1
|
Ying Q, Zhang X, Wang S, Gu T, Zhang J, Feng W, Li D, Dong Y, Wu X, Wang F. A Novel HTNV Budding Inhibitor Interferes the Interaction Between Viral Glycoprotein and Host ESCRT Accessory Protein ALIX. J Med Virol 2025; 97:e70182. [PMID: 39868900 DOI: 10.1002/jmv.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 01/28/2025]
Abstract
Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics. In this study, we elucidated the functional role of the conserved YRTL motif within the glycoprotein Gn cytoplasmic tail of Orthohantavirus hantanense (Hantaan virus, HTNV), demonstrating that HTNV production is regulated by the interaction between YRTL and the ESCRT accessory protein ALIX (ALG-2 interacting protein X). Through virtual molecule docking screening, followed by in vitro and in vivo assays, we discovered a novel compound, AN-329, which disrupts the YRTL-ALIX interaction and effectively inhibits infectious HTNV production, as well as Crimean-Congo hemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV) VLP release. This makes AN-329 a promising therapeutic candidate for reducing viral dissemination. Given that YRTL is conserved across many hantaviruses, our findings may serve as a prototype for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Qikang Ying
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Xiaoxiao Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, China
| | - Tianle Gu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Junmei Zhang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Wenjie Feng
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Dongjing Li
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Yuhang Dong
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Jia W, Ouyang Y, Zhang S, Du X, Zhang P, Huang S. Nanopore Signatures of Nucleoside Drugs. NANO LETTERS 2023; 23:9437-9444. [PMID: 37818841 DOI: 10.1021/acs.nanolett.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nucleoside drugs, which are analogues of natural nucleosides, have been widely applied in the clinical treatment of viral infections and cancers. The development of nucleoside drugs, repurposing of existing drugs, and combined use of multiple drug types have made the rapid sensing of nucleoside drugs urgently needed. Nanopores are emerging single-molecule sensors that have high resolution to resolve even minor structural differences between chemical compounds. Here, an engineered Mycobacterium smegmatis porin A hetero-octamer was used to perform general nucleoside drug analysis. Ten nucleoside drugs were simultaneously detected and fully discriminated. An accuracy of >99.9% was consequently reported. This sensing capacity was further demonstrated in direct nanopore analysis of ribavirin buccal tablets, confirming its sensing reliability against complex samples and environments. No sample separation is needed, however, significantly minimizing the complexity of the measurement. This technique may inspire nanopore applications in pharmaceutical production and pharmacokinetics measurements.
Collapse
Affiliation(s)
- Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Yusheng Ouyang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
3
|
Nematollahi MH, Mehrabani M, Hozhabri Y, Mirtajaddini M, Iravani S. Antiviral and antimicrobial applications of chalcones and their derivatives: From nature to greener synthesis. Heliyon 2023; 9:e20428. [PMID: 37810815 PMCID: PMC10556610 DOI: 10.1016/j.heliyon.2023.e20428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Chalcones and their derivatives have been widely studied due to their versatile pharmacological and biological activities, such as anti-inflammatory, antibacterial, antiviral, and antitumor effects. These compounds have shown suitable antiviral effects through the selective targeting of a variety of viral enzymes, including lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, protein tyrosine phosphatase, topoisomerase-II, protein kinases, integrase/protease, and lactate/isocitrate dehydrogenase, among others. Chalcones and their derivatives have displayed excellent potential for combating pathogenic bacteria and fungi (especially, multidrug-resistant bacteria). However, relevant mechanisms should be further explored, focusing on inhibitory effects against DNA gyrase B, UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), and efflux pumps (e.g., NorA), among others. In addition, the antifungal and antiparasitic activities of these compounds (e.g., antitrypanosomal and antileishmanial properties) have prompted additional explorations. Nonetheless, systematic analysis of the relevant mechanisms, biosafety issues, and pharmacological properties, as well as clinical translation studies, are vital for practical applications. Herein, recent advancements pertaining to the antibacterial, antiviral, antiparasitic, and antifungal activities of chalcones and their derivatives are deliberated, focusing on the relevant mechanisms of action, crucial challenges, and future prospects. Furthermore, due to the great importance of greener and more sustainable synthesis of these valuable compounds, especially on an industrial scale, the progress made in this field has been briefly discussed. Hopefully, this review can serve as a catalyst for researchers to delve deeper into the exploration and designing of novel chalcone compounds with medicinal properties, especially against pathogenic viruses and multidrug-resistant bacteria as major causes of concern for human health.
Collapse
Affiliation(s)
- Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Hozhabri
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryamossadat Mirtajaddini
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| |
Collapse
|
4
|
Corona A, Meleddu R, Delelis O, Subra F, Cottiglia F, Esposito F, Distinto S, Maccioni E, Tramontano E. 5-Nitro-3-(2-(4-phenylthiazol-2-yl)hydrazineylidene)indolin-2-one derivatives inhibit HIV-1 replication by a multitarget mechanism of action. Front Cell Infect Microbiol 2023; 13:1193280. [PMID: 37424782 PMCID: PMC10328743 DOI: 10.3389/fcimb.2023.1193280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
In the effort to identify and develop new HIV-1 inhibitors endowed with innovative mechanisms, we focused our attention on the possibility to target more than one viral encoded enzymatic function with a single molecule. In this respect, we have previously identified by virtual screening a new indolinone-based scaffold for dual allosteric inhibitors targeting both reverse transcriptase-associated functions: polymerase and RNase H. Pursuing with the structural optimization of these dual inhibitors, we synthesized a series of 35 new 3-[2-(4-aryl-1,3-thiazol-2-ylidene)hydrazin-1-ylidene]1-indol-2-one and 3-[3-methyl-4-arylthiazol-2-ylidene)hydrazine-1-ylidene)indolin-2-one derivatives, which maintain their dual inhibitory activity in the low micromolar range. Interestingly, compounds 1a, 3a, 10a, and 9b are able to block HIV-1 replication with EC50 < 20 µM. Mechanism of action studies showed that such compounds could block HIV-1 integrase. In particular, compound 10a is the most promising for further multitarget compound development.
