1
|
Alfardan AS, Nadeem A, Ahmad SF, Al-Harbi NO, Alqinyah M, Attia SM, El-Sherbeeny AM, Al-Harbi MM, Al-Shabanah OA, Ibrahim KE, Alhazzani K, Alanazi AZ. DNMT inhibitor, 5-aza-2'-deoxycytidine mitigates di(2-ethylhexyl) phthalate-induced aggravation of psoriasiform inflammation in mice via reduction in global DNA methylation in dermal and peripheral compartments. Int Immunopharmacol 2024; 137:112503. [PMID: 38906008 DOI: 10.1016/j.intimp.2024.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psoriasis is classified as an autoimmune disorder characterized by abnormal immune response leading to the development of chronic dermal inflammation. Most individuals have a genetic vulnerability that may be further influenced by epigenetic changes occurring due to multiple variables such as pollutant exposure. Epigenetic modifications such as DNA methylation possess a dynamic nature, enabling cellular differentiation and adaptation by controlling gene expression. Di(2-ethylhexyl) phthalate (DEHP) and psoriatic inflammation are known to cause modification of DNA methylation via DNA methyltransferase (DNMT). However, it is not known whether DEHP, a ubiquitous plasticizer affects psoriatic inflammation via DNMT modulation. Therefore, this study investigated the effect of DNMT inhibitor, 5-aza-2'-deoxycytidine (AZA) on DEHP-induced changes in the expression of DNMT1, global DNA methylation, and anti-/inflammatory parameters (p-STAT3, IL-17A, IL-6, iNOS, IL-10, Foxp3, Nrf2, HO-1) in the skin and the peripheral adaptive/ myeloid immune cells (CD4+ T cells/CD11b+ cells) in imiquimod (IMQ) model of psoriasiform inflammation. Further, psoriasis-associated clinical/histopathological features (ear thickness, ear weight, ear PASI score, MPO activity, and H&E staining of the ear and the back skin) were also analyzed in IMQ model. Our data show that IMQ-treated mice with DEHP exposure had increased DNMT1 expression and DNA methylation which was associated with elevated inflammatory (p-STAT3, IL-17A, IL-6, iNOS) and downregulated anti-inflammatory mediators (IL-10, Foxp3, Nrf2, HO-1) in the peripheral immune cells (CD4+ T cells/CD11b+ cells) and the skin as compared to IMQ-treated mice. Treatment with DNMT1 inhibitor caused reduction in inflammatory and elevation in anti-inflammatory parameters with significant improvement in clinical/histopathological symptoms in both IMQ-treated and DEHP-exposed IMQ-treated mice. In conclusion, our study shows strong evidence indicating that DNMT1 plays an important role in DEHP-induced exacerbation of psoriasiform inflammation in mice through hypermethylation of DNA.
Collapse
Affiliation(s)
- Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Othman A Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Duan C, Xu X, Lu X, Wang L, Lu Z. RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis. BMC Gastroenterol 2022; 22:137. [PMID: 35346043 PMCID: PMC8961930 DOI: 10.1186/s12876-022-02208-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ulcerative colitis (UC) is a common inflammatory bowel disease, during which cell necroptosis plays key roles in driving inflammation initiation and aggravation. Previous studies reported Receptor Interacting Protein Kinase 3 (RIP3)-mediated necroptosis in multiple diseases, and RIP3 protein in Paneth cells significantly enriched in the intestines of both humans and mice. Therefore, we hypothesized targeting RIP3 to inhibit necroptosis may depress UC.
Methods
We classified clinical UC samples according to the modified Truelove & Witts criterion. The expression of RIP3 was measured by western blot and immunohistochemistry. Cell proliferation and apoptosis were analyzed by MTT assay and flow cytometry. ROS production and the secretion of inflammatory cytokines were measured by DCFH-DA probe and ELISA assay. TLR4/MyD88/NF-κB signaling pathway was analyzed by western blot. We established experimental colitis model in RIP3 knockout and wild-type mice and disease activity index (DAI) score was calculated. The expression and distribution of tight junction protein were analyzed by immunofluorescence. The ratio of CD4+Foxp3+ T cells in the spleen was detected by flow cytometry. Oxidative damage of mouse colon was assessed by detecting the levels of SOD, MDA and MPO. Data were analyzed by one-way ANOVA or student’s t test.
Results
The expression of RIP3 in human colon is positively associated with the severity of UC. RIP3 inhibitor GSK872 or RIP3 knockdown reverses the inhibitory effect of TNF-α on proliferation and the promoting effect of TNF-α on apoptosis and necrosis in human intestinal epithelial cells. In addition, RIP3 deficiency inhibits the secretion of inflammatory cytokines (IL-16, IL-17 and IFN-γ) and ROS production induced by TNF-α. In vivo, RIP3 inhibitor Nec-1 effectively improves DSS-induced colitis in mice. In mechanism, RIP3 depression could upregulate the proportion of CD4+Foxp3+ immunosuppressive Treg cells in the spleen while suppressed TLR4/MyD88/NF-κB signaling pathway and ROS generation, and all these anti-inflammation factors together suppress the secretion of inflammatory cytokines and necroptosis of intestinal epithelial cells.
Conclusions
This study preliminarily explored the regulating mechanism of RIP3 on UC, and Nec-1 may be a promising drug to alleviate the inflammation and necroptosis of the colon in UC patients.
Collapse
|
3
|
Wang C, Wang D, Zhao H, Wang J, Liu N, Shi H, Tian J, Wang X, Zhang Z. Traffic-related PM 2.5 and diverse constituents disturb the balance of Th17/Treg cells by STAT3/RORγt-STAT5/Foxp3 signaling pathway in a rat model of asthma. Int Immunopharmacol 2021; 96:107788. [PMID: 34162152 DOI: 10.1016/j.intimp.2021.107788] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/08/2023]
Abstract
Water-soluble ions (WSI) and organic extract (OE) in traffic-related particulate matter with aerodynamic diameters ≤ 2.5 μm (TRPM2.5) are potential risk factors for asthma exacerbation. Although CD4+ T lymphocytes mediated immune response is involved in the pathogenesis of asthma, the effect of WSI-TRPM2.5 and OE-TRPM2.5 on the balance of Th17/Treg cells in asthma remains poorly understood. In this study, the ovalbumin (OVA)-sensitized rats were repeatedly exposure to TRPM2.5 (3 mg/kg·bw), WSI-TRPM2.5 (1.8 mg/kg·bw, 7.2 mg/kg·bw) and OE-TRPM2.5 (0.6 mg/kg·bw, 2.4 mg/kg·bw) every three days for five times. The inflammation response and hyperemia edema were observed in the lung and trachea tissues. DNA methylation levels of STAT3 and RORγt genes in rats with WSI-TRPM2.5 and OE-TRPM2.5 treatment were decreased. DNA methylation level in STAT5 gene tended to decrease, with no change observed on Foxp3 expression. WSI-TRPM2.5 and OE-TRPM2.5 enhanced the mRNA and protein expression of STAT3 and RORγt while inhibited the expression of STAT5 and Foxp3, which may contribute to the imbalance of Th17/Treg cells (P < 0.05). More importantly, recovered balance of Th17/Treg cell subsets, upregulated p-STAT5 and Foxp3 expression and reduced p-STAT3 and RORγt levels were observed after 5-Aza treatment. Our results demonstrate that the STAT3/RORγt-STAT5/Foxp3 signaling pathway is involved in asthma exacerbation induced by WSI-TRPM2.5 and OE-TRPM2.5 through disrupting the balance of Th17/Treg cells. The alteration of DNA methylation of STAT3, STAT5, and RORγt genes may be involved in asthma exacerbation as well.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Dan Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Huichao Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266000, Shandong, China
| | - Jing Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Hao Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xin Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
4
|
Induction of Airway Hypersensitivity to Ovalbumin and Dust Mite Allergens as Mouse Models of Allergic Asthma. Methods Mol Biol 2021; 2223:101-114. [PMID: 33226590 DOI: 10.1007/978-1-0716-1001-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mouse models of allergic asthma have been utilized to establish the role of T helper type 2 (Th2) cells in driving lung inflammation, airway hyperresponsiveness, and obstruction. Here, we present the allergic asthma models, in which mice are hypersensitized to ovalbumin (OVA) and house dust mite (HDM). These models mimic the major characteristics of human asthma including the eosinophilic inflammation and hyperactivity of the airway, overproduction of Th2 cytokines in the lung, and elevated total and allergen-specific immunoglobulin E (IgE) in serum.
