1
|
Zhao J, Zhao Y, Zhang S, Zhang L, Yang Z. Insights into the chirality-dependent recognition of Danshensu Bingpian Zhi stereoisomers with PPAR γ. Phys Chem Chem Phys 2024; 26:28143-28154. [PMID: 39495487 DOI: 10.1039/d4cp03926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor involved in metabolic processes, inflammation, and energy balance, represents a promising therapeutic target for cardiovascular diseases. Danshensu Bingpian Zhi (DBZ), a chiral compound derived from traditional Chinese medicine, exhibits potential as a PPARγ agonist. Using an ensemble-based docking approach, molecular dynamics (MD) simulations, and the molecular mechanics generalized born surface area (MM/GBSA) methods, we explored the binding modes and energetics of DBZ stereoisomers with the PPARγ ligand-binding domain (LBD). The results indicated that the right-handed stereoisomer (DBZR) binds like a full agonist, while the left-handed stereoisomer (DBZS) binds as a partial agonist with stronger binding energies (ΔGbind), indicating a robust interaction with PPARγ. Both the stereoisomers stabilize the β-sheet region of PPARγ-LBD, potentially protecting Ser245 from phosphorylation by Cdk5, a process implicated in atherosclerosis. Principal component analysis (PCA) and dynamic cross-correlation matrices (DCCM) revealed the complex structural dynamics within the Ω loop, β-sheet, and AF-2 region of PPARγ-LBD upon ligand binding, which may contribute to the unique binding mode and efficacy of DBZS. These findings provide insights into the molecular recognition of PPARγ-LBD by DBZ stereoisomers and their impact on the conformational dynamics of PPARγ, highlighting the therapeutic potential of DBZ and the significance of chirality in drug design.
Collapse
Affiliation(s)
- Jiasheng Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Hu X, Yan Y, Liu W, Liu J, Fan T, Deng H, Cai Y. Advances and perspectives on pharmacological activities and mechanisms of the monoterpene borneol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155848. [PMID: 38964157 DOI: 10.1016/j.phymed.2024.155848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Borneol, a highly lipid-soluble bicyclic terpene mainly extracted from plants, is representative of monoterpenoids. Modern medicine has established that borneol exhibits a range of pharmacological activities and used in the treatment of many diseases, particularly Cardio-cerebrovascular diseases (CVDs). The crucial role in enhancing drug delivery and improving bioavailability has attracted much attention. In addition, borneol is also widely utilized in food, daily chemicals, fragrances, and flavors industries. PURPOSE This review systematically summarized the sources, pharmacological activities and mechanisms, clinical trial, pharmacokinetics, toxicity, and application of borneol. In addition, this review describes the pharmacological effects of borneol ester and the combination of borneol with nanomaterial. This review will provide a valuable resource for those pursuing researches on borneol inspiring the pharmacological applications in the medicine, food and daily chemical products, and developing of new drugs containing borneol or its derivatives. METHODS This review searched the keywords ("borneol" or "bornyl esters") and ("pharmacology" or "Traditional Chinese medicine" or "Cardio-cerebrovascular diseases" or "blood-brain barrier" or "ischemic stroke" or "nanomaterials" or "neurodegenerative diseases" or "diabetes" or "toxicity") in Web of Science, PubMed, Google Scholar and China National Knowledge Infrastructure (CNKI) from January 1990 to May 2024. The search was limited to articles published in English and Chinese. RESULTS Borneol exhibits extensive pharmacological activities including anti-inflammatory effects, analgesia, antioxidation, and has the property of crossing biological barriers and treating CVDs. The intrinsic molecular mechanisms are involved in multiple components, such as regulation of various key factors (including Tumor necrosis factor-α, Nuclear factor kappa-B, Interleukin-1β, Malondialdehyde), inhibiting transporter protein function, regulating biochemical levels, and altering physical structural changes. In addition, this review describes the pharmacological effects of borneol ester and the combination of borneol with nanomaterial. CONCLUSION The pharmacological properties and applications of borneol are promising, including anti-inflammatory, analgesic, antimicrobial, and antioxidant properties, as well as enhancing drug delivery and treating CVDs. However, its clinical application is hindered by the limited research on safety, efficacy, and pharmacokinetics. Therefore, this review systemically summarized the advances on pharmacological activities and mechanisms of the borneol. Standardized clinical trials and exploration of synergistic effects with other drugs were also are outlined.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Jie Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Taipin Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, UK