Collapse
Affiliation(s)
- Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Olivier Delelis
- Laboratory of Biology and Applied Pharmacology (LBPA), Ecole Normale Supérieure (ENS) Cachan, Centre National de la Recherche Scientifique (CNRS), Cachan, France
| | - Frederic Subra
- Laboratory of Biology and Applied Pharmacology (LBPA), Ecole Normale Supérieure (ENS) Cachan, Centre National de la Recherche Scientifique (CNRS), Cachan, France
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
5
|
Ndlovu SS, Chuturgoon AA, Ghazi T. Moringa oleifera Lam Leaf Extract Stimulates NRF2 and Attenuates ARV-Induced Toxicity in Human Liver Cells (HepG2). PLANTS (BASEL, SWITZERLAND) 2023; 12:1541. [PMID: 37050167 PMCID: PMC10097004 DOI: 10.3390/plants12071541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The World Health Organization (WHO) reported that there are 37 million individuals living with the human immunodeficiency virus (HIV) worldwide, with the majority in South Africa. This chronic disease is managed by the effective use of antiretroviral (ARV) drugs. However, with prolonged use, ARV drug-induced toxicity remains a clinically complex problem. This study investigated the toxicity of ARV drugs on mitochondria and the NRF2 antioxidant pathway and its possible amelioration using Moringa oleifera Lam (MO) leaf extracts. This medicinal plant has a range of functional bioactive compounds. Liver (HepG2) cells were treated with individual ARV drugs: Tenofovir disoproxil fumarate (TDF), Emtricitabine (FTC), and Lamivudine (3TC) for 96 h, followed by MO leaf extracts for 24 h. Intracellular ROS, cytotoxicity, lipid peroxidation, total and reduced glutathione (GSH), ATP, and mitochondrial polarisation were determined. Finally, protein (pNRF2, NRF2, SOD2, CAT, and Sirt3) and mRNA (NRF2, CAT, NQO1 SOD2, Sirt3, and PGC1α) expression were measured using Western blot and qPCR, respectively. TDF, FTC, and 3TC significantly increased intracellular ROS and extracellular levels of both MDA and LDH. ARVs also reduced the GSH and ATP levels and altered the mitochondrial polarization. Further, ARVs reduced the expression of NRF2 SOD2, Sirt3, CAT, NQO1, UCP2 and PGC1α mRNA and consequently pNRF2, NRF2, SOD2, Sirt3 and CAT protein. In contrast, there was a significant reduction in the extracellular MDA and LDH levels post-MO treatment. MO significantly reduced intracellular ROS while significantly increasing GSH, ATP, and mitochondrial membrane polarization. The addition of MO to ARV-treated cells significantly upregulated the expression of NRF2, SOD2, Sirt3, CAT, UCP2, PGC1α, and NQO1 mRNA and pNRF2, NRF2, SOD2, Sirt3 proteins. Thus, MO ameliorates ARV-induced hepatotoxicity by scavenging oxidants by inducing the NRF2 antioxidant pathway. MO shows great therapeutic potential and may be considered a potential supplement to ameliorate ARV drug toxicity.
Collapse
|
6
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Ahmadi Ghezeldasht S, Momen Heravi M, Valizadeh N, Rafatpanah H, Shamsian SA, Mosavat A, Rezaee SA. Development of a Novel HTLV-1 Protease: Human Fcγ1 Recombinant Fusion Molecule in the CHO Eukaryotic Expression System. Appl Biochem Biotechnol 2023; 195:1862-1876. [PMID: 36399306 PMCID: PMC9673214 DOI: 10.1007/s12010-022-04259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Human T-cell leukaemia virus type 1 (HTLV-1) is the causative agent of two life-threatening diseases, adult T cell leukaemia/lymphoma (ATLL), and HTLV-1-associated myelopathy/tropical spastic (HAM/TSP). HTLV-1 protease (HTLV-1-PR) is an aspartic protease that represents a promising target for therapeutic purposes like human immunodeficiency virus-PR inhibitors (HIV-PR). Therefore, in this study, the human Fc fusion recombinant-PR (HTLV-1-PR:hFcγ1) was designed and expressed for two applications, finding a blocking substrate as a potential therapeutic or a potential subunit peptide vaccine. The PCR amplified DNA sequences encoding the HTLV-1-PR from the MT2-cell line using specific primers with restriction enzyme sites of Not1 and Xba1. The construct was then cloned to pTZ57R/T TA plasmid and, after confirming the PR sequence, subcloned into the pDR2ΔEF1α Fc-expression vector to create pDR2ΔEF1α.HTLV-1-PR:hFcγ1. The integrity of recombinant DNA was confirmed by sequencing to ensure that the engineered construct was in the frame. The recombinant fusion protein was then produced in the Chinese hamster ovary cell (CHO) system and was purified from its supernatant using HiTrap-rPA column affinity chromatography. Then, the immunofluorescence assay (IFA) co-localisation method showed that HTLV-1-PR:hFc recombinant fusion protein has appropriate folding as it binds to the anti-Fcγ antibody; the Fcγ1 tag participates to have HTLV-1-PR:hFcγ1 as a dimeric secretory protein. The development and production of HTLV-1-PR can be used to find a blocking substrate as a potential therapeutic molecule and apply it in an animal model to assess its immunogenicity and potential protection against HTLV-1 infection.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Inflammation and Inflammatory Diseases Division, Medical Campus, Immunology Research Center, Mashhad University of Medical Sciences, Azadi Square, Mashhad, 9177948564 Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367 Iran
| | - Mastoureh Momen Heravi
- Inflammation and Inflammatory Diseases Division, Medical Campus, Immunology Research Center, Mashhad University of Medical Sciences, Azadi Square, Mashhad, 9177948564 Iran
| | - Narges Valizadeh
- Inflammation and Inflammatory Diseases Division, Medical Campus, Immunology Research Center, Mashhad University of Medical Sciences, Azadi Square, Mashhad, 9177948564 Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Division, Medical Campus, Immunology Research Center, Mashhad University of Medical Sciences, Azadi Square, Mashhad, 9177948564 Iran