Collapse
|
5
|
Helmin KA, Morales-Nebreda L, Torres Acosta MA, Anekalla KR, Chen SY, Abdala-Valencia H, Politanska Y, Cheresh P, Akbarpour M, Steinert EM, Weinberg SE, Singer BD. Maintenance DNA methylation is essential for regulatory T cell development and stability of suppressive function. J Clin Invest 2021; 130:6571-6587. [PMID: 32897881 DOI: 10.1172/jci137712] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Tregs require Foxp3 expression and induction of a specific DNA hypomethylation signature during development, after which Tregs persist as a self-renewing population that regulates immune system activation. Whether maintenance DNA methylation is required for Treg lineage development and stability and how methylation patterns are maintained during lineage self-renewal remain unclear. Here, we demonstrate that the epigenetic regulator ubiquitin-like with plant homeodomain and RING finger domains 1 (Uhrf1) is essential for maintenance of methyl-DNA marks that stabilize Treg cellular identity by repressing effector T cell transcriptional programs. Constitutive and induced deficiency of Uhrf1 within Foxp3+ cells resulted in global yet nonuniform loss of DNA methylation, derepression of inflammatory transcriptional programs, destabilization of the Treg lineage, and spontaneous inflammation. These findings support a paradigm in which maintenance DNA methylation is required in distinct regions of the Treg genome for both lineage establishment and stability of identity and suppressive function.
Collapse
Affiliation(s)
- Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Shang-Yang Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Yuliya Politanska
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Paul Cheresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | - Samuel E Weinberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Pathology
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Biochemistry and Molecular Genetics.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Victoni T, Barreto E, Lagente V, Carvalho VF. Oxidative Imbalance as a Crucial Factor in Inflammatory Lung Diseases: Could Antioxidant Treatment Constitute a New Therapeutic Strategy? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6646923. [PMID: 33628371 PMCID: PMC7889360 DOI: 10.1155/2021/6646923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory lung disease results in a high global burden of death and disability. There are no effective treatments for the most severe forms of many inflammatory lung diseases, such as chronic obstructive pulmonary disease, emphysema, corticosteroid-resistant asthma, and coronavirus disease 2019; hence, new treatment options are required. Here, we review the role of oxidative imbalance in the development of difficult-to-treat inflammatory lung diseases. The inflammation-induced overproduction of reactive oxygen species (ROS) means that endogenous antioxidants may not be sufficient to prevent oxidative damage, resulting in an oxidative imbalance in the lung. In turn, intracellular signaling events trigger the production of proinflammatory mediators that perpetuate and aggravate the inflammatory response and may lead to tissue damage. The production of high levels of ROS in inflammatory lung diseases can induce the phosphorylation of mitogen-activated protein kinases, the inactivation of phosphoinositide 3-kinase (PI3K) signaling and histone deacetylase 2, a decrease in glucocorticoid binding to its receptor, and thus resistance to glucocorticoid treatment. Hence, antioxidant treatment might be a therapeutic option for inflammatory lung diseases. Preclinical studies have shown that antioxidants (alone or combined with anti-inflammatory drugs) are effective in the treatment of inflammatory lung diseases, although the clinical evidence of efficacy is weaker. Despite the high level of evidence for the efficacy of antioxidants in the treatment of inflammatory lung diseases, the discovery and clinical investigation of safer, more efficacious compounds are now a priority.
Collapse
Affiliation(s)
- Tatiana Victoni
- University of Lyon, VetAgro Sup, APCSe, Marcy l'Étoile, France
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, Maceió, AL 57072-900, Brazil
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Univ Rennes, Rennes, France
| | - Vinicius F. Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21045-900, Brazil
| |
Collapse
|
7
|
Epithelial dysfunction in chronic respiratory diseases, a shared endotype? Curr Opin Pulm Med 2021; 26:20-26. [PMID: 31688241 DOI: 10.1097/mcp.0000000000000638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Epithelial barrier defects are being appreciated in various inflammatory disorders; however, causal underlying mechanisms are lacking. In this review, we describe the disruption of the airway epithelium with regard to upper and lower airway diseases, the role of epigenetic alterations underlying this process, and potential novel ways of interfering with dysfunctional epithelial barriers as a novel therapeutic approach. RECENT FINDINGS A defective epithelial barrier, impaired innate defence mechanisms or hampered epithelial cell renewal are found in upper and lower airway diseases. Barrier dysfunction might facilitate the entrance of foreign substances, initiating and facilitating the onset of disease. Latest data provided novel insights for possible involvement of epigenetic alterations induced by inflammation or other unknown mechanisms as a potential mechanism responsible for epithelial defects. Additionally, these mechanisms might precede disease development, and represent a novel therapeutic approach for restoring epithelial defects. SUMMARY A better understanding of the role of epigenetics in driving and maintaining epithelial defects in various inflammatory diseases, using state-of-the-art biology tools will be crucial in designing novel therapies to protect or reconstitute a defective airway epithelial barrier.
Collapse
|
8
|
Landman S, van der Horst C, van Erp PEJ, Joosten I, de Vries R, Koenen HJPM. Immune responses to azacytidine in animal models of inflammatory disorders: a systematic review. J Transl Med 2021; 19:11. [PMID: 33407530 PMCID: PMC7788785 DOI: 10.1186/s12967-020-02615-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
Inflammatory disorders like diabetes, systemic lupus erythematodes, inflammatory lung diseases, rheumatoid arthritis and multiple sclerosis, but also rejection of transplanted organs and GvHD, form a major burden of disease. Current classes of immune suppressive drugs to treat these disorders are never curative and side effects are common. Therefore there is a need for new drugs with improved and more targeted modes of action. Potential candidates are the DNA methyl transferase inhibitor 5-azacytidine (Aza) and its derivative 5-aza 2′deoxycitidine (DAC). Aza and DAC have been tested in several pre-clinical in vivo studies. In order to obtain an overview of disorders for which Aza and/or DAC can be a potential treatment, and to find out where information is lacking, we systematically reviewed pre-clinical animal studies assessing Aza or DAC as a potential therapy for distinct inflammatory disorders. Also, study quality and risk of bias was systematically assessed. In the 35 identified studies, we show that both Aza and DAC do not only seem to be able to alleviate a number of inflammatory disorders, but also prevent solid organ rejection and GvHD in in vivo pre-clinical animal models. Aza/DAC are known to upregulate FOXP3, a master transcription factor for Treg, in vitro. Seventeen studies described the effect on Treg, of which 16 studies showed an increase in Treg. Increasing Treg therefore seems to be a common mechanism in preventing inflammatory disorders by Aza/DAC. We also found, however, that many essential methodological details were poorly reported leading to an unclear risk of bias. Therefore, reported effects might be an overestimation of the true effect.
