1
|
Agapov AB, Kalinin RE, Mzhavanadze ND, Povarov VO, Nikiforov AA, Maksaev DA, Chobanyan AA, Suchkov IA. Evaluation of Inflammation and Platelet Apoptosis Parameters in Obese Patients in Various Types of Anticoagulant Prophylaxis of Venous Thromboembolic Complications in Context of COVID-19. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2024; 32:413-424. [DOI: 10.17816/pavlovj631743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
INTRODUCTION: The physical inactivity, hypoventilation, as well as chronic inflammation in obese patients aggravates their condition in various diseases. These features have become important with the advent of the COVID-19 pandemic, in which inflammation and platelet-activated coagulopathy are closely linked.
AIM: To study laboratory parameters of inflammation and platelet apoptosis in obese patients using various types of anticoagulant prophylaxis of venous thromboembolic complications with the underlying COVID-19.
MATERIALS AND METHODS: The study included 370 patients with COVID-19. Depending on the presence or absence of obesity and the type of parenteral anticoagulant, patients in our study were divided into groups: group 1 — non-obese + low molecular weight heparin (LMWH) (n = 114), group 2 — non-obese + unfractionated heparin (UFH) (n = 58), group 3 — obesity + LMWH (n = 76), group 4 — obesity + UFH (n = 66). The incidence of venous thromboembolic complications (VTEC), bleeding, general markers of the acute phase of inflammation, and specific markers of platelet apoptosis (phosphatidylserine and calreticulin) have been analyzed.
RESULTS: At the end of hospital treatment, a decrease in ferritin levels was noted in patients both with and without obesity receiving LMWH. The concentration of calreticulin was higher in patients taking LMWH (groups 1 and 3). Phosphatidylserine levels were high in patients receiving LMWH only if they were obese. In patients taking UFH compared to LMWH, a high incidence of pulmonary embolism (PE) without a source (13.6% of cases versus 2.6%, respectively, p = 0.029) and PE with a source in the lower extremities (9.1% of cases versus 0%, respectively, p = 0.018) was found. When using LMWH, a lower incidence of bleeding was observed compared to using UFH (5.3% of cases versus 16.7%, respectively, p = 0.056).
CONCLUSION: The levels of phosphatidylserine and calreticulin are higher in obese patients receiving LMWH. At the same time, patients in this group have a low incidence of VTEC and hemorrhagic complications compared to the group of patients taking UFH.
Collapse
Affiliation(s)
- Andrey B. Agapov
- Ryazan State Medical University
- Ryazan Regional Clinical Hospital
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Agapov A, Kalinin R, Mzhavanadze N, Povarov V, Nikiforov A, Suchkov I. Platelet apoptosis markers under anticoagulation for COVID-19 infection. RUSSIAN JOURNAL OF CARDIOLOGY AND CARDIOVASCULAR SURGERY 2024; 17:194. [DOI: 10.17116/kardio202417021194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Objective. To assess the level of platelet apoptosis markers (phosphatidylserine and calreticulin) under anticoagulation for COVID-19 infection. Material and methods. A prospective study included 370 patients. They were divided into 3 groups depending on anticoagulation: group 1 (n=190) — low molecular weight heparin (LMWH); group 2 (n=123) — unfractionated heparin (UFH); group 3 (n=57) — direct oral anticoagulants (DOACs). We assessed clinical and anamnestic data, laboratory parameters, specific markers of apoptosis (phosphatidylserine and calreticulin). To identify cases of VTECs, Doppler ultrasound of lower limb veins was performed. Results. At the end of anticoagulation, serum calreticulin and phosphatidylserine were higher only in patients taking LMWH (group 1). C-reactive protein decreased in all groups (p=0.135), but serum ferritin and procalcitonin were lower in patients taking LMWH (group 1). The lowest serum fibrinogen was observed in patients taking LMWH. Patients receiving UFH were characterized by higher incidence of isolated pulmonary embolism without deep vein thrombosis (11.4% of cases), DVT and PE with a source in the lower extremities (6.5% and 6.5% of cases, respectively) compared to patients taking LMWH (1.6%, 1.1%, and 0.5% of cases, respectively). Conclusion. Increased apoptosis markers (phosphatidylserine and calreticulin) were found in patients receiving VTEC prophylaxis with low molecular weight heparin. Baseline serum phosphatidylserine >62.75 pg/ml reduces the risk of VTEC by 1.033 times (1.005—1.062, p=0.02). Decrease in pro-inflammatory markers (CRP, ferritin) and coagulation markers (D-dimer and fibrinogen) was more significant in patients receiving LMWH.
