1
|
de Souza Coutinho RD, Saint'Pierre TD, Hauser-Davis RA. Blurry eyes and clouded minds: Metal and metalloid contamination of the visual-sensory system of elasmobranchs. MARINE POLLUTION BULLETIN 2025; 213:117681. [PMID: 39954593 DOI: 10.1016/j.marpolbul.2025.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Marine metal and metalloid pollution poses significant risks to elasmobranchs, especially in vital organs such as their sensory and visual systems. While contamination studies have traditionally focused on elasmobranch liver and muscle tissues, due to their significance in detoxification processes and human consumption, respectively, the eyes and brain of this group remain largely underexplored in ecotoxicology assessments. Metal and metalloid accumulation in these sensory organs may compromise key elasmobranch functions, impacting crucial survival behaviors, such as foraging and predator evasion. Detecting sublethal cellular effects caused by these contaminants in the eyes and brain employing biomarkers offers a pathway to assess pollutant sensory health effects before they extend to the organismal and population levels, although no studies have been carried out to date in this sense. This review compiles the current knowledge on metal and metalloid contamination in elasmobranch sensory systems, highlighting the need for further research to understand pollutant effects in these animals' ecological roles and inform conservation strategies.
Collapse
Affiliation(s)
- Rebeca Dias de Souza Coutinho
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil; Programa de Pos-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Tatiana Dillenburg Saint'Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ CEP 22451-900, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
2
|
Tran SM, Howell KJ, Walsh MR. Increased eye size is favoured in Trinidadian killifish experimentally transplanted into low light, high competition environments. J Evol Biol 2024; 37:960-966. [PMID: 38766701 DOI: 10.1093/jeb/voae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Intraspecific variation in vertebrate eye size is well known. Ecological factors such as light availability are often correlated with shifts in relative eye size. However, experimental tests of selection on eye size are lacking. Trinidadian killifish (Anablepsoides hartii) are found in sites that differ in predation intensity. Sites that lack predators are characterized by lower light, high killifish densities, low resource availability, and intense competition for food. We previously found that killifish in sites that lack predators have evolved a larger "relative" eye size (eye size corrected for body size) than fish from sites with predators. Here, we used transplant experiments to test how selection operates on eye size when fish that are adapted to sites with predators are translocated into sites where predators are absent. We observed a significant "population × relative eye size" interaction; the relationship between relative eye size and a proxy for fitness (rates of individual growth) was positive in the transplanted fish. The trend was the opposite for resident fish. Such results provide experimental support that larger eyes enhance fitness and are favoured in environments characterized by low light and high competition.
Collapse
Affiliation(s)
- Stephanie M Tran
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
- Department of Ecology and Evolution, Cornell University, Ithaca, NY 14854, United States
| | - Kaitlyn J Howell
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States
| |
Collapse
|
3
|
Boussard A, Garate-Olaizola M, Fong S, Kolm N. Eye Size Does Not Change with Artificial Selection on Relative Telencephalon Size in Guppies (Poecilia reticulata). BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:212-221. [PMID: 39043150 PMCID: PMC11614305 DOI: 10.1159/000540491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Variation in eye size is sometimes closely associated with brain morphology. Visual information, detected by the retina, is transferred to the optic tectum to coordinate eye and body movements towards stimuli and thereafter distributed into other brain regions for further processing. The telencephalon is an important visual processing region in many vertebrate species and a highly developed region in visually dependent species. Yet, the existence of a coevolutionary relationship between telencephalon size and eye size remains relatively unknown. METHODS Here, we use male and female guppies artificially selected for small- and large-relative-telencephalon-size to test if artificial selection on telencephalon size results in changes in eye size. In addition, we performed an optomotor test as a proxy for visual acuity. RESULTS We found no evidence that eye size changes with artificial selection on telencephalon size. Eye size was similar in both absolute and relative terms between the two selection regimes but was larger in females. This is most likely because of the larger body size in females, but it could also reflect their greater need for visual capacity due to sex-specific differences in foraging and mating behaviour. Although the optomotor response was stronger in guppies with a larger telencephalon, we found no evidence for differences in visual acuity between the selection regimes. CONCLUSION Our study suggests that eye size and visual perception in guppies do not change rapidly with strong artificial selection on telencephalon size.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Maddi Garate-Olaizola
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Sauer DJ, Yopak KE, Radford CA. Interspecific Variation in the Inner Ear Maculae of Sharks. Integr Org Biol 2023; 5:obad031. [PMID: 37732173 PMCID: PMC10506894 DOI: 10.1093/iob/obad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
There is well-documented diversity in the organization of inner ear hair cells in fishes; this variation is thought to reflect the differing functional requirements of species across a range of ecological niches. However, relatively little is known about interspecific variation (and its potential ecological implications) in the number and density of inner ear hair cells in elasmobranchs (sharks, skates, and rays). In this study, we quantified inner ear hair cells in the saccule, lagena, utricle, and macula neglecta of 9 taxonomically and ecologically distinct shark species. Using phylogenetically informed comparative approaches, sharks that feed in the water column had significantly greater hair cell density and total number of hair cells in the lagena and macula neglecta (i.e., vertically oriented maculae) compared to species that feed primarily on the seafloor. In addition, sharks within Carcharhinidae seemingly possess a specialized macula neglecta compared to other shark species. Overall, findings suggest that, similar to bony fishes, there is considerable variation in hair cell organization of shark inner ears, which may be tied to variation in ecology and/or specialized behaviors between different species.
