.93 g/g of carbohydrate, 0.41 g/g of sugar, 0.02 g/g of protein, and 0.20 mg/g of sodium. BHcL did not contain lipids, including saturated lipids, trans fats, or cholesterols. Further, BHcL contained 4.54% of betaine, 210.63 mg/g of total phenols, 159.30 mg/g of total flavonoids, and 133.57 mg/g of total anthocyanins. Following administration of a single oral BHcL treatment, there were no treatment-related mortalities, changes in body weight (bw) or organ weight, clinical signs, necropsy or histopathological findings up to 2,000 mg/kg bw, the limited dosage for rodents of both sexes. We concluded that BHcL is a practically non-toxic material in toxicity potency.
Collapse
Affiliation(s)
- Hyung-Soo Kim
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea
| | - Sang-In Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea ; The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| | - Seung-Hoon Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea ; The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| | - Soo-Jin Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea ; The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| | - Yong-Kook Shin
- Department of Natural Medicine Resources, Semyung University, Hecheon, Korea
| | - Chang-Hyun Han
- Department of Medical History & Literature Group, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Young Joon Lee
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Korea ; The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Korea
| |
Collapse
|
12
|
Li W, Liu Y, Wang Z, Han Y, Tian YH, Zhang GS, Sun YS, Wang YP. Platycodin D isolated from the aerial parts of Platycodon grandiflorum protects alcohol-induced liver injury in mice. Food Funct 2015; 6:1418-27. [DOI: 10.1039/c5fo00094g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Platycodin D (PD) is the main active saponin of Platycodon grandiflorum (PG) and is reported to exhibit multiple biological effects, including anti-tumor, anti-inflammation, and anti-obesity properties.
Collapse
Affiliation(s)
- Wei Li
- College of Chinese Medicinal Materials
- Jilin Agricultural University
- Changchun 130118
- China
- Institute of Special Wild Economic Animals and Plant
| | - Ying Liu
- College of Chinese Medicinal Materials
- Jilin Agricultural University
- Changchun 130118
- China
| | - Zi Wang
- College of Chinese Medicinal Materials
- Jilin Agricultural University
- Changchun 130118
- China
| | - Ye Han
- Institute of Special Wild Economic Animals and Plant
- Chinese Academy of Agricultural Sciences
- Changchun 132109
- China
| | - Yu-Hong Tian
- College of Chinese Medicinal Materials
- Jilin Agricultural University
- Changchun 130118
- China
| | - Gui-Shan Zhang
- College of Animal Science and Technology
- Jilin Agricultural University
- Changchun 130118
- China
| | - Yin-Shi Sun
- Institute of Special Wild Economic Animals and Plant
- Chinese Academy of Agricultural Sciences
- Changchun 132109
- China
| | - Ying-Ping Wang
- Institute of Special Wild Economic Animals and Plant
- Chinese Academy of Agricultural Sciences
- Changchun 132109
- China
| |
Collapse
|
13
|
Lu KH, Liu CT, Raghu R, Sheen LY. Therapeutic potential of chinese herbal medicines in alcoholic liver disease. J Tradit Complement Med 2014; 2:115-22. [PMID: 24716123 PMCID: PMC3942913 DOI: 10.1016/s2225-4110(16)30084-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alcoholic liver disease (ALD) is a complex chronic disease and is associated with a spectrum of liver injury ranging from steatosis and steatohepatitis to fibrosis and cirrhosis. Since effective therapies for ALD are still limited, Chinese herbal medicine is thought to be an important and alternative approach. This review focuses on the current scientific evidence of ALD by ten Chinese Materia Medica ( zhōng yào), including Salviae Miltiorrhizae Radix ( dān shēn), Notoginseng Radix ( sān qī), Lycii Fructus ( gǒu qǐ zǐ), Cnidii Fructus ( shé chuáng zǐ), Gentianae Radix ( lóng dǎn), Puerariae Radix ( gé gēn), Puerariae Flos ( gé huā), Magnoliae Officinalis Cortex ( hòu pò), Platycodonis Radix ( jié gěng), and Trigonellae Semen ( hú lú bā). Potential mechanisms of these herbal medicines in ALD are involved in amelioration of enhanced inflammation, reduction of hepatic oxidative stress and lipogenesis, and enhancement of intestinal permeability in alcohol-induced liver injury models in vitro and in vivo. Accordingly, the evidenced therapeutic potential suggests that these herbs are promising candidates for prevention and development of new drugs for ALD in the future.
