1
|
Farias RM, Jiang Y, Levy EJ, Hwang C, Wang J, Burton EM, Cohen L, Ajami N, Wargo JA, Daniel CR, McQuade JL. Diet and Immune Effects Trial (DIET)- a randomized, double-blinded dietary intervention study in patients with melanoma receiving immunotherapy. BMC Cancer 2024; 24:1493. [PMID: 39633321 PMCID: PMC11619607 DOI: 10.1186/s12885-024-13234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Gut microbiome modulation is a promising strategy for enhancing the response to immune checkpoint blockade (ICB). Fecal microbiota transplant studies have shown positive signals of improved outcomes in both ICB-naïve and refractory melanoma patients; however, this strategy is challenging to scale. Diet is a key determinant of the gut microbiota, and we have previously shown that (a) habitual high dietary fiber intake is associated with an improved response to ICB and (b) fiber manipulation in mice impacts antitumor immunity. We recently demonstrated the feasibility of a controlled high-fiber dietary intervention (HFDI) conducted in melanoma survivors with excellent compliance and tolerance. Building on this, we are now conducting a phase II randomized trial of HFDI versus a healthy control diet in melanoma patients receiving ICB. METHODS This is a randomized, double-blind, fully controlled feeding study that will enroll 45 melanoma patients starting standard-of-care (SOC) ICB in three settings: adjuvant, neoadjuvant, and unresectable. Patients are randomized 2:1 to the HFDI (target fiber 50 g/day from whole foods) or healthy control diet (target fiber 20 g/day) stratified by BMI and cohort. All meals are prepared by the MD Anderson Bionutrition Core and are isocaloric and macronutrient-controlled. The intervention includes a 1-week equilibration period and then up to 11 weeks of diet intervention. Longitudinal blood, stool and tumor tissue (if available) are collected throughout the trial and at 12 weeks post intervention. DISCUSSION This DIET study is the first fully controlled feeding study among cancer patients who are actively receiving immunotherapy. The goal of the current study is to establish the effects of dietary intervention on the structure and function of the gut microbiome in patients with melanoma treated with SOC immunotherapies. The secondary endpoints include changes in systemic and tumor immunity, changes in the metabolic profile, quality of life, symptoms, disease response and immunotherapy toxicity. TRIAL REGISTRATION This protocol is registered with the U.S. National Institutes of Health trial registry, ClinicalTrials.gov, under the identifier NCT04645680. First posted 2020-11-27; last verified 2024-06.
Collapse
Affiliation(s)
- Rachel M Farias
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 430, Houston, Texas, 77030-4009, USA
| | - Yan Jiang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 430, Houston, Texas, 77030-4009, USA
| | - Erma J Levy
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cindy Hwang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Burton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lorenzo Cohen
- Department of Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 430, Houston, Texas, 77030-4009, USA.
| |
Collapse
|
2
|
Mikołajczyk M, Złotkowska D, Mikołajczyk A. Impact on Human Health of Salmonella spp. and Their Lipopolysaccharides: Possible Therapeutic Role and Asymptomatic Presence Consequences. Int J Mol Sci 2024; 25:11868. [PMID: 39595937 PMCID: PMC11593640 DOI: 10.3390/ijms252211868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Epidemiologically, one of the most important concerns associated with introducing Salmonella spp. into the environment and food chain is the presence of asymptomatic carriers. The oncogenic and oncolytic activity of Salmonella and their lipopolysaccharides (LPSs) is important and research on this topic is needed. Even a single asymptomatic dose of the S. Enteritidis LPS (a dose that has not caused any symptoms of illness) in in vivo studies induces the dysregulation of selected cells and bioactive substances of the nervous, immune, and endocrine systems. LPSs from different species, and even LPSs derived from different serotypes of one species, can define different biological activities. The activity of low doses of LPSs derived from three different Salmonella serotypes (S. Enteritidis, S. Typhimurium, and S. Minnesota) affects the neurochemistry of neurons differently in in vitro studies. Studies on lipopolysaccharides from different Salmonella serotypes do not consider the diversity of their activity. The presence of an LPS from S. Enteritidis in the body, even in amounts that do not induce any symptoms of illness, may lead to unknown long-term consequences associated with its action on the cells and biologically active substances of the human body. These conclusions should be important for both research strategies and the pharmaceutical industry &.
Collapse
Affiliation(s)
- Mateusz Mikołajczyk
- Division of Medicine and Dentistry, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Anita Mikołajczyk
- Department of Psychology and Sociology of Health and Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
3
|
Mihailović M, Soković Bajić S, Arambašić Jovanović J, Brdarić E, Dinić S, Grdović N, Uskoković A, Rajić J, Đorđević M, Tolinački M, Golić N, Živković M, Vidaković M. Beneficial Effects of Probiotic Lactobacillus paraplantarum BGCG11 on Pancreatic and Duodenum Function in Diabetic Rats. Int J Mol Sci 2024; 25:7697. [PMID: 39062940 PMCID: PMC11277547 DOI: 10.3390/ijms25147697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, as a chronic metabolic disorder, significantly impacts the pancreas and among other organs, affects duodenal function. Emerging evidence suggests that probiotics can exert beneficial effects on gut health and metabolism. In our previous research, we evaluated the probiotic Lactobacillus paraplantarum BGCG11 primarily for its protective properties against diabetic rats' damaged liver and kidneys. In this work, we further examined the effects of probiotic strain BGCG11 on the function of the duodenum and pancreas in diabetic rats. We explored the potential mechanisms underlying the probiotic's effects, focusing on general indicators of diabetes, the architecture and morphology of pancreatic islets, duodenal integrity (measuring the transfer of fluid and serum zonulin level), and the modulation of gut microbiota composition. Our findings reveal the protective and regulatory roles of L. paraplantarum BGCG11 in mitigating diabetes-induced pancreatic and duodenal dysfunction regardless of its application time (pre- or post-treatment), highlighting its therapeutic potential in managing diabetes-related gastrointestinal complications.