Collapse
Affiliation(s)
- Derek J Sauer
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh 0985, New Zealand
| | - Kara E Yopak
- Department of Biology and Marine Biology and the Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, USA
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh 0985, New Zealand
| |
Collapse
|
5
|
Sauer DJ, Radford CA, Mull CG, Yopak KE. Quantitative assessment of inner ear variation in elasmobranchs. Sci Rep 2023; 13:11939. [PMID: 37488259 PMCID: PMC10366120 DOI: 10.1038/s41598-023-39151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Considerable diversity has been documented in most sensory systems of elasmobranchs (sharks, rays, and skates); however, relatively little is known about morphological variation in the auditory system of these fishes. Using magnetic resonance imaging (MRI), the inner ear structures of 26 elasmobranchs were assessed in situ. The inner ear end organs (saccule, lagena, utricle, and macula neglecta), semi-circular canals (horizontal, anterior, and posterior), and endolymphatic duct were compared using phylogenetically-informed, multivariate analyses. Inner ear variation can be characterised by three primary axes that are influenced by diet and habitat, where piscivorous elasmobranchs have larger inner ears compared to non-piscivorous species, and reef-associated species have larger inner ears than oceanic species. Importantly, this variation may reflect differences in auditory specialisation that could be tied to the functional requirements and environmental soundscapes of different species.
Collapse
Affiliation(s)
- Derek J Sauer
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand.
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Christopher G Mull
- Integrated Fisheries Laboratory, Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Kara E Yopak
- Department of Biology and Marine Biology and the Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| |
Collapse
|
6
|
Staggl MA, Ruthensteiner B, Straube N. Head anatomy of a lantern shark wet-collection specimen (Chondrichthyes: Etmopteridae). J Anat 2023; 242:872-890. [PMID: 36695312 PMCID: PMC10093163 DOI: 10.1111/joa.13822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we apply a two-step (untreated and soft tissue stained) diffusible iodine-based contrast-enhanced micro-computed tomography array to a wet-collection Lantern Shark specimen of Etmopterus lucifer. The focus of our scanning approach is the head anatomy. The unstained CT data allow the imaging of mineralized (skeletal) tissue, while results for soft tissue were achieved after staining for 120 h in a 1% ethanolic iodine solution. Three-dimensional visualization after the segmentation of hard as well as soft tissue reveals new details of tissue organization and allows us to draw conclusions on the significance of organs in their function. Outstanding are the ampullae of Lorenzini for electroreception, which appear as the dominant sense along with the olfactory system. Corresponding brain areas of these sensory organs are significantly enlarged as well and likely reflect adaptations to the lantern sharks' deep-sea habitat. While electroreception supports the capture of living prey, the enlarged olfactory system can guide the scavenging of these opportunistic feeders. Compared to other approaches based on the manual dissection of similar species, CT scanning is superior in some but not all aspects. For example, fenestrae of the cranial nerves within the chondrocranium cannot be identified reflecting the limitations of the method, however, CT scanning is less invasive, and the staining is mostly reversible and can be rinsed out.