Collapse
Affiliation(s)
- Sija Landman
- Department of Laboratory Medicine-Laboratory Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Chiel van der Horst
- Department of Laboratory Medicine-Laboratory Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Piet E J van Erp
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine-Laboratory Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Rob de Vries
- Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine-Laboratory Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Genetic and Epigenetic Aspects of Atopic Dermatitis. Int J Mol Sci 2020; 21:ijms21186484. [PMID: 32899887 PMCID: PMC7554821 DOI: 10.3390/ijms21186484] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Atopic dermatitis is a heterogeneous disease, in which the pathogenesis is associated with mutations in genes encoding epidermal structural proteins, barrier enzymes, and their inhibitors; the role of genes regulating innate and adaptive immune responses and environmental factors inducing the disease is also noted. Recent studies point to the key role of epigenetic changes in the development of the disease. Epigenetic modifications are mainly mediated by DNA methylation, histone acetylation, and the action of specific non-coding RNAs. It has been documented that the profile of epigenetic changes in patients with atopic dermatitis (AD) differs from that observed in healthy people. This applies to the genes affecting the regulation of immune response and inflammatory processes, e.g., both affecting Th1 bias and promoting Th2 responses and the genes of innate immunity, as well as those encoding the structural proteins of the epidermis. Understanding of the epigenetic alterations is therefore pivotal to both create new molecular classifications of atopic dermatitis and to enable the development of personalized treatment strategies.
Collapse
|
10
|
Demidov VV. Site-specifically deuterated essential lipids as new drugs against neuronal, retinal and vascular degeneration. Drug Discov Today 2020; 25:1469-1476. [DOI: 10.1016/j.drudis.2020.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/23/2020] [Indexed: 01/10/2023]
|
11
|
Genome‑wide analysis of DNA methylation and gene expression changes in an ovalbumin‑induced asthma mouse model. Mol Med Rep 2020; 22:1709-1716. [PMID: 32705270 PMCID: PMC7411290 DOI: 10.3892/mmr.2020.11245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to establish an integrated network of DNA methylation and RNA expression in an ovalbumin (OVA)-induced asthma model, and to investigate the epigenetically-regulated genes involved in asthma development. Genome-wide CpG-DNA methylation profiling was conducted through the use of a methylated DNA immunoprecipitation microarray and RNA sequencing was performed using three lung samples from mice with OVA-induced asthma. A total of 35,401 differentially methylated regions (DMRs) were identified between mice with OVA-induced asthma and control mice. Of these, 3,060 were located in promoter regions and 370 of the genes containing these DMRs demonstrated an inverse correlation between methylation and gene expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified that 368 genes were upregulated or downregulated in OVA-induced asthma samples, including genes involved in ‘chemokine signalling pathway’, ‘focal adhesion’, ‘leukocyte transendothelial migration’ and ‘vascular smooth muscle contraction signaling’ pathways. Integrated network analysis identified four hub genes, consisting of three upregulated genes [forkhead box O1 (FOXO1), SP1 transcription factor (SP1) and amyloid β precursor protein (APP)], and one downregulated gene [RUNX family transcription factor 1 (RUNX1)], all of which demonstrated an association between DNA methylation and gene expression. These genes were highly interconnected nodes in the Ingenuity Pathway Analysis module and were functionally significant. A total of four interconnected hub genes, FOXO1, RUNX1, SP1 and APP, were identified from the integrated DNA methylation and gene expression networks involved in asthma development. These results suggested that modulating these four genes could effectively control the development of asthma.
Collapse
|
12
|
Su C, Liu S, Ma X, Yang X, Liu J, Zheng P, Cao Y. Decitabine attenuates dextran sodium sulfate‑induced ulcerative colitis through regulation of immune regulatory cells and intestinal barrier. Int J Mol Med 2020; 46:583-594. [PMID: 32468024 PMCID: PMC7307821 DOI: 10.3892/ijmm.2020.4605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
To investigate the effect of decitabine on the regulation of intestinal barrier function in mice with inflammatory bowel disease, an experimental model of colitis was established via drinking water with dextran sulfate sodium (DSS). Hematoxylin and eosin staining was used to observe the pathological changes of the colon. Cytokine production was measured by an ELISA assay. Flow cytometry was used to measure the level of regulatory T cells. Immunofluorescence, immunohistochemistry and western blot analyses detected the protein expression and distribution in colon tissue. Following the administration of decitabine, the symptoms of intestinal inflammation in the mice were significantly relieved; the expression of IL-17 was decreased, and the levels of TGF-β and IL-10 were increased. In addition, the induction of forkhead box P3 (Foxp3) in naive T cells increased the proportion of CD4+ Foxp3+ T cells in CD4+ T cells. Furthermore, decitabine increased the levels of zonular occludens-1 and occludin, and inhibited the phosphorylation of ERK1/2, JNK and p38. In conclusion, the present study suggested that decitabine could alleviate DSS-induced impaired colon barrier and the weight loss, mucus and bloody stools in mice by releasing the inhibitory factor IL-10, reducing the pro-inflammatory factor IL-17, activating CD4+ Foxp3+ T cells and inhibiting the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Chang Su
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Shaoqun Liu
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xiaotong Yang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yiou Cao
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
13
|
Lu CH, Chen CM, Ma J, Wu CJ, Chen LC, Kuo ML. DNA methyltransferase inhibitor alleviates bleomycin-induced pulmonary inflammation. Int Immunopharmacol 2020; 84:106542. [PMID: 32361570 DOI: 10.1016/j.intimp.2020.106542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) is a severe disease characterized by several inflammatory responses in the lung with high mortality. We applied a mouse model of the pulmonary inflammation induced by the intratracheal instillation of bleomycin which is widely used to induce ALI and fibrosis in animal models. We hypothesized that DNA methyltransferase inhibitor, 5-azacytidine (5-Aza), with its anti-inflammatory benefits, might attenuate bleomycin-induced ALI through the alleviation of inflammation in the lung. We quantified white blood cells with cell blood count (CBC) test, lung inflammation by analyzing cells in the collected bronchoalveolar lavage fluid (BALF) and histological analysis of the lung tissues, and gene expression levels by real-time PCR. Intratracheal administration of bleomycin in mice induced pulmonary inflammation, characterized by increased neutrophil infiltration and inflammatory cytokine expression in the lungs. Mice treated with 5-Aza showed a significant reduction of lung neutrophilia, together with lower expressions of CXCL2 and MCP-1. Furthermore, 5-Aza treatment decreased the expression of proinflammatory cytokines in the lung tissue. Collectively, our data show that DNA methyltransferase inhibitor can alleviate the lung inflammation of bleomycin-induced ALI, indicating an alternative treatment option for the inflammation-triggered lung injury.