Collapse
Affiliation(s)
- Mirjana Mihailović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Jelena Arambašić Jovanović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Emilija Brdarić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Svetlana Dinić
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Nevena Grdović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Aleksandra Uskoković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Jovana Rajić
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Marija Đorđević
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Nataša Golić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Melita Vidaković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| |
Collapse
|
4
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
5
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
6
|
Ranneh Y, Mahmoud AM, Fadel A, Abu Bakar MF, Md Akim A. Comments on "Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics". Front Pharmacol 2023; 14:1228359. [PMID: 37663246 PMCID: PMC10469835 DOI: 10.3389/fphar.2023.1228359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Yazan Ranneh
- Department of Nutrition and Dietetics, College of Pharmacy, Al-Ain University, Al-Ain, United Arab Emirates
| | - Ayman M. Mahmoud
- Zoology Department, Faculty of Science, Physiology Division, Beni-Suef University, Beni-Suef, Egypt
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Abdulmannan Fadel
- School of Sport and Exercise Sciences, Liver-Pool John Moores University, Liverpool, United Kingdom
| | - Mohd Fadzelly Abu Bakar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh, Johor, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Rodríguez-García R, Vazquez-Villamar M, Aparicio-Ozores G, Parra-Rojas I, Radilla-Vázquez RB, Castro-Alarcón N. TLR4 polymorphism and haplotype are associated with obesity and lipid profile in young population: a pilot study. J Endocrinol Invest 2023; 46:903-913. [PMID: 36454439 DOI: 10.1007/s40618-022-01950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND The single nucleotide polymorphisms in the TLR4 gene can decrease or increase the response to lipopolysaccharide, increasing the susceptibility to inflammatory diseases, affecting the expression or receptor function by inducing a low-grade chronic inflammatory response. PURPOSE The objective of this study was to evaluate the association of SNPs - 2570 A > G (rs2737190), - 2081 G > A (rs10983755), 896 A > G (rs 4986790), and 1196 C > T (rs4986791) of the TLR4 gene with obesity and metabolic alterations in the young population. RESULTS In this study, it was found that the carriers of the heterozygous genotype of the SNPs - 2081 G > A, 896 A > G, and 1196 C > T confer a higher risk of developing obesity (OR = 3.73, p = 0.018; OR = 5.66, p = 0.014, and OR = 8.95, p = 0.014, respectively). Also, with the lipid profile, the SNP - 2081 G > A was associated with total cholesterol (TC) ≥ 200 mg/dL (OR = 3.91, p = 0.020) and Kannel index > 3% (OR = 4.00, p = 0.008). The SNP 896 A > G was associated with LDL-c ≥ 100 mg/dL (OR = 3.64, p = 0.040) and Kannel index > 3% (OR = 4.33, p = 0.016), and the SNP 1196 C > T was associated with TC ≥ 200 mg/dL (OR = 4.37, p = 0.048), Castelli index > 4.5/> 5% (OR = 5.33, p = 0.016), and Kannel index > 3% (OR = 16.00, p = 0.001). Finally, the AGGT haplotype was associated with Castelli index > 4.5/> 5% (OR = 5.40, p = 0.015) and Kannel index > 3% (OR = 10.46, p < 0.001), and the AAAC haplotype was associated with obesity (OR = 3.56, p = 0.020), TC ≥ 200 mg/dL (OR = 4.04, p = 0.007), LDL-c ≥ 100 mg/dL (OR = 2.98, p = 0.030) and Kannel index > 3% (OR = 4.20, p = 0.002). CONCLUSION The heterozygous genotype of the SNPs - 2081 G > A, 896 A > G and 1196 C > T of the TLR4 gene was associated with altered lipid profile and development of obesity in young university students of Guerrero State, Mexico.
Collapse
Affiliation(s)
- R Rodríguez-García
- Laboratorio de Clínico, Instituto Mexicano del Seguro Social, Hospital General Regional, #1. Av. Plan de Ayala S/N, C.P. 62450, Cuernavaca Morelos, Mexico
| | - M Vazquez-Villamar
- Laboratorio de Investigación en Microbiología. Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, México. Av. Lázaro Cárdenas S/N, Ciudad Universitaria Sur Col. Haciendita, C. P. 39090, Chilpancingo, Guerrero, México
| | - G Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Avenida Plan de Ayala S/N, Col., C. P. 39610, Ciudad de México, México
| | - I Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes. Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - R B Radilla-Vázquez
- Programa de la Doctorado en Ciencias Biomédicas. Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, México. Av. Lázaro Cárdenas S/N, Ciudad Universitaria, C. P. 39090, Chilpancingo, Guerrero, México
| | - N Castro-Alarcón
- Laboratorio de Investigación en Microbiología. Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, México. Av. Lázaro Cárdenas S/N, Ciudad Universitaria Sur Col. Haciendita, C. P. 39090, Chilpancingo, Guerrero, México.
| |
Collapse
|
8
|
Omran F, Murphy AM, Younis AZ, Kyrou I, Vrbikova J, Hainer V, Sramkova P, Fried M, Ball G, Tripathi G, Kumar S, McTernan PG, Christian M. The impact of metabolic endotoxaemia on the browning process in human adipocytes. BMC Med 2023; 21:154. [PMID: 37076885 PMCID: PMC10116789 DOI: 10.1186/s12916-023-02857-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Dysfunctional adipose tissue (AT) is known to contribute to the pathophysiology of metabolic disease, including type 2 diabetes mellitus (T2DM). This dysfunction may occur, in part, as a consequence of gut-derived endotoxaemia inducing changes in adipocyte mitochondrial function and reducing the proportion of BRITE (brown-in-white) adipocytes. Therefore, the present study investigated whether endotoxin (lipopolysaccharide; LPS) directly contributes to impaired human adipocyte mitochondrial function and browning in human adipocytes, and the relevant impact of obesity status pre and post bariatric surgery. METHODS Human differentiated abdominal subcutaneous (AbdSc) adipocytes from participants with obesity and normal-weight participants were treated with endotoxin to assess in vitro changes in mitochondrial function and BRITE phenotype. Ex vivo human AbdSc AT from different groups of participants (normal-weight, obesity, pre- and 6 months post-bariatric surgery) were assessed for similar analyses including circulating endotoxin levels. RESULTS Ex vivo AT analysis (lean & obese, weight loss post-bariatric surgery) identified that systemic endotoxin negatively correlated with BAT gene expression (p < 0.05). In vitro endotoxin treatment of AbdSc adipocytes (lean & obese) reduced mitochondrial dynamics (74.6% reduction; p < 0.0001), biogenesis (81.2% reduction; p < 0.0001) and the BRITE phenotype (93.8% reduction; p < 0.0001). Lean AbdSc adipocytes were more responsive to adrenergic signalling than obese AbdSc adipocytes; although endotoxin mitigated this response (92.6% reduction; p < 0.0001). CONCLUSIONS Taken together, these data suggest that systemic gut-derived endotoxaemia contributes to both individual adipocyte dysfunction and reduced browning capacity of the adipocyte cell population, exacerbating metabolic consequences. As bariatric surgery reduces endotoxin levels and is associated with improving adipocyte functionality, this may provide further evidence regarding the metabolic benefits of such surgical interventions.