Collapse
Affiliation(s)
- Manuel Andreas Staggl
- Department of Biology II, Ludwig-Maximilians-Universität München, München, Germany.,SNSB-Bavarian State Collection of Zoology, Munich, Germany.,Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, Austria.,Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | | | - Nicolas Straube
- SNSB-Bavarian State Collection of Zoology, Munich, Germany.,Department of Natural History, University Museum of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Liu M, Liu Y, Wang X, Wang H. Brain morphological adaptations of
Gambusia affinis
along climatic gradients in China. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mengyu Liu
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - Yanqiu Liu
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - Xiaoqin Wang
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - He Wang
- College of Animal Science and Technology Northwest A&F University Yangling China
| |
Collapse
|
8
|
Laforest K, Peele E, Yopak K. Ontogenetic Shifts in Brain Size and Brain Organization of the Atlantic Sharpnose Shark, Rhizoprionodon terraenovae. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:162-180. [DOI: 10.1159/000511304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022]
Abstract
Throughout an animal’s life, species may occupy different environments and exhibit distinct life stages, known as ontogenetic shifts. The life histories of most sharks (class: Chondrichthyes) are characterized by these ontogenetic shifts, which can be defined by changes in habitat and diet as well as behavioral changes at the onset of sexual maturity. In addition, fishes experience indeterminate growth, whereby the brain and body grow throughout the organism’s life. Despite a presupposed lifelong neurogenesis in sharks, very little work has been done on ontogenetic changes in the brain, which may be informative about functional shifts in sensory and behavioral specializations. This study quantified changes in brain-body scaling and the scaling of six major brain regions (olfactory bulbs, telencephalon, diencephalon, optic tectum, cerebellum, and medulla oblongata) throughout ontogeny in the Atlantic sharpnose shark, <i>Rhizoprionodon terraenovae</i>. As documented in other fishes, brain size increased significantly with body mass throughout ontogeny in this species, with the steepest period of growth in early life. The telencephalon, diencephalon, optic tectum, and medulla oblongata scaled with negative allometry against the rest of the brain throughout ontogeny. However, notably, the olfactory bulbs and cerebellum scaled hyperallometrically to the rest of the brain, whereby these structures enlarged disproportionately as this species matured. Changes in the relative size of the olfactory bulbs throughout ontogeny may reflect an increased reliance on olfaction at later life history stages in <i>R. terraenovae</i>, while changes in the relative size of the cerebellum throughout ontogeny may be indicative of the ability to capture faster prey or an increase in migratory nature as this species moves to offshore habitats, associated with the onset of sexual maturity.
Collapse
|
9
|
Camilieri-Asch V, Shaw JA, Yopak KE, Chapuis L, Partridge JC, Collin SP. Volumetric analysis and morphological assessment of the ascending olfactory pathway in an elasmobranch and a teleost using diceCT. Brain Struct Funct 2020; 225:2347-2375. [PMID: 32870419 DOI: 10.1007/s00429-020-02127-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/31/2020] [Indexed: 11/26/2022]
Abstract
The size (volume or mass) of the olfactory bulbs in relation to the whole brain has been used as a neuroanatomical proxy for olfactory capability in a range of vertebrates, including fishes. Here, we use diffusible iodine-based contrast-enhanced computed tomography (diceCT) to test the value of this novel bioimaging technique for generating accurate measurements of the relative volume of the main olfactory brain areas (olfactory bulbs, peduncles, and telencephalon) and to describe the morphological organisation of the ascending olfactory pathway in model fish species from two taxa, the brownbanded bamboo shark Chiloscyllium punctatum and the common goldfish Carassius auratus. We also describe the arrangement of primary projections to the olfactory bulb and secondary projections to the telencephalon in both species. Our results identified substantially larger olfactory bulbs and telencephalon in C. punctatum compared to C. auratus (comprising approximately 5.2% vs. 1.8%, and 51.8% vs. 11.8% of the total brain volume, respectively), reflecting differences between taxa, but also possibly in the role of olfaction in the sensory ecology of these species. We identified segregated primary projections to the bulbs, associated with a compartmentalised olfactory bulb in C. punctatum, which supports previous findings in elasmobranch fishes. DiceCT imaging has been crucial for visualising differences in the morphological organisation of the olfactory system of both model species. We consider comparative neuroanatomical studies between representative species of both elasmobranch and teleost fish groups are fundamental to further our understanding of the evolution of the olfactory system in early vertebrates and the neural basis of olfactory abilities.
Collapse
Affiliation(s)
- Victoria Camilieri-Asch
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- Oceans Institute, Indian Ocean Marine Research Centre (IOMRC), The University of Western Australia, Cnr Fairway and Service Road 4, Crawley, WA, 6009, Australia.
