1
|
Li G, Yang Q, Luo K, Xu A, Hou L, Li Z, Du L. Astragaloside IV Protects against Shear Stress-Induced Glycocalyx Damage and Alleviates Abdominal Aortic Aneurysm by Regulating miR-17-3p/Syndecan-1. Anal Cell Pathol (Amst) 2024; 2024:2348336. [PMID: 39290461 PMCID: PMC11407896 DOI: 10.1155/2024/2348336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 09/19/2024] Open
Abstract
Background The present study aimed to analyze the impact of astragaloside IV (AS-IV) on abdominal aortic aneurysm (AAA) and the glycocalyx, elucidating the potential mechanism of AS-IV. Methods Rat models of AAA were established using porcine pancreatic elastase. The effects of intraperitoneal AS-IV injection on the morphology, diameter, and glycocalyx of the aorta and the expression of miR-17-3p and Syndecan-1 (SDC1) protein were examined. Differentially expressed miRNAs from peripheral blood samples of healthy individuals, untreated patients with AAA, and treated patients with AAA were identified through sequencing. The relationship between miR-17-3p and SDC1 was validated using a dual-luciferase reporter assay. In vitro, shear stress was induced in human aortic endothelial cells (HAECs) to simulate AAA. Overexpression of miR-17-3p was performed to assess the effects of AS-IV on miR-17-3p and SDC1 expressions, apoptosis, and glycocalyx in HAECs. Results AS-IV mitigated aortic damage in AAA rats, reducing the aortic diameter and alleviating glycocalyx damage. In addition, it suppressed the increase in miR-17-3p expression and promoted SDC1 expression in AAA rats. Peripheral blood miR-17-3p levels were significantly higher in patients with AAA than in healthy individuals. miR-17-3p inhibited the SDC1 protein expression in HAECs. In the in vitro AAA environment, miR-17-3p was upregulated and SDC1 was downregulated in HAECs. AS-IV inhibited miR-17-3p expression, promoted SDC1 expression, and mitigated shear stress-induced apoptosis and glycocalyx damage in HAECs. Overexpression of miR-17-3p blocked AS-IV-induced SDC1 expression promotion, glycocalyx protection, and apoptosis suppression in HAECs. Conclusion miR-17-3p may damage the glycocalyx of aortic endothelial cells by targeting SDC1. AS-IV may promote SDC1 expression by inhibiting miR-17-3p, thereby protecting the glycocalyx and alleviating AAA.
Collapse
Affiliation(s)
- Guojian Li
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Qionghui Yang
- Department of Pharmaceutical Sciences, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Kaikai Luo
- Department of Vascular Medicine, People's Hospital of Hekou Yao Autonomous County, Kunming, China
| | - Ankou Xu
- Department of Vascular Medicine, People's Hospital of Hekou Yao Autonomous County, Kunming, China
| | - Lijuan Hou
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Zhaoxiang Li
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Lingjuan Du
- Department of Vascular Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227:153618. [PMID: 34649056 DOI: 10.1016/j.prp.2021.153618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a drastic renal complication of type 1 and type 2 diabetes mellitus (DM). Poorly controlled DM over the years, may disrupt kidneys' blood vessels, leading to the hypertension (HTN) and DN onset. During DN, kidneys' waste filtering ability becomes disturbed. Being on a healthy lifestyle and controlling both DM and HTN are now the best proceedings to prevent or at least delay DN occurrence. Unfortunately, about one-fourth of diabetic individuals eventually experience the corresponding renal failure, and thus it is critical to discover effective diagnostic biomarkers and therapeutic strategies to combat DN. In the past few years, circular RNAs (circRNAs), as covalently closed endogenous non-coding RNAs (ncRNAs), are believed to affect DN pathogenesis in a positive manner. CircRNAs are able to impact different cellular processes and signaling pathways by targeting biological molecules or various molecular mechanisms. Still, as a key regulatory axis, circRNAs can select miRNAs as their molecular targets, in which they are considered as miRNA sponges. In this way, circRNA-induced suppression of particular miRNAs may prevent from DN progression or promotes the DN elimination. Since the expression of circRNAs has also been reported to be increased in DN-associated cells and tissues, they can be employed as either diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marziyeh Salami