Collapse
Affiliation(s)
- Farah Omran
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Alice M Murphy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Awais Z Younis
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, Cambridge, UK
| | - Gyanendra Tripathi
- Human Sciences Research Centre, College of Life and Natural Sciences, University of Derby, Derby, DE22 1GB, UK
| | - Sudhesh Kumar
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Philip G McTernan
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Mark Christian
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
9
|
Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol 2023; 256:e220111. [PMID: 36458804 PMCID: PMC9874984 DOI: 10.1530/joe-22-0111] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
The human body is inhabited by numerous bacteria, fungi, and viruses, and each part has a unique microbial community structure. The gastrointestinal tract harbors approximately 100 trillion strains comprising more than 1000 bacterial species that maintain symbiotic relationships with the host. The gut microbiota consists mainly of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Of these, Firmicutes and Bacteroidetes constitute 70-90% of the total abundance. Gut microbiota utilize nutrients ingested by the host, interact with other bacterial species, and help maintain healthy homeostasis in the host. In recent years, it has become increasingly clear that a breakdown of the microbial structure and its functions, known as dysbiosis, is associated with the development of allergies, autoimmune diseases, cancers, and arteriosclerosis, among others. Metabolic diseases, such as obesity and diabetes, also have a causal relationship with dysbiosis. The present review provides a brief overview of the general roles of the gut microbiota and their relationship with metabolic disorders.
Collapse
Affiliation(s)
- Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
10
|
Zeb F, Osaili T, Obaid RS, Naja F, Radwan H, Cheikh Ismail L, Hasan H, Hashim M, Alam I, Sehar B, Faris ME. Gut Microbiota and Time-Restricted Feeding/Eating: A Targeted Biomarker and Approach in Precision Nutrition. Nutrients 2023; 15:259. [PMID: 36678130 PMCID: PMC9863108 DOI: 10.3390/nu15020259] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Each individual has a unique gut microbiota; therefore, the genes in our microbiome outnumber the genes in our genome by about 150 to 1. Perturbation in host nutritional status influences gut microbiome composition and vice versa. The gut microbiome can help in producing vitamins, hormones, and other active metabolites that support the immune system; harvest energy from food; aid in digestion; protect against pathogens; improve gut transit and function; send signals to the brain and other organs; oscillate the circadian rhythm; and coordinate with the host metabolism through multiple cellular pathways. Gut microbiota can be influenced by host genetics, medications, diet, and lifestyle factors from preterm to aging. Aligning with precision nutrition, identifying a personalized microbiome mandates the provision of the right nutrients at the right time to the right patient. Thus, before prescribing a personalized treatment, it is crucial to monitor and count the gut flora as a focused biomarker. Many nutritional approaches that have been developed help in maintaining and restoring an optimal microbiome such as specific diet therapy, nutrition interventions, and customized eating patterns. One of these approaches is time-restricted feeding/eating (TRF/E), a type of intermittent fasting (IF) in which a subject abstains from food intake for a specific time window. Such a dietary modification might alter and restore the gut microbiome for proper alignment of cellular and molecular pathways throughout the lifespan. In this review, we have highlighted that the gut microbiota would be a targeted biomarker and TRF/E would be a targeted approach for restoring the gut-microbiome-associated molecular pathways such as hormonal signaling, the circadian system, metabolic regulators, neural responses, and immune-inflammatory pathways. Consequently, modulation of the gut microbiota through TRF/E could contribute to proper utilization and availability of the nutrients and in this way confer protection against diseases for harnessing personalized nutrition approaches to improve human health.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tareq Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Reyad Shakir Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farah Naja
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hayder Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mona Hashim
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Peshawar 24540, KP, Pakistan
| | - Bismillah Sehar
- Department of Health and Social Sciences, University of Bedfordshire, Luton LU1 3JU, UK
| | - MoezAllslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
11
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Perng W, Friedman JE, Janssen RC, Glueck DH, Dabelea D. Endotoxin Biomarkers Are Associated With Adiposity and Cardiometabolic Risk Across 6 Years of Follow-up in Youth. J Clin Endocrinol Metab 2022; 107:e3018-e3028. [PMID: 35276001 PMCID: PMC9202713 DOI: 10.1210/clinem/dgac149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Metabolic endotoxemia may be a shared mechanism underlying childhood obesity and early-onset metabolic diseases (eg, type 2 diabetes, nonalcoholic fatty liver disease). OBJECTIVE Examine prospective associations of serum endotoxin biomarkers lipopolysaccharide (LPS) and its binding protein, LPS binding protein (LBP), and anti-endotoxin core immunoglobulin G (EndoCab IgG) with adiposity and cardiometabolic risk in youth. DESIGN/SETTING This prospective study included 393 youth in the Exploring Perinatal Outcomes Among Children cohort in Colorado. Participants were recruited from 2006 to 2009 at age 10 years (baseline) and followed for 6 years (follow-up). We examined associations of endotoxin biomarkers at baseline with adiposity [body mass index (BMI) z-score, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), skinfolds, waist circumference] and cardiometabolic risk (insulin, glucose, adipokines, lipid profile, blood pressure) across both visits using mixed-effects regression, and with hepatic fat fraction (HFF) at follow-up using linear regression. RESULTS Higher LPS and LBP predicted greater adiposity across follow-up. Each 1-unit log-transformed LPS corresponded with 0.23 (95% CI 0.03, 0.43) units BMI z-score, 5.66 (95% CI 1.99, 9.33) mm3 VAT, 30.7 (95% CI 8.0, 53.3) mm3 SAT, and 8.26 (95% CI 4.13, 12.40) mm skinfold sum. EndoCab IgG was associated with VAT only [3.03 (95% CI 0.34, 5.71) mm3]. LPS was associated with higher insulin [1.93 (95% CI 0.08, 3.70) µU/mL] and leptin [2.28 (95% CI 0.66, 3.90) ng/mL] and an adverse lipid profile. No association was observed with HFF. Accounting for pubertal status and lifestyle behaviors did not change findings. However, adjustment for prepregnancy BMI and gestational diabetes attenuated most associations. CONCLUSIONS Serum endotoxin may be a marker of pathophysiological processes underlying development of childhood obesity and cardiometabolic conditions associated with exposure to fetal overnutrition.