| | - Huaxiang Deng
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
3
|
Tan M, Wang J, Chen Z, Xie X. Exploring global research trends in Chinese medicine for atherosclerosis: a bibliometric study 2012-2023. Front Cardiovasc Med 2024; 11:1400130. [PMID: 38952541 PMCID: PMC11216286 DOI: 10.3389/fcvm.2024.1400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
Background While Traditional Chinese Medicine (TCM) boasts an extensive historical lineage and abundant clinical expertise in addressing atherosclerosis, this field is yet to be penetrated adequately by bibliometric studies. This study is envisaged to evaluate the contemporary scenario of TCM in conjunction with atherosclerosis over the preceding decade while also identifying forthcoming research trends and emerging topics via the lens of bibliometric analysis. Methods Literature pertaining to TCM and atherosclerosis, circulated between January 1, 2012 and November 14, 2023, was garnered for the purpose of this research. The examination embraced annual publications, primary countries/regions, engaged institutions and authors, scholarly journals, references, and keywords, utilizing analytical tools like Bibliometrix, CiteSpace, ScimagoGraphica, and VOSviewer present in the R package. Result This field boasts a total of 1,623 scholarly articles, the majority of which have been contributed by China in this field, with significant contributions stemming from the China Academy of Traditional Chinese Medicine and the Beijing University of Traditional Chinese Medicine. Moreover, this field has received financial support from both the National Natural Science Foundation of China and the National Key Basic Research Development Program. Wang Yong tops the list in terms of publication count, while Xu Hao's articles take the lead for the total number of citations, positioning them at the core of the authors' collaborative network. The Journal of Ethnopharmacology leads with the most publications and boasts the greatest total number of citations. Principal research foci within the intersection of Chinese Medicine and Atherosclerosis encompass disease characteristics and pathogenic mechanisms, theoretical underpinnings and syndrome-specific treatments in Chinese medicine, potentialities of herbal interventions, and modulation exerted by Chinese medicines on gut microbiota. Conclusion This analysis offers a sweeping survey of the contemporary condition, principal foci, and progressive trends in worldwide research related to Traditional Chinese Medicine (TCM) and atherosclerosis. It further delves into an in-depth dissection of prominent countries, research institutions, and scholars that have made noteworthy strides in this discipline. Additionally, the report analyzes the most cited articles, research developments, and hotspots in the field, providing a reference for future research directions for clinical researchers and practitioners.
Collapse
Affiliation(s)
- Moye Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiuyuan Wang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhengxin Chen
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Sun Y, Jia P, Wei J, Bai Y, Yang L, Bai Y, Zheng X. Simultaneous and rapid analysis of chiral Danshensu and its ester derivatives by supercritical fluid chromatography. J Pharm Biomed Anal 2022; 219:114884. [PMID: 35738121 DOI: 10.1016/j.jpba.2022.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
The analysis and separation of chiral compounds with wide polar range by supercritical fluid chromatography is of major importance in the process of drug development and quality control. In this work, a fast and reliable enantioselective method for the simultaneous quantitative determination of 8 DBZ-related enantiomers has been successfully developed by supercritical fluid chromatography using an amylose-based reversed-chiral stationary phase. Within less than seven minutes all target compounds could be baseline resolved, using a mobile phase comprising supercritical carbon dioxide and methanol with 0.05 % H3PO4. The optimum chiral stationary phase showed to be a CHIRALPAK® AD-RH column, operated at flow rate of 3.0 mL/min, back pressure of 150 bar and temperature of 40 °C. Method validation confirmed that the developed procedure was selective, linear (r2 > 0.998), accurate (recovery rates: 98.02-100.02 %), and precise (intra-day: 0.05-1.98 %, inter-day: 0.08-1.98 %); the limit of detection and limit of quantification were 0.13-0.55 μg/mL and 0.37-1.68 μg/mL on column, respectively. After initial evaluation of stability according to the ICH Q1A (R2) guideline, R-DBZ showed good stability. Thus, this developed method can be used for assessing the stability of bulk DBZ samples, dosage forms of DBZ and also for monitoring the synthetic procedures of DBZ.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Jingdong Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yujun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Lingjian Yang