Collapse
Affiliation(s)
- Chun-Hao Lu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Épalinges, Switzerland
| | - Chun-Ming Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jason Ma
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Jang Wu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Tost J. A translational perspective on epigenetics in allergic diseases. J Allergy Clin Immunol 2019; 142:715-726. [PMID: 30195377 DOI: 10.1016/j.jaci.2018.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/19/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
The analysis of epigenetic modifications in allergic diseases has recently attracted substantial interest because epigenetic modifications can mediate the effects of the environment on the development of or protection from allergic diseases. Furthermore, recent research has provided evidence for an altered epigenomic landscape in disease-relevant cell populations. Although still in the early phase, epigenetic modifications, particularly DNA methylation and microRNAs, might have potential for assisting in the stratification of patients for treatment and complement or replace in the future biochemical or clinical tests. The first epigenetic biomarkers correlating with the successful outcome of immunotherapy have been reported, and with personalized treatment options being rolled out, epigenetic modifications might well play a role in monitoring or even predicting the response to tailored therapy. However, further studies in larger cohorts with well-defined phenotypes in specific cell populations need to be performed before their implementation. Furthermore, the epigenome provides an interesting target for therapeutic intervention, with microRNA mimics, inhibitors, and antisense oligonucleotides being evaluated in clinical trials in patients with other diseases. Selection or engineering of populations of extracellular vesicles and epigenetic editing represent novel tools for modulation of the cellular phenotype and responses, although further technological improvements are required. Moreover, interactions between the host epigenome and the microbiome are increasingly recognized, and interventions of the microbiome could contribute to modulation of the epigenome with a potential effect on the overall goal of prevention of allergic diseases.
Collapse
Affiliation(s)
- Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France.
| |
Collapse
|
15
|
Zou Y, Hu X, Schewitz-Bowers LP, Stimpson M, Miao L, Ge X, Yang L, Li Y, Bible PW, Wen X, Li JJ, Liu Y, Lee RWJ, Wei L. The DNA Methylation Inhibitor Zebularine Controls CD4 + T Cell Mediated Intraocular Inflammation. Front Immunol 2019; 10:1950. [PMID: 31475011 PMCID: PMC6706956 DOI: 10.3389/fimmu.2019.01950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 01/13/2023] Open
Abstract
CD4+ T cell mediated uveitis is conventionally treated with systemic immunosuppressive agents, including corticosteroids and biologics targeting key inflammatory cytokines. However, their long-term utility is limited due to various side effects. Here, we investigated whether DNA methylation inhibitor zebularine can target CD4+ T cells and control intraocular inflammation. Our results showed that zebularine restrained the expression of inflammatory cytokines IFN-γ and IL-17 in both human and murine CD4+ T cells in vitro. Importantly, it also significantly alleviated intraocular inflammation and retinal tissue damage in the murine experimental autoimmune uveitis (EAU) model in vivo, suggesting that the DNA methylation inhibitor zebularine is a candidate new therapeutic agent for uveitis.
Collapse
Affiliation(s)
- Yanli Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiao Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lauren P Schewitz-Bowers
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Madeleine Stimpson
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Li Miao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Paul W Bible
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Richard W J Lee
- Translational Health Sciences, University of Bristol, Bristol, United Kingdom.,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Zakarya R, Adcock I, Oliver BG. Epigenetic impacts of maternal tobacco and e-vapour exposure on the offspring lung. Clin Epigenetics 2019; 11:32. [PMID: 30782202 PMCID: PMC6381655 DOI: 10.1186/s13148-019-0631-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
In utero exposure to tobacco products, whether maternal or environmental, have harmful effects on first neonatal and later adult respiratory outcomes. These effects have been shown to persist across subsequent generations, regardless of the offsprings' smoking habits. Established epigenetic modifications induced by in utero exposure are postulated as the mechanism underlying the inherited poor respiratory outcomes. As e-cigarette use is on the rise, their potential to induce similar functional respiratory deficits underpinned by an alteration in the foetal epigenome needs to be explored. This review will focus on the functional and epigenetic impact of in utero exposure to maternal cigarette smoke, maternal environmental tobacco smoke, environmental tobacco smoke and e-cigarette vapour on foetal respiratory outcomes.
Collapse
Affiliation(s)
- Razia Zakarya
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Ian Adcock
- Airway Diseases Section, National Heart and Lung Institute, Imperial College London, London, UK
- Biomedical Research Unit, Section of Respiratory Diseases, Royal Brompton and Harefield NHS Trust, London, UK
| | - Brian G Oliver
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.
- School of Life Sciences, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
17
|
Xie MY, Yang Y, Liu P, Luo Y, Tang SB. 5-aza-2'-deoxycytidine in the regulation of antioxidant enzymes in retinal endothelial cells and rat diabetic retina. Int J Ophthalmol 2019; 12:1-7. [PMID: 30662833 DOI: 10.18240/ijo.2019.01.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 02/08/2023] Open
Abstract
AIM To investigate the roles of a DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) in the regulation of antioxidant enzymes in diabetic retinopathy (DR) models. METHODS DNMTs expressions and activity, and changes of two key antioxidant enzymes in DR, MnSOD (encoded by SOD2 gene) and glutathione S-transferase theta 1 (GSTT1), were quantified in the isolated human retinal endothelial cells (HRECs) exposed to high glucose (HG) with or without 5-aza-dC treatment. The downstream exacerbating factors including vascular endothelial growth factor (VEGF), intercellular adhesion molecule 1 (ICAM-1) and matrix metalloproteinase 2 (MMP2), which are implicated in the pathogenesis of DR and closely related to oxidative stress were also analyzed. The key parameters were confirmed in the retina from streptozotocin (STZ) diabetic rats. RESULTS DNMTs expression and DNMT activity was induced in HRECs exposed to HG. Hyperglycemia decreased MnSOD and GSTT1 expression. 5-aza-dC administration effectively suppressed DNMTs expression and activity and reversed the MnSOD and GSTT1 expression under HG condition. VEGF, ICAM-1 and MMP2 induced by HG were also suppressed by 5-aza-dC treatment. Similar results were observed in the retina from STZ diabetic rats. CONCLUSION Our findings suggest that DNA methylation may serves as one of the mechanisms of antioxidant defense system disruption in DR progression. Modulation of DNA methylation using pharmaceutic means such as DNMT inhibitors could help maintain redox homeostasis and prevent further progression of DR.
Collapse
Affiliation(s)
- Man-Yun Xie
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yan Yang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Ping Liu
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yan Luo
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Shi-Bo Tang
- Aier School of Ophthalmology, Central South University, Changsha 410015, Hunan Province, China.,Aier Research Institute of Ophthalmology, Changsha 410015, Hunan Province, China
| |
Collapse
|
18
|
OK-432 Acts as Adjuvant to Modulate T Helper 2 Inflammatory Responses in a Murine Model of Asthma. J Immunol Res 2018; 2018:1697276. [PMID: 30402504 PMCID: PMC6196917 DOI: 10.1155/2018/1697276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022] Open
Abstract
Enhanced type 2 helper T (Th2) cell responses to inhaled harmless allergens are strongly associated with the development of allergic diseases. Antigen formulated with an appropriate adjuvant can elicit suitable systemic immunity to protect individuals from disease. Although much has been learned about Th1-favored immunomodulation of OK-432, a streptococcal preparation with antineoplastic activity, little is known about its adjuvant effect for allergic diseases. Herein, we demonstrate that OK-432 acts as an adjuvant to favor a systemic Th1 polarization with an elevation in interferon- (IFN-) γ and ovalbumin- (OVA-) immunoglobulin (Ig) G2a. Prior vaccination with OK-432 formulated against OVA attenuated lung eosinophilic inflammation and Th2 cytokine responses that were caused by challenging with OVA through the airway. This vaccination with OK-432 augmented the ratios of IFN-γ/interleukin- (IL-) 4 cytokine and IgG2a/IgG1 antibody compared to the formulation with Th2 adjuvant aluminum hydroxide (Alum) or antigen only. The results obtained in this study lead us to propose a potential novel adjuvant for clinical use such as prophylactic vaccination for pathogens and immunotherapy in atopic diseases.