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran; Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Mao Y, Lv M, Cao W, Liu X, Cui J, Wang Y, Wang Y, Nie G, Liu X, Wang H. Circular RNA 000554 represses epithelial-mesenchymal transition in breast cancer by regulating microRNA-182/ZFP36 axis. FASEB J 2020; 34:11405-11420. [PMID: 32729957 DOI: 10.1096/fj.201903047r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Increasing evidence indicates that circular RNAs (circRNAs) play a crucial role in regulating microRNAs (miRs) and mRNAs during breast cancer (BC) progression. Based on the in silico analysis of circRNA/miR/mRNA in BC, we aim to define an important role of circRNA_000554 in BC in relation to miR-182 and zinc finger protein 36 (ZFP36). Low expression of circRNA_000554 and ZFP36, and high miR-182 expression were determined in the clinical BC tissues. CircRNA_000554 acted as a sponge of miR-182, and miR-182 directly targeted ZFP36. After that, in order to evaluate the effects of circRNA_000554, miR-182, and ZFP36 on cellular process, we evaluated in vitro epithelial-mesenchymal transition (EMT) and in vivo tumor growth after delivering a series of overexpression plasmids, mimic, inhibitor, or shRNAs into BC cells. Increasing circRNA_000554 suppressed EMT, cell invasion and migration during BC by depleting miR-182 and increasing ZFP36. The inhibitory effect of circRNA_000554 on tumor growth was validated in vivo. Taken together, the present study confirms that circRNA_000554 functioned as an inhibitor of EMT in BC and suggests a molecular mechanism that circRNA_000554 bound to miR-182 to upregulate ZFP36 in this process.
Collapse
Affiliation(s)
- Yan Mao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Meng Lv
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Weihong Cao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xiaoyi Liu
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Jian Cui
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yongmei Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yuanyuan Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Gang Nie
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xiangping Liu
- Central Laboratory of Molecular Biology, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Haibo Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
4
|
Fang H, Yang M, Pan Q, Jin HL, Li HF, Wang RR, Wang QY, Zhang JP. MicroRNA-22-3p alleviates spinal cord ischemia/reperfusion injury by modulating M2 macrophage polarization via IRF5. J Neurochem 2020; 156:106-120. [PMID: 32406529 DOI: 10.1111/jnc.15042] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
Cell death after spinal cord ischemia/reperfusion (I/R) can occur through necrosis, apoptosis, and autophagy, resulting in changes to the immune environment. However, the molecular mechanism of this immune regulation is not clear. Accumulating evidence indicates that microRNAs (miRs) play a crucial role in the pathogenesis of spinal cord I/R injury. Here, we hypothesized miR-22-3p may be involved in spinal cord I/R injury by interacting with interferon regulatory factor (IRF) 5. Rat models of spinal cord I/R injury were established by 12-min occlusion of the aortic arch followed by 48-hr reperfusion, with L4-6 segments of spinal cord tissues collected. MiR-22-3p agomir, a lentivirus-delivered siRNA specific for IRF5, or a lentivirus expressing wild-type IRF5 was injected intrathecally to rats with I/R injury to evaluate the effects of miR-22-3p and IRF5 on hindlimb motor function. Macrophages isolated from rats were treated with miR-22-3p mimic or siRNA specific for IRF5 to evaluate their effects on macrophage polarization. The levels of IL-1β and TNF-α in spinal cord tissues were detected by ELISA. miR-22-3p was down-regulated, whereas IRF5 was up-regulated in rat spinal cord tissues following I/R. IRF5 was a target gene of miR-22-3p and could be negatively regulated by miR-22-3p. Silencing IRF5 or over-expressing miR-22-3p relieved inflammation, elevated Tarlov score, and reduced the degree of severity of spinal cord I/R injury. Increased miR-22-3p facilitated M2 polarization of macrophages and inhibited inflammation in tissues by inhibiting IRF5, thereby attenuating spinal cord I/R injury. Taken together, these results demonstrate that increased miR-22-3p can inhibit the progression of spinal cord I/R injury by repressing IRF5 in macrophages, highlighting the discovery of a promising new target for spinal cord I/R injury treatment.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Qin Pan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Hon-Ling Jin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Ru-Rong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Quan-Yun Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, P.R. China.,Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, P.R. China.,Laboratory of Anesthesiology and Perioperative Medicine, Guizhou University School of Medicine, Guiyang, P.R. China