| | - Seyed Aliakbar Shamsian
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367 Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367 Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Medical Campus, Immunology Research Center, Mashhad University of Medical Sciences, Azadi Square, Mashhad, 9177948564 Iran
| |
Collapse
|
8
|
Synthesis of Two Novel Copper (II) Complexes as Potential Inhibitors of HIV-1 Protease Enzyme: Experimental and Theoretical Investigations. CRYSTALS 2022. [DOI: 10.3390/cryst12081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, we report the synthesis of two new copper complexes: [Cu(C11H7O2)(SCN)(C10H8N2)], denoted as (C-1), and [Cu(C11H7O2) (C12H8N2) Cl]·H2O, denoted as (C-2). They are based on 2,2′-bipyridine or 1,10-phenanthroline and 2-hydroxy-1-naphtaldehyde ligands. The obtained complexes were characterized by FT-IR, UV-visible spectroscopy, and single-crystal X-ray diffraction analysis. Molecular docking was employed to predict the binding mode involved in the interaction between the two synthetic copper (II) complexes and HIV-1 protease enzyme. The X-ray structural analysis revealed that the crystal structures of both complexes are mainly stabilized by several intra- and intermolecular hydrogen bonds. The fingerprint plots associated with the Hirshfeld surfaces of both complexes clearly show that H···H interactions provide the largest contributions. According to the docking results, the synthesized complexes exhibit promising features which enable them to be bound to the HIV-protease enzyme.
Collapse
|
9
|
Popović-Djordjević J, Quispe C, Giordo R, Kostić A, Katanić Stanković JS, Tsouh Fokou PV, Carbone K, Martorell M, Kumar M, Pintus G, Sharifi-Rad J, Docea AO, Calina D. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur J Med Chem 2022; 233:114217. [DOI: 10.1016/j.ejmech.2022.114217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 12/22/2022]
|
10
|
Mahboubi-Rabbani M, Abbasi M, Hajimahdi Z, Zarghi A. HIV-1 Reverse Transcriptase/Integrase Dual Inhibitors: A Review of Recent Advances and Structure-activity Relationship Studies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:333-369. [PMID: 34567166 PMCID: PMC8457747 DOI: 10.22037/ijpr.2021.115446.15370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The significant threat to humanity is HIV infection, and it is uncertain whether a definitive treatment or a safe HIV vaccine is. HIV-1 is continually evolving and resistant to commonly used HIV-resistant medications, presenting significant obstacles to HIV infection management. The drug resistance adds to the need for new anti-HIV drugs; it chooses ingenious approaches to fight the emerging virus. Highly Active Antiretroviral Therapy (HAART), a multi-target approach for specific therapies, has proved effective in AIDS treatment. Therefore, it is a dynamic system with high prescription tension, increased risk of medication reactions, and adverse effects, leading to poor compliance with patients. In the HIV-1 lifecycle, two critical enzymes with high structural and functional analogies are reverse transcriptase (RT) and integrase (IN), which can be interpreted as druggable targets for modern dual-purpose inhibitors. Designed multifunctional ligand (DML) is a new technique that recruited many targets to be achieved by one chemical individual. A single chemical entity that acts for multiple purposes can be much more successful than a complex multidrug program. The production of these multifunctional ligands as antiretroviral drugs is valued with the advantage that the viral-replication process may end in two or more phases. This analysis will discuss the RT-IN dual-inhibitory scaffolds' developments documented so far.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Ciftci H, Tateishi H, Koiwai K, Koga R, Anraku K, Monde K, Dağ Ç, Destan E, Yuksel B, Ayan E, Yildirim G, Yigin M, Ertem FB, Shafiei A, Guven O, Besler SO, Sierra RG, Yoon CH, Su Z, Liang M, Acar B, Haliloglu T, Otsuka M, Yumoto F, Fujita M, Senda T, DeMirci H. Structural insight into host plasma membrane association and assembly of HIV-1 matrix protein. Sci Rep 2021; 11:15819. [PMID: 34349176 PMCID: PMC8339130 DOI: 10.1038/s41598-021-95236-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022] Open
Abstract
Oligomerization of Pr55Gag is a critical step of the late stage of the HIV life cycle. It has been known that the binding of IP6, an abundant endogenous cyclitol molecule at the MA domain, has been linked to the oligomerization of Pr55Gag. However, the exact binding site of IP6 on MA remains unknown and the structural details of this interaction are missing. Here, we present three high-resolution crystal structures of the MA domain in complex with IP6 molecules to reveal its binding mode. Additionally, extensive Differential Scanning Fluorimetry analysis combined with cryo- and ambient-temperature X-ray crystallography and GNM-based transfer entropy calculations identify the key residues that participate in IP6 binding. Our data provide novel insights about the multilayered HIV-1 virion assembly process that involves the interplay of IP6 with PIP2, a phosphoinositide essential for the binding of Pr55Gag to membrane. IP6 and PIP2 have neighboring alternate binding sites within the same highly basic region (residues 18-33). This indicates that IP6 and PIP2 bindings are not mutually exclusive and may play a key role in coordinating virion particles' membrane localization. Based on our three different IP6-MA complex crystal structures, we propose a new model that involves IP6 coordination of the oligomerization of outer MA and inner CA domain's 2D layers during assembly and budding.