Collapse
|
19
|
DNA Methyltransferase Inhibition Promotes Th1 Polarization in Human CD4 +CD25 high FOXP3 + Regulatory T Cells but Does Not Affect Their Suppressive Capacity. J Immunol Res 2018; 2018:4973964. [PMID: 29850630 PMCID: PMC5924998 DOI: 10.1155/2018/4973964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Treg) can show plasticity whereby FOXP3 expression, the master transcription factor for Treg suppressor function, is lost and proinflammatory cytokines are produced. Optimal FOXP3 expression strongly depends on hypomethylation of the FOXP3 gene. 5-Azacytidine (Aza) and its derivative 5-aza-2'-deoxycytidine (DAC) are DNA methyltransferase inhibitors (DNMTi) that are therapeutically used in hematological malignancies, which might be an attractive strategy to promote Treg stability. Previous in vitro research primarily focused on Treg induction by DAC from naïve conventional CD4+ T cells (Tconv). Here, we examined the in vitro effect of DAC on the stability and function of FACS-sorted human naturally occurring CD4+CD25high FOXP3+ Treg. We found that in vitro activation of Treg in the presence of DAC led to a significant inhibition of Treg proliferation, but not of Tconv. Although Treg activation in the presence of DAC led to increased IFNγ expression and induction of a Thelper-1 phenotype, the Treg maintained their suppressive capacity. DAC also induced a trend towards increased IL-10 expression. In vivo studies in patients with hematological malignancies that were treated with 5-azacytidine (Vidaza) supported the in vitro findings. In conclusion, despite its potential to increase IFNγ expression, DAC does preserve the suppressor phenotype of naturally occurring Treg.
Collapse
|
20
|
Freudenberg K, Lindner N, Dohnke S, Garbe AI, Schallenberg S, Kretschmer K. Critical Role of TGF-β and IL-2 Receptor Signaling in Foxp3 Induction by an Inhibitor of DNA Methylation. Front Immunol 2018; 9:125. [PMID: 29456534 PMCID: PMC5801288 DOI: 10.3389/fimmu.2018.00125] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/16/2018] [Indexed: 11/23/2022] Open
Abstract
Under physiological conditions, CD4+ regulatory T (Treg) cells expressing the transcription factor Foxp3 are generated in the thymus [thymus-derived Foxp3+ Treg (tTregs) cells] and extrathymically at peripheral sites [peripherally induced Foxp3+ Treg (pTreg) cell], and both developmental subsets play non-redundant roles in maintaining self-tolerance throughout life. In addition, a variety of experimental in vitro and in vivo modalities can extrathymically elicit a Foxp3+ Treg cell phenotype in peripheral CD4+Foxp3− T cells, which has attracted much interest as an approach toward cell-based therapy in clinical settings of undesired immune responses. A particularly notable example is the in vitro induction of Foxp3 expression and Treg cell activity (iTreg cells) in initially naive CD4+Foxp3− T cells through T cell receptor (TCR) and IL-2R ligation, in the presence of exogenous TGF-β. Clinical application of Foxp3+ iTreg cells has been hampered by the fact that TGF-β-driven Foxp3 induction is not sufficient to fully recapitulate the epigenetic and transcriptional signature of in vivo induced Foxp3+ tTreg and pTreg cells, which includes the failure to imprint iTreg cells with stable Foxp3 expression. This hurdle can be potentially overcome by pharmacological interference with DNA methyltransferase activity and CpG methylation [e.g., by the cytosine nucleoside analog 5-aza-2′-deoxycytidine (5-aza-dC)] to stabilize TGF-β-induced Foxp3 expression and to promote a Foxp3+ iTreg cell phenotype even in the absence of added TGF-β. However, the molecular mechanisms of 5-aza-dC-mediated Foxp3+ iTreg cell generation have remained incompletely understood. Here, we show that in the absence of exogenously added TGF-β and IL-2, efficient 5-aza-dC-mediated Foxp3+ iTreg cell generation from TCR-stimulated CD4+Foxp3− T cells is critically dependent on TGF-βR and IL-2R signaling and that this process is driven by TGF-β and IL-2, which could either be FCS derived or produced by T cells on TCR stimulation. Overall, these findings contribute to our understanding of the molecular mechanisms underlying the process of Foxp3 induction and may provide a rational basis for generating phenotypically and functionally stable iTreg cells.
Collapse
Affiliation(s)
- Kristin Freudenberg
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Nadja Lindner
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Sebastian Dohnke
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany.,Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Annette I Garbe
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Sonja Schallenberg
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Hospital and Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
21
|
Ratemi E, Sultana Shaik A, Al Faraj A, Halwani R. Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine. Clin Exp Allergy 2017; 46:1033-42. [PMID: 27404025 DOI: 10.1111/cea.12771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite the various treatment options and international guidelines currently available for the appropriate therapeutic management of asthma, a large population of patients with asthma continues to have poorly controlled disease. There is therefore a need for novel approaches to achieve better asthma control, especially for severe asthmatics. This review discusses the use of nanoparticles for the specific targeting of inflammatory pathways as a promising approach for the effective control of severe persistent asthma as well as other chronic inflammatory diseases.
Collapse
Affiliation(s)
- E Ratemi
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| | - A Sultana Shaik
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - A Al Faraj
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - R Halwani
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Chan CC, Lai CW, Wu CJ, Chen LC, Tao MH, Kuo ML. Liver-Specific Allergen Gene Transfer by Adeno-Associated Virus Suppresses Allergic Airway Inflammation in Mice. Hum Gene Ther 2017; 27:631-42. [PMID: 27178525 DOI: 10.1089/hum.2015.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, eosinophilic infiltration, and elevated IgE production. Various novel strategies for managing asthma have been explored, such as DNA vaccines, T-cell peptides, and allergen-specific immunotherapy. A principal goal of most immunotherapeutic approaches is active and long-term allergen-specific tolerance. Liver-specific gene transfer using adeno-associated virus (AAV) has been shown to favorably induce tolerogenic responses to therapeutic products in various experimental models. AAV8 has strong liver tropism and induces immune tolerance in mice. The present study aimed to determine whether hepatocyte-specific allergen expression by pseudotyped AAV2/8 alleviates asthmatic symptoms in ovalbumin (OVA)-sensitized mice. Mice were intravenously injected with AAV2/8 vector carrying membrane-bound OVA transgene under transcriptional control of a hepatocyte-specific alpha 1 antitrypsin promoter (AAV2/8-OVA) and then sensitized with OVA. AAV2/8-OVA specifically transduced the OVA transgene in the liver. Airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and Th2 cytokines were significantly suppressed in both the lungs and secondary lymphoid organs of asthmatic mice infected with AAV2/8-OVA. Significant reduction of OVA-specific antibodies was detected in the bronchoalveolar lavage fluid from AAV2/8-OVA-treated mice. Moreover, AAV2/8-OVA treatment prominently promoted the expression of Foxp3, IL-10, and TGF-β in the liver. Enhanced Foxp3 expression was also detected in the lungs of asthmatic mice after AAV2/8-OVA treatment. Taken together, these results suggest that the induction of immune tolerance by hepatic AAV gene transfer may be beneficial for modulating allergic asthma.