Collapse
Affiliation(s)
- Wei Perng
- Correspondence: Wei Perng, University of Colorado Denver, Anschutz Medical Campus, 12474 E. 19th Ave, Room 208, Aurora, CO 80045, USA.
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, School of Medicine, Oklahoma City, OK, USA
| | - Rachel C Janssen
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, School of Medicine, Oklahoma City, OK, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| |
Collapse
|
13
|
Santos VM, Brito AKP, Amorim AT, Souza IR, Santos MB, Campos GB, Dos Santos DC, Júnior ACRB, Santana JM, Santos DB, Mancini MC, Timenetsky J, Marques LM. Evaluation of fecal microbiota and its correlation with inflammatory, hormonal, and nutritional profiles in women. Braz J Microbiol 2022; 53:1001-1009. [PMID: 35277849 PMCID: PMC9151974 DOI: 10.1007/s42770-022-00729-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The present study evaluated the gut microbiota profiles of 40 women and correlated them with their nutritional, inflammatory, and hormonal profiles. Stool and blood samples were collected, and anthropometric measurements were obtained from 20 women diagnosed with obesity ("case" group) and 20 women with weight in the normal range ("control" group). Bacteria belonging to two phyla, Firmicutes and Bacteroidetes, one class, Mollicutes, and four genera were evaluated by real-time polymerase chain reaction. Levels of 18 inflammatory cytokines were measured using the Luminex assay, and ghrelin and leptin levels were measured using enzymatic immunoadsorption assay. Mollicutes proportion differed significantly between the case and control groups, and a significant positive association was detected between the presence of Mollicutes and obesity. Statistically significant differences were observed between the proportions of Firmicutes and Bacteroidetes in the two groups, with a higher proportion of Firmicutes/Bacteroidetes ratio among the gut microbiota of women in the case group compared to those of the control group. Higher counts of Escherichia coli and Clostridium spp. were observed in the control group than in the case group, whereas higher counts of Lactobacillus spp. and Bacteroides spp. were detected in the case group than in the control group. There was a positive correlation between interleukin-6 (IL-6) and interferon-γ (IFN-γ) levels and the anthropometric variables and a negative correlation between IL-10 and these variables. Leptin and ghrelin concentrations differed significantly between the two groups and showed positive and negative correlation with obesity predictors, respectively. Therefore, gut microbiota was associated with obesity in women from this study group. Moreover, this microbiota was associated with inflammatory profiles and alterations in ghrelin and leptin levels.
Collapse
Affiliation(s)
- Verena M Santos
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil
| | - Anne Karoline P Brito
- Health Multidisciplinary Institute, Federal University of Bahia, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45029-094, Brazil
| | - Aline T Amorim
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil
| | - Izadora R Souza
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil
| | - Maysa B Santos
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil
| | - Guilherme B Campos
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil.,Health Multidisciplinary Institute, Federal University of Bahia, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45029-094, Brazil
| | - Deborah C Dos Santos
- Health Multidisciplinary Institute, Federal University of Bahia, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45029-094, Brazil
| | - Antônio Carlos R Braga Júnior
- Health Multidisciplinary Institute, Federal University of Bahia, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45029-094, Brazil
| | - Jerusa M Santana
- Federal University of Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil
| | | | - Marcio C Mancini
- Clinical Hospital of Medical School, University of São Paulo, São Paulo, Brazil
| | - Jorge Timenetsky
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil
| | - Lucas M Marques
- Biomedical Science Institute, São Paulo University, São Paulo, Brazil. .,Health Multidisciplinary Institute, Federal University of Bahia, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45029-094, Brazil.
| |
Collapse
|
14
|
Aggarwal H, Pathak P, Singh V, Kumar Y, Shankar M, Das B, Jagavelu K, Dikshit M. Vancomycin-Induced Modulation of Gram-Positive Gut Bacteria and Metabolites Remediates Insulin Resistance in iNOS Knockout Mice. Front Cell Infect Microbiol 2022; 11:795333. [PMID: 35127558 PMCID: PMC8807491 DOI: 10.3389/fcimb.2021.795333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 12/27/2022] Open
Abstract
The role of oxidative and nitrosative stress has been implied in both physiology and pathophysiology of metabolic disorders. Inducible nitric oxide synthase (iNOS) has emerged as a crucial regulator of host metabolism and gut microbiota activity. The present study examines the role of the gut microbiome in determining host metabolic functions in the absence of iNOS. Insulin-resistant and dyslipidemic iNOS-/- mice displayed reduced microbial diversity, with a higher relative abundance of Allobaculum and Bifidobacterium, gram-positive bacteria, and altered serum metabolites along with metabolic dysregulation. Vancomycin, which largely depletes gram-positive bacteria, reversed the insulin resistance (IR), dyslipidemia, and related metabolic anomalies in iNOS-/- mice. Such improvements in metabolic markers were accompanied by alterations in the expression of genes involved in fatty acid synthesis in the liver and adipose tissue, lipid uptake in adipose tissue, and lipid efflux in the liver and intestine tissue. The rescue of IR in vancomycin-treated iNOS-/- mice was accompanied with the changes in select serum metabolites such as 10-hydroxydecanoate, indole-3-ethanol, allantoin, hippurate, sebacic acid, aminoadipate, and ophthalmate, along with improvement in phosphatidylethanolamine to phosphatidylcholine (PE/PC) ratio. In the present study, we demonstrate that vancomycin-mediated depletion of gram-positive bacteria in iNOS-/- mice reversed the metabolic perturbations, dyslipidemia, and insulin resistance.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Priya Pathak
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Manoharan Shankar
- Microbial Physiology Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
15
|
Zhang S, Dang Y. Roles of gut microbiota and metabolites in overweight and obesity of children. Front Endocrinol (Lausanne) 2022; 13:994930. [PMID: 36157438 PMCID: PMC9492854 DOI: 10.3389/fendo.2022.994930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of overweight and obesity in children and adolescents is an increasing public health problem. Pediatric overweight and obesity result from multiple factors, including genetic background, diet, and lifestyle. In addition, the gut microbiota and their metabolites play crucial roles in the progression of overweight and obesity of children. Therefore, we reviewed the roles of gut microbiota in overweight/obese children. The relationship between pediatric overweight/obesity and gut metabolites, such as short-chain fatty acids, medium-chain fatty acids, amino acids, amines, and bile acids, are also summarized. Targeting gut microbiota and metabolites might be a promising strategy for interventions aimed at reducing pediatric overweight/obesity.