- School of Chemistry & Chemical Engineering, Ankang University, Ankang 725000, Shaanxi, PR China
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China; Hong-taoism Research Institute of Analytical Science and Technology Ltd., Xi'an 710068, Shaanxi, PR China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
5
|
Zhang J, Ma CR, Hua YQ, Li L, Ni JY, Huang YT, Duncan SE, Li S, Gao S, Fan GW. Contradictory regulation of macrophages on atherosclerosis based on polarization, death and autophagy. Life Sci 2021; 276:118957. [PMID: 33524421 DOI: 10.1016/j.lfs.2020.118957] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The main pathological feature of atherosclerosis is lipid metabolism disorder and inflammation. Macrophages, as the most important immune cells in the body, run through the beginning and end of disease development. After macrophages overtake the atherosclerosis-susceptible area apolipoprotein low-density lipoprotein ox-LDL, they transform into foam cells that adhere to blood vessels and recruit a large number of pro-inflammatory factors to initiate the disease. Promoting the outflow of lipids in foam cells and alleviating inflammation have become the basic ideas for the study of atherosclerosis treatment strategies. The polarization of macrophages refers to the estimation of the activation of macrophages at a specific point in space and time. Determining the proportion of different macrophage phenotypes in the plaque can help identify delay or prevent disease development. However, the abnormal polarization of macrophages and the accumulation of lipid also affect the growth state of cells to some extent, thus aggravate the influence on plaque area and stability. Besides, overactive or deficient autophagy of macrophages may also lead to cell death and participate in lipid metabolism and inflammation regression. In this paper, the role of macrophages in atherosclerosis was discussed from three aspects: polarization, death, and autophagy.
Collapse
Affiliation(s)
- Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuan-Rui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yun-Qing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing-Yu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu-Ting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Sophia Esi Duncan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guan-Wei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China..
| |
Collapse
|
6
|
A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation. Redox Biol 2020; 36:101644. [PMID: 32863210 PMCID: PMC7371982 DOI: 10.1016/j.redox.2020.101644] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 01/07/2023] Open
Abstract
Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, yet lacks effective therapeutic agents. Previously, we discovered one novel synthetic compound, tanshinol borneol ester (DBZ), possesses anti-inflammatory and anti-atherosclerotic activities, whereas little is known about its effects in CNS. Therefore, the present study aims to explore the effects and potential mechanism of DBZ on neuroinflammation and microglial function. Our studies revealed that DBZ significantly inhibited NF-κB activity, suppressed the production of pro-inflammatory mediators meanwhile promoted M2 mediators expression in LPS-stimulated BV2 cells and mouse primary microglia cells. DBZ also exhibited antioxidant activity by enhancing Nrf2 nuclear accumulation and transcriptional activity, increasing HO-1 and NQO1 expression, and inhibiting LPS-induced ROS generation in BV2 cells. Importantly, the anti-neuroinflammatory and antioxidant effects of DBZ above were reversed by Nrf2 knockdown. Additionally, DBZ ameliorated sickness behaviors of neuroinflammatory mice induced by systemic LPS administration, and significantly reduced infract volume, improved sensorimotor and cognitive function in rats subjected to transient middle cerebral artery occlusion (tMCAO); besides, DBZ restored microglia morphological alterations and shifted the M1/M2 polarization in both murine models. Mechanistically, DBZ-induced Nrf2 nuclear accumulation and antioxidant enzymes expression were accompanied by increased level of p-Akt(Ser473) (activation) and p-GSK3β(Ser9) (inactivation), and decreased nuclear level of Fyn both in vitro and in vivo. Pharmacologically inhibiting PI3K or activating GSK3β markedly increased nuclear density of Fyn in microglia cells, which blocked the promoting effect of DBZ on Nrf2 nuclear accumulation and its antioxidant and anti-neuroinflammatory activities. Collectively, these results indicated the effects of DBZ on microglia-mediated neuroinflammation were strongly associated with the nuclear accumulation and stabilization of Nrf2 via the Akt(Ser473)/GSK3β(Ser9)/Fyn pathway. With anti-neuroinflammatory and antioxidant properties, DBZ could be a promising new drug candidate for prevention and/or treatment of cerebral ischemia and other neuroinflammatory disorders.