Collapse
Affiliation(s)
- Cheng-Chi Chan
- 1 Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan, Taiwan
| | - Chin-Wen Lai
- 2 Institute of Biomedical Sciences , Academia Sinica, Taipei, Taiwan .,3 Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University , Taoyuan, Taiwan
| | - Chia-Jen Wu
- 2 Institute of Biomedical Sciences , Academia Sinica, Taipei, Taiwan
| | - Li-Chen Chen
- 4 Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital , Taoyuan, Taiwan
| | - Mi-Hua Tao
- 2 Institute of Biomedical Sciences , Academia Sinica, Taipei, Taiwan
| | - Ming-Ling Kuo
- 1 Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan, Taiwan .,4 Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital , Taoyuan, Taiwan .,5 Department of Microbiology and Immunology, College of Medicine, Chang Gung University , Taoyuan, Taiwan .,6 Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University , Taoyuan, Taiwan
| |
Collapse
|
23
|
Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics 2017; 9:539-571. [PMID: 28322581 DOI: 10.2217/epi-2016-0162] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Allergic diseases are on the rise in the Western world and well-known allergy-protecting and -driving factors such as microbial and dietary exposure, pollution and smoking mediate their influence through alterations of the epigenetic landscape. Here, we review key facts on the involvement of epigenetic modifications in allergic diseases and summarize and critically evaluate the lessons learned from epigenome-wide association studies. We show the potential of epigenetic changes for various clinical applications: as diagnostic tools, to assess tolerance following immunotherapy or possibly predict the success of therapy at an early time point. Furthermore, new technological advances such as epigenome editing and DNAzymes will allow targeted alterations of the epigenome in the future and provide novel therapeutic tools.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL).,John Paul II Hospital, Krakow, Poland
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co KG, Planegg, Germany
| | - Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
24
|
Azacytidine Treatment Inhibits the Progression of Herpes Stromal Keratitis by Enhancing Regulatory T Cell Function. J Virol 2017; 91:JVI.02367-16. [PMID: 28100624 DOI: 10.1128/jvi.02367-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/12/2017] [Indexed: 01/07/2023] Open
Abstract
Ocular infection with herpes simplex virus 1 (HSV-1) sets off an inflammatory reaction in the cornea which leads to both virus clearance and chronic lesions that are orchestrated by CD4 T cells. Approaches that enhance the function of regulatory T cells (Treg) and dampen effector T cells can be effective to limit stromal keratitis (SK) lesion severity. In this report, we explore the novel approach of inhibiting DNA methyltransferase activity using 5-azacytidine (Aza; a cytosine analog) to limit HSV-1-induced ocular lesions. We show that therapy begun after infection when virus was no longer actively replicating resulted in a pronounced reduction in lesion severity, with markedly diminished numbers of T cells and nonlymphoid inflammatory cells, along with reduced cytokine mediators. The remaining inflammatory reactions had a change in the ratio of CD4 Foxp3+ Treg to effector Th1 CD4 T cells in ocular lesions and lymphoid tissues, with Treg becoming predominant over the effectors. In addition, compared to those from control mice, Treg from Aza-treated mice showed more suppressor activity in vitro and expressed higher levels of activation molecules. Additionally, cells induced in vitro in the presence of Aza showed epigenetic differences in the Treg-specific demethylated region (TSDR) of Foxp3 and were more stable when exposed to inflammatory cytokines. Our results show that therapy with Aza is an effective means of controlling a virus-induced inflammatory reaction and may act mainly by the effects on Treg.IMPORTANCE HSV-1 infection has been shown to initiate an inflammatory reaction in the cornea that leads to tissue damage and loss of vision. The inflammatory reaction is orchestrated by gamma interferon (IFN-γ)-secreting Th1 cells, and regulatory T cells play a protective role. Hence, novel therapeutics that can rebalance the ratio of regulatory T cells to effectors are a relevant issue. This study opens up a new avenue in treating HSV-induced SK lesions by increasing the stability and function of regulatory T cells using the DNA methyltransferase inhibitor 5-azacytidine (Aza). Aza increased the function of regulatory T cells, leading to enhanced suppressive activity and diminished lesions. Hence, therapy with Aza, which acts mainly by its effects on Treg, can be an effective means to control virus-induced inflammatory lesions.
Collapse
|
25
|
Abstract
Historically, eosinophils have been considered as end-stage cells involved in host protection against parasitic infection and in the mechanisms of hypersensitivity. However, later studies have shown that this multifunctional cell is also capable of producing immunoregulatory cytokines and soluble mediators and is involved in tissue homeostasis and modulation of innate and adaptive immune responses. In this review, we summarize the biology of eosinophils, including the function and molecular mechanisms of their granule proteins, cell surface markers, mediators, and pathways, and present comprehensive reviews of research updates on the genetics and epigenetics of eosinophils. We describe recent advances in the development of epigenetics of eosinophil-related diseases, especially in asthma. Likewise, recent studies have provided us with a more complete appreciation of how eosinophils contribute to the pathogenesis of various diseases, including hypereosinophilic syndrome (HES). Over the past decades, the definition and criteria of HES have been evolving with the progress of our understanding of the disease and some aspects of this disease still remain controversial. We also review recent updates on the genetic and molecular mechanisms of HES, which have spurred dramatic developments in the clinical strategies of diagnosis and treatment for this heterogeneous group of diseases. The conclusion from this review is that the biology of eosinophils provides significant insights as to their roles in health and disease and, furthermore, demonstrates that a better understanding of eosinophil will accelerate the development of new therapeutic strategies for patients.
Collapse
|
26
|
Lu CH, Wu CJ, Chan CC, Nguyen DT, Lin KR, Lin SJ, Chen LC, Yen JJY, Kuo ML. DNA Methyltransferase Inhibitor Promotes Human CD4 +CD25 hFOXP3 + Regulatory T Lymphocyte Induction under Suboptimal TCR Stimulation. Front Immunol 2016; 7:488. [PMID: 27877174 PMCID: PMC5099256 DOI: 10.3389/fimmu.2016.00488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/24/2016] [Indexed: 01/13/2023] Open
Abstract
The “master transcription factor” FOXP3 regulates the differentiation, homeostasis, and suppressor function of CD4+ regulatory T (Treg) cells, which are critical in maintaining immune tolerance. Epigenetic regulation of FOXP3 expression has been demonstrated to be important to Treg cell development, but the induction of human Treg cells through epigenetic modification has not been clearly described. We report that the combination of the DNA methyltransferase inhibitor 5-azacytidine (5-Aza) and suboptimal T cell receptor (TCR) stimulation promoted CD4+CD25hFOXP3+ T cell induction from human CD4+CD25− T cells. 5-Aza treatment enhanced the expression of Treg cell signature genes, such as CD25, FOXP3, CTLA-4, and GITR, in CD4+CD25h cells. Moreover, 5-Aza-treated CD4+CD25h T cells showed potent suppressive activity in a cell contact-dependent manner and reduced methylation in the Treg-specific demethylated region (TSDR) in the FOXP3 gene. The analysis of cytokine production revealed that CD4+CD25− T cells with 5-Aza treatment produced comparable levels of interferon (IFN)-γ and transforming growth factor (TGF)-β, but less IL-10 and more IL-2, when compared to cells without 5-Aza treatment. The increased IL-2 was indispensible to the enhanced FOXP3 expression in 5-Aza-treated CD4+CD25h cells. Finally, 5-Aza-treated CD4+CD25h T cells could be expanded with IL-2 supplementation alone and maintained FOXP3 expression and suppressor function through the expansion. Our findings demonstrate that DNA demethylation can enhance the induction of human Treg cells and promise to solve one of the challenges with using Treg cells in therapeutic approaches.