| |
Collapse
|
5
|
Duan B, Shi S, Yue H, You B, Shan Y, Zhu Z, Bao L, You Y. Exosomal miR-17-5p promotes angiogenesis in nasopharyngeal carcinoma via targeting BAMBI. J Cancer 2019; 10:6681-6692. [PMID: 31777597 PMCID: PMC6856889 DOI: 10.7150/jca.30757] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
Objective: The purpose of our study is to investigate the role of miR-17-5p in angiogenesis of nasopharyngeal carcinoma and the crosstalk between HUVECs and CNE-2 via exosomes. Methods: Firstly, flow cytometry, cell viability assay, transwell assay, and tube formation were used to explore the role of miR-17-5p in angiogenesis. Then zebrafish model was used to confirm effects of miR-17-5p on angiogenesis. qRT-PCR analysis and Immunofluorescence assay were used to explore the expression of miR-17-5p in NPC tissues and cells compared to the normal control. Besides, in vitro assays were used to analyze the biological functions of miR-17-5p in NPC. What's more, in vitro and in vivo assays were used to detect the function of exosomal miR-17-5p in angiogenesis. Finally, luciferase reporter assay and western bolt were used to determine the relationship between miR-17-5p and BAMBI. Results: We observed that high expression of miR-17-5p promoted angiogenesis in NPC. Also, high expression of miR-17-5p promoted the NPC cells proliferation and migration. To know whether there's any communication between HUVECs and NPC cells, exosomes derived from CNE-2 cells were collected. Further results showed that exosomal miR-17-5p secreted from NPC promoted the angiogenesis. What's more, in vitro assays revealed that miR-17-5p targets BAMBI and regulates AKT/VEGF-A signaling. Conclusions: Our study showed that exosomal miR-17-5p derived from NPC cells promotes angiogenesis via targeting BAMBI and regulates AKT/VEGF-A signaling.
Collapse
Affiliation(s)
- Bingyue Duan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Si Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Huijun Yue
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Shan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ziyu Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lili Bao
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Glucose impairs angiogenesis and promotes ventricular remodelling following myocardial infarction via upregulation of microRNA-17. Exp Cell Res 2019; 381:191-200. [DOI: 10.1016/j.yexcr.2019.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
|
7
|
Xia F, Sun JJ, Jiang YQ, Li CF. MicroRNA-384-3p inhibits retinal neovascularization through targeting hexokinase 2 in mice with diabetic retinopathy. J Cell Physiol 2018; 234:721-730. [PMID: 30191948 DOI: 10.1002/jcp.26871] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/23/2018] [Indexed: 01/18/2023]
Abstract
Diabetic retinopathy (DR) presents a microvascular complication of diabetes, which may contribute to visual impairment. The treatment of DR is still controversial. Accumulating studies have reported the role of microRNAs (miRs) in DR. This study aims to explore the functions of microRNA-384-3p (miR-384-3p) in retinal neovascularization by targeting hexokinase 2 (HK2) in mice with DR. A total of 43 C57BL/6 male mice were selected and divided into normal ( n = 16) and DR ( n = 27) groups. Retinal microvascular endothelial cells (RMECs) were collected from the normal and DR mice and mainly treated with a miR-384-3p mimic, a miR-384-3p inhibitor, small interfering RNA (siRNA) against HK2 and HK2 overexpression plasmids to understand the underlying regulatory mechanisms of miR-384-3p. The relationship between miR-384-3p and HK2 was determined by dual-luciferase reporter assay. The miR-384-3p expression and the mRNA and the protein expressions of HK2 and CD31 in retinal tissues and cells were evaluated using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Cell proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Tube formation was observed by conducting a tube formation experiment. HK2 is a target gene of miR-384-3p. The DR mice showed higher expression of HK2 and CD31 but lower expression of miR-384-3p. The miR-384-3p mimic and siRNA-HK2 reduced the expression of HK2, decreased cell proliferation and tube formation of RMECs, whereas the miR-384-3p inhibitor could reverse these trends. Our study demonstrates that overexpression of miR-384-3p inhibits retinal neovascularization in DR mice via inhibition of HK2.