- Centre for Transformative Biomimetics in Bioengineering, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Q Block Level 7, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Jeremy A Shaw
- Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kara E Yopak
- Department of Biology and Marine Biology and the Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC, 28409, USA
| | - Lucille Chapuis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, UK
| | - Julian C Partridge
- Oceans Institute, Indian Ocean Marine Research Centre (IOMRC), The University of Western Australia, Cnr Fairway and Service Road 4, Crawley, WA, 6009, Australia
| | - Shaun P Collin
- Oceans Institute, Indian Ocean Marine Research Centre (IOMRC), The University of Western Australia, Cnr Fairway and Service Road 4, Crawley, WA, 6009, Australia
- Ocean Graduate School, IOMRC, The University of Western Australia, Cnr Fairway and Service Entrance 4, Crawley, WA, 6009, Australia
- School of Life Sciences, La Trobe University, Plenty Road and Kingsbury Drive, Bundoora, VIC, 3086, Australia
| |
Collapse
|
10
|
diceCT: A Valuable Technique to Study the Nervous System of Fish. eNeuro 2020; 7:ENEURO.0076-20.2020. [PMID: 32471849 PMCID: PMC7642124 DOI: 10.1523/eneuro.0076-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
Contrast-enhanced X-ray imaging provides a non-destructive and flexible approach to optimizing contrast in soft tissues, especially when incorporated with Lugol's solution (aqueous I2KI), a technique currently referred to as diffusible iodine-based contrast-enhanced computed tomography (diceCT). This stain exhibits high rates of penetration and results in excellent contrast between and within soft tissues, including the central nervous system. Here, we present a staining method for optimizing contrast in the brain of a cartilaginous fish, the brownbanded bamboo shark, Chiloscyllium punctatum, and a bony fish, the common goldfish, Carassius auratus, using diceCT. The aim of this optimization procedure is to provide suitable contrast between neural tissue and background tissue(s) of the head, thereby facilitating digital segmentation and volumetric analysis of the central nervous system. Both species were scanned before staining and were rescanned at time (T) intervals, either every 48 h (C. punctatum) or every 24 h (C. auratus), to assess stain penetration and contrast enhancement. To compare stain intensities, raw X-ray CT data were reconstructed using air and water calibration phantoms that were scanned under identical conditions to the samples. Optimal contrast across the brain was achieved at T = 240 h for C. punctatum and T = 96 h for C. auratus Higher resolution scans of the whole brain were obtained at the two optimized staining times for all the corresponding specimens. The use of diceCT provides a new and valuable tool for visualizing differences in the anatomic organization of both the central and peripheral nervous systems of fish.
Collapse
|
11
|
Mull CG, Yopak KE, Dulvy NK. Maternal Investment, Ecological Lifestyle, and Brain Evolution in Sharks and Rays. Am Nat 2020; 195:1056-1069. [PMID: 32469656 DOI: 10.1086/708531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Across vertebrates increased maternal investment (via increased pre- and postnatal provisioning) is associated with larger relative brain size, yet it remains unclear how brain organization is shaped by life history and ecology. Here, we tested whether maternal investment and ecological lifestyle are related to variation in brain size and organization across 100 chondrichthyans. We hypothesized that brain size and organization would vary with the level of maternal investment and habitat depth and complexity. We found that chondrichthyan brain organization varies along four main axes according to (1) absolute brain size, (2) relative diencephalon and mesencephalon size, (3) relative telencephalon and medulla size, and (4) relative cerebellum size. Increased maternal investment is associated with larger relative brain size, while ecological lifestyle is informative for variation between relative telencephalon and medulla size and relative cerebellum size after accounting for the independent effects of reproductive mode. Deepwater chondrichthyans generally provide low levels of yolk-only (lecithotrophic) maternal investment and have relatively small brains, predominantly composed of medulla (a major portion of the hindbrain), whereas matrotrophic chondrichthyans-which provide maternal provisioning beyond the initial yolk sac-found in coastal, reef, or shallow oceanic habitats have relatively large brains, predominantly composed of telencephalon (a major portion of the forebrain). We have demonstrated, for the first time, that both ecological lifestyle and maternal investment are independently associated with brain organization in a lineage with diverse life-history strategies and reproductive modes.
Collapse
|
12
|
Ehnert-Russo SL, Gelsleichter J. Mercury Accumulation and Effects in the Brain of the Atlantic Sharpnose Shark (Rhizoprionodon terraenovae). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:267-283. [PMID: 31760438 DOI: 10.1007/s00244-019-00691-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Few published studies have examined whether the elevated concentrations of the nonessential toxic metal mercury (Hg) often observed in shark muscle also occur in the shark brain or whether Hg accumulation affects shark neurophysiology. Therefore, this study examined accumulation and distribution of Hg in the shark brain, as well as effects of Hg on oxidative stress in the shark central nervous system, with particular focus on the Atlantic sharpnose shark (Rhizoprionodon terraenovae). Sharks were collected along the southeastern U.S. coast throughout most of this species' U.S. geographical range. Total Hg (THg) concentrations were measured in and compared between shark muscle and brain, whereas known biomarkers of Hg-induced neurological effects, including glutathione depletion, lipid peroxidation, and concentrations of a protein marker of glial cell damage (S100b), were measured in shark cerebrospinal fluid. Brain THg concentrations were correlated with muscle THg levels but were significantly lower and did not exceed most published thresholds for neurological effects, suggesting limited potential for detrimental responses. Biomarker concentrations supported this premise, because these data were not correlated with brain THg levels. Hg speciation also was examined. Unlike muscle, methylmercury (MeHg) did not comprise a high percentage of THg in the brain, suggesting that differential uptake or loss of organic and inorganic Hg and/or demethylation of MeHg may occur in this organ. Although Hg accumulation in the shark brain generally fell below toxicity thresholds, higher THg levels were measured in the shark forebrain compared with the midbrain and hindbrain. Therefore, there is potential for selective effects on certain aspects of shark neurophysiology if brain Hg accumulation is increased.