Collapse
|
7
|
Xie X, Yu C, Ren Q, Wen Q, Zhao C, Tang Y, Du Y. Exposure to HBCD promotes adipogenesis both in vitro and in vivo by interfering with Wnt6 expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135917. [PMID: 31865202 DOI: 10.1016/j.scitotenv.2019.135917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant, and a ubiquitous environmental contaminant. However, effects and mechanisms underlying HBCD and the development of obesity remain largely unknown. Here, we investigated the effects and underlying mechanisms of HBCD on adipogenesis. Our results firstly disclosed that both murine 3T3-L1 and human HPA-V preadipocyte exposed to HBCD displayed markedly enhanced adipogenesis, manifesting with increase of triglyceride accumulation and expression of adipogenic marker genes. HBCD was further identified to play roles mainly during early-stage adipogenesis and increased expression of Pparγ, a key adipogenic regulator. Interestingly, HBCD didn't affect early key event mitotic clonal expansion (MCE), expression and activation of early pivotal factor C/EBPβ. In virtue of RNA sequencing, HBCD was further demonstrated to specially block Wnt6 gene expression and inhibited the Wnt/β-catenin pathway at an early stage of adipogenesis. Consistent with cellular finding, C57BL/6 male mice chronically exposed to HBCD exhibited specially increased epididymal white adipose tissue (eWAT) weight gain, elevated expression of master adipogenic genes and down-regulated expression of Wnt6 in eWAT. Taking together, our findings firstly revealed that HBCD promotes adipogenesis in vitro and in vivo by specifically inhibiting Wnt6 expression, presumably connecting exposure of HBCD to the development of obesity.
Collapse
Affiliation(s)
- Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Caixia Yu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Qing Wen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Cuixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yue Tang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
8
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
9
|
Wang J, Ma C, Li Q, Wang X, Yang Y, Yang L, Jiang W, Liao S, Wang S, Jia P, Zhao Y, Zheng X. Metabolite identification of tanshinol borneol ester in rats by high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2018; 33:e4438. [PMID: 30444936 DOI: 10.1002/bmc.4438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 11/10/2022]
Abstract
Tanshinol borneol ester (DBZ) is a potential drug candidate composed of danshensu and borneol. It shows anti-ischemic and anti-atherosclerosis activity. However, little is known about its metabolism in vivo. This research aimed to elucidate the metabolic profile of DBZ through analyzing its metabolites using high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry. Chromatographic separation was performed on an Agilent TC-C18 column (150 × 4.6 mm, 5.0 μm) with gradient elution using methanol and water containing 0.2% (v/v) formic acid as the mobile phase. Metabolite identification involved analyzing the retention behaviors, changes in molecular weights and MS/MS fragment patterns of DBZ and its metabolites. As a result, 20 potential metabolites were detected and tentatively identified in rat plasma, urine and feces after administration of DBZ. DBZ could be metabolized to O-methylated DBZ, DBZ-O-glucuronide, O-methylated DBZ-O-glucuronide, hydroxylated DBZ and danshensu. Danshensu, a hydrolysis product of DBZ, could further be transformed into 12 metabolites. The proposed method was confirmed to be a reliable and sensitive alternative for characterizing metabolic pathways of DBZ and providing valuable information on its druggability.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Cuicui Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Qiannan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Xing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China.,Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, China