Collapse
Affiliation(s)
- A.B. Agapov
- Pavlov Ryazan State Medical University
- Ryazan Regional Clinical Hospital
| | | | - N.D. Mzhavanadze
- Pavlov Ryazan State Medical University
- Ryazan City Clinical Emergency Hospital
| | | | | | | |
Collapse
|
3
|
Maryam B, Smith ME, Miller SJ, Natarajan H, Zimmerman KA. Macrophage Ontogeny, Phenotype, and Function in Ischemia Reperfusion-Induced Injury and Repair. KIDNEY360 2024; 5:459-470. [PMID: 38297436 PMCID: PMC11000738 DOI: 10.34067/kid.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 β , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.
Collapse
Affiliation(s)
- Bibi Maryam
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Morgan E. Smith
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Miller
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariharasudan Natarajan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
4
|
Murphy-Ullrich JE. Thrombospondin-1 Signaling Through the Calreticulin/LDL Receptor Related Protein 1 Axis: Functions and Possible Roles in Glaucoma. Front Cell Dev Biol 2022; 10:898772. [PMID: 35693935 PMCID: PMC9185677 DOI: 10.3389/fcell.2022.898772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular extracellular matrix protein. Matricellular proteins are components of the extracellular matrix (ECM) that regulate key cellular functions and impact ECM organization, but which lack direct primary structural roles in the ECM. TSP-1 expression is upregulated in response to injury, hypoxia, growth factor stimulation, inflammation, glucose, and by reactive oxygen species. Relevant to glaucoma, TSP-1 is also a mechanosensitive molecule upregulated by mechanical stretch. TSP-1 expression is increased in ocular remodeling in glaucoma in both the trabecular meshwork and in the optic nerve head. The exact roles of TSP-1 in glaucoma remain to be defined, however. It plays important roles in cell behavior and in ECM remodeling during wound healing, fibrosis, angiogenesis, and in tumorigenesis and metastasis. At the cellular level, TSP-1 can modulate cell adhesion and migration, protease activity, growth factor activity, anoikis resistance, apoptosis, and collagen secretion and matrix assembly and cross-linking. These multiple functions and macromolecular and receptor interactions have been ascribed to specific domains of the TSP-1 molecule. In this review, we will focus on the cell regulatory activities of the TSP-1 N-terminal domain (NTD) sequence that binds to cell surface calreticulin (Calr) and which regulates cell functions via signaling through Calr complexed with LDL receptor related protein 1 (LRP1). We will describe TSP-1 actions mediated through the Calr/LRP1 complex in regulating focal adhesion disassembly and cytoskeletal reorganization, cell motility, anoikis resistance, and induction of collagen secretion and matrix deposition. Finally, we will consider the relevance of these TSP-1 functions to the pathologic remodeling of the ECM in glaucoma.