Collapse
Affiliation(s)
- Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chun-Ting Liu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Rajasekaran Raghu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Park JH, Seo BI, Cho SY, Park KR, Choi SH, Han CK, Song CH, Park SJ, Ku SK. Single oral dose toxicity study of prebrewed armeniacae semen in rats. Toxicol Res 2013; 29:91-8. [PMID: 24278634 PMCID: PMC3834446 DOI: 10.5487/tr.2013.29.2.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Armeniacae semen (AS) has been considered a toxic herb in the Korean medicine as it contains hydrogen cyanide and amygdalin, especially in its endocarp. Therefore, prebrewed AS that is devoid of endocarp has been traditionally used. In the present study, amygdalin content of the prebrewed AS was significantly lower (2.73 ± 0.32 μg/ml; p < 0.01) than the content in the extract that contained the endocarps (28.50 ± 6.71 μg/ml); amygdalin content corresponded to 10% of the extract in the present study. Because of single oral dose toxicity of prebrewed AS according to the recommendation of Korea Food and Drug Administration Guidelines (2009-116, 2009), which was based on single oral dose toxicity study of prebrewed AS, mortality due to toxic principles was significantly reduced. In this study, 2,000 mg/kg of prebrewed AS led to death of 1 female rat and 1 male rat at the end of 2 hr of administration. Based on these results, the 50% lethal dose in both male and female rats was determined to be 9279.5 mg/kg. Seizure, loss of locomotion, and increases in respiration and heart rate were observed as prebrewed AS treatment-related toxicological signs; these signs were restrictedly manifested in the prebrewed AS (2,000 mg/kg)-treated rats. In addition, no changes were observed in body weight, organ weight, gross features, and histopathological parameters with 2,000 mg/kg of AS in both male and female rats. These findings serve as direct evidence that amygdalin in AS is the toxic principle, which can be reduced by the traditional prebrewing method involving the exclusion of endocarp.
Collapse
Affiliation(s)
- Ji-Ha Park
- Department of Herbology, College of Oriental Medicine, Daegu Haany University, Gyeongsan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Two new oleanane-type triterpenoids from Platycodi Radix and anti-proliferative activity in HSC-T6 cells. Molecules 2012; 17:14899-907. [PMID: 23519261 PMCID: PMC6268675 DOI: 10.3390/molecules171214899] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 11/16/2022] Open
Abstract
Two new oleanane-type triterpenoids, named platycodonoids A and B (1, 2), together with five known saponins, including platycodin D (3), deapioplatycodin D (4), 3-O-β-D-glucopyranosyl polygalacic acid (5), 3-O-β-D-glucopyranosyl platycodigenin (6) and polygalacin D (7), were isolated from the roots of Platycodon grandiflorum. On the basis of spectral data and chemical evidence, the structures of the new compounds were elucidated as 2β,3β,23,24-tetrahydroxy-28-nor-olean-12-en-16-one (1) and 2β,3β,23,24- tetrahydroxy-28-nor-olean-12-en-16-one-3-O-β-D-glucopyranoside (2). Compounds 1-7 were evaluated for their in vitro anti-proliferative activity against the HSC-T6 cell line.
Collapse
|
16
|
Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:759143. [PMID: 22829857 PMCID: PMC3398669 DOI: 10.1155/2012/759143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 01/16/2023]
Abstract
This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda) H. Hara) on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG), T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP)-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation.
Collapse
|
17
|
Park SW, Cho CS, Ryu NH, Kim JH, Kim JS, Kim JH. Luteolin extracted from Platycodon grandiflorum protects retinal pigment epithelial cells from oxidative stress-induced caspase-3 dependent apoptosis. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bionut.2011.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|