| | - Lingjian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China.,Department of Chemistry and Chemical Engineering, Ankang University, Shaanxi, Ankang, China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Sha Liao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Ye Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
10
|
The Signaling Pathways Involved in the Antiatherosclerotic Effects Produced by Chinese Herbal Medicines. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5392375. [PMID: 30009170 PMCID: PMC6020658 DOI: 10.1155/2018/5392375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are considered to be the predominant cause of death in the world. Chinese herb medicines (CHMs) have been widely used for the treatment of CVDs in Asian countries for thousands of years. One reason of high efficacy of CHMs in treating CVDs is attributed to their inhibition in atherosclerosis (AS) development, a critical contributor to CVDs occurrence. Cumulative studies have demonstrated that CHMs alleviate atherogenesis via mediating pathophysiologic events involved in AS. However, there is deficiency in the summaries regarding antiatherogenic signal pathways regulated by CHMs. In this review, we focus on the signal cascades by which herb medicines and relevant extractives, derivatives, and patents improve proatherogenic processes including endothelium dysfunction, lipid accumulation, and inflammation. We mainly elaborate the CHMs-mediated signaling pathways in endothelial cells, macrophages, and vascular smooth muscle cells of each pathogenic event. Moreover, we briefly describe the other AS-related factors such as thrombosis, autophagy, immune response, and noncoding RNAs and effects of CHMs on them in the way of cascade regulation, which is helpful to further illustrate the molecular mechanisms of AS initiation and progression and discover newly effective agents for AS management.
Collapse
|
11
|
The Role of PPAR and Its Cross-Talk with CAR and LXR in Obesity and Atherosclerosis. Int J Mol Sci 2018; 19:ijms19041260. [PMID: 29690611 PMCID: PMC5979375 DOI: 10.3390/ijms19041260] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity and atherosclerosis has substantially increased worldwide over the past several decades. Peroxisome proliferator-activated receptors (PPARs), as fatty acids sensors, have been therapeutic targets in several human lipid metabolic diseases, such as obesity, atherosclerosis, diabetes, hyperlipidaemia, and non-alcoholic fatty liver disease. Constitutive androstane receptor (CAR) and liver X receptors (LXRs) were also reported as potential therapeutic targets for the treatment of obesity and atherosclerosis, respectively. Further clarification of the internal relationships between these three lipid metabolic nuclear receptors is necessary to enable drug discovery. In this review, we mainly summarized the cross-talk of PPARs-CAR in obesity and PPARs-LXRs in atherosclerosis.
Collapse
|
12
|
Wang J, Xu P, Xie X, Li J, Zhang J, Wang J, Hong F, Li J, Zhang Y, Song Y, Zheng X, Zhai Y. DBZ (Danshensu Bingpian Zhi), a Novel Natural Compound Derivative, Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc 2017; 6:e006297. [PMID: 28971954 PMCID: PMC5721843 DOI: 10.1161/jaha.117.006297] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/07/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND DBZ (Danshensu Bingpian Zhi), a synthetic derivative of a natural compound found in traditional Chinese medicine, has been reported to suppress lipopolysaccharide-induced macrophage activation and lipid accumulation in vitro. The aim of this study was to assess whether DBZ could attenuate atherosclerosis at early and advanced stages. METHODS AND RESULTS The effects of DBZ on the development of atherosclerosis were studied using apolipoprotein E-deficient (apoE-/-) mice. For early treatment, 5-week-old apoE-/- mice were fed a Western diet and treated daily by oral gavage with or without DBZ or atorvastatin for 10 weeks. For advanced treatment, 5-week-old apoE-/- mice were fed a Western diet for 10 weeks to induce atherosclerosis, and then they were randomly divided into 4 groups and subjected to the treatment of vehicle, 20 mg/kg per day DBZ, 40 mg/kg per day DBZ, or 10 mg/kg per