Collapse
Affiliation(s)
- Shengan Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yanqi Dang, ,
| |
Collapse
|
16
|
Aggarwal H, Pathak P, Kumar Y, Jagavelu K, Dikshit M. Modulation of Insulin Resistance, Dyslipidemia and Serum Metabolome in iNOS Knockout Mice following Treatment with Nitrite, Metformin, Pioglitazone, and a Combination of Ampicillin and Neomycin. Int J Mol Sci 2021; 23:195. [PMID: 35008623 PMCID: PMC8745663 DOI: 10.3390/ijms23010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative and nitrosative stress plays a pivotal role in the incidence of metabolic disorders. Studies from this lab and others in iNOS-/- mice have demonstrated occurrence of insulin resistance (IR), hyperglycemia and dyslipidemia highlighting the importance of optimal redox balance. The present study evaluates role of nitrite, L-arginine, antidiabetics (metformin, pioglitazone) and antibiotics (ampicillin-neomycin combination, metronidazole) on metabolic perturbations observed in iNOS-/- mice. The animals were monitored for glucose tolerance (IPGTT), IR (insulin, HOMA-IR, QUICKI), circulating lipids and serum metabolomics (LC-MS). Hyperglycemia, hyperinsulinemia and IR were rescued by nitrite, antidiabetics, and antibiotics treatments in iNOS-/- mice. Glucose intolerance was improved with nitrite, metformin and pioglitazone treatment, while ampicillin-neomycin combination normalised the glucose utilization in iNOS-/- mice. Increased serum phosphatidylethanolamine lipids in iNOS-/- mice were reversed by metformin, pioglitazone and ampicillin-neomycin; dyslipidemia was however marginally improved by nitrite treatment. The metabolic improvements were associated with changes in selected serum metabolites-purines, ceramide, 10-hydroxydecanoate, glucosaminate, diosmetin, sebacic acid, 3-nitrotyrosine and cysteamine. Bacterial metabolites-hippurate, indole-3-ethanol; IR marker-aminoadipate and oxidative stress marker-ophthalmate were reduced by pioglitazone and ampicillin-neomycin, but not by nitrite and metformin treatment. Results obtained in the present study suggest a crucial role of gut microbiota in the metabolic perturbations observed in iNOS-/- mice.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (H.A.); (P.P.); (K.J.)
| | - Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (H.A.); (P.P.); (K.J.)
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad 121001, India;
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (H.A.); (P.P.); (K.J.)
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (H.A.); (P.P.); (K.J.)
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad 121001, India;
| |
Collapse
|
17
|
Liaqat I, Naseem S, Eijaz S, Hanif U, Rubab S, Aftab N, Iqbal R. Impact of Interplay between Obese Gut Microbiota and Diet in Developing Obesity in Synthetic Community Mice. J Oleo Sci 2021; 70:1285-1293. [PMID: 34483221 DOI: 10.5650/jos.ess21148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aims at investigating the effects of cultured gut microbiota (GM) of obese human coupled high fat diet (HFD) or chow diet (CD) in development of obesity in mice. 20 stool samples were collected from obese patients and isolated bacteria were identified morphologically and biochemically. Identified isolates were mixed in equal proportions to synthesize obese GM. In vivo study was performed using obese GM combined with HFD/CD using mouse model for three months. Albino mice were treated with ampicillin from one week prior to birth until weaning of the pups at seven weeks of age and then inoculated with obese GM. Sixteen mice were divided into four groups: i.e. group 1 (G1) mice fed with CD, group 2 (G2) mice with HFD, group 3 (G3) mice with GM + HFD and group 4 (G4) mice with GM + CD. Mice from groups 3-4 were considered synthetic community (SC) mice due to transfer of synthesize human GM. 16S rRNA sequencing identified five abundant bacteria as Pseudomonas aeruginosa, Staphylococcus sp., Escherichia coli, Morganella morganii, and Klebsiella oxytoca (accession numbers: MZ150742-MZ150746). In vivo study indicated that GM combination with either HFD/CD caused significantly increased body weight in SC mice (BMI; Kg/m2) compared to HFD or CD fed mice groups. One way ANOVA revealed highly significant increase (p ≤ 0.001) in levels of total cholesterol (TC), triglycerides and low density lipoprotein (LDL) in GM coupled diet groups (G3-G4; SC mice) compared to significant increase in HFD group (G2) versus CD group (G1). Our study is first of its kind to report significant effects of using purified strains as obese GM plus diet (HFD/CD) in inducing obesity in SC mice and elevated serum liver parameters as metabolic indicators, hence providing strong evidence about significance of modified GM combination with HFD in developing obesity in SC mice.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University
| | - Sajida Naseem
- Department of Zoology, University of Education, Lower Mall Campus
| | - Sana Eijaz
- Department of Microbiology, University of Karachi
| | | | - Saima Rubab
- Department of Pharmacognosy, Lahore Pharmacy College
| | - Nauman Aftab
- Institute of Industrial Biotechnology, GC University
| | - Riffat Iqbal
- Microbiology Lab, Department of Zoology, Government College University
| |
Collapse
|
18
|
Zeng C, Yang P, Cao T, Gu Y, Li N, Zhang B, Xu P, Liu Y, Luo Z, Cai H. Gut microbiota: An intermediary between metabolic syndrome and cognitive deficits in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110097. [PMID: 32916223 DOI: 10.1016/j.pnpbp.2020.110097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiome interacts with the central nervous system tract through the gut-brain axis. Such communication involves neuronal, endocrine, and immunological mechanisms, which allows for the microbiota to affect and respond to various behaviors and psychiatric conditions. In addition, the use of atypical antipsychotic drugs (AAPDs) may interact with and even change the abundance of microbiome to potentially cause adverse effects or aggravate the disorders inherent in the disease. The regulate effects of gut microbiome has been described in several psychiatric disorders including anxiety and depression, but only a few reports have discussed the role of microbiota in AAPDs-induced Metabolic syndrome (MetS) and cognitive disorders. The following review systematically summarizes current knowledge about the gut microbiota in behavior and psychiatric illness, with the emphasis of an important role of the microbiome in the metabolism of schizophrenia and the potential for AAPDs to change the gut microbiota to promote adverse events. Prebiotics and probiotics are microbiota-management tools with documented efficacy for metabolic disturbances and cognitive deficits. Novel therapies for targeting microbiota for alleviating AAPDs-induced adverse effects are also under fast development.