Collapse
Affiliation(s)
- Joanne E. Murphy-Ullrich
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Joanne E. Murphy-Ullrich,
| |
Collapse
|
5
|
Disease-Relevant Single Cell Photonic Signatures Identify S100β Stem Cells and their Myogenic Progeny in Vascular Lesions. Stem Cell Rev Rep 2021; 17:1713-1740. [PMID: 33730327 PMCID: PMC8446106 DOI: 10.1007/s12015-021-10125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 10/31/2022]
Abstract
A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem cells (vSCs) remains unclear. We evaluated single cell photonics as a discriminator of cell phenotype in vitro before the presence of vSC within vascular lesions was assessed ex vivo using supervised machine learning and further validated using lineage tracing analysis. Using a novel lab-on-a-Disk(Load) platform, label-free single cell photonic emissions from normal and injured vessels ex vivo were interrogated and compared to freshly isolated aortic SMCs, cultured Movas SMCs, macrophages, B-cells, S100β+ mVSc, bone marrow derived mesenchymal stem cells (MSC) and their respective myogenic progeny across five broadband light wavelengths (λ465 - λ670 ± 20 nm). We found that profiles were of sufficient coverage, specificity, and quality to clearly distinguish medial SMCs from different vascular beds (carotid vs aorta), discriminate normal carotid medial SMCs from lesional SMC-like cells ex vivo following flow restriction, and identify SMC differentiation of a series of multipotent stem cells following treatment with transforming growth factor beta 1 (TGF- β1), the Notch ligand Jagged1, and Sonic Hedgehog using multivariate analysis, in part, due to photonic emissions from enhanced collagen III and elastin expression. Supervised machine learning supported genetic lineage tracing analysis of S100β+ vSCs and identified the presence of S100β+vSC-derived myogenic progeny within vascular lesions. We conclude disease-relevant photonic signatures may have predictive value for vascular disease.
Collapse
|
6
|
Lu A, Pallero MA, Owusu BY, Borovjagin AV, Lei W, Sanders PW, Murphy-Ullrich JE. Calreticulin is important for the development of renal fibrosis and dysfunction in diabetic nephropathy. Matrix Biol Plus 2020; 8:100034. [PMID: 33543033 PMCID: PMC7852315 DOI: 10.1016/j.mbplus.2020.100034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Previously, our lab showed that the endoplasmic reticulum (ER) and calcium regulatory protein, calreticulin (CRT), is important for collagen transcription, secretion, and assembly into the extracellular matrix (ECM) and that ER CRT is critical for TGF-β stimulation of type I collagen transcription through stimulation of ER calcium release and NFAT activation. Diabetes is the leading cause of end stage renal disease. TGF-β is a key factor in the pathogenesis of diabetic nephropathy. However, the role of calreticulin (Calr) in fibrosis of diabetic nephropathy has not been investigated. In current work, we used both in vitro and in vivo approaches to assess the role of ER CRT in TGF-β and glucose stimulated ECM production by renal tubule cells and in diabetic mice. Knockdown of CALR by siRNA in a human proximal tubular cell line (HK-2) showed reduced induction of soluble collagen when stimulated by TGF-β or high glucose as compared to control cells, as well as a reduction in fibronectin and collagen IV transcript levels. CRT protein is increased in kidneys of mice made diabetic with streptozotocin and subjected to uninephrectomy to accelerate renal tubular injury as compared to controls. We used renal-targeted ultrasound delivery of Cre-recombinase plasmid to knockdown specifically CRT expression in the remaining kidney of uninephrectomized Calr fl/fl mice with streptozotocin-induced diabetes. This approach reduced CRT expression in the kidney, primarily in the tubular epithelium, by 30-55%, which persisted over the course of the studies. Renal function as measured by the urinary albumin/creatinine ratio was improved in the mice with knockdown of CRT as compared to diabetic mice injected with saline or subjected to ultrasound and injected with control GFP plasmid. PAS staining of kidneys and immunohistochemical analyses of collagen types I and IV show reduced glomerular and tubulointerstitial fibrosis. Renal sections from diabetic mice with CRT knockdown showed reduced nuclear NFAT in renal tubules and treatment of diabetic mice with 11R-VIVIT, an NFAT inhibitor, reduced proteinuria and renal fibrosis. These studies identify ER CRT as an important regulator of TGF-β stimulated ECM production in the diabetic kidney, potentially through regulation of NFAT-dependent ECM transcription.