day atorvastatin for the subsequent 10 weeks. We showed that early treatment of apoE-/- mice with DBZ markedly reduced atherosclerotic lesion formation by inhibiting inflammation and decreasing macrophage infiltration into the vessel wall. Treatment with DBZ also attenuated the progression of preestablished diet-induced atherosclerotic plaques in apoE-/- mice. In addition, we showed that DBZ may affect LXR (liver X receptor) function and that treatment of macrophages with DBZ suppressed lipopolysaccharide-stimulated cell migration and oxidized low-density lipoprotein-induced foam cell formation. CONCLUSIONS DBZ potentially has antiatherosclerotic effects that involve the inhibition of inflammation, macrophage migration, leukocyte adhesion, and foam cell formation. These results suggest that DBZ may be used as a therapeutic agent for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Pengfei Xu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xinni Xie
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- State key laboratory of environmental chemistry and ecotoxicology Research Center for Eco-Environmental Science Chinese Academy of Science, Beijing, China
| | - Jiao Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jun Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jialin Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, China
- State key laboratory of environmental chemistry and ecotoxicology Research Center for Eco-Environmental Science Chinese Academy of Science, Beijing, China
| | - Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jian Li
- Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Youyi Zhang
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry and College of Life Sciences, Beijing Normal University, Beijing, China
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China and College of Life Sciences Northwest University, Xi'an, China
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
13
|
Xu P, Hong F, Wang J, Wang J, Zhao X, Wang S, Xue T, Xu J, Zheng X, Zhai Y. DBZ is a putative PPARγ agonist that prevents high fat diet-induced obesity, insulin resistance and gut dysbiosis. Biochim Biophys Acta Gen Subj 2017; 1861:2690-2701. [PMID: 28736228 DOI: 10.1016/j.bbagen.2017.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/22/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The nuclear receptor PPARγ is an effective pharmacological target for some types of metabolic syndrome, including obesity, diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. However, the current PPARγ-targeting thiazolidinedione drugs have undesirable side effects. Danshensu Bingpian Zhi (DBZ), also known as tanshinol borneol ester derived from Salvia miltiorrhiza, is a synthetic derivative of natural compounds used in traditional Chinese medicine for its anti-inflammatory activity. METHODS In vitro, investigations of DBZ using a luciferase reporter assay and molecular docking identified this compound as a novel promising PPARγ agonist. Ten-week-old C57BL/6J mice were fed either a normal chow diet (NCD) or a high-fat diet (HFD). The HFD-fed mice were gavaged daily with either vehicle or DBZ (50mg/kg or 100mg/kg) for 10weeks. The gut microbiota composition was assessed by analyzing the 16S rRNA gene V3+V4 regions via pyrosequencing. RESULTS DBZ is an efficient natural PPARγ agonist that shows lower PPARγ-responsive luciferase reporter activity than thiazolidinediones, has excellent effects on the metabolic phenotype and exhibits no unwanted adverse effects in a HFD-induced obese mouse model. DBZ protects against HFD-induced body weight gain, insulin resistance, hepatic steatosis and inflammation in mice. DBZ not only stimulates brown adipose tissue (BAT) browning and maintains intestinal barrier integrity but also reverses HFD-induced intestinal microbiota dysbiosis. CONCLUSIONS DBZ is a putative PPARγ agonist that prevents HFD-induced obesity-related metabolic syndrome and reverse gut dysbiosis. GENERAL SIGNIFICANCE DBZ may be used as a beneficial probiotic agent to improve HFD-induced obesity-related metabolic syndrome in obese individuals.