Collapse
Affiliation(s)
- S L Ehnert-Russo
- University of North Florida, 1 UNF Dr, Jacksonville, FL, 32224, USA
| | - J Gelsleichter
- University of North Florida, 1 UNF Dr, Jacksonville, FL, 32224, USA.
| |
Collapse
|
13
|
Comparative Brain Morphology of the Greenland and Pacific Sleeper Sharks and its Functional Implications. Sci Rep 2019; 9:10022. [PMID: 31296954 PMCID: PMC6624305 DOI: 10.1038/s41598-019-46225-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022] Open
Abstract
In cartilaginous fishes, variability in the size of the brain and its major regions is often associated with primary habitat and/or specific behavior patterns, which may allow for predictions on the relative importance of different sensory modalities. The Greenland (Somniosus microcephalus) and Pacific sleeper (S. pacificus) sharks are the only non-lamnid shark species found in the Arctic and are among the longest living vertebrates ever described. Despite a presumed visual impairment caused by the regular presence of parasitic ocular lesions, coupled with the fact that locomotory muscle power is often depressed at cold temperatures, these sharks remain capable of capturing active prey, including pinnipeds. Using magnetic resonance imaging (MRI), brain organization of S. microcephalus and S. pacificus was assessed in the context of up to 117 other cartilaginous fish species, using phylogenetic comparative techniques. Notably, the region of the brain responsible for motor control (cerebellum) is small and lacking foliation, a characteristic not yet described for any other large-bodied (>3 m) shark. Further, the development of the optic tectum is relatively reduced, while olfactory brain regions are among the largest of any shark species described to date, suggestive of an olfactory-mediated rather than a visually-mediated lifestyle.
Collapse
|
14
|
|
15
|
Lyons K, Bigman JS, Kacev D, Mull CG, Carlisle AB, Imhoff JL, Anderson JM, Weng KC, Galloway AS, Cave E, Gunn TR, Lowe CG, Brill RW, Bedore CN. Bridging disciplines to advance elasmobranch conservation: applications of physiological ecology. CONSERVATION PHYSIOLOGY 2019; 7:coz011. [PMID: 31110763 PMCID: PMC6519003 DOI: 10.1093/conphys/coz011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/02/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
A strength of physiological ecology is its incorporation of aspects of both species' ecology and physiology; this holistic approach is needed to address current and future anthropogenic stressors affecting elasmobranch fishes that range from overexploitation to the effects of climate change. For example, physiology is one of several key determinants of an organism's ecological niche (along with evolutionary constraints and ecological interactions). The fundamental role of physiology in niche determination led to the development of the field of physiological ecology. This approach considers physiological mechanisms in the context of the environment to understand mechanistic variations that beget ecological trends. Physiological ecology, as an integrative discipline, has recently experienced a resurgence with respect to conservation applications, largely in conjunction with technological advances that extended physiological work from the lab into the natural world. This is of critical importance for species such as elasmobranchs (sharks, skates and rays), which are an especially understudied and threatened group of vertebrates. In 2017, at the American Elasmobranch Society meeting in Austin, Texas, the symposium entitled `Applications of Physiological Ecology in Elasmobranch Research' provided a platform for researchers to showcase work in which ecological questions were examined through a physiological lens. Here, we highlight the research presented at this symposium, which emphasized the strength of linking physiological tools with ecological questions. We also demonstrate the applicability of using physiological ecology research as a method to approach conservation issues, and advocate for a more available framework whereby results are more easily accessible for their implementation into management practices.