Collapse
Affiliation(s)
- Chun-Hao Lu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Cheng-Jang Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Cheng-Chi Chan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Duc T Nguyen
- Division of Biological Sciences, University of California San Diego , La Jolla, CA , USA
| | - Kuo-Ray Lin
- Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - Syh-Jae Lin
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Li-Chen Chen
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | | | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
27
|
|
28
|
Kratzer B, Pickl WF. Years in Review: Recent Progress in Cellular Allergology. Int Arch Allergy Immunol 2016; 169:1-12. [PMID: 26953825 PMCID: PMC7058417 DOI: 10.1159/000444753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This review highlights the recent key advances in the biology of CD4+ effector T cells, antigen-presenting cells, Th17 and T regulatory cells, as well as immediate effector cells, such as mast cells, basophils and eosinophils, which are critically contributing to the better understanding of the pathophysiology of allergic diseases and are helping to improve their diagnosis and therapy. Some of the key advances with a direct impact on allergic asthma research and treatment are summarized.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
29
|
Genetic and epigenetic studies of FOXP3 in asthma and allergy. Asthma Res Pract 2015; 1:10. [PMID: 27965764 PMCID: PMC5142332 DOI: 10.1186/s40733-015-0012-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022] Open
Abstract
Multiple factors interact to trigger allergic diseases, including individual genetic background and factors related to the environment such as exposure to allergens, air pollution and respiratory infections. The FOXP3 transcription factor is constitutively expressed in CD4+CD25+FOXP3+ regulatory T cells (Tregs) and is critical for the maintenance of immune homeostasis. For example, FOXP3 is responsible for the suppression of the Th2 response following exposure to allergens. Studies have shown that expression of the FOXP3 gene is reduced in patients with asthma and allergies compared to healthy controls. Therefore, the impairment of FOXP3 function caused by genetic polymorphisms and/or epigenetic mechanisms may be involved in the etiology of asthma and other allergic diseases. This review discusses some aspects of the role of FOXP3 in the development of asthma and allergy, with a particular emphasis on genetic and epigenetic factors.
Collapse
|
30
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disorder with no effective treatment and a prognosis worse than that of lung cancer. Despite extensive research efforts, its etiology and pathogenesis still remain largely unknown. Current experimental evidence has shifted the disease paradigm from chronic inflammation towards the premise of abnormal epithelial wound repair in response to repeated epigenetic injurious stimuli in genetically predisposed individuals. Epigenetics is defined as the study of heritable changes in gene function by factors other than an individual's DNA sequence, providing valuable information regarding adaption of genes to environmental changes. Although cancer is the most studied disease with relevance to epigenetic modifications, recent data support the idea that epigenomic alterations may lead to variable disease phenotypes, including fibroproliferative lung disorders such as IPF. This review article summarizes the latest experimental and translational epigenetic studies in the research field of chronic lung disorders, mainly focusing on IPF, highlights current methodology limitations, and underlines future directions and perspectives.
Collapse
Affiliation(s)
- Argyrios Tzouvelekis
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, 300 Cedar St., TAC-441 South, P.O. Box 208057, New Haven, CT 06520, USA
| | | |
Collapse
|
31
|
Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther 2014; 147:91-110. [PMID: 25448041 DOI: 10.1016/j.pharmthera.2014.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022]
Abstract
In spite of substantial advances in defining the immunobiology and function of structural cells in lung diseases there is still insufficient knowledge to develop fundamentally new classes of drugs to treat many lung diseases. For example, there is a compelling need for new therapeutic approaches to address severe persistent asthma that is insensitive to inhaled corticosteroids. Although the prevalence of steroid-resistant asthma is 5-10%, severe asthmatics require a disproportionate level of health care spending and constitute a majority of fatal asthma episodes. None of the established drug therapies including long-acting beta agonists or inhaled corticosteroids reverse established airway remodeling. Obstructive airways remodeling in patients with chronic obstructive pulmonary disease (COPD), restrictive remodeling in idiopathic pulmonary fibrosis (IPF) and occlusive vascular remodeling in pulmonary hypertension are similarly unresponsive to current drug therapy. Therefore, drugs are needed to achieve long-acting suppression and reversal of pathological airway and vascular remodeling. Novel drug classes are emerging from advances in epigenetics. Novel mechanisms are emerging by which cells adapt to environmental cues, which include changes in DNA methylation, histone modifications and regulation of transcription and translation by noncoding RNAs. In this review we will summarize current epigenetic approaches being applied to preclinical drug development addressing important therapeutic challenges in lung diseases. These challenges are being addressed by advances in lung delivery of oligonucleotides and small molecules that modify the histone code, DNA methylation patterns and miRNA function.
Collapse
Affiliation(s)
- Brian S Comer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Mariam Ba
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
32
|
Thangavel J, Malik AB, Elias HK, Rajasingh S, Simpson AD, Sundivakkam PK, Vogel SM, Xuan YT, Dawn B, Rajasingh J. Combinatorial therapy with acetylation and methylation modifiers attenuates lung vascular hyperpermeability in endotoxemia-induced mouse inflammatory lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2237-49. [PMID: 24929240 PMCID: PMC4116699 DOI: 10.1016/j.ajpath.2014.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/21/2014] [Accepted: 05/13/2014] [Indexed: 01/11/2023]
Abstract
Impairment of tissue fluid homeostasis and migration of inflammatory cells across the vascular endothelial barrier are crucial factors in the pathogenesis of acute lung injury (ALI). The goal for treatment of ALI is to target pathways that lead to profound dysregulation of the lung endothelial barrier. Although studies have shown that chemical epigenetic modifiers can limit lung inflammation in experimental ALI models, studies to date have not examined efficacy of a combination of DNA methyl transferase inhibitor 5-Aza 2-deoxycytidine and histone deacetylase inhibitor trichostatin A (herein referred to as Aza+TSA) after endotoxemia-induced mouse lung injury. We tested the hypothesis that treatment with Aza+TSA after lipopolysaccharide induction of ALI through epigenetic modification of lung endothelial cells prevents inflammatory lung injury. Combinatorial treatment with Aza+TSA mitigated the increased endothelial permeability response after lipopolysaccharide challenge. In addition, we observed reduced lung inflammation and lung injury. Aza+TSA also significantly reduced mortality in the ALI model. The protection was ascribed to inhibition of the eNOS-Cav1-MLC2 signaling pathway and enhanced acetylation of histone markers on the vascular endothelial-cadherin promoter. In summary, these data show for the first time the efficacy of combinatorial Aza+TSA therapy in preventing ALI in lipopolysaccharide-induced endotoxemia and raise the possibility of an essential role of DNA methyl transferase and histone deacetylase in the mechanism of ALI.