Collapse
Affiliation(s)
- CuiRong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Yang
- Department of Psychiatry, The Second People's Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YuXiu Gu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - BiKui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YiPing Liu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - ZhiYing Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
19
|
Zhang J, Tu M, Liu Z, Zhang G. Soluble epoxide hydrolase as a therapeutic target for obesity-induced disorders: roles of gut barrier function involved. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102180. [PMID: 33038829 PMCID: PMC7669660 DOI: 10.1016/j.plefa.2020.102180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Emerging research supports that soluble epoxide hydrolase (sEH), an enzyme involved in eicosanoid metabolism, could be a promising target for obesity-associated disorders. The sEH enzyme is overexpressed in many tissues of obese animals. Genetic ablation or pharmacological inhibition of sEH attenuates the development of a wide range of obesity-induced disorders, including endoplasmic reticulum stress, metabolic syndrome, kidney diseases, insulin resistance, fatty liver, hepatic steatosis, inflammation, and endothelial dysfunction. Furthermore, our recent research showed that genetic ablation or inhibition of sEH attenuated obesity-induced intestinal barrier dysfunction and its resulted bacterial translocation, which is widely regarded to be a central mechanism for the pathogenesis of various obesity-induced disorders. Together, these results support that targeting sEH could be a promising strategy to reduce risks of obesity-induced disorders, at least in part through blocking obesity-induced leaky gut syndrome.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Maolin Tu
- Department of Food Science, University of Massachusetts, Amherst, MA, United States; Department of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhenhua Liu
- Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States; Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
20
|
Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy JM, Dequenne I, de Timary P, Cani PD. How Probiotics Affect the Microbiota. Front Cell Infect Microbiol 2020; 9:454. [PMID: 32010640 PMCID: PMC6974441 DOI: 10.3389/fcimb.2019.00454] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Probiotics have been used to treat a variety of diseases for decades; however, what is the rationale for their application? Such a treatment was first proposed in the early nineteenth century based on observations of decreased bifidobacterial populations in children suffering from diarrhea, suggesting that oral intake of bifidobacteria could replete this subpopulation of the microbiota and improve health. Since then, studies have shown modifications in the gut or skin microbiota in the course of a variety of diseases and suggested positive effects of certain probiotics. Most studies failed to report any impact on the microbiota. The impact of probiotics as well as of bacteria colonizing food does not reside in their ability to graft in the microbiota but rather in sharing genes and metabolites, supporting challenged microbiota, and directly influencing epithelial and immune cells. Such observations argue that probiotics could be associated with conventional drugs for insulin resistance, infectious diseases, inflammatory diseases, and psychiatric disorders and could also interfere with drug metabolism. Nevertheless, in the context of a plethora of probiotic strains and associations produced in conditions that do not allow direct comparisons, it remains difficult to know whether a patient would benefit from taking a particular probiotic. In other words, although several mechanisms are observed when studying a single probiotic strain, not all individual strains are expected to share the same effects. To clarify the role of probiotics in the clinic, we explored the relation between probiotics and the gut and skin microbiota.
Collapse
Affiliation(s)
- Grégoire Wieërs
- Service de Médecine Interne Générale, Clinique Saint Pierre, Ottignies, Belgium
| | - Leila Belkhir
- Service de Médecine Interne et Maladies Infectieuses, Cliniques Universitaires Saint Luc, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Raphaël Enaud
- CHU Bordeaux, CRCM Pédiatrique, CIC 1401, Université de Bordeaux, INSERM, CRCTB, U1045, CHU Bordeaux, Bordeaux, France
| | - Sophie Leclercq
- Institute of Neuroscience and Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Philippe de Timary
- Service de Psychiatrie, Cliniques Universitaires Saint Luc, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Regulation of Gut Microbiota and Metabolic Endotoxemia with Dietary Factors. Nutrients 2019; 11:nu11102277. [PMID: 31547555 PMCID: PMC6835897 DOI: 10.3390/nu11102277] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023] Open
Abstract
Metabolic endotoxemia is a condition in which blood lipopolysaccharide (LPS) levels are elevated, regardless of the presence of obvious infection. It has been suggested to lead to chronic inflammation-related diseases such as obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease (NAFLD), pancreatitis, amyotrophic lateral sclerosis, and Alzheimer’s disease. In addition, it has attracted attention as a target for the prevention and treatment of these chronic diseases. As metabolic endotoxemia was first reported in mice that were fed a high-fat diet, research regarding its relationship with diets has been actively conducted in humans and animals. In this review, we summarize the relationship between fat intake and induction of metabolic endotoxemia, focusing on gut dysbiosis and the influx, kinetics, and metabolism of LPS. We also summarize the recent findings about dietary factors that attenuate metabolic endotoxemia, focusing on the regulation of gut microbiota. We hope that in the future, control of metabolic endotoxemia using dietary factors will help maintain human health.