Collapse
Affiliation(s)
- Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
- Department of Drug Discovery, Science Farm Ltd, Kumamoto, 862-0976, Japan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Kotaro Koiwai
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
| | - Ryoko Koga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Kensaku Anraku
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto, 861-5598, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Çağdaş Dağ
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Ebru Destan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Busra Yuksel
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Esra Ayan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Gunseli Yildirim
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Merve Yigin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - F Betul Ertem
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Alaleh Shafiei
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Omur Guven
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Sabri O Besler
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Zhen Su
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Mengling Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Burcin Acar
- Polymer Research Center, Bogazici University, 34342, Istanbul, Turkey
| | - Turkan Haliloglu
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- Polymer Research Center, Bogazici University, 34342, Istanbul, Turkey
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
- Department of Drug Discovery, Science Farm Ltd, Kumamoto, 862-0976, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.
- School of High Energy Accelerator Science, SOKENDAI University, Tsukuba, Ibaraki, 305-0801, Japan.
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8571, Japan.
| | - Hasan DeMirci
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey.
- Koc University Isbank Center for Infectious Diseases (KUISCID), 34450, Istanbul, Turkey.
| |
Collapse
|
12
|
Elkhalifa D, Al-Hashimi I, Al Moustafa AE, Khalil A. A comprehensive review on the antiviral activities of chalcones. J Drug Target 2020; 29:403-419. [PMID: 33232192 DOI: 10.1080/1061186x.2020.1853759] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Some viral outbreaks have plagued the world since antiquity, including the most recent COVID-19 pandemic. The continuous spread and emergence of new viral diseases have urged the discovery of novel treatment options that can overcome the limitations of currently marketed antiviral drugs. Chalcones are natural open chain flavonoids that are found in various plants and can be synthesised in labs. Several studies have shown that these small organic molecules exert a number of pharmacological activities, including antiviral, anti-inflammatory, antimicrobial and anticancer. The purpose of this review is to provide a summary of the antiviral activities of chalcones and their derivatives on a set of human viral infections and their potential for targeting the most recent COVID-19 disease. Accordingly, we herein review chalcones activities on the following human viruses: Middle East respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus, human immunodeficiency, influenza, human rhinovirus, herpes simplex, dengue, human cytomegalovirus, hepatitis B and C, Rift Valley fever and Venezuelan equine encephalitis. We hope that this review will pave the way for the design and development of potentially potent and broad-spectrum chalcone based antiviral drugs.
Collapse
Affiliation(s)
- Dana Elkhalifa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Department of Pharmacy, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, Quebec, Canada.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
13
|
Jin H, Chong H, Zhu Y, Zhang M, Li X, Bazybek N, Wei Y, Gong F, He Y, Ma G. Preparation and evaluation of amphipathic lipopeptide-loaded PLGA microspheres as sustained-release system for AIDS prevention. Eng Life Sci 2020; 20:476-484. [PMID: 33204234 PMCID: PMC7645643 DOI: 10.1002/elsc.202000026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022] Open
Abstract
At present, AIDS drugs are typical inhibitors that cannot achieve permanent effects. Therefore, the research of blocking HIV infection is essential. Especially for people in the high-risk environment, long-term prevention is important, because HIV can easily infect cells once the drug is interrupted. However, there is still no long-acting AIDS prevention drug approved. Hence, the purpose of this study is to prepare a fusion inhibitor loaded poly(d, l-lactic-co-glycolic acid) (PLGA) microspheres as a sustained-release system for long-term AIDS prevention. As the HIV membrane fusion inhibitor (LP-98) used in this research is amphiphilic lipopeptide, W1/O/W2 double-emulsion method was chosen, and premix membrane emulsification technique was used for controlling the uniformity of particle size. Several process parameters that can impact drug loading efficiency were summarized: the concentration of LP-98 and PLGA, and the preparation condition of primary emulsion. Finally, the microspheres with high loading efficiency (>8%) and encapsulation efficiency (>90%) were successfully prepared under optimum conditions. Pharmacokinetic studies showed that LP-98-loaded microspheres were capable to continuously release for 24 days in rats. This research can promote the application of sustained-release microspheres in AIDS prevention, and the embedding technique used in this study can also provide references for the loading of other amphipathic drugs.
Collapse
Affiliation(s)
- Huijuan Jin
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Yuanmei Zhu
- MOH Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Mengqiu Zhang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- Wuhan Institute of TechnologyWuhanP. R. China
| | - Xun Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Nardana Bazybek
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yi Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Fangling Gong
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
14
|
Post-Catalytic Complexes with Emtricitabine or Stavudine and HIV-1 Reverse Transcriptase Reveal New Mechanistic Insights for Nucleotide Incorporation and Drug Resistance. Molecules 2020; 25:molecules25204868. [PMID: 33096918 PMCID: PMC7587939 DOI: 10.3390/molecules25204868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) infection is a global health issue since neither a cure nor a vaccine is available. However, the highly active antiretroviral therapy (HAART) has improved the life expectancy for patients with acquired immunodeficiency syndrome (AIDS). Nucleoside reverse transcriptase inhibitors (NRTIs) are in almost all HAART and target reverse transcriptase (RT), an essential enzyme for the virus. Even though NRTIs are highly effective, they have limitations caused by RT resistance. The main mechanisms of RT resistance to NRTIs are discrimination and excision. Understanding the molecular mechanisms for discrimination and excision are essential to develop more potent and selective NRTIs. Using protein X-ray crystallography, we determined the first crystal structure of RT in its post-catalytic state in complex with emtricitabine, (-)FTC or stavudine (d4T). Our structural studies provide the framework for understanding how RT discriminates between NRTIs and natural nucleotides, and for understanding the requirement of (-)FTC to undergo a conformation change for successful incorporation by RT. The crystal structure of RT in post-catalytic complex with d4T provides a "snapshot" for considering the possible mechanism of how RT develops resistance for d4T via excision. The findings reported herein will contribute to the development of next generation NRTIs.