Collapse
Affiliation(s)
- Jayakumar Thangavel
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Harold K Elias
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Sheeja Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew D Simpson
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Stephen M Vogel
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Yu-Ting Xuan
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Johnson Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas; Department of Biochemistry and Molecular Biology, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
33
|
Abstract
Immune-mediated pulmonary diseases are a group of diseases that resulted from immune imbalance initiated by allergens or of unknown causes. Inflammatory responses without restrictions cause tissue damage and remodeling, which leads to airway hyperactivity, destruction of alveolar architecture, and a resultant loss of lung function. Epigenetic mechanisms have been demonstrated to be involved in inflammation, autoimmunity, and cancer. Recent studies have identified that epigenetic changes also regulate molecular pathways in immune-mediated lung diseases. Aberrant DNA methylation status, dysregulation of histone modifications, as well as altered microRNAs expression could change transcription activity of genes involved in the development of immune-mediated pulmonary diseases, which contributes to skewed differentiation of T cells and proliferation and activation of myofibroblasts, leading to overproduction of inflammatory cytokines and excessive accumulation of extracellular matrix, respectively. Aside from this, epigenetics also explains how environmental exposure influence on gene transcription without genetic changes. It acts as a mediator of the interaction between environmental factors and genetic factors. Identification of the abnormal epigenetic marks in diseases provides novel biomarkers for prediction and diagnosis and affords novel therapeutic targets for those difficult clinical problems, such as steroid-resistance and rapidly progressing fibrosis. In this review, we summarized the latest experimental and translational epigenetic studies in immune-mediated pulmonary diseases, including asthma, idiopathic pulmonary fibrosis, tuberculosis, sarcoidosis, and silicosis.
Collapse
|
34
|
Wang YY, Wang Q, Sun XH, Liu RZ, Shu Y, Kanekura T, Huang JH, Li YP, Wang JC, Zhao M, Lu QJ, Xiao R. DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br J Dermatol 2014; 171:39-47. [PMID: 24641670 DOI: 10.1111/bjd.12913] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a complex autoimmune disease that involves dysregulation of immune homeostasis. The failure of impaired regulatory T cells (Tregs) to maintain immune homeostasis plays a major role in the development of SSc. Transcriptional silencing of the forkhead box protein 3 gene (FOXP3) via hypermethylation of regulatory regions has been identified as a hallmark of committed Tregs and several autoimmune disorders. OBJECTIVES To investigate whether aberrant expression and methylation of FOXP3 occurs in CD4+ T cells of patients with SSc and their roles in the pathogenesis of SSc. METHODS FOXP3 expression in CD4+ T cells was measured by real-time quantitative reverse-itranscriptase polymerase chain reaction and western blot. Bisulfite sequencing was performed to determine the methylation status of the FOXP3 proximal promoter sequence. The percentage of Treg cells was estimated by flow cytometry. RESULTS Decreased FOXP3 expression was observed in CD4+ T cells from patients with SSc. The methylation levels of the FOXP3 regulatory sequences were elevated and inversely correlated with FOXP3 mRNA expression in patients with SSc. The number of Tregs was significantly reduced in patients with SSc. Treatment of SSc CD4+ T cells with a DNA methylation inhibitor, 5-azacytidine, reduced the mean methylation levels, and enhanced FOXP3 expression and Treg generation. The promoter methylation status and expression level of FOXP3 are significantly associated with disease activity. CONCLUSIONS The contribution of the hypermethylation of the FOXP3 promoter to decreased FOXP3 expression and the subsequent quantitative defects of Tregs may mediate the immune dysfunction in SSc.
Collapse
Affiliation(s)
- Y Y Wang
- Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Ren-Min Road, Changsha, 410011, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gurram RK, Kujur W, Maurya SK, Agrewala JN. Caerulomycin A enhances transforming growth factor-β (TGF-β)-Smad3 protein signaling by suppressing interferon-γ (IFN-γ)-signal transducer and activator of transcription 1 (STAT1) protein signaling to expand regulatory T cells (Tregs). J Biol Chem 2014; 289:17515-28. [PMID: 24811173 DOI: 10.1074/jbc.m113.545871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytokines play a very important role in the regulation of immune homeostasis. Regulatory T cells (Tregs) responsible for the generation of peripheral tolerance are under the tight regulation of the cytokine milieu. In this study, we report a novel role of a bipyridyl compound, Caerulomycin A (CaeA), in inducing the generation of Tregs. It was observed that CaeA substantially up-regulated the pool of Tregs, as evidenced by an increased frequency of CD4(+) Foxp3(+) cells. In addition, CaeA significantly suppressed the number of Th1 and Th17 cells, as supported by a decreased percentage of CD4(+)/IFN-γ(+) and CD4(+)/IL-17(+) cells, respectively. Furthermore, we established the mechanism and observed that CaeA interfered with IFN-γ-induced STAT1 signaling by augmenting SOCS1 expression. An increase in the TGF-β-mediated Smad3 activity was also noted. Furthermore, CaeA rescued Tregs from IFN-γ-induced inhibition. These results were corroborated by blocking Smad3 activity, which abolished the CaeA-facilitated generation of Tregs. In essence, our results indicate a novel role of CaeA in inducing the generation of Tregs. This finding suggests that CaeA has enough potential to be considered as a potent future drug for the treatment of autoimmunity.
Collapse
Affiliation(s)
- Rama Krishna Gurram
- From the Immunology Laboratory, Institute of Microbial Technology (Council of Scientific and Industrial Research), Chandigarh 160036, India
| | - Weshely Kujur
- From the Immunology Laboratory, Institute of Microbial Technology (Council of Scientific and Industrial Research), Chandigarh 160036, India
| | - Sudeep K Maurya
- From the Immunology Laboratory, Institute of Microbial Technology (Council of Scientific and Industrial Research), Chandigarh 160036, India
| | - Javed N Agrewala
- From the Immunology Laboratory, Institute of Microbial Technology (Council of Scientific and Industrial Research), Chandigarh 160036, India
| |
Collapse
|
36
|
de Planell-Saguer M, Lovinsky-Desir S, Miller RL. Epigenetic regulation: the interface between prenatal and early-life exposure and asthma susceptibility. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:231-43. [PMID: 24323745 PMCID: PMC4148423 DOI: 10.1002/em.21836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 05/10/2023]
Abstract
Asthma is a complex disease with genetic and environmental influences and emerging evidence suggests that epigenetic regulation is also a major contributor. Here, we focus on the developing paradigm that epigenetic dysregulation in asthma and allergy may start as early as in utero following several environmental exposures. We summarize the pathways important to the allergic immune response that are epigenetically regulated, the key environmental exposures associated with epigenetic changes in asthma genes, and newly identified epigenetic biomarkers that have been linked to clinical asthma. We conclude with a brief discussion about the potential to apply newly developing technologies in epigenetics to the diagnosis and treatment of asthma and allergy. The inherent plasticity of epigenetic regulation following environmental exposures offers opportunities for prevention using environmental remediation, measuring novel biomarkers for early identification of those at risk, and applying advances in pharmaco-epigenetics to tailor medical therapies that maximize efficacy of treatment. 'Precision Medicine' in asthma and allergy is arriving. As the field advances this may involve an individually tailored approach to the prevention, early detection, and treatment of disease based on the knowledge of an individual's epigenetic profile.
Collapse
Affiliation(s)
- Mariangels de Planell-Saguer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Rachel L. Miller
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, College of Physicians and Surgeons, New York, New York
- Correspondence to: Rachel L. Miller, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, PH8E-101B; 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|