Collapse
Key Words
- 4-PBA, 4-phenylbutyrate
- CRT, calreticulin
- Calreticulin
- Collagen
- Diabetic nephropathy
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- ER, endoplasmic reticulum
- Fibrosis
- GRP78, glucose related protein 78
- MB/US, microbubble/ultrasound
- NFAT
- NFAT, nuclear factor of activated T cells
- PAS, Periodic Acid-Schiff
- STZ, streptozotocin
- TGF-β, transforming growth factor-β
- UPR, unfolded protein response
Collapse
Affiliation(s)
- Ailing Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Manuel A. Pallero
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Benjamin Y. Owusu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Anton V. Borovjagin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Weiqi Lei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Paul W. Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Department of Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | | |
Collapse
|
7
|
Pandya UM, Manzanares MA, Tellechea A, Egbuta C, Daubriac J, Jimenez-Jaramillo C, Samra F, Fredston-Hermann A, Saadipour K, Gold LI. Calreticulin exploits TGF-β for extracellular matrix induction engineering a tissue regenerative process. FASEB J 2020; 34:15849-15874. [PMID: 33015849 DOI: 10.1096/fj.202001161r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Topical application of extracellular calreticulin (eCRT), an ER chaperone protein, in animal models enhances wound healing and induces tissue regeneration evidenced by epidermal appendage neogenesis and lack of scarring. In addition to chemoattraction of cells critical to the wound healing process, eCRT induces abundant neo-dermal extracellular matrix (ECM) formation by 3 days post-wounding. The purpose of this study was to determine the mechanisms involved in eCRT induction of ECM. In vitro, eCRT strongly induces collagen I, fibronectin, elastin, α-smooth muscle actin in human adult dermal (HDFs) and neonatal fibroblasts (HFFs) mainly via TGF-β canonical signaling and Smad2/3 activation; RAP, an inhibitor of LRP1 blocked eCRT ECM induction. Conversely, eCRT induction of α5 and β1 integrins was not mediated by TGF-β signaling nor inhibited by RAP. Whereas eCRT strongly induces ECM and integrin α5 proteins in K41 wild-type mouse embryo fibroblasts (MEFs), CRT null MEFs were unresponsive. The data show that eCRT induces the synthesis and release of TGF-β3 first via LRP1 or other receptor signaling and later induces ECM proteins via LRP1 signaling subsequently initiating TGF-β receptor signaling for intracellular CRT (iCRT)-dependent induction of TGF-β1 and ECM proteins. In addition, TGF-β1 induces 2-3-fold higher level of ECM proteins than eCRT. Whereas eCRT and iCRT converge for ECM induction, we propose that eCRT attenuates TGF-β-mediated fibrosis/scarring to achieve tissue regeneration.
Collapse
Affiliation(s)
- Unnati M Pandya
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Miguel A Manzanares
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Ana Tellechea
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Chinaza Egbuta
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Julien Daubriac
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Couger Jimenez-Jaramillo
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Fares Samra
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Alexa Fredston-Hermann
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Khalil Saadipour
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Leslie I Gold
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA.,Pathology Department, New York University School of Medicine-Langone Health, New York, NY, USA
| |
Collapse
|
8
|
Abstract
Calreticulin (CALR) is an endoplasmic reticulum (ER)-resident protein involved in a spectrum of cellular processes. In healthy cells, CALR operates as a chaperone and Ca2+ buffer to assist correct protein folding within the ER. Besides favoring the maintenance of cellular proteostasis, these cell-intrinsic CALR functions support Ca2+-dependent processes, such as adhesion and integrin signaling, and ensure normal antigen presentation on MHC Class I molecules. Moreover, cancer cells succumbing to immunogenic cell death (ICD) expose CALR on their surface, which promotes the uptake of cell corpses by professional phagocytes and ultimately supports the initiation of anticancer immunity. Thus, loss-of-function CALR mutations promote oncogenesis not only as they impair cellular homeostasis in healthy cells, but also as they compromise natural and therapy-driven immunosurveillance. However, the prognostic impact of total or membrane-exposed CALR levels appears to vary considerably with cancer type. For instance, while genetic CALR defects promote pre-neoplastic myeloproliferation, patients with myeloproliferative neoplasms bearing CALR mutations often experience improved overall survival as compared to patients bearing wild-type CALR. Here, we discuss the context-dependent impact of CALR on malignant transformation, tumor progression and response to cancer therapy.