Collapse
|
22
|
Mikołajczyk A, Złotkowska D. Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes. Toxins (Basel) 2019; 11:E91. [PMID: 30717384 PMCID: PMC6409941 DOI: 10.3390/toxins11020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single dose of LPS obtained from S. Enteritidis (5 μg/kg, i.v.) was administered to discern the consequences of changes of various brain peptides such as corticotropin-releasing hormone (CRH), gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), galanin (GAL), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal polypeptide (VIP) in selected clinically important brain sections and endocrine glands of the hypothalamic-pituitary-adrenal (HPA), -thyroid (HPT), -ovarian (HPO) axes. The study was conducted on ten immature crossbred female pigs. The brain peptides were extracted from the hypothalamus (medial basal hypothalamus, preoptic area, lateral hypothalamic area, mammillary bodies, and the stalk median eminence), and pituitary gland (adenohypophysis and neurohypophysis) sections and from the ovaries and adrenal and thyroid glands. There was no difference in health status between LPS and the control groups during the period of the experiment. Nevertheless, even a low single dose of LPS from S. Enteritidis that did not result in any clinical symptoms of disease induced dysregulation of various brain peptides, such as CRH, GnRH, TRH, GAL, NPY, SOM, SP, and VIP in selected brain sections of hypothalamus, pituitary gland and in the endocrine glands of the HPA, HPO, and HPT axes. In conclusion, the obtained results clearly show that subclinical LPS from S. Enteritidis can affect the brain chemistry structure and dysregulate bioactive substance from selected brain sections and glands of the neuroendocrine axes. The exact mechanisms by which LPS can influence major neuroendocrine axes are not fully understood and require further studies.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
23
|
Elena RIM, Gabriela GD, Arnulfo GC, Enrique CA. Studying the Gut Microbiome of Latin America and Hispanic/Latino Populations. Insight into Obesity and Diabetes: Systematic Review. Curr Diabetes Rev 2019; 15:294-301. [PMID: 30058496 DOI: 10.2174/1573399814666180730124817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/23/2018] [Accepted: 07/28/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND People from Latin America (LA) and the Hispanic/Latino community living in the United States (LUS) exhibit a high prevalence of diabetes (DM) and obesity (OB). The Gut Microbiome (GM) is capable of altering energy regulation and glucose metabolism, but for the expression of these diseases a combination of multiple factors such as ethnicity, genetic and nutritional factors are required. A systematic research was conducted to understand if the prevalence of OB and/or DM has an interaction with the GM in LA and LUS. METHODS Research was conducted in PubMed, Web of Science, Scielo, Embase and Google Scholar for articles between 1990 and 2017. It was restricted to human studies published in English, Spanish, or Portuguese that applied genetic techniques to study the GM in LA or LUS and discussed the association with OB and/or DM. RESULTS Different gut Firmicutes/Bacteroidetes relationships in several populations from LA influenced by geography, diet and lifestyles interacted with OB. Healthy people from the Mexico and US border had the same imbalance between Firmicutes and Bacteroidetes found in OB or Type 2 DM. High levels of Bacteroides and a reduced proportion of Prevotella, Megamonas, and Acidaminococcus were found in newly diagnosed type 1 DM. Once the patient was treated with insulin, an increase of Prevotella levels was seen. Inverse Firmicutes/Bacteroidetes relationship was reported before the development of Type 1 DM. CONCLUSION An important relation between GM and OB and/or DM exists in LA and LUS. Further elucidation of pathophysiologic mechanisms is required.
Collapse
Affiliation(s)
- Romero-Ibarguengoitia Maria Elena
- Latino Diabetes Initiative, Joslin Diabetes Center, Harvard Medical School, Boston, United States
- Research Department, Hospital General de Mexico, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Garcia-Dolagaray Gabriela
- Latino Diabetes Initiative, Joslin Diabetes Center, Harvard Medical School, Boston, United States
- Tufts University School of Medicine, Boston, United States
| | | | | |
Collapse
|
24
|
van den Munckhof ICL, Kurilshikov A, Ter Horst R, Riksen NP, Joosten LAB, Zhernakova A, Fu J, Keating ST, Netea MG, de Graaf J, Rutten JHW. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev 2018; 19:1719-1734. [PMID: 30144260 DOI: 10.1111/obr.12750] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A hallmark of obesity is chronic low-grade inflammation, which plays a major role in the process of atherosclerotic cardiovascular disease (ACVD). Gut microbiota is one of the factors influencing systemic immune responses, and profound changes have been found in its composition and metabolic function in individuals with obesity. This systematic review assesses the association between the gut microbiota and markers of low-grade inflammation in humans. We identified 14 studies which were mostly observational and relatively small (n = 10 to 471). The way in which the microbiome is analysed differed extensively between these studies. Lower gut microbial diversity was associated with higher white blood cell counts and high sensitivity C-reactive protein (hsCRP) levels. The abundance of Bifidobacterium, Faecalibacterium, Ruminococcus and Prevotella were inversely related to different markers of low-grade inflammation such as hsCRP and interleukin (IL)-6. In addition, this review speculates on possible mechanisms through which the gut microbiota can affect low-grade inflammation and thereby ACVD. We discuss the associations between the microbiome and the inflammasome, the innate immune system, bile acids, gut permeability, the endocannabinoid system and TMAO. These data reinforce the importance of human research into the gut microbiota as potential diagnostic and therapeutic strategy to prevent ACVD.
Collapse
Affiliation(s)
- I C L van den Munckhof
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R Ter Horst
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - A Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - J Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - S T Keating
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - J de Graaf
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J H W Rutten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Feng XW, Ding WP, Xiong LY, Guo L, Sun JM, Xiao P. Recent Advancements in Intestinal Microbiota Analyses: A Review for Non-Microbiologists. Curr Med Sci 2018; 38:949-961. [PMID: 30536055 DOI: 10.1007/s11596-018-1969-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Microbial constituents naturally inhabiting the gastrointestinal tract may influence the homeostasis of the gut environment. The presence or overabundance of some bacterial taxa has been reported to be associated with complex diseases, and the metabolites of certain bacteria may contribute to diverse disorders by influencing signaling pathways. Therefore, the study of gut microbial population has emerged as a crucial field and a new potential area of clinical significance. Advances in the methods of microbiota analysis have shed light upon the details including species diversity, microfloral activities as well as the entire gut microbiota. Nevertheless, comprehensive reviews on this subject are still limited. For elucidating the appropriate selection strategy of the methods to address a particular research question, we comprehensively reviewed the continuously improving technologies, classical to newly developed, and dissected their relative advantages and drawbacks. In addition, aiming at the rapidly advancing next-generation sequencing, we enumerated the improvements in mainstream platforms and made the horizontal and vertical comparison among them. Additionally, we demonstrated the four main -omics methods, which may provide further mechanistic insights into the role of microbiota, to propel phylotyping analysis to functional analysis.