Collapse
Affiliation(s)
- Fei Xia
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Juan-Juan Sun
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ya-Qin Jiang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Cheng-Fang Li
- Department of Ophthalmology, The Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, China
| |
Collapse
|
8
|
Endothelial Cell Aging: How miRNAs Contribute? J Clin Med 2018; 7:jcm7070170. [PMID: 29996516 PMCID: PMC6068727 DOI: 10.3390/jcm7070170] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) form monolayers and line the interior surfaces of blood vessels in the entire body. In most mammalian systems, the capacity of endothelial cells to divide is limited and endothelial cells are prone to be senescent. Aging of ECs and resultant endothelial dysfunction lead to a variety of vascular diseases such as atherosclerosis, diabetes mellites, hypertension, and ischemic injury. However, the mechanism by which ECs get old and become senescent and the impact of endothelial senescence on the vascular function are not fully understood. Recent research has unveiled the crucial roles of miRNAs, which are small non-coding RNAs, in regulating endothelial cellular functions, including nitric oxide production, vascular inflammation, and anti-thromboformation. In this review, how senescent-related miRNAs are involved in controlling the functions of ECs will be discussed.
Collapse
|
9
|
Yin R, Guo L, Gu J, Li C, Zhang W. Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol 2018; 97:43-51. [DOI: 10.1016/j.biocel.2018.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/26/2022]
|
10
|
Li S, Geng Q, Chen H, Zhang J, Cao C, Zhang F, Song J, Liu C, Liang W. The potential inhibitory effects of miR‑19b on vulnerable plaque formation via the suppression of STAT3 transcriptional activity. Int J Mol Med 2017; 41:859-867. [PMID: 29207010 PMCID: PMC5752162 DOI: 10.3892/ijmm.2017.3263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/06/2017] [Indexed: 02/01/2023] Open
Abstract
Atherosclerotic plaque growth requires angiogenesis, and acute coronary syndrome (ACS) is usually triggered by the rupture of unstable atherosclerotic plaques. Previous studies have identified typically circulating microRNA (miRNA/miR) profiles in patients with ACS. miRNAs serve important roles in the pathophysiology of atherosclerotic plaque progression. The present study aimed to investigate the potential role and mechanism of miR‑19b in plaque stability. miRNA array data indicated that 28 miRNAs were differentially expressed in the plasma of patients with unstable angina (UA; n=12) compared with in control individuals (n=12), and miR‑19b exhibited the most marked upregulation. Circulating miR‑19b levels were further validated in another independent cohort, which consisted of 34 patients with UA and 24 controls, by quantitative polymerase chain reaction. Gene Ontology annotations of the predicted target genes of miR‑19b suggested that miR‑19b may be involved in endothelial cell (EC) proliferation, migration and angiogenesis, which was confirmed by Cell Counting kit‑8, wound healing and tube formation assays in the present study. Finally, the present study indicated that miR‑19b may suppress signal transducer and activator of transcription 3 (STAT3) tyrosine phosphorylation and transcriptional activity in ECs, as determined by western blot analysis and luciferase reporter assay. In conclusion, the present study revealed that increased miR‑19b expression may delay unstable plaque progression in patients with UA by inhibiting EC proliferation, migration and angiogenesis via the suppression of STAT3 transcriptional activity.