Collapse
|
9
|
Endoplasmic Reticulum Stress Regulates Scleral Remodeling in a Guinea Pig Model of Form-Deprivation Myopia. J Ophthalmol 2020; 2020:3264525. [PMID: 32587758 PMCID: PMC7303736 DOI: 10.1155/2020/3264525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose This study aimed to investigate the role of endoplasmic reticulum (ER) stress in scleral remodeling in a guinea pig model of form-deprivation myopia (FDM). Methods Guinea pigs were form deprived to induce myopia. ER ultrastructural changes in the sclera were examined by transmission electron microscopy (TEM). The protein levels of ER stress chaperones, including GRP78, CHOP, and calreticulin (CRT), were analyzed by western blotting at 24 hours, 1 week, and 4 weeks of FD. Scleral fibroblasts from guinea pigs were cultured and exposed to the ER stress inducer tunicamycin (TM) or the ER stress inhibitor 4-phenylbutyric acid (4-PBA). CRT was knocked down by lentivirus-mediated CRT shRNA transfection. The expression levels of GRP78, CHOP, TGF-β1, and COL1A1 were analyzed by qRT-PCR or western blotting. Results The sclera of FDM eyes exhibited swollen and distended ER at 4 weeks, as well as significantly increased protein expression of GRP78 and CRT at 1 week and 4 weeks, compared to the sclera of the control eyes. In vitro, TM induced ER stress in scleral fibroblasts, which was suppressed by 4-PBA. The mRNA expression of TGF-β1 and COL1A1 was upregulated after TM stimulation for 24 hours, but downregulated for 48 hours. Additionally, change of TGF-β1 and COL1A1 transcription induced by TM was suppressed by CRT knockdown. Conclusions ER stress was an important modulator which could influence the expression of the scleral collagen. CRT might be a new target for the intervention of the FDM scleral remodeling process.
Collapse
|
10
|
Wu J, Li X, Luo F, Yan J, Yang K. Screening key miRNAs and genes in prostate cancer by microarray analysis. Transl Cancer Res 2020; 9:856-868. [PMID: 35117431 PMCID: PMC8799076 DOI: 10.21037/tcr.2019.12.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the second most frequent cancer and the fifth leading cause of cancer-related death in men while the mechanisms remain unclear. METHODS Differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) between PCa and non-tumor controls were identified by using microarray analysis. Functional annotation of DEmRNAs, construction of protein-protein interaction (PPI) network and prediction of upstream transcription factors and downstream target DEmRNAs of DEmiRNAs were conducted to further research functions of key DEmRNAs and DEmiRNAs. Validation of selected DEmRNAs and survival analysis were conducted by using The Cancer Genome Atlas (TCGA). RESULTS Total of 91 DEmRNAs and 62 DEmiRNAs were obtained. Thrombospondin-4 precursor (THBS4) was the most significantly up-regulated DEmRNA whose product was predicted to interact with the hub protein of the PCa-specific PPI network, collagen type I alpha 1 chain (COL1A1). Both ATP binding cassette subfamily C member 4 (ABCC4) and endothelin receptor type B (EDNRB) have great prognostic value for PCa. Thrombospondin type 1 domain containing 4 (THSD4) was a down-regulated DEmRNA regulated by several cancer-related miRNAs including has-miR-107, hsa-miR-3175 and hsa-miR-484. Two miRNAs (hsa-miR-428 and hsa-miR-4284) involve in PCa by regulating BMP5-BAMBI interaction and TGF-beta signaling pathway. The expression of selected DEmRNAs between PCa and non-tumor controls in TCGA was consistent with that in our microarray analysis, generally. CONCLUSIONS Key DEmRNAs and DEmiRNAs between PCa and non-tumor controls were identified in this study which provided clues for exploring the molecular mechanism and developing potential biomarkers and therapeutic target sites for PCa.