Collapse
|
15
|
Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, Curry SJ, Doubeni CA, Epling JW, Kubik M, Landefeld CS, Mangione CM, Pbert L, Silverstein M, Simon MA, Tseng CW, Wong JB. Preexposure Prophylaxis for the Prevention of HIV Infection: US Preventive Services Task Force Recommendation Statement. JAMA 2019; 321:2203-2213. [PMID: 31184747 DOI: 10.1001/jama.2019.6390] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE An estimated 1.1 million individuals in the United States are currently living with HIV, and more than 700 000 persons have died of AIDS since the first cases were reported in 1981. In 2017, there were 38 281 new diagnoses of HIV infection reported in the United States; 81% of these new diagnoses were among males and 19% were among females. Although treatable, HIV infection has no cure and has significant health consequences. OBJECTIVE To issue a new US Preventive Services Task Force (USPSTF) recommendation on preexposure prophylaxis (PrEP) for the prevention of HIV infection. EVIDENCE REVIEW The USPSTF reviewed the evidence on the benefits of PrEP for the prevention of HIV infection with oral tenofovir disoproxil fumarate monotherapy or combined tenofovir disoproxil fumarate and emtricitabine and whether the benefits vary by risk group, population subgroup, or regimen or dosing strategy; the diagnostic accuracy of risk assessment tools to identify persons at high risk of HIV acquisition; the rates of adherence to PrEP in primary care settings; the association between adherence and effectiveness of PrEP; and the harms of PrEP when used for HIV prevention. FINDINGS The USPSTF found convincing evidence that PrEP is of substantial benefit in decreasing the risk of HIV infection in persons at high risk of HIV acquisition. The USPSTF also found convincing evidence that adherence to PrEP is highly associated with its efficacy in preventing the acquisition of HIV infection; thus, adherence to PrEP is central to realizing its benefit. The USPSTF found adequate evidence that PrEP is associated with small harms, including kidney and gastrointestinal adverse effects. The USPSTF concludes with high certainty that the magnitude of benefit of PrEP with oral tenofovir disoproxil fumarate-based therapy to reduce the risk of acquisition of HIV infection in persons at high risk is substantial. CONCLUSIONS AND RECOMMENDATION The USPSTF recommends offering PrEP with effective antiretroviral therapy to persons at high risk of HIV acquisition. (A recommendation).
Collapse
Affiliation(s)
| | - Douglas K Owens
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Stanford University, Stanford, California
| | - Karina W Davidson
- Feinstein Institute for Medical Research at Northwell Health, Manhasset, New York
| | - Alex H Krist
- Fairfax Family Practice Residency, Fairfax, Virginia
- Virginia Commonwealth University, Richmond
| | | | | | | | | | | | | | | | | | | | - Lori Pbert
- University of Massachusetts Medical School, Worcester
| | | | | | - Chien-Wen Tseng
- University of Hawaii, Honolulu
- Pacific Health Research and Education Institute, Honolulu, Hawaii
| | | |
Collapse
|
16
|
Martinez SE, Bauman JD, Das K, Arnold E. Structure of HIV-1 reverse transcriptase/d4TTP complex: Novel DNA cross-linking site and pH-dependent conformational changes. Protein Sci 2018; 28:587-597. [PMID: 30499174 DOI: 10.1002/pro.3559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
Stavudine (d4T, 2',3'-didehydro-2',3'-dideoxythymidine) was one of the first chain-terminating nucleoside analogs used to treat HIV infection. We present the first structure of the active, triphosphate form of d4T (d4TTP) bound to a catalytic complex of HIV-1 RT/dsDNA template-primer. We also present a new strategy for disulfide (S-S) chemical cross-linking between N6 of a modified adenine at the second overhang base to I63C in the fingers subdomain of RT. The cross-link site is upstream of the duplex-binding region of RT, however, the structure is very similar to published RT structures with cross-linking to Q258C in the thumb, which suggests that cross-linking at either site does not appreciably perturb the RT/DNA structures. RT has a catalytic maximum at pH 7.5. We determined the X-ray structures of the I63C-RT/dsDNA/d4TTP cross-linked complexes at pH 7, 7.5, 8, 8.5, 9, and 9.5. We found small (~0.5 Å), pH-dependent motions of the fingers subdomain that folds in to form the dNTP-binding pocket. We propose that the pH-activity profile of RT relates to this motion of the fingers. Due to side effects of neuropathy and lipodystrophy, use of d4T has been stopped in most countries, however, chemical modification of d4T might lead to the development of a new class of nucleoside analogs targeting RNA and DNA polymerases.
Collapse
Affiliation(s)
- Sergio E Martinez
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Rega Institute for Medical Research and Department of Microbiology and Immunology, KU Leuven, Leuven, 3000, Belgium
| | - Joseph D Bauman
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Kalyan Das
- Rega Institute for Medical Research and Department of Microbiology and Immunology, KU Leuven, Leuven, 3000, Belgium
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
17
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
18
|
Gao P, Sun L, Zhou J, Li X, Zhan P, Liu X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin Drug Discov 2016; 11:857-71. [PMID: 27400283 DOI: 10.1080/17460441.2016.1210125] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In recent years, a variety of new synthetic methodologies and concepts have been proposed in the search for new pharmaceutical lead structures and optimization. Notably, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach has drawn great attention and has become a powerful tool for the generation of privileged medicinal skeletons in the discovery of anti-HIV agents. This is due to the high degree of reliability, complete specificity (chemoselectivity and regioselectivity), mild conditions, and the biocompatibility of the reactants. AREAS COVERED Herein, the authors describe the progress thus far on the discovery of novel anti-HIV agents via the CuAAC click chemistry-based approach. EXPERT OPINION CuAAC click chemistry is a proven protocol for synthesizing triazole products which could serve as basic pharmacophores, act as replacements of traditional scaffold or substituent modification, be a linker of dual-target or dual-site inhibitors and more for the discovery of novel anti-HIV agents. What's more, it also provides convenience and feasibility for dynamic combinatorial chemistry and in situ screening. It is envisioned that click chemistry will draw more attention and make more contributions in anti-HIV drug discovery in the future.