Collapse
Affiliation(s)
- Pengfei Xu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jialin Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xia Zhao
- Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, 100043, China
| | - Sheng Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Tingting Xue
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jingwei Xu
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
14
|
Huo M, Wang Z, Wu D, Zhang Y, Qiao Y. Using Coexpression Protein Interaction Network Analysis to Identify Mechanisms of Danshensu Affecting Patients with Coronary Heart Disease. Int J Mol Sci 2017. [PMID: 28629174 PMCID: PMC5486119 DOI: 10.3390/ijms18061298] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Salvia miltiorrhiza, known as Danshen, has attracted worldwide interest for its substantial effects on coronary heart disease (CHD). Danshensu (DSS) is one of the main active ingredients of Danshen on CHD. Although it has been proven to have a good clinical effect on CHD, the action mechanisms remain elusive. In the current study, a coexpression network-based approach was used to illustrate the beneficial properties of DSS in the context of CHD. By integrating the gene expression profile data and protein-protein interactions (PPIs) data, two coexpression protein interaction networks (CePIN) in a CHD state (CHD CePIN) and a non-CHD state (non-CHD CePIN) were generated. Then, shared nodes and unique nodes in CHD CePIN were attained by conducting a comparison between CHD CePIN and non-CHD CePIN. By calculating the topological parameters of each shared node and unique node in the networks, and comparing the differentially expressed genes, target proteins involved in disease regulation were attained. Then, Gene Ontology (GO) enrichment was utilized to identify biological processes associated to target proteins. Consequently, it turned out that the treatment of CHD with DSS may be partly attributed to the regulation of immunization and blood circulation. Also, it indicated that sodium/hydrogen exchanger 3 (SLC9A3), Prostaglandin G/H synthase 2 (PTGS2), Oxidized low-density lipoprotein receptor 1 (OLR1), and fibrinogen gamma chain (FGG) may be potential therapeutic targets for CHD. In summary, this study provided a novel coexpression protein interaction network approach to provide an explanation of the mechanisms of DSS on CHD and identify key proteins which maybe the potential therapeutic targets for CHD.
Collapse
Affiliation(s)
- Mengqi Huo
- Key Laboratory of Traditional Chinese Medicine Information Engineer of State Administration of Traditional Chinese Medicine; School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Zhixin Wang
- Key Laboratory of Traditional Chinese Medicine Information Engineer of State Administration of Traditional Chinese Medicine; School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Dongxue Wu
- Key Laboratory of Traditional Chinese Medicine Information Engineer of State Administration of Traditional Chinese Medicine; School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yanling Zhang
- Key Laboratory of Traditional Chinese Medicine Information Engineer of State Administration of Traditional Chinese Medicine; School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yanjiang Qiao
- Key Laboratory of Traditional Chinese Medicine Information Engineer of State Administration of Traditional Chinese Medicine; School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
15
|
Jia P, Wang S, Xiao C, Yang L, Chen Y, Jiang W, Zheng X, Zhao G, Zang W, Zheng X. The anti-atherosclerotic effect of tanshinol borneol ester using fecal metabolomics based on liquid chromatography-mass spectrometry. Analyst 2015; 141:1112-20. [PMID: 26689835 DOI: 10.1039/c5an01970b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tanshinol borneol ester (DBZ) is a novel experimental compound that consists of two chemical structural units from danshensu and borneol. It exhibits efficacious anti-ischemic and anti-atherosclerosis activities in rats. A fecal metabolomics based on Liquid Chromatography-Mass Spectrometry combined with clinical histopathology and blood lipid estimation was employed to assess the efficacy and the metabolic changes caused by administration of DBZ in atherosclerotic rats. There were the typical pathological features of atherosclerosis and significantly increased levels of TC, TG and LDL-C in the atherosclerotic rat group. Nevertheless, atherosclerotic rats administered both DBZ (at a dose of 40 mg kg(-1)) and simvastatin (at a dose of 20 mg kg(-1)) showed good therapeutic effects. The results of the metabolomics studies showed that 55 differential metabolites such as sebacic acid, enterodiol, nonanedioic acid, dodecanedioic acid, cholic acid, 13(S)-HPODE, deoxycholic acid, some phosphatidylglycerol and phosphatidic acids were found, indicating that abnormal metabolism occurred in the pathways of fatty acid oxidation, linoleic acid metabolism, bile acid biosynthesis and glycerophospholipid metabolism in atherosclerotic rats. Compared to those in the model group, the contents of 41 differential metabolites showed a tendency to recover to a healthy level after DBZ administration. Metabolomics studies suggested that DBZ exhibited good treatment efficacy against atherosclerosis by adjusting disturbed metabolic pathways related to atherosclerosis. This study could provide an experimental basis for DBZ's application to act as a candidate drug with anti-atherosclerosis activity.
Collapse
Affiliation(s)
- Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu XH, Pan LL, Jia YL, Wu D, Xiong QH, Wang Y, Zhu YZ. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages. Eur J Pharmacol 2013; 708:8-13. [PMID: 23353591 DOI: 10.1016/j.ejphar.2013.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.