Collapse
Affiliation(s)
- Sufang Li
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Qiang Geng
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Jing Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Chengfu Cao
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Chuanfen Liu
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Wenqing Liang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
11
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
12
|
Tian B, Maidana DE, Dib B, Miller JB, Bouzika P, Miller JW, Vavvas DG, Lin H. miR-17-3p Exacerbates Oxidative Damage in Human Retinal Pigment Epithelial Cells. PLoS One 2016; 11:e0160887. [PMID: 27505139 PMCID: PMC4978424 DOI: 10.1371/journal.pone.0160887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress has been shown to contribute to the development of age-related macular degeneration (AMD). MicroRNAs (miRNA) are small non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. We showed miR-17-3p to be elevated in macular RPE cells from AMD patients and in ARPE-19 cells under oxidative stress. Transfection of miR-17-3p mimic in ARPE-19 induced cell death and exacerbated oxidative lethality that was alleviated by miR-17-3p inhibitor. The expression of antioxidant enzymes manganese superoxide dismutase (MnSOD) and thioredoxin reductase-2 (TrxR2) were suppressed by miR-17-3p mimic and reversed by miR-17-3p inhibitor. These results suggest miR-17-3p aggravates oxidative damage-induced cell death in human RPE cells, while miR-17-3p inhibitor acts as a potential protector against oxidative stress by regulating the expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Daniel E. Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Bernard Dib
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - John B. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Peggy Bouzika
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (HL); (DGV)
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (HL); (DGV)
| |
Collapse
|
13
|
Yin R, Guo L, Zhang W, Zheng J. The Pleiotropic Effects of miRNAs on Tumor Angiogenesis. J Cell Biochem 2016; 116:1807-15. [PMID: 24115097 DOI: 10.1002/jcb.24679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/12/2013] [Indexed: 12/19/2022]
Abstract
Angiogenesis, the process of new blood vessel formation and growth from already existing venules is critical in vascular development and homeostasis controlled by the balance of pro- and anti-angiogenic factors. Emerging evidence indicates the development, progression, and metastasis of various human cancers are strongly relied on angiogenesis. However, molecular mechanisms that underlie the complex regulation of angiogenic processes are still not fully elucidated. Recent studies revealed that microRNAs (miRNAs) were important regulators of tumor angiogenesis and the entire research in this area has entered into a so-called "miRNAs era." Thus, miRNAs might be important therapeutic targets or biomarkers for cancer. Due to the complexity of miRNA regulating mechanisms, how specific miRNAs intersect with and modulate tumor angiogenesis is still unclear. The conflicting results of the same miRNAs from different groups indicated that miRNAs might possess potent activity in a cell type or cell context specific manner. Here, we present a summary of latest advances in understanding the roles of angiogenic miRNAs as potential tools or targets in cancer therapy.
Collapse
Affiliation(s)
- Runting Yin
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, P.R. China.,Jiangsu Province Key Laboratory of Tumor Biological Therapy, Xuzhou Medical College, Xuzhou 221000, P.R. China
| | - Le Guo
- School of Laboratory Medicine, Ningxia Medical University, Yinchuan, 750004, P.R. China
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, P.R. China
| | - Junnian Zheng
- Jiangsu Province Key Laboratory of Tumor Biological Therapy, Xuzhou Medical College, Xuzhou 221000, P.R. China
| |
Collapse
|
14
|
Miano JM, Long X. The short and long of noncoding sequences in the control of vascular cell phenotypes. Cell Mol Life Sci 2015; 72:3457-88. [PMID: 26022065 DOI: 10.1007/s00018-015-1936-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022]
Abstract