Collapse
Affiliation(s)
- Ping Gao
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Lin Sun
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Junsu Zhou
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xiao Li
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| |
Collapse
|
19
|
Clark DP, Pazdernik NJ. Viral and Prion Infections. BIOTECHNOLOGY 2016. [PMCID: PMC7173489 DOI: 10.1016/b978-0-12-385015-7.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many human diseases are due to viruses. These agents consist of genomes of either DNA or RNA inside a protein shell. Despite this deceptive simplicity, virus infections are less well understood than bacterial diseases, largely because viruses cannot be grown alone in culture but depend on a host cell. Until recently, protection against virus diseases relied on public health measures and vaccination. Only since the late 1980s have a significant number of specific antiviral agents become available.
Collapse
|
20
|
Blond A, Ennifar E, Tisné C, Micouin L. The design of RNA binders: targeting the HIV replication cycle as a case study. ChemMedChem 2014; 9:1982-96. [PMID: 25100137 DOI: 10.1002/cmdc.201402259] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Indexed: 01/08/2023]
Abstract
The human immunodeficiency virus 1 (HIV-1) replication cycle is finely tuned with many important steps involving RNA-RNA or protein-RNA interactions, all of them being potential targets for the development of new antiviral compounds. This cycle can also be considered as a good benchmark for the evaluation of early-stage strategies aiming at designing drugs that bind to RNA, with the possibility to correlate in vitro activities with antiviral properties. In this review, we highlight different approaches developed to interfere with four important steps of the HIV-1 replication cycle: the early stage of reverse transcription, the transactivation of viral transcription, the nuclear export of partially spliced transcripts and the dimerization step.
Collapse
Affiliation(s)
- Aurélie Blond
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 Rue des Saints Pères, 75006 Paris (France)
| | | | | | | |
Collapse
|
21
|
Kigondu EM, Wasuna A, Warner DF, Chibale K. Pharmacologically active metabolites, combination screening and target identification-driven drug repositioning in antituberculosis drug discovery. Bioorg Med Chem 2014; 22:4453-61. [PMID: 24997576 DOI: 10.1016/j.bmc.2014.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 01/14/2023]
Abstract
There has been renewed interest in alternative strategies to address bottlenecks in antibiotic development. These include the repurposing of approved drugs for use as novel anti-infective agents, or their exploitation as leads in drug repositioning. Such approaches are especially attractive for tuberculosis (TB), a disease which remains a leading cause of morbidity and mortality globally and, increasingly, is associated with the emergence of drug-resistance. In this review article, we introduce a refinement of traditional drug repositioning and repurposing strategies involving the development of drugs that are based on the active metabolite(s) of parental compounds with demonstrated efficacy. In addition, we describe an approach to repositioning the natural product antibiotic, fusidic acid, for use against Mycobacterium tuberculosis. Finally, we consider the potential to exploit the chemical matter arising from these activities in combination screens and permeation assays which are designed to confirm mechanism of action (MoA), elucidate potential synergies in polypharmacy, and to develop rules for drug permeability in an organism that poses a special challenge to new drug development.
Collapse
Affiliation(s)
- Elizabeth M Kigondu
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Antonina Wasuna
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F Warner
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa; MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch 7701, South Africa.
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
22
|
Marzinke MA, Breaud A, Parsons TL, Cohen MS, Piwowar-Manning E, Eshleman SH, Clarke W. The development and validation of a method using high-resolution mass spectrometry (HRMS) for the qualitative detection of antiretroviral agents in human blood. Clin Chim Acta 2014; 433:157-68. [PMID: 24661980 DOI: 10.1016/j.cca.2014.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 03/04/2014] [Accepted: 03/14/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Antiretroviral drugs are used for the treatment and prevention of HIV infection. Non-adherence to antiretroviral drug regimens can compromise their clinical efficacy and lead to emergence of drug-resistant HIV. Clinical trials evaluating antiretroviral regimens for HIV treatment and prevention can also be compromised by poor adherence and non-disclosed off-study antiretroviral drug use. This report describes the development and validation of a high throughput, qualitative method for the identification of antiretroviral drugs using high-resolution mass spectrometry (HRMS) for the retrospective assessment of off-study antiretroviral drug use and the determination of potential antiretroviral therapy (ART) non-compliance. METHODS Serum standards were prepared that contained 15 antiretroviral drugs: 9 protease inhibitors (PIs), 4 nucleotide/nucleoside reverse transcriptase inhibitors (NRTIs), and 2 non-nucleoside/nucleotide reverse transcriptase inhibitors (NNRTIs). Analytical separation was achieved on a Hypersil Gold PFP (100×3mm) column and the eluent was analyzed using the Thermo Exactive Orbitrap mass spectrometer (Exactive-MS) operated in full scan mode. Limit of identification, signal intensity precision, retention time analysis, selectivity, and carryover studies were conducted. Concordance with liquid chromatographic-tandem mass spectrometric (LC-MS/MS) methods was evaluated using remnant plasma samples from a clinical trial. RESULTS The limit of identification ranged from 5 to 10ng/ml for 14 drugs (9 PIs, 1 NNRTI, 4 NRTIs) and was 150ng/ml for 1 NNRTI. Precision studies with high and low control mixtures revealed signal intensity coefficients of variation of 3.0-27.5%. The Exactive-MS method was selective for the compounds of interest. Overall, concordance ranged from 89.1% to 100% for the screening of antiretroviral drugs in clinical plasma specimens as compared to LC-MS/MS methods. CONCLUSION Using the Exactive-MS, we developed and validated a highly selective, robust method for the multiplexed detection of 15 antiretroviral drugs.