Collapse
Affiliation(s)
- Jianhui Wu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xuemei Li
- Department of Endocrinology, Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Fei Luo
- Department of Urology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Jun Yan
- Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Kuo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
11
|
Murphy-Ullrich JE. Thrombospondin 1 and Its Diverse Roles as a Regulator of Extracellular Matrix in Fibrotic Disease. J Histochem Cytochem 2019; 67:683-699. [PMID: 31116066 PMCID: PMC6713974 DOI: 10.1369/0022155419851103] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
Thrombospondin 1 (TSP1) is a matricellular extracellular matrix protein that has diverse roles in regulating cellular processes important for the pathogenesis of fibrotic diseases. We will present evidence for the importance of TSP1 control of latent transforming growth factor beta activation in renal fibrosis with an emphasis on diabetic nephropathy. Other functions of TSP1 that affect renal fibrosis, including regulation of inflammation and capillary density, will be addressed. Emerging roles for TSP1 N-terminal domain regulation of collagen matrix assembly, direct effects of TSP1-collagen binding, and intracellular functions of TSP1 in mediating endoplasmic reticulum stress responses in extracellular matrix remodeling and fibrosis, which could potentially affect renal fibrogenesis, will also be discussed. Finally, we will address possible strategies for targeting TSP1 functions to treat fibrotic renal disease.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Departments of Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
12
|
Biwer LA, Good ME, Hong K, Patel RK, Agrawal N, Looft-Wilson R, Sonkusare SK, Isakson BE. Non-Endoplasmic Reticulum-Based Calr (Calreticulin) Can Coordinate Heterocellular Calcium Signaling and Vascular Function. Arterioscler Thromb Vasc Biol 2018; 38:120-130. [PMID: 29122814 PMCID: PMC5746467 DOI: 10.1161/atvbaha.117.309886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In resistance arteries, endothelial cell (EC) extensions can make contact with smooth muscle cells, forming myoendothelial junction at holes in the internal elastic lamina (HIEL). At these HIEL, calcium signaling is tightly regulated. Because Calr (calreticulin) can buffer ≈50% of endoplasmic reticulum calcium and is expressed throughout IEL holes in small arteries, the only place where myoendothelial junctions form, we investigated the effect of EC-specific Calr deletion on calcium signaling and vascular function. APPROACH AND RESULTS We found Calr expressed in nearly every IEL hole in third-order mesenteric arteries, but not other ER markers. Because of this, we generated an EC-specific, tamoxifen inducible, Calr knockout mouse (EC Calr Δ/Δ). Using this mouse, we tested third-order mesenteric arteries for changes in calcium events at HIEL and vascular reactivity after application of CCh (carbachol) or PE (phenylephrine). We found that arteries from EC Calr Δ/Δ mice stimulated with CCh had unchanged activity of calcium signals and vasodilation; however, the same arteries were unable to increase calcium events at HIEL in response to PE. This resulted in significantly increased vasoconstriction to PE, presumably because of inhibited negative feedback. In line with these observations, the EC Calr Δ/Δ had increased blood pressure. Comparison of ER calcium in arteries and use of an ER-specific GCaMP indicator in vitro revealed no observable difference in ER calcium with Calr knockout. Using selective detergent permeabilization of the artery and inhibition of Calr translocation, we found that the observed Calr at HIEL may not be within the ER. CONCLUSIONS Our data suggest that Calr specifically at HIEL may act in a non-ER dependent manner to regulate arteriolar heterocellular communication and blood pressure.
Collapse
Affiliation(s)
- Lauren A Biwer
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Kwangseok Hong
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Rahul K Patel
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Neha Agrawal
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Robin Looft-Wilson
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Swapnil K Sonkusare
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.).
| |
Collapse
|
13
|
Charonis AS, Michalak M, Groenendyk J, Agellon LB. Endoplasmic reticulum in health and disease: the 12th International Calreticulin Workshop, Delphi, Greece. J Cell Mol Med 2017; 21:3141-3149. [PMID: 29160038 PMCID: PMC5706586 DOI: 10.1111/jcmm.13413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
Starting from 1994, every 2 years, an international workshop is organized focused on calreticulin and other endoplasmic reticulum chaperones. In 2017, the workshop took place at Delphi Greece. Participants from North and South America, Europe, Asia and Australia presented their recent data and discussed them extensively with their colleagues. Presentations dealt with structural aspects of calreticulin and calnexin, the role of Ca2+ in cellular signalling and in autophagy, the endoplasmic reticulum stress and the unfolded protein response, the role of calreticulin in immune responses. Several presentations focused on the role of calreticulin and other ER chaperones in a variety of disease states, including haemophilia, obesity, diabetes, Sjogren's syndrome, Chagas diseases, multiple sclerosis, amyotrophic lateral sclerosis, neurological malignancies (especially glioblastoma), haematological malignancies (especially essential thrombocythemia and myelofibrosis), lung adenocarcinoma, renal pathology with emphasis in fibrosis and drug toxicity. In addition, the role of calreticulin and calnexin in growth and wound healing was discussed, as well as the possible use of extracellular calreticulin as a marker for certain diseases. It was agreed that the 13th International Calreticulin Workshop will be organized in 2019 in Montreal, Quebec, Canada.