The two principal cell types of importance for normal vessel wall physiology are smooth muscle cells and endothelial cells. Much progress has been made over the past 20 years in the discovery and function of transcription factors that coordinate proper differentiation of these cells and the maintenance of vascular homeostasis. More recently, the converging fields of bioinformatics, genomics, and next generation sequencing have accelerated discoveries in a number of classes of noncoding sequences, including transcription factor binding sites (TFBS), microRNA genes, and long noncoding RNA genes, each of which mediates vascular cell differentiation through a variety of mechanisms. Alterations in the nucleotide sequence of key TFBS or deviations in transcription of noncoding RNA genes likely have adverse effects on normal vascular cell phenotype and function. Here, the subject of noncoding sequences that influence smooth muscle cell or endothelial cell phenotype will be summarized as will future directions to further advance our understanding of the increasingly complex molecular circuitry governing normal vascular cell differentiation and how such information might be harnessed to combat vascular diseases.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA,
| | | |
Collapse
|
15
|
MicroRNAs: promising new antiangiogenic targets in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:878450. [PMID: 25197665 PMCID: PMC4150436 DOI: 10.1155/2014/878450] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/18/2014] [Indexed: 12/20/2022]
Abstract
MicroRNAs are one class of small, endogenous, non-coding RNAs that are approximately 22 nucleotides in length; they are very numerous, have been phylogenetically conserved, and involved in biological processes such as development, differentiation, cell proliferation, and apoptosis. MicroRNAs contribute to modulating the expression levels of specific proteins based on sequence complementarity with their target mRNA molecules and so they play a key role in both health and disease. Angiogenesis is the process of new blood vessel formation from preexisting ones, which is particularly relevant to cancer and its progression. Over the last few years, microRNAs have emerged as critical regulators of signalling pathways in multiple cell types including endothelial and perivascular cells. This review summarises the role of miRNAs in tumour angiogenesis and their potential implications as therapeutic targets in cancer.
Collapse
|
16
|
McAlinden A, Varghese N, Wirthlin L, Chang LW. Differentially expressed microRNAs in chondrocytes from distinct regions of developing human cartilage. PLoS One 2013; 8:e75012. [PMID: 24040378 PMCID: PMC3767648 DOI: 10.1371/journal.pone.0075012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/11/2013] [Indexed: 12/21/2022] Open
Abstract
There is compelling in vivo evidence from reports on human genetic mutations and transgenic mice that some microRNAs (miRNAs) play an important functional role in regulating skeletal development and growth. A number of published in vitro studies also point toward a role for miRNAs in controlling chondrocyte gene expression and differentiation. However, information on miRNAs that may regulate a specific phase of chondrocyte differentiation (i.e. production of progenitor, differentiated or hypertrophic chondrocytes) is lacking. To attempt to bridge this knowledge gap, we have investigated miRNA expression patterns in human embryonic cartilage tissue. Specifically, a developmental time point was selected, prior to endochondral ossification in the embryonic limb, to permit analysis of three distinct populations of chondrocytes. The location of chondroprogenitor cells, differentiated chondrocytes and hypertrophic chondrocytes in gestational day 54-56 human embryonic limb tissue sections was confirmed both histologically and by specific collagen expression patterns. Laser capture microdissection was utilized to separate the three chondrocyte populations and a miRNA profiling study was carried out using TaqMan® OpenArray® Human MicroRNA Panels (Applied Biosystems®). Here we report on abundantly expressed miRNAs in human embryonic cartilage tissue and, more importantly, we have identified miRNAs that are significantly differentially expressed between precursor, differentiated and hypertrophic chondrocytes by 2-fold or more. Some of the miRNAs identified in this study have been described in other aspects of cartilage or bone biology, while others have not yet been reported in chondrocytes. Finally, a bioinformatics approach was applied to begin to decipher developmental cellular pathways that may be regulated by groups of differentially expressed miRNAs during distinct stages of chondrogenesis. Data obtained from this work will serve as an important resource of information for the field of cartilage biology and will enhance our understanding of miRNA-driven mechanisms regulating cartilage and endochondral bone development, regeneration and repair.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, United States of America
| | - Nobish Varghese
- Department of Pathology and Immunology, Washington University, St Louis, Missouri, United States of America
| | - Louisa Wirthlin
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, United States of America