Collapse
Affiliation(s)
- Mark A Marzinke
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Autumn Breaud
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Teresa L Parsons
- Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Myron S Cohen
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Estelle Piwowar-Manning
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan H Eshleman
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William Clarke
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Witkowski W, Verhasselt B. Contributions of HIV-1 Nef to immune dysregulation in HIV-infected patients: a therapeutic target? Expert Opin Ther Targets 2013; 17:1345-56. [PMID: 23967871 DOI: 10.1517/14728222.2013.830712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION HIV accessory protein Nef is a factor responsible for many of the viral pathogenic effects. Progression to AIDS is dramatically delayed and in some well-documented cases completely abolished on infection with naturally occurring HIV strains lacking intact nef sequences in their genomes. The topic of this review is the contribution of Nef to the immune pathology as a possible target in HIV-infected patients. AREAS COVERED An overview of known Nef functions accounting for its role in pathogenesis is presented, emphasizing interactions with dendritic cells and macrophages, and Nef-induced exosome secretion, all involved in immune dysregulation during the course of HIV infection. Current approaches to Nef inhibition by different classes of compounds are reviewed. EXPERT OPINION Blocking Nef for therapeutic purposes is a challenging endeavor mainly due to intrinsic properties of this HIV accessory protein. Nef has multiple interfaces to interact with host proteins and lacks a catalytic domain. Potential benefits arising from the development of successful inhibitors could however prove beneficial for reducing gradual deterioration of immune system in chronically infected patients in absence of functional cure.
Collapse
Affiliation(s)
- Wojciech Witkowski
- Department of Clinical Chemistry, Microbiology and Immunology of Ghent University , Gent , Belgium +32 93323658 ; +32 93323659 ;
| | | |
Collapse
|
24
|
Warner N, Locarnini S. The new front-line in hepatitis B/D research: identification and blocking of a functional receptor. Hepatology 2013; 58:9-12. [PMID: 23390015 DOI: 10.1002/hep.26292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 12/31/2022]
|
25
|
Krotova O, Starodubova E, Petkov S, Kostic L, Agapkina J, Hallengärd D, Viklund A, Latyshev O, Gelius E, Dillenbeck T, Karpov V, Gottikh M, Belyakov IM, Lukashov V, Isaguliants MG. Consensus HIV-1 FSU-A integrase gene variants electroporated into mice induce polyfunctional antigen-specific CD4+ and CD8+ T cells. PLoS One 2013; 8:e62720. [PMID: 23667513 PMCID: PMC3648577 DOI: 10.1371/journal.pone.0062720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Our objective is to create gene immunogens targeted against drug-resistant HIV-1, focusing on HIV-1 enzymes as critical components in viral replication and drug resistance. Consensus-based gene vaccines are specifically fit for variable pathogens such as HIV-1 and have many advantages over viral genes and their expression-optimized variants. With this in mind, we designed the consensus integrase (IN) of the HIV-1 clade A strain predominant in the territory of the former Soviet Union and its inactivated derivative with and without mutations conferring resistance to elvitegravir. Humanized IN gene was synthesized; and inactivated derivatives (with 64D in the active site mutated to V) with and without elvitegravir-resistance mutations were generated by site-mutagenesis. Activity tests of IN variants expressed in E coli showed the consensus IN to be active, while both D64V-variants were devoid of specific activities. IN genes cloned in the DNA-immunization vector pVax1 (pVaxIN plasmids) were highly expressed in human and murine cell lines (>0.7 ng/cell). Injection of BALB/c mice with pVaxIN plasmids followed by electroporation generated potent IFN-γ and IL-2 responses registered in PBMC by day 15 and in splenocytes by day 23 after immunization. Multiparametric FACS demonstrated that CD8+ and CD4+ T cells of gene-immunized mice stimulated with IN-derived peptides secreted IFN-γ, IL-2, and TNF-α. The multi-cytokine responses of CD8+ and CD4+ T-cells correlated with the loss of in vivo activity of the luciferase reporter gene co-delivered with pVaxIN plasmids. This indicated the capacity of IN-specific CD4+ and CD8+ T-cells to clear IN/reporter co-expressing cells from the injection sites. Thus, the synthetic HIV-1 clade A integrase genes acted as potent immunogens generating polyfunctional Th1-type CD4+ and CD8+ T cells. Generation of such response is highly desirable for an effective HIV-1 vaccine as it offers a possibility to attack virus-infected cells via both MHC class I and II pathways.