Collapse
Affiliation(s)
- Xin-Hua Liu
- Department of Pharmacology, School of Pharmacy, Fudan university, 826 Zhangheng Road, Pudong New District, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Lan W, Bian L, Zhao X, Jia P, Meng X, Wu Y, Wang S, Liao S, Yu J, Zheng X. Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry for Identification of In Vitro and In Vivo Metabolites of Bornyl Gallate in Rats. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2013; 2013:473649. [PMID: 23607051 PMCID: PMC3623528 DOI: 10.1155/2013/473649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/27/2013] [Indexed: 06/02/2023]
Abstract
Bornyl gallate (BG) is a potential drug candidate synthesized by the reaction of two natural products, gallic acid and borneol. Previous studies have strongly suggested that BG is worthy of further investigation due to antioxidant, antiatherosclerosis activities, and obvious activity of stimulating intersegmental vessel growth in zebrafish. This work was designed to elucidate the metabolic profile of BG through analyzing its metabolites in vitro and in vivo by a chromatographic separation coupled with a mass spectrometry. The metabolites of BG were characterized from the rat liver microsome incubation solution, as well as rat urine and plasma after oral administration. Chromatographic separation was performed on an Agilent TC-C18 column (250 mm × 4.6 mm, 5 μ m) with gradient elution using methanol and water containing 0.2% (V : V) formic acid as the mobile phase. Metabolites identification involved analyzing the retention behaviors, changes of molecular weights and MS/MS fragment patterns of BG and the metabolites. Five compounds were identified as isomers of hydroxylated BG metabolites in vitro. The major metabolites of BG in rat urine and plasma proved to be BG-O-glucuronide and O-methyl BG-O-glucuronide. The proposed method confirmed to be a reliable and sensitive alternative for characterizing metabolic pathways of BG.
Collapse
|
18
|
Cheung DWS, Koon CM, Wat E, Ko CH, Chan JYW, Yew DTW, Leung PC, Chan WY, Lau CBS, Fung KP. A herbal formula containing roots of Salvia miltiorrhiza (Danshen) and Pueraria lobata (Gegen) inhibits inflammatory mediators in LPS-stimulated RAW 264.7 macrophages through inhibition of nuclear factor κB (NFκB) pathway. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:776-83. [PMID: 23261483 DOI: 10.1016/j.jep.2012.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herbal formula DG, containing roots of Salvia miltiorrhiza (Danshen) and Pueraria lobata (Gegen), has long history in treating cardiovascular diseases. It has been shown to be able to reduce intima-media thickening in coronary patients in our previous clinical study. Since intima-media thickening is the hallmark of atherosclerotic disease, the etiology of which is inflammation of the arterial wall, the mechanism underlying the effect of DG may be related to its anti-inflammatory activities. AIM OF STUDY The present study aims to determine the anti-inflammatory activity of DG and elucidate its underlying mechanisms with regards to its molecular basis of action. MATERIALS AND METHOD The anti-inflammatory effect of DG was studied by using lipopolysaccharide (LPS)-stimulated activation of nuclear factor κB (NFκB) pathway and subsequent production of inflammatory mediators, including nitric oxide (NO), prostaglandin E(2) (PGE(2)), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and macrophage chemotactic protein-1 (MCP-1), in mouse RAW 264.7 macrophages. RESULTS The present study demonstrated that DG could suppress the production of NO and PGE(2) through the inhibition of iNOS and COX-2 genes. DG could also inhibit the production of IL-1β, IL-6 and MCP-1, but not TNF-α, through the inhibition of respective mRNA expressions. Further investigations showed the inhibitory effect of DG on activation of IKKα/β and degradation of IκBα, thus preventing nuclear translocation of NFκB. All these results suggested the inhibitory effects of DG on the production of inflammatory mediators through the inhibition of the NFκB pathway. CONCLUSIONS The inhibitory effects of DG on the production of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages, are accomplished by inhibiting the nuclear translocation of NFκB through inactivating IKKα/β and preventing degradation of IκBα.
Collapse
Affiliation(s)
- David Wing-Shing Cheung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|