Collapse
Affiliation(s)
- K Lyons
- Georgia Aquarium, Atlanta, GA, USA
| | - J S Bigman
- Simon Fraser University, Burnaby, Canada
| | - D Kacev
- Southwest Fisheries Science Center, La Jolla, CA, USA
| | - C G Mull
- Simon Fraser University, Burnaby, Canada
| | | | - J L Imhoff
- Florida State University Coastal and Marine Laboratory, St. Teresa, FL, USA
| | - J M Anderson
- University of Hawai`i at Mānoa, Honolulu, HI, USA
| | - K C Weng
- Virginia Institute of Marine Science, Gloucester Point, VA, USA
| | - A S Galloway
- South Carolina Department of Natural Resources, SC, USA
| | - E Cave
- Florida Atlantic University, Boca Raton, FL, USA
| | - T R Gunn
- Georgia Southern University, Statesboro, GA USA
| | - C G Lowe
- California State University Long Beach, Long Beach, CA, USA
| | - R W Brill
- Virginia Institute of Marine Science, Gloucester Point, VA, USA
| | - C N Bedore
- Georgia Southern University, Statesboro, GA USA
| |
Collapse
|
16
|
Rangel BDS, Salmon T, Poscai AN, Kfoury JR, Rici REG. Comparative investigation into the morphology of oral papillae and denticles of four species of lamnid and sphyrnid sharks. ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0427-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Lisney TJ, Wagner HJ, Collin SP. Ontogenetic Shifts in the Number of Axons in the Olfactory Tract and Optic Nerve in Two Species of Deep-Sea Grenadier Fish (Gadiformes: Macrouridae: Coryphaenoides). Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
Corral-López A, Garate-Olaizola M, Buechel SD, Kolm N, Kotrschal A. On the role of body size, brain size, and eye size in visual acuity. Behav Ecol Sociobiol 2017; 71:179. [PMID: 29213179 PMCID: PMC5705735 DOI: 10.1007/s00265-017-2408-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 10/25/2022]
Abstract
Abstract The visual system is highly variable across species, and such variability is a key factor influencing animal behavior. Variation in the visual system, for instance, can influence the outcome of learning tasks when visual stimuli are used. We illustrate this issue in guppies (Poecilia reticulata) artificially selected for large and small relative brain size with pronounced behavioral differences in learning experiments and mate choice tests. We performed a study of the visual system by quantifying eye size and optomotor response of large-brained and small-brained guppies. This represents the first experimental test of the link between brain size evolution and visual acuity. We found that female guppies have larger eyes than male guppies, both in absolute terms and in relation to their body size. Likewise, individuals selected for larger brains had slightly larger eyes but not better visual acuity than small-brained guppies. However, body size was positively associated with visual acuity. We discuss our findings in relation to previous macroevolutionary studies on the evolution of brain morphology, eye morphology, visual acuity, and ecological variables, while stressing the importance of accounting for sensory abilities in behavioral studies. Significance statement Pre-existing perceptual biases can be keys for the development of specific behavioral patterns. Hence, potential differences in sensory systems need to be taken into account in the study of animal behavior. We highlight this necessity concentrating on the visual domain and using experimental data on brain size-selected guppies in which we assessed eye size and visual acuity. Behavioral differences between large-brained and small-brained guppies in learning and mate choice predominantly relied on tests using visual cues. Analyses of visual capabilities in this system are therefore necessary. Furthermore, this system offers the unprecedented opportunity to experimentally test the relationship between brain size, eye morphology, and visual capabilities. Our results show similar visual acuities between large-brained and small-brained guppies. However, the differences observed in eye area between the sexes, together with the observed positive relationship between body size and visual acuity, highlight the need to incorporate perceptive differences in the study of animal behavior.
Collapse
Affiliation(s)
- Alberto Corral-López
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Maddi Garate-Olaizola
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Severine D Buechel
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
| |
Collapse
|
19
|
Labak I, Pavić V, Zjalić M, Blažetić S, Viljetić B, Merdić E, Heffer M. PSA-NCAM expression in the teleost optic tectum is related to ecological niche and use of vision in finding food. JOURNAL OF FISH BIOLOGY 2017; 91:473-489. [PMID: 28656586 DOI: 10.1111/jfb.13352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
In this study, tangential migration and neuronal connectivity organization were analysed in the optic tectum of seven different teleosts through the expression of polysialylated neural cell adhesion molecule (PSA-NCAM) in response to ecological niche and use of vision. Reduced PSA-NCAM expression in rainbow trout Oncorhynchus mykiss optic tectum occurred in efferent layers, while in pike Esox lucius and zebrafish Danio rerio it occurred in afferent and efferent layers. Zander Sander lucioperca and European eel Anguilla anguilla had very low PSA-NCAM expression in all tectal layers except in the stratum marginale. Common carp Cyprinus carpio and wels catfish Silurus glanis had the same intensity of PSA-NCAM expression in all tectal layers. The optic tectum of all studied fishes was also a site of tangential migration with sustained PSA-NCAM and c-series ganglioside expression. Anti-c-series ganglioside immunoreactivity was observed in all tectal layers of all analysed fishes, even in layers where PSA-NCAM expression was reduced. Since the optic tectum is indispensable for visually guided prey capture, stabilization of synaptic contact and decrease of neurogenesis and tangential migration in the visual map are an expected adjustment to ecological niche. The authors hypothesize that this stabilization would probably be achieved by down-regulation of PSA-NCAM rather than c-series of ganglioside.