| | - Li-Wei Chang
- Department of Pathology and Immunology, Washington University, St Louis, Missouri, United States of America
| |
Collapse
|
17
|
Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP. Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. PLoS Pathog 2013; 9:e1003484. [PMID: 23874201 PMCID: PMC3715412 DOI: 10.1371/journal.ppat.1003484] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/24/2013] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are stable, small non-coding RNAs that modulate many downstream target genes. Recently, circulating miRNAs have been detected in various body fluids and within exosomes, prompting their evaluation as candidate biomarkers of diseases, especially cancer. Kaposi's sarcoma (KS) is the most common AIDS-associated cancer and remains prevalent despite Highly Active Anti-Retroviral Therapy (HAART). KS is caused by KS-associated herpesvirus (KSHV), a gamma herpesvirus also associated with Primary Effusion Lymphoma (PEL). We sought to determine the host and viral circulating miRNAs in plasma, pleural fluid or serum from patients with the KSHV-associated malignancies KS and PEL and from two mouse models of KS. Both KSHV-encoded miRNAs and host miRNAs, including members of the miR-17–92 cluster, were detectable within patient exosomes and circulating miRNA profiles from KSHV mouse models. Further characterization revealed a subset of miRNAs that seemed to be preferentially incorporated into exosomes. Gene ontology analysis of signature exosomal miRNA targets revealed several signaling pathways that are known to be important in KSHV pathogenesis. Functional analysis of endothelial cells exposed to patient-derived exosomes demonstrated enhanced cell migration and IL-6 secretion. This suggests that exosomes derived from KSHV-associated malignancies are functional and contain a distinct subset of miRNAs. These could represent candidate biomarkers of disease and may contribute to the paracrine phenotypes that are a characteristic of KS. Circulating microRNAs (miRNAs), such as those found in exosomes, have emerged as diagnostic tools and hold promise as minimally invasive, stable biomarkers. Transfer of tumor-derived exosomal miRNAs to surrounding cells may be an important form of cellular communication. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), the most common AIDS-defining cancer worldwide. Here, we survey systemically circulating miRNAs and reveal potential biomarkers for KS and Primary Effusion Lymphoma (PEL). This expands previous tissue culture studies by profiling clinical samples and by using two new mouse models of KSHV tumorigenesis. Profiling of circulating miRNAs revealed that oncogenic and viral miRNAs were present in exosomes from KS patient plasma, pleural effusions and mouse models of KS. Analysis of human oncogenic miRNAs, including the well-known miR-17-92 cluster, revealed that several miRNAs were preferentially incorporated into exosomes in our KS mouse model. Gene ontology analysis of upregulated miRNAs showed that the majority of pathways affected were known targets of KSHV signaling pathways. Transfer of these oncogenic exosomes to immortalized hTERT-HUVEC cells enhanced cell migration and IL-6 secretion. These circulating miRNAs and KS derived exosomes may therefore be part of the paracrine signaling mechanism that mediates KSHV pathogenesis.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Body Fluids/metabolism
- Body Fluids/virology
- Cell Line
- Cell Movement
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/virology
- Exosomes/metabolism
- Exosomes/ultrastructure
- Exosomes/virology
- Gene Expression Profiling
- Herpesvirus 8, Human/isolation & purification
- Herpesvirus 8, Human/metabolism
- Humans
- Interleukin-6/metabolism
- Mice
- MicroRNAs/blood
- MicroRNAs/metabolism
- Pleural Cavity
- Pleural Effusion, Malignant/etiology
- RNA, Neoplasm/blood
- RNA, Neoplasm/metabolism
- RNA, Viral/blood
- RNA, Viral/metabolism
- Sarcoma, Kaposi/diagnosis
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/physiopathology
- Sarcoma, Kaposi/virology
- Up-Regulation
- Viral Load
Collapse
Affiliation(s)
- Pauline E. Chugh
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sang-Hoon Sin
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sezgin Ozgur
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David H. Henry
- Department of Oncology, Joan Karnell Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Prema Menezes
- Department of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jack Griffith
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph J. Eron
- Department of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center, Program in Global Oncology, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|