Collapse
Affiliation(s)
- Xiao-Wei Feng
- Department of Psychiatry, Wuhan Youfu Hospital, Wuhan, 430050, China
| | - Wen-Ping Ding
- Department of Ultrasound, Wuhan Women and Children's Health Care Center, Wuhan, 430016, China
| | - Ling-Yun Xiong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Xiao
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
26
|
Abstract
The microbiome has received increasing attention over the last 15 years. Although gut microbes have been explored for several decades, investigations of the role of microorganisms that reside in the human gut has attracted much attention beyond classical infectious diseases. For example, numerous studies have reported changes in the gut microbiota during not only obesity, diabetes, and liver diseases but also cancer and even neurodegenerative diseases. The human gut microbiota is viewed as a potential source of novel therapeutics. Between 2013 and 2017, the number of publications focusing on the gut microbiota was, remarkably, 12 900, which represents four-fifths of the total number of publications over the last 40 years that investigated this topic. This review discusses recent evidence of the impact of the gut microbiota on metabolic disorders and focus on selected key mechanisms. This review also aims to provide a critical analysis of the current knowledge in this field, identify putative key issues or problems and discuss misinterpretations. The abundance of metagenomic data generated on comparing diseased and healthy subjects can lead to the erroneous claim that a bacterium is causally linked with the protection or the onset of a disease. In fact, environmental factors such as dietary habits, drug treatments, intestinal motility and stool frequency and consistency are all factors that influence the composition of the microbiota and should be considered. The cases of the bacteria Prevotella copri and Akkermansia muciniphila will be discussed as key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group, Université catholique de Louvain, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Brussels, Belgium
| |
Collapse
|
27
|
Moran-Ramos S, López-Contreras BE, Canizales-Quinteros S. Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality? Arch Med Res 2017; 48:735-753. [PMID: 29292011 DOI: 10.1016/j.arcmed.2017.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
The obesity pandemic and the metabolic complications derived from it represent a major public health challenge worldwide. Although obesity is a multifactorial disease, research from the past decade suggests that the gut microbiota interacts with host genetics and diet, as well as with other environmental factors, and thus contributes to the development of obesity and related complications. Despite abundant research on animal models, substantial evidence from humans has only started to accumulate over the past few years. Thus, the aim of the present review is to discuss structural and functional characteristics of the gut microbiome in human obesity, challenges associated with multi-omic technologies, and advances in identifying microbial metabolites with a direct link to obesity and metabolic complications. To date, studies suggests that obesity is related to low microbial diversity and taxon depletion sometimes resulting from an interaction with host dietary habits and genotype. These findings support the idea that the depletion or absence of certain taxa leaves an empty niche, likely leading to compromised functionality and thus promoting dysbiosis. Although the role of altered gut microbiota as cause or consequence of obesity remains controversial, research on microbial genomes and metabolites points towards an increased extraction of energy from the diet in obesity and suggests that metabolites, such as trimethylamine-N-oxide or branched-chain amino acids, participate in metabolic complications. Future research should be focused on structural and functional levels to unravel the mechanism linking gut microbiota and obesity.
Collapse
Affiliation(s)
- Sofia Moran-Ramos
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México, México; Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica, Ciudad de México, México.
| | - Blanca E López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica, Ciudad de México, México.
| |
Collapse
|
28
|
Amaral WZ, Lubach GR, Proctor A, Lyte M, Phillips GJ, Coe CL. Social Influences on Prevotella and the Gut Microbiome of Young Monkeys. Psychosom Med 2017; 79:888-897. [PMID: 28178033 PMCID: PMC5547018 DOI: 10.1097/psy.0000000000000454] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Our aim was to evaluate the bacterial profiles of young monkeys as they were weaned into peer groups with a particular focus on Prevotella, an important taxon in both human and nonhuman primates. The weaning of infants and increased social contact with peers is a developmental stage that is likely to affect the gut microbiome. METHODS Gut bacteria were assessed in 63 rhesus monkeys living in social groups comprised of 4 to 7 individuals. Two groups were assessed prospectively on day 1 and 2 weeks after rehousing away from the mother and group formation. Ten additional groups were assessed at 2 weeks after group establishment. Fecal genomic DNA was extracted and 16S ribosomal RNA sequenced by Illumina MiSeq (5 social groups) and 454-amplicon pyrosequencing (7 social groups). RESULTS Combining weaned infants into small social groups led to a microbial convergence by 2 weeks (p < .001). Diversity analyses indicated more similar community structure within peer groups than across groups (p < .01). Prevotella was the predominant taxon, and its abundance differed markedly across individuals. Indices of richness, microbial profiles, and less abundant taxa were all associated with the Prevotella levels. Functional Kyoto Encyclopedia of Genes and Genomes analyses suggested corresponding shifts in metabolic pathways. CONCLUSIONS The formation of small groups of young rhesus monkeys was associated with significant shifts in the gut microbiota. The profiles were closely associated with the abundance of Prevotella, a predominant taxon in the rhesus monkey gut. Changes in the structure of the gut microbiome are likely to induce differences in metabolic and physiologic functioning.
Collapse
Affiliation(s)
- Wellington Z Amaral
- From the Harlow Center for Biological Psychology (Amaral, Lubach, Coe), University of Wisconsin, Madison, Wisconsin; and the Department of Veterinary Microbiology and Veterinary Medicine (Proctor, Lyte, Phillips), Iowa State University, Ames, Iowa
| | | | | | | | | | | |
Collapse
|
29
|
Plovier H, Cani PD. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders? Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0002-2016. [PMID: 28597812 PMCID: PMC11687490 DOI: 10.1128/microbiolspec.bad-0002-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
Malnutrition is the cause of major public health concerns worldwide. On the one hand, obesity and associated pathologies (also known as the metabolic syndrome) affect more than 10% of the world population. Such pathologies might arise from an elevated inflammatory tone. We have discovered that the inflammatory properties of high-fat diets were linked to the translocation of lipopolysaccharide (LPS). We proposed a mechanism associating the gut microbiota with the onset of insulin resistance and low-grade inflammation, a phenomenon that we called "metabolic endotoxemia." We and others have shown that bacteria as well as host-derived immune-related elements control microbial communities and eventually contribute to the phenotype observed during diet-induced obesity, diabetes, and metabolic inflammation. On the other hand, undernutrition is one of the leading causes of death in children. A diet poor in energy and/or nutrients causes incomplete development of the gut microbiota and may profoundly affect energy absorption, initiating stunted growth, edema, and diarrhea. In this review, we discuss how changes in microbiota composition are associated with obesity and undernutrition. We also highlight that opposite consequences exist in terms of energy absorption from the diet (obesity versus undernutrition), but interestingly the two situations share similar defects in term of diversity, functionality, and inflammatory potential.
Collapse
Affiliation(s)
- Hubert Plovier
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|