Collapse
Affiliation(s)
- Olga Krotova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Elizaveta Starodubova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Agapkina
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alecia Viklund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Vadim Karpov
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Marina Gottikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor M. Belyakov
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, and the Department of Internal Medicine, University of Michigan, School of Medicine, Ann Arbor, Michigan, United States of America
| | - Vladimir Lukashov
- DI Ivanovsky Institute of Virology, Moscow, Russia
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria G. Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- * E-mail:
| |
Collapse
|
26
|
Rath BA, Yousef KP, Katzenstein DK, Shafer RW, Schütte C, von Kleist M, Merigan TC. In vitro HIV-1 evolution in response to triple reverse transcriptase inhibitors & in silico phenotypic analysis. PLoS One 2013; 8:e61102. [PMID: 23613794 PMCID: PMC3629221 DOI: 10.1371/journal.pone.0061102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 03/05/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Effectiveness of ART regimens strongly depends upon complex interactions between the selective pressure of drugs and the evolution of mutations that allow or restrict drug resistance. METHODS Four clinical isolates from NRTI-exposed, NNRTI-naive subjects were passaged in increasing concentrations of NVP in combination with 1 µM 3 TC and 2 µM ADV to assess selective pressures of multi-drug treatment. A novel parameter inference procedure, based on a stochastic viral growth model, was used to estimate phenotypic resistance and fitness from in vitro combination passage experiments. RESULTS Newly developed mathematical methods estimated key phenotypic parameters of mutations arising through selective pressure exerted by 3 TC and NVP. Concentrations of 1 µM 3 TC maintained the M184V mutation, which was associated with intrinsic fitness deficits. Increasing NVP concentrations selected major NNRTI resistance mutations. The evolutionary pathway of NVP resistance was highly dependent on the viral genetic background, epistasis as well as stochasticity. Parameter estimation indicated that the previously unrecognized mutation L228Q was associated with NVP resistance in some isolates. CONCLUSION Serial passage of viruses in the presence of multiple drugs may resemble the selection of mutations observed among treated individuals and populations in vivo and indicate evolutionary preferences and restrictions. Phenotypic resistance estimated here "in silico" from in vitro passage experiments agreed well with previous knowledge, suggesting that the unique combination of "wet-" and "dry-lab" experimentation may improve our understanding of HIV-1 resistance evolution in the future.
Collapse
Affiliation(s)
- Barbara A. Rath
- Department of Pediatrics, Division of Pneumonology-Immunology, Charité University Medical Center, Berlin, Germany
- Center for AIDS Research, Stanford University Medical Center, Stanford, California, United States of America
| | - Kaveh Pouran Yousef
- Department of Mathematics and Computer Science, Free University, Berlin, Germany
| | - David K. Katzenstein
- Center for AIDS Research, Stanford University Medical Center, Stanford, California, United States of America
| | - Robert W. Shafer
- Center for AIDS Research, Stanford University Medical Center, Stanford, California, United States of America
| | - Christof Schütte
- Department of Mathematics and Computer Science, Free University, Berlin, Germany
| | - Max von Kleist
- Department of Mathematics and Computer Science, Free University, Berlin, Germany
| | - Thomas C. Merigan
- Center for AIDS Research, Stanford University Medical Center, Stanford, California, United States of America
| |
Collapse
|
27
|
Mwimanzi P, Markle TJ, Ueno T, Brockman MA. Human leukocyte antigen (HLA) class I down-regulation by human immunodeficiency virus type 1 negative factor (HIV-1 Nef): what might we learn from natural sequence variants? Viruses 2012; 4:1711-30. [PMID: 23170180 PMCID: PMC3499827 DOI: 10.3390/v4091711] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 12/12/2022] Open
Abstract
HIV-1 causes a chronic infection in humans that is characterized by high plasma viremia, progressive loss of CD4+ T lymphocytes, and severe immunodeficiency resulting in opportunistic disease and AIDS. Viral persistence is mediated in part by the ability of the Nef protein to down-regulate HLA molecules on the infected cell surface, thereby allowing HIV-1 to evade recognition by antiviral CD8+ T lymphocytes. Extensive research has been conducted on Nef to determine protein domains that are required for its immune evasion activities and to identify critical cellular co-factors, and our mechanistic understanding of this process is becoming more complete. This review highlights our current knowledge of Nef-mediated HLA class I down-regulation and places this work in the context of naturally occurring sequence variation in this protein. We argue that efforts to fully understand the critical role of Nef for HIV-1 pathogenesis will require greater analysis of patient-derived sequences to elucidate subtle differences in immune evasion activity that may alter clinical outcome.
Collapse
Affiliation(s)
- Philip Mwimanzi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada; (P.M.); (T.J.M.)
| | - Tristan J. Markle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada; (P.M.); (T.J.M.)
| | - Takamasa Ueno
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan;
| | - Mark A. Brockman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada; (P.M.); (T.J.M.)
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
- Author to whom correspondence should be addressed; ; Tel.: +1-778-782-3341; Fax: +1-778-782-5583
| |
Collapse
|
28
|
Persistence versus reversion of 3TC resistance in HIV-1 determine the rate of emergence of NVP resistance. Viruses 2012; 4:1212-34. [PMID: 23012621 PMCID: PMC3446758 DOI: 10.3390/v4081212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/17/2022] Open
Abstract
When HIV-1 is exposed to lamivudine (3TC) at inhibitory concentrations, resistant variants carrying the reverse transcriptase (RT) substitution M184V emerge rapidly. This substitution confers high-level 3TC resistance and increased RT fidelity. We established a novel in vitro system to study the effect of starting nevirapine (NVP) in 3TC-resistant/NNRTI-naïve clinical isolates, and the impact of maintaining versus dropping 3TC pressure in this setting. Because M184V mutant HIV-1 seems hypersusceptible to adefovir (ADV), we also tested the effect of ADV pressure on the same isolates. We draw four conclusions from our experiments simulating combination therapy in vitro. (1) The presence of low-dose (1 μM) 3TC prevented reversal to wild-type from an M184V mutant background. (2) Adding low-dose 3TC in the presence of NVP delayed the selection of NVP-associated mutations. (3) The presence of ADV, in addition to NVP, led to more rapid reversal to wild-type at position 184 than NVP alone. (4) ADV plus NVP selected for greater numbers of mutations than NVP alone. Inference about the "selection of mutation" is based on two statistical models, one at the viral level, more telling, and the other at the level of predominance of mutation within a population. Multidrug pressure experiments lend understanding to mechanisms of HIV resistance as they bear upon new treatment strategies.
Collapse
|