Collapse
Affiliation(s)
- I Labak
- Department of Biology, J. J. Strossmayer in Osijek, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - V Pavić
- Department of Biology, J. J. Strossmayer in Osijek, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - M Zjalić
- Department of Biology, J. J. Strossmayer in Osijek, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - S Blažetić
- Department of Biology, J. J. Strossmayer in Osijek, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - B Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, J. J. Strossmayer in Osijek, Faculty of Medicine, Ulica cara Hadrijana 10, 31000, Osijek, Croatia
| | - E Merdić
- Department of Biology, J. J. Strossmayer in Osijek, Ulica cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - M Heffer
- Department of Medical Biology and Genetics, J. J. Strossmayer in Osijek, Faculty of Medicine, Ulica cara Hadrijana 10, 31000, Osijek, Croatia
| |
Collapse
|
20
|
Manzano AS, Herrel A, Fabre AC, Abdala V. Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology. J Anat 2017; 231:38-58. [PMID: 28429369 DOI: 10.1111/joa.12613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 11/26/2022] Open
Abstract
Despite the long-standing interest in the evolution of the brain, relatively little is known about variation in brain anatomy in frogs. Yet, frogs are ecologically diverse and, as such, variation in brain anatomy linked to differences in lifestyle or locomotor behavior can be expected. Here we present a comparative morphological study focusing on the macro- and micro-anatomy of the six regions of the brain and its choroid plexus: the olfactory bulbs, the telencephalon, the diencephalon, the mesencephalon, the rhombencephalon, and the cerebellum. We also report on the comparative anatomy of the plexus brachialis responsible for the innervation of the forelimbs. It is commonly thought that amphibians have a simplified brain organization, associated with their supposedly limited behavioral complexity and reduced motor skills. We compare frogs with different ecologies that also use their limbs in different contexts and for other functions. Our results show that brain morphology is more complex and more variable than typically assumed. Moreover, variation in brain morphology among species appears related to locomotor behavior as suggested by our quantitative analyses. Thus we propose that brain morphology may be related to the locomotor mode, at least in the frogs included in our analysis.
Collapse
Affiliation(s)
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité, UMR 7179 C.N.R.S/M.N.H.N., Paris Cedex, France
| | - Anne-Claire Fabre
- Département d'Ecologie et de Gestion de la Biodiversité, UMR 7179 C.N.R.S/M.N.H.N., Paris Cedex, France
| | - Virginia Abdala
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, UNT-Horco Molle, Instituto de Biología Neotropical-CONICET, Tucumán, Argentina
| |
Collapse
|
21
|
Yopak K, Galinsky VL, Berquist R, Frank LR. Quantitative Classification of Cerebellar Foliation in Cartilaginous Fishes (Class: Chondrichthyes) Using Three-Dimensional Shape Analysis and Its Implications for Evolutionary Biology. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:252-64. [PMID: 27450795 PMCID: PMC5023489 DOI: 10.1159/000446904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/13/2016] [Indexed: 11/19/2022]
Abstract
A true cerebellum appeared at the onset of the chondrichthyan (sharks, batoids, and chimaerids) radiation and is known to be essential for executing fast, accurate, and efficient movement. In addition to a high degree of variation in size, the corpus cerebellum in this group has a high degree of variation in convolution (or foliation) and symmetry, which ranges from a smooth cerebellar surface to deep, branched convexities and folds, although the functional significance of this trait is unclear. As variation in the degree of foliation similarly exists throughout vertebrate evolution, it becomes critical to understand this evolutionary process in a wide variety of species. However, current methods are either qualitative and lack numerical rigor or they are restricted to two dimensions. In this paper, a recently developed method for the characterization of shapes embedded within noisy, three-dimensional data called spherical wave decomposition (SWD) is applied to the problem of characterizing cerebellar foliation in cartilaginous fishes. The SWD method provides a quantitative characterization of shapes in terms of well-defined mathematical functions. An additional feature of the SWD method is the construction of a statistical criterion for the optimal fit, which represents the most parsimonious choice of parameters that fits to the data without overfitting to background noise. We propose that this optimal fit can replace a previously described qualitative visual foliation index (VFI) in cartilaginous fishes with a quantitative analog, i.e. the cerebellar foliation index (CFI). The capability of the SWD method is demonstrated in a series of volumetric images of brains from different chondrichthyan species that span the range of foliation gradings currently described for this group. The CFI is consistent with the qualitative grading provided by the VFI, delivers a robust measure of cerebellar foliation, and can provide a quantitative basis for brain shape characterization across taxa.