Collapse
Affiliation(s)
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
14
|
Owusu BY, Zimmerman KA, Murphy-Ullrich JE. The role of the endoplasmic reticulum protein calreticulin in mediating TGF-β-stimulated extracellular matrix production in fibrotic disease. J Cell Commun Signal 2017; 12:289-299. [PMID: 29080087 DOI: 10.1007/s12079-017-0426-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a key factor contributing to fibrotic disease. Although ER stress is a short-term adaptive response, with chronic stimulation, it can activate pathways leading to fibrosis. ER stress can induce TGF-β signaling, a central driver of extracellular matrix production in fibrosis. This review will discuss the role of an ER protein, calreticulin (CRT), which has both chaperone and calcium regulatory functions, in fibrosis. CRT expression is upregulated in multiple different fibrotic diseases. The roles of CRT in regulation of fibronectin extracellular matrix assembly, extracellular matrix transcription, and collagen secretion and processing into the extracellular matrix will be discussed. Evidence for the importance of CRT in ER calcium release and NFAT activation downstream of TGF-β signaling will be presented. Finally, we will summarize evidence from animal models in which CRT expression is genetically reduced or experimentally downregulated in targeted tissues of adult animals and discuss how these models define a key role for CRT in fibrotic diseases.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Pathology, University of Alabama at Birmingham, G001A Volker Hall, Birmingham, AL, 35294, USA
| | - Kurt A Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Joanne E Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, G001A Volker Hall, Birmingham, AL, 35294, USA. .,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
15
|
Karimzadeh F, Opas M. Calreticulin Is Required for TGF-β-Induced Epithelial-to-Mesenchymal Transition during Cardiogenesis in Mouse Embryonic Stem Cells. Stem Cell Reports 2017; 8:1299-1311. [PMID: 28434939 PMCID: PMC5425659 DOI: 10.1016/j.stemcr.2017.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Calreticulin, a multifunctional endoplasmic reticulum resident protein, is required for TGF-β-induced epithelial-to-mesenchymal transition (EMT) and subsequent cardiomyogenesis. Using embryoid bodies (EBs) derived from calreticulin-null and wild-type (WT) embryonic stem cells (ESCs), we show that expression of EMT and cardiac differentiation markers is induced during differentiation of WT EBs. This induction is inhibited in the absence of calreticulin and can be mimicked by inhibiting TGF-β signaling in WT cells. The presence of calreticulin in WT cells permits TGF-β-mediated signaling via AKT/GSK3β and promotes repression of E-cadherin by SNAIL2/SLUG. This is paralleled by induction of N-cadherin in a process known as the cadherin switch. We show that regulated Ca2+ signaling between calreticulin and calcineurin is critical for the unabated TGF-β signaling that is necessary for the exit from pluripotency and the cadherin switch during EMT. Calreticulin is thus a key mediator of TGF-β-induced commencement of cardiomyogenesis in mouse ESCs.
Collapse
Affiliation(s)
- Fereshteh Karimzadeh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
16
|
Xu M, Zhou H, Zhang C, He J, Wei H, Zhou M, Lu Y, Sun Y, Ding JW, Zeng J, Peng W, Du F, Gong A. ADAM17 promotes epithelial-mesenchymal transition via TGF-β/Smad pathway in gastric carcinoma cells. Int J Oncol 2016; 49:2520-2528. [DOI: 10.3892/ijo.2016.3744] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/11/2016] [Indexed: 11/06/2022] Open
|