Collapse
Affiliation(s)
- Kara Yopak
- UWA Oceans Institute and the School of Animal Biology, University of Western Australia, Crawley, WA 6009
| | - Vitaly L. Galinsky
- Center for Scientific Computation in Imaging, University of California, San Diego
| | - Rachel Berquist
- Center for Scientific Computation in Imaging, University of California, San Diego
| | - Lawrence R. Frank
- Center for Scientific Computation in Imaging, University of California, San Diego
| |
Collapse
|
22
|
Salas CA, Yopak KE, Warrington RE, Hart NS, Potter IC, Collin SP. Ontogenetic shifts in brain scaling reflect behavioral changes in the life cycle of the pouched lamprey Geotria australis. Front Neurosci 2015; 9:251. [PMID: 26283894 PMCID: PMC4517384 DOI: 10.3389/fnins.2015.00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
Very few studies have described brain scaling in vertebrates throughout ontogeny and none in lampreys, one of the two surviving groups of the early agnathan (jawless) stage in vertebrate evolution. The life cycle of anadromous parasitic lampreys comprises two divergent trophic phases, firstly filter-feeding as larvae in freshwater and secondly parasitism as adults in the sea, with the transition marked by a radical metamorphosis. We characterized the growth of the brain during the life cycle of the pouched lamprey Geotria australis, an anadromous parasitic lamprey, focusing on the scaling between brain and body during ontogeny and testing the hypothesis that the vast transitions in behavior and environment are reflected in differences in the scaling and relative size of the major brain subdivisions throughout life. The body and brain mass and the volume of six brain structures of G. australis, representing six points of the life cycle, were recorded, ranging from the early larval stage to the final stage of spawning and death. Brain mass does not increase linearly with body mass during the ontogeny of G. australis. During metamorphosis, brain mass increases markedly, even though the body mass does not increase, reflecting an overall growth of the brain, with particularly large increases in the volume of the optic tectum and other visual areas of the brain and, to a lesser extent, the olfactory bulbs. These results are consistent with the conclusions that ammocoetes rely predominantly on non-visual and chemosensory signals, while adults rely on both visual and olfactory cues.
Collapse
Affiliation(s)
- Carlos A Salas
- Neuroecology Group, School of Animal Biology and UWA Oceans Institute, The University of Western Australia Crawley, WA, Australia
| | - Kara E Yopak
- Neuroecology Group, School of Animal Biology and UWA Oceans Institute, The University of Western Australia Crawley, WA, Australia
| | - Rachael E Warrington
- Neuroecology Group, School of Animal Biology and UWA Oceans Institute, The University of Western Australia Crawley, WA, Australia
| | - Nathan S Hart
- Neuroecology Group, School of Animal Biology and UWA Oceans Institute, The University of Western Australia Crawley, WA, Australia
| | - Ian C Potter
- Centre for Fish and Fisheries Research, School of Veterinary and Life Sciences, Murdoch University Murdoch, WA, Australia
| | - Shaun P Collin
- Neuroecology Group, School of Animal Biology and UWA Oceans Institute, The University of Western Australia Crawley, WA, Australia
| |
Collapse
|
23
|
|
24
|
Not all sharks are "swimming noses": variation in olfactory bulb size in cartilaginous fishes. Brain Struct Funct 2014; 220:1127-43. [PMID: 24435575 DOI: 10.1007/s00429-014-0705-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Olfaction is a universal modality by which all animals sample chemical stimuli from their environment. In cartilaginous fishes, olfaction is critical for various survival tasks including localizing prey, avoiding predators, and chemosensory communication with conspecifics. Little is known, however, about interspecific variation in olfactory capability in these fishes, or whether the relative importance of olfaction in relation to other sensory systems varies with regard to ecological factors, such as habitat and lifestyle. In this study, we have addressed these questions by directly examining interspecific variation in the size of the olfactory bulbs (OB), the region of the brain that receives the primary sensory projections from the olfactory nerve, in 58 species of cartilaginous fishes. Relative OB size was compared among species occupying different ecological niches. Our results show that the OBs maintain a substantial level of allometric independence from the rest of the brain across cartilaginous fishes and that OB size is highly variable among species. These findings are supported by phylogenetic generalized least-squares models, which show that this variability is correlated with ecological niche, particularly habitat. The relatively largest OBs were found in pelagic-coastal/oceanic sharks, especially migratory species such as Carcharodon carcharias and Galeocerdo cuvier. Deep-sea species also possess large OBs, suggesting a greater reliance on olfaction in habitats where vision may be compromised. In contrast, the smallest OBs were found in the majority of reef-associated species, including sharks from the families Carcharhinidae and Hemiscyllidae and dasyatid batoids. These results suggest that there is great variability in the degree to which these fishes rely on olfactory cues. The OBs have been widely used as a neuroanatomical proxy for olfactory capability in vertebrates, and we speculate that differences in olfactory capabilities may be the result of functional rather than phylogenetic adaptations.
Collapse
|
25
|
Collin SP. The Neuroecology of Cartilaginous Fishes: Sensory Strategies for Survival. BRAIN, BEHAVIOR AND EVOLUTION 2012; 80:80-96. [DOI: 10.1